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Abstract. In the present paper, spectral reflectance mea-
surements of Himalayan seasonal snow were carried out
and analysed to retrieve the snow albedo and effective grain
size. The asymptotic radiative transfer (ART) theory was
applied to retrieve the plane and spherical albedo. The re-
trieved plane albedo was compared with the measured spec-
tral albedo and a good agreement was observed with±10%
differences. Retrieved integrated albedo was found within
±6% difference with ground observed broadband albedo.
The retrieved snow grain sizes using different models based
on the ART theory were compared for various snow types
and it was observed that the grain size model using two chan-
nel method (one in visible and another in NIR region) can
work well for the Himalayan seasonal snow and it was found
consistent with temporal changes in grain size. This method
can work very well for clean, dry snow as in the upper Hi-
malaya, but sometimes, due to the low reflectances (<20%)
using wavelength 1.24 µm, the ART theory cannot be ap-
plied, which is common in lower and middle Himalayan old
snow. This study is important for monitoring the Himalayan
cryosphere using air-borne or space-borne sensors.

1 Introduction

Snow is an important natural resource. Due to high albedo
of snow and its large areal extent on the terrestrial surface,
it has significant effects on the planetary climate. The snow
albedo also influences the rate of melting and, thus it is an
important factor for the various activities related to seasonal
snowcover. Therefore, many studies have been carried out
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on albedo measurement and snow cover mapping. The snow
grain size and the impurities in snow are known as very im-
portant factors for changing the snow albedo (Wiscombe and
Warren, 1980; Warren and Wiscombe, 1980; Aoki et al.,
2003).

The Himalayan cryosphere has its importance because the
presence of vast snow cover in the Himalaya is due to its
high elevations, unlike the polar regions and the source of
origin for many rivers. Large areas of the Himalaya are cov-
ered by seasonal snowfall during winter which starts ablat-
ing in the spring, therefore, the areal extent of snow cover
changes significantly during winter and spring. The climatic
conditions of the Himalaya vary with the mountain ranges, or
geographically, which affects the snow metamorphism sig-
nificantly. Sharma and Ganju (2000) classified the western
Himalaya in three different snow climatic zones based on
the snow-meteorological data of 25 yr from different field
observatories over the western Himalaya and terrain condi-
tions. The upper Himalayan zone is characterised by com-
paratively low temperatures, light snowfall and severe wind
activities. The middle Himalayan zone is characterised by
fairly cold temperatures, heavy and dry snowfall with strong
wind action. The lower Himalayan zone is characterised by
moderate temperatures, heavy snowfall and a short winter
period. The study of the albedo and grain size can describe
the snow metamorphism, snowmelt and regional climate of
the Himalayan regions.

To retrieve the information on snow cover extent from
space-borne satellite sensors, it is important to understand
the spectral signatures of different types of snow on the
ground because of the complex internal structure of snow
and inhomogeneity in the snowpack (Massom et al., 2001).
The advantages of field spectral measurements can be
used in calibration of remote-sensing sensors, predicting
the optimum spectral bands for particular application and
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Table 1. Field measured snow parameters at the time of reflectance observations (Not meas. is no measurement recorded).

Snow type Time Solar zenith Snow thickness Snow surface Grain size
and date (LT) angle (degree) (cm) temperature (◦C) (mm)

09:30 63.9 27 −2.0 0.0–0.5
10:20 57.6 27 −2.0 0.0–0.5

Type-I snow 10:45 54.9 26 −1.5 0.5–1.0
29 January 2005 11:20 52.2 24 0.0 0.5–1.0

11:50 51.0 23 0.0 1.0–2.0
12:20 50.7 22 0.0 1.0–2.0

Type-II snow

09:20 60.9 136 −1.0 1.0–2.0

19 February 2008

10:10 53.5 Not meas. −0.5 1.0–2.0
11:00 47.9 Not meas. 0.0 1.0–2.0
12:00 44.6 Not meas. 0.0 1.0–2.0
13:00 45.8 Not meas. 0.0 1.0–2.0

development/testing of models relating to remote-sensing
data (Milton, 1987; Milton et al., 2009). Such systematic
study provides the possibility of retrieving snow information
from air-borne or space-borne sensors in different spectral
regions as well as for the validation of satellite retrieved in-
formation.

In the present study, reflectance measurements of differ-
ent types of snow were collected at nadir viewing and at-
tempts were made to retrieve snow properties, i.e., snow
albedo (plane, spherical and spectrally integrated) and snow
grain size. The asymptotic radiative transfer (ART) theory
was used to retrieve the above snow properties from spec-
tral reflectance and albedo measurement data. A comparison
among four different snow grain size models based on the
ART theory was made and a suitable model was proposed
for the different types of Himalayan seasonal snow. Further
the comparisons were made between ART simulated param-
eters and ground observed snow parameters.

2 Field measurements

The field study was carried out in the lower Himalayan
zone of the western Himalaya (Fig. 1a). This study
area provides ample opportunity to see the variations
in snow grain size and albedo in a short span of time
due to moderate temperatures conditions, as the albedo
reduction varies significantly for snow surface temper-
atures above−10◦C (Aoki et al., 2003). All the field
experiments were conducted at three different locations
i.e., station-1 (lat. 32◦16′21′′ N, long. 77◦10′58′′ E and
alt. 2039 m), station-2 (lat. 32◦19′03′′ N, long. 77◦09′20′′ E
and alt. 2480 m) and station-3 (lat. 32◦21′18′′ N,
long. 77◦07′35′′ E and alt. 3050 m) of Beas basin as
per the availability of different types of snow and field
instruments (Fig. 1b). Reflectance measurements of snow

were carried out using ASD spectroradiometer in the
spectral wavelength range of 350 nm–2500 nm with 3 nm
spectral resolution in VIR and 10 nm spectral resolution
at SWIR region. The spectralon reference surface, which
is a nearly perfect Lambertian reflector, was used in the
reflectance measurement (Analytical Spectral Devices,
1999). All the reflectance observations were carried out at
nadir (i.e., viewing zenith angle was 0◦) and under clear sky
conditions (i.e., direct solar radiation). One complete set
of spectroradiometer measurements was carried out within
5–10 min, so that the effect of illumination conditions and
atmospheric conditions on the snowpack can be assumed
unaltered.

To explore the ART theory for retrieving different parame-
ters from spectral signatures of Himalayan snow, field exper-
iments were made on seasonal fresh snow and old snow data
with hourly temporal variations over a plane surface (Fig. 2).
For fresh snow, the field experiment was conducted on 29
January 2005 at station-1, on day 1 after the cessation of
snow storm. This new snowfall was 10 cm on top of the
existing snowpack and this set of reflectance measurements
is termed as “Type-I snow”. The old/metamorphosed snow
reflectance measurements were carried out on 19 February
2008 at station-2. The previous snowfall that occurred on
existing snow buildup was only 3 cm and 4 days old. This
set of observations is named “Type-II snow” in the present
study. The snow physical parameters measured at the time
of field investigation are given in Table 1. The grain samples
were selected from 3–4 places nearby the experimental area
and the average maximum equivalent grain diameters (EGD)
were measured using crystal gauge with a magnifying hand
lens. This method of measuring grain size was found prac-
tical at the time of field investigations, although advanced
methods can now be found in the literature (e.g., Matzl and
Schneebeli, 2006; Painter et al., 2007).
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(a)

(b)

Fig. 1. (a)The map of the western Himalaya comprising three different zones based on the snow climatic conditions,(b) locations of field
investigations carried out at station 1–3 in Beas basin of Himalaya.

Spectral albedo measurements were also carried out with
each set of reflectance measurements to make the compar-
ison with retrieved spectral albedo using the ART theory
(Kokhanovsky and Zege, 2004). The spectral albedo was
measured using remote cosine receptor (RCR) connected to
the spectroradiometer with fibre-optic cable, by measuring
downwelling irradiance followed by upwelling irradiance.
Longer wavelengths (beyond 1800 nm) were removed from

the spectrum due to very poor SNR of the measured spectral
albedo. To validate the integrated albedo (i.e., using spectro-
radiometer) with broadband albedo (using field albedome-
ter), we used another set of observations where we have
both the measurements simultaneously just after the snow-
fall. These experiments were made on 27 and 28 February
2006 in the same basin at station-3.
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Fig. 2. Field experiment set-up of spectral reflectance measure-
ments (winter 2008).

3 ART theory

The remote-sensing of snowpack was initially modelled by
different researchers (Bohren and Barkstrom, 1974; Warren
and Wiscombe, 1980; Warren, 1984) as a layer of dispersed
spherical snow grains. The snow retrieval algorithms were
made from reflectance characteristics for different satellite
data using the model mentioned above (Nolin and Dozier,
1993; Fily et al., 1997; Hori et al., 2001; Li et al., 2001).
This model uses Mie theory to obtain single scattering char-
acteristics and radiative theory to relate radiative properties
of snow to local snow optical characteristics.

However, snow on the ground consists of irregularly
shaped non-uniform snow grains. The optical properties of
snow not only controlled by size, but also by the shape of
the particles (Mishchenko et al., 1999, 2002; Kokhanovsky,
2003; Kokhanovsky and Zege, 2004). Therefore, more
realistic snow models with non-spherical snow grains are
proposed by different researchers (Kokhanovsky and Zege,
2004; Zege et al., 2008) and retrievals were made using
different satellite sensors (Kokhanovsky et al., 2005, 2011;
Tedesco and Kokhanovsky, 2007; Lyapustin et al., 2009;
Kokhanovsky and Schreier, 2009). In the present study, this
approach has been considered, which introduce the model of
snow as fractal grains rather than spherical in order to ac-
count for their irregular shape, geometrical optics equations
instead of Mie calculations for snow optical characteristics
and analytical asymptotic solutions of the radiative transfer
theory for snow optical properties (Kokhanovsky and Zege,
2004). According to this theory, snow reflection function can
be modelled using an approximate analytical solution in the
form of the following equation valid for weakly absorbing
snow layers (Kokhanovsky et al., 2003; Kokhanovsky and
Zege, 2004):

R(µ,µ0,ϕ) = R0(µ,µ0,ϕ)Af (µ,µ0,ϕ). (1)

HereR(µ,µ0,ϕ) is reflectance of a semi-infinite snow layer;
µ0 = cosϑ0; µ = cosϑ ; ϑ0, ϑ andϕ are solar zenith, view-
ing zenith and relative azimuth angle, respectively. Also it
follows:

A = exp
{
−4s/

√
3
}

and s=

√
1−ω0

1−gω0
. (2)

Here A is spherical snow albedo,ω0 is the single scatter-
ing albedo andg is the asymmetry parameter. The function
f (µ,µ0,ϕ) is given by the following ratio:

f (µ,µ0,ϕ) =
u(µ0)u(µ)

R0(µ,µ0,ϕ)
. (3)

Functionu(µ0) is called the escape function. It determines
the angular distribution of light escaping from the semi-
infinite, non-absorbing media and can be approximately
given by (Kokhanovsky, 2003):

u(µ0) =
3

7
(1+2µ0). (4)

R0 is the reflection function of a semi-infinite snow layer
under assumption that the single scattering albedo is equal
to one, andR0 can be calculated using, the Fourier com-
ponents of the reflection function in the visible (for a non-
absorbing snow). These are tabulated using a code devel-
oped by Mishchenko et al. (1999). The code solves the
Ambartsumian nonlinear integral equation for the harmon-
ics Rm(µ,µ0) of the reflection function. These harmonics
can be stored in LUTs. Thus, the reflection function at any
relative azimuth angle is found as:

R0(µ,µ0,ϕ) = R0(µ,µ0)+2
Mmax∑
m=1

Rm(µ,µ0)cos(mϕ). (5)

Hereµ = cosϑ and the value ofMmax is chosen from the
condition that the next term does not contribute more than
0.01% in the sum (Eq. 5). Alternatively, the functionR0
can also be calculated using the approximation given by
Kokhanovsky (2005):

R0(µ,µ0,ϕ) =
A+B(µ+µ0)+Cµµ0+p(θ)

4(µ+µ0)
, (6)

where A = 1.247, B = 1.186, C = 5.157, p(θ) =

11.1exp(−0.087θ) + 1.1exp(−0.014θ), θ is given in de-
grees and defined asθ = arccos(−µµ0 + ss0cosϕ). Here
s = sin(ϑ) ands0 = sin(ϑ0).

The theoretical reflectance spectra for a semi-infinite tur-
bid medium can be obtained by solving the nonlinear inte-
gral equation derived by Ambartsumian, using the invariance
principles. However, such an approach is not suitable for the
inverse problem solution because of the computational bur-
den (Kokhanovsky, 2006). Therefore, to make the faster re-
trievals, the approximate relations have been used for spher-
ical albedo, plane albedo and grain size estimation.
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4 Retrievals

The reflection functionR(µ,µ0,ϕ,ϕ0) is defined as the ra-
tio of the intensity of light reflected from a snow surface to
that of a lambertian surface for a given incident beam direc-
tion and observation direction (Kokhanovsky, 2004a, 2006).
Thus,R is determined by solar zenith anglesϑ0, viewing an-
gleϑ , solar azimuth angleϕ0 and viewing azimuth angleϕ1.
R is equal to 1 for lambertian surface. Namely it follows:

R(µ,µ0,ϕ1,ϕ0) =
πL(µ,µ0,ϕ1,ϕ0)

µ0E
dir
d (µ0,ϕ0)

, (7)

whereL is the upwelling radiance andEdir
d is the incident

direct irradiance. The reflectance measurements carried out
during field investigation provide the above function, which
was further used to make different retrievals.

4.1 Albedo

a. Plane albedo is also called as directional hemispheri-
cal reflectance and defined as the integral of reflectance
function “R” over all reflection (viewing) angles and
can be derived from following equation:

rp =
1

π

2π∫
0

dϕ

1∫
0

R(µ,µ0,ϕ)µdµ, (8)

whereµ is the cosine of viewing angle andϕ is the rel-
ative azimuth angle.

b. Spherical albedo is also called bi-hemispherical re-
flectance or diffuse albedo and defined as the integral
of plane albedo “rp” over all solar angles, and can be
given by the following equation:

rs= 2

1∫
0

rp(µ0)µ0dµ0. (9)

c. Broadband albedo can be obtained by integrating
the plane spectral albedorp(λ) over the wavelength,
weighted by the incident solar fluxF↓(λ):

a =

∫
rp(λ)F↓(λ)dλ∫

F↓(λ)dλ
. (10)

The albedo defined by Eqs. (8) and (9) are not possible to de-
termine from satellite sensors because measurements are per-
formed with fixed solar and viewing angles. Kokhanovsky et
al. (2007) presented an alternative possibility for direct deter-
mination of the spherical cloud albedo from single reflection
function measurements, for the special case of optically thick
cloudiness. This technique requires no a priori information
on the particles size and optical thickness. It has also shown

that the absolute value of error is below 3% at optical thick-
nessτ ≥ 10 for all considered solar zenith angles and nadir
observation, which is suitable in case of snow study.

From Eq. (1), using the ART theory, spherical albedo
“A”, can be retrieved from reflection measurements (Rmeas=

R(µ,µ0,ϕ)) at a fixed geometry and can be given by the fol-
lowing equation:

A = rs=

(
Rmeas

R0

)1/f

. (11)

Thus, spherical albedo can be retrieved by substituting the
value of f and R0 from Eqs. (3) and (6), respectively.
Once we know spherical albedo, the plane albedo can be
determined by the following relation (Kokhanovsky, 2002,
2004b):

rp = Au(µ0) (12)

or rp =

(
Rmeas
R0

)R0/u(µ)

, whereA and u(µ0) can be substi-

tuted in Eq. (12) from Eqs. (11) and (4).

4.2 Grain size

The remote-sensing provides the effective optical size of
snow grains, which can be defined by the average volume
V and the average projection areaS of a snow grain, and can
be represented as follows:

aef =
3

4
(V/S), (13)

whereV andS represent the particle volume and projected
area, respectively (Jin et al., 2008; Kokhanovsky, 2011). In
case of monodisperse spheres,aef is the same as actual ra-
dius. It is possible to determineaef using optical measure-
ments on the ground, aircraft or satellite (Dozier et al., 2009),
since it has a physical sense, as the snow reflection function
is governed mostly by the value of the probability of photon
absorption (PPA) (Kokhanovsky et al., 2005). However, it is
difficult to measureaef with a microscope on the ground, a
lot of averaging procedures are required to derive the value
of aef as given by Eq. (13). The other way to measureaef
is the specific surface area (SSA), which can be measured
by various, direct techniques such as the methane adsorp-
tion technique (Legagneux et al., 2002), microtomography
(Schneebeli and Sokratov, 2004), near-infrared photography
(Matzl and Scheebeli, 2006) and stereology (Matzl, 2006).
The relation between SSA andaef is given by (Domine et al.,
2008):

SSA=
6

ρiV
, (14)

whereρi is the density of ice (0.9167 g cm−3, at 0◦C) and
6, V are the averaged surface area and average volume with
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respect to the size/shape distributions of grains, respectively.
In case of monodisperse spheres SSA can be defined as:

SSA=
3

ρiaef
. (15)

Therefore, with the optical measurements ofaef, one can also
determine the SSA.

Different authors have used the ART theory to retrieve
grain size (Kokhanovsky and Zege, 2004a; Kokhanovsky
and Nauss, 2005; Tedesco and Kokhanovsky, 2007;
Kokhanovsky and Schreier, 2009). Now this theory has also
been used by considering the soot effect in the NIR region in
addition to ice absorption (Zege et al., 2008; Kokhanovsky,
2011) and as ratio techniques of different ice absorption
channels (Lyapustin, 2009).

a. Single channel method: Kokhanovsky and Zege (2004)
first defined the snow grain diameter (d) by physically
based equation:

d =
1

αb2f 2
ln2
(

R

R0

)
, (16)

whereα = 4πχ(λ)/λ is the ice absorption coefficient
andR is the measured reflectance at NIR channel. The
parameterb depends on the grain shape and asymmetry
parameter (considered≈3.62 for fractal particles; and
≈4.53 for spheres) and other terms are same as men-
tioned in Sect. 3. In the present study, fractal particles
are considered andR0 is estimated using the approxi-
mation method given by Eq. (6). Imaginary part of ice
refractive index(χ) was used as tabulated by Warren
and Brandt (2008).

b. Two channel method: Kokhanovsky et al. (2011) has
proposed the two channel method to estimate the grain
size and soot concentration using the following equa-
tions:

R1 = R0exp(−γ
√

β1), (17)

R2 = R0exp(−γ
√

β2), (18)

where R1 and R2 are the reflectance in visible and
the NIR channel. β1 and β2 are PPA in visible
(i.e., 0.443 µm, light absorption due to soot presence)
and NIR channel (0.865/1.05/1.24 µm, light absorption
due to ice and soot), respectively, andγ is given by:

γ =
4f

√
3(1−gω0)

. (19)

In the present case, the difference ofω0 from 1.0 in
Eq. (19) was neglected. We assume that the PPA in the
visible channel (β1) depends only on the soot concen-
tration and not on the size of particles (Kokhanovsky

and Zege, 2004). Assuming that there is no depen-
dence of the soot refractive index on the wavelength,
one easily derives (Kokhanovsky et al., 2011):β2 =

βi,2 +λ1β1/λ2, whereβi,2 is the probability of photon
absorption by snow grains. Therefore, it follows from
Eqs. (17) and (18):

βi,2 =
ln2(R2/R0)

γ 2
−

λ1

λ2

(
ln2(R1/R0)

γ 2

)
. (20)

Subscript 1 and 2 denote the visible and NIR channel,
respectively.

Finally, the effective grain radius was defined by
Kokhanovsky and Nauss (2005):

aef = (Kαi,2)
−1ln

[
β∞

β∞ −βi,2

]
, (21)

where the value ofK = 2.63 was considered in this
study for fractals andαi,2 is a linear absorption coef-
ficient for iceα = 4πχ(λ)/λ in the NIR channel.β∞

is the limiting case of probability of photon absorption
for an ice crystal, which absorbs all radiation penetrated
inside the particle (consideredβ∞ = 0.47), andβi,2 can
be substituted from Eq. (20).

Kokhanovsky et al. (2011) used LUTs approach, a code
developed by Mishchenko et al. (1999) as discussed in
Sect. 3, to estimateR0, but, presently, we have used the
approximation method given by Eq. (6) so that the the-
ory can be used to make fast snow retrievals using in-
version technique.

c. Two channel ratio method: Lyapustin et al. (2009)
also used the ART theory given by Kokhanovsky and
Zege (2004). Instead of the single band they used the
band ratio method, where the role ofR0 reduced to the
second order effect manifested in function “f ”. They
defined the snow grain diameter (d) using two channels
with different ice absorption by:

d =
1

4πb2f 2

[
ln

(
R1

R2

)
/(
√

χ2/λ2−
√

χ1/λ1)

]2

. (22)

This equation is valid for vertically homogeneous snow.
Here R1 and R2 are such that light penetration depth
in snow are similar between the two wavelengths, and
these can be selected as 1.05 and 1.24 µm. For inho-
mogeneous snow, one ice non-absorbing channel (λ1 in
visible) and another ice absorbing channel (λ2 in NIR)
are required. In this case Eq. (22) reduced to:

d =
λ2

4πχ2b2f 2
ln2
(

R1

R2

)
, (23)
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whereR1 and R2 are the measured reflectance at the
visible and NIR channel, respectively. From Eqs. (16)
and (23), it can be well observed that the difference is in
the logarithmic part whereR0 is replaced with measured
reflectance in visible channel. Lyapustin et al. (2009)
has used the radiative transfer code forR0, which is
used to estimate “f ” in Eq. (23). However, in the
present study,R0 is again estimated from the approx-
imation method (Eq. 6). In this study, the wavelength
0.645 µm is selected in the visible instead of 0.443 µm
because the wavelength closed to channel 0.443 µm is
more affected by contamination like soil/ash (Negi et
al., 2009). Channels 0.645, 1.05 and 1.24 µm are used
in the combination of (0.645 and 1.05 µm) and (0.645
and 1.24 µm).

d. Three channel method: Zege et al. (2008) defined a
new algorithm to retrieve snow grain size and pollu-
tion amount from satellite data using three channels
reflectance measurement, with no priori snow optical
model (i.e., forR0). They defined the effective size of
snow grain by:

aef =

 1

A(qj −qi)u(µ0)u(µ)

(
R

qj

i

R
qi

j

) 1
qj −qi

ln

(
Ri

Rj

)2

, (24)

where i and j are spectral channel, parameterA de-
pends on the shape of the particles and ranges from 3.5
to 6.5 (fractals to spheres; similar as denoted in Eq. (16)
by “b”) andqi is given by:

qi =

√
4π

(χi +0.2Cs)

λi

, (25)

whereCs is relative soot concentration andχi is imag-
inary part of ice refractive index at visible wavelength
(λi). The analytical solution for estimatingCs is given
by Eqs. (14)–(19) of Zege et al. (2008). There is one
assumption that the effect of soot pollution on the light
extinction in snow is zero. In the present study, chan-
nelsR2 (0.645 µm),R3 (0.859 µm),R4 (1.05 µm) and
R5 (1.24 µm) are used in the combination of (R2, R3,
R4) and (R2, R3, R5).

All the above discussed methods were used for the re-
trievals of snow grain size and compared. In the present
study, the effective grain diameter “d” has been considered as
retrieved snow grain size. Further by knowing the “d”, spher-
ical and plane albedo can be retrieved using the approach de-
scribed by Kokhanovsky and Zege (2004):

rs= exp(−b
√

αd) (26)

and

rp = exp(−u(µ0)b
√

αd), (27)

whereb is the shape factor andα is the ice absorption coef-
ficient.

5 Field validation and discussions

5.1 Albedo

The plane and spherical albedo determined from tempo-
ral spectral reflectance measurement for Type-I and Type-II
snow are shown in Figs. 3 and 4. The difference between the
spectral reflectance and albedo is attributed to the presence
of snow reflectance anisotropy, as the radiation reflected by
snow surface is not distributed uniformly into all angles. An
anisotropic reflection function (ARF), is defined by the ra-
tio of reflectance to spectral albedo. It can be observed from
Fig. 3 (Type-I snow), the variation of ARF in the NIR region
is present throughout (Fig. 3a–f), however, in the visible re-
gion this varies with the solar zenith angle (SZA). As the
SZA decreases with time for the experiment considered, the
difference between reflectance and albedo also decreases in
the visible region. In Fig. 3e, at low SZA, when the sun
is approximately overhead (i.e., at 1150 h), the anisotropy
is negligible in the visible region. For (Type-II snow), this
anisotropy was observed along the whole spectrum, i.e., vis-
ible and NIR region. The presence of anisotropy in the visi-
ble region could be explained by impurities in the snow (e.g.,
clay/dust contamination and soot), as this anisotropy is con-
sistent with respect to spherical albedo observations.

It has been observed that spherical albedo is lower than
plane albedo for Fig. 3 (Type-I) and Fig. 4a–b (Type-II), and
higher for Fig. 4d–e (Type-II). This difference between the
plane and spherical albedo can be attributed by the varia-
tion in albedo under diffuse radiation condition explained by
Warren (1982), i.e., when SZA greater than 50◦ the spherical
albedo (i.e., diffused albedo) decreases, however, for SZA
below 50◦, the spherical albedo increases and remain unal-
tered around 50◦ (Wiscombe and Warren, 1980), which can
be observed in the case of Fig. 4c (SZA∼48◦).

The comparison between ART retrieved plane albedo and
field measured spectral albedo using spectroradiometer are
shown in Fig. 5. It has been observed that the ART retrieved
spectral albedos are in good agreement with field measured
spectral albedo in NIR region. The departures between simu-
lated and measured albedo in the visible region are attributed
to the measuring instrument response, i.e., poor signal-to-
noise (SNR) ratio in the visible region. Such difficulties
during the measurement of spectral albedo in the field under
clear sky conditions are also highlighted by other researchers
(Warren, 1982; Warren et al., 1986; Aoki et al., 2000). How-
ever, the measurements were carried out over the plane snow
surface and leveling of the sensor has been taken care of dur-
ing the observations. Secondly, in Fig. 4a–c, the measured
spectral albedo in the visible region should not decrease for
a new snow (Type-I). The comparison of simulated tempo-
ral albedo for snow Type-I and Type-II shows an agreement
within 10% differences in measured albedo at wavelength
1.05 µm and 1.24 µm (Fig. 6).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Field measured reflectance for snow Type-I (new snow) and simulated spherical and plane albedo;(a) 09:30,(b) 10:20,(c) 10:45,
(d) 11:20,(e)11:50 and(f) 12:20 local time.

The integrated albedo was estimated using the field mea-
surement of spectral albedo (i.e., using RCR) and simulated
plane albedo, and compared with diurnal variation of direct
broadband albedo measurements (Fig. 7). Liu et al. (2009)
and Wang and Zender (2010) have also observed the similar
trends of dependence of snow albedo with solar zenith an-
gle. Figure 7a and b show that integrated albedo data from
spectroradiometer (direct measurement and simulated from
reflectance) are close to broadband data. Generally, all the
integrated albedo using direct measurement, have slightly
smaller values than simulated integrated albedo from re-
flectance data; this also proves the systematic error in our
measured spectral albedo data in the visible region. The re-
trieved integrated albedo was found within±6% difference

from ground observed broadband albedo. The coefficient
of correlation between broadband and integrated albedo us-
ing spectral measurements was 0.89 with standard difference
(RMSD) 0.028 (Fig. 8a), however, it was improved for in-
tegrated retrieved albedo using reflectance, i.e., 0.94 with
RMSD 0.020 (Fig. 8b). This indicates that the albedo simu-
lated form reflectance data, using the ART theory, can work
well for Himalayan snow.

5.2 Grain size

The field reflectance measurement data inR1 (443 nm),R2
(645 nm), R3 (859 nm), R4 (1050 nm) andR5 (1240 nm)
channels for retrieving grain sizes by different models are
given by Fig. 9a and b for snow Type-I and Type-II,
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(a) (b)

(c) (d)

(e)

Fig. 4. Field measured reflectance for snow Type-II (old snow) and simulated spherical and plane albedo;(a) 09:20,(b) 10:10,(c) 11:00,
(d) 12:00 and(e)13:00 local time.

respectively. A slight variation in reflectance can be ob-
served inR1, R2 and R3 channels due to variations in at-
mospheric and snow conditions with time under natural field
environment, but forR4 and R5 decreasing trend was ob-
served, which was attributed to the increasing trend of snow
grain size. Field measured parameters (Table 1) also indicate
temporal increasing in grain size for both types of snow, as
the snow grain size increases due to clustering of snow grains
at snow temperature close to 0◦C (Colbeck, 1982). For snow
Type-II, the reflectances atR5 (1240 nm) are less than 0.2,
where the ART theory fails, as the theory is only valid for
semi-infinite media with low absorption (Kokhanovsky and
Zege, 2004) and, therefore, grain size was not retrieved for
such low reflectances.

The grain size retrievals were made using four methods as
discussed in Sect. 4.2 and shown by Table 2. The retrieved
grain size for snow Type-I were underestimated as compared
to ground-measured snow grain sizes in the first three meth-
ods. This suggests that the ground measured grain size, i.e.,
maximum equivalent grain diameter, is not a correct mea-
surement. Aoki et al. (2000) also reported after observing
three types of grain equivalent measurements on the ground
and found that effective grain size falls in the range of mea-
sured lengths of narrower portions of broken crystals. Unfor-
tunately, we could not make such fine level length measure-
ments using field instruments available to us for new snow,
however, as the snow become rounded due to metamorphism,
the retrieved grain sizes are in agreement with the measured
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. The comparison between simulated plane albedo and field measured spectral albedo;(a–c)are for snow Type-I at 11:20, 11:50 and
12:20 local time, and(d–f) are for snow Type-II at 09:20, 11:00 and 12:00 local time, respectively.

(a) (b)

Fig. 6. The comparison between simulated temporal plane albedo and field measured spectral albedo with 10% differences at wavelength
1.05 µm and 1.24 µm for(a) snow Type-I and(b) snow Type-II.
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(a) (b)

Fig. 7. The comparison between integrated albedo (measured: directly from field spectroradiomenter and, simulated: ART retrieved albedo
from reflectance measurement) and field measured broadband albedo:(a) day 1 after snowfall 27 February 2006,(b) day 2 after snowfall 28
February 2006.

(a) (b)

Fig. 8. The comparison between(a) broadband albedo and integrated albedo measured using spectroradiometer;(b) broadband albedo and
simulated integrated albedo from reflectance measurement using the ART theory.

(a) (b)

Fig. 9. Field measured reflectances of snow at wavelength 443, 645, 859, 1050 and 1240 nm(a) snow Type-I and(b) snow Type-II.
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(a)

(b)

(c)

Fig. 10. Comparison of retrieved snow grain sizes;(a) snow Type-
I using 1050 nm channel;(b) snow Type-I using 1240 nm channel
and(c) snow Type-II using 1050 nm channel.

one (snow Type-II). Larger grain sizes were retrieved using
the three channel method and found to be much more sensi-
tive to the difference between reflectance observed in visible
and NIR region. Since one additional NIR channelR3 was
used in this method, we are not considering this method by
comparing it to other models where only one NIR channel
was used to retrieve the grain sizes.

From Table 2 and Fig. 10, a good agreement can be ob-
served between retrieved grain sizes with temporal increment
using the single channel method and two channel method.
However, a slight variation was observed using the two chan-

nel ratio method. Almost similar grain sizes were retrieved
using these three methods once the snow was new (snow
type-I) with very fine grain and dry (snow surface temper-
ature less than 0◦C). However, smaller grain sizes were re-
trieved using two channel ratio method as compared to two
channel method once the snow metamorphosed (snow Type-
II). This difference in retrieved grain sizes from other two
methods attributed to the replacement ofR0 by visible chan-
nel reflectance (R2), where a large difference can be observed
betweenR0 and measuredR2. The deviation in retrieved
grain sizes using three channel method with grain sizes re-
trieved from other methods may be due to the exclusion ofR0
using the visible channel. Therefore, the two channel ratio
method or three channel method can work well for the snow
covered area where the visible channel reflectance is high,
like in polar regions or the upper Himalaya, but not for lower
and middle Himalayan seasonal snow due to higher temper-
ature and the proximity to habitat area. The single channel
method and two channel method have a similar grain size
trend with slight difference in sizes derived from 1.05 µm for
snow Type-I and Type-II (Fig. 10). This difference is due to
the soot effect at 1.05 µm, which can be observed as negli-
gible for channel 1.24 µm. Secondly, it was found that the
grain sizes derived using the two channel method are more
close to the ground-measured grain diameter, in comparison
to grain size derived from the single channel method. There-
fore, we propose the two channel method for various types
of Himalayan seasonal snow.

The retrieved grain sizes using channel 1.05 µm and
1.24 µm for snow Type-I, using all the methods, showed lin-
ear relations for small grain sizes, i.e., early hours of the day
(Fig. 11). However, this deviation is more for larger grain
sizes, i.e., with respect to time, which indicate the presence
of vertical inhomogeneity in the snowpack at late hours of
the day, as wavelength 1.05 µm penetrates more in snow than
that at 1.24 µm. Ground snow cover information also sup-
ports the vertical inhomogeneity at later day time as the fresh
snowfall produced only 10 cm of snow on existing snowpack,
which become thin by the later hours and, thus, the variation
in retrieved grain sizes was observed due to underlying old
snow with different grain sizes.

Furthermore, the spherical and plane albedos can also be
modelled using the ART theory once the effective grain di-
ameter “d” correctly estimated. The theoretical spherical
albedo using grain size and the simulated spherical albedo
from reflectance measurement for snow Type-I were ob-
served well in agreement up to 1400 nm and for larger wave-
length difference increased due to the limitation of the theory
for large absorption (Fig. 12). But such good agreement be-
tween theoretical albedo and simulated albedo cannot be ob-
served for snow Type-II, as the low reflectances in the visible
region cause lower actual albedo. Therefore, one can retrieve
the albedo from single channel in NIR using the ART theory
for clean snow, but we suggest for the Himalayan-like sea-
sonal snow the narrow band to broadband (NTB) albedo can
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Table 2. Retrieved snow grain size “d” (i.e., 2×aef) using single channel method, two channel method, two channel ratio method and three
channel method:R1, R2, R3, R4 andR5 are the reflectance at channel 0.443, 0.645, 0.859, 1.05 and 1.24 µm, respectively.

Snow type Time of Grain size (mm) using Grain size (mm) using Grain size (mm) using Grain size (mm) using
and date of observation single channel method two channel method two channel ratio method three channel method

observation (LT) R4 R5 R1, R4 R1, R5 R2, R4 R2, R5 R2, R3, R4 R2, R3, R5

09:30 0.14 0.15 0.14 0.14 0.12 0.14 0.33 0.37
10:20 0.17 0.15 0.16 0.15 0.11 0.13 0.35 0.30

Type-I snow 10:45 0.28 0.32 0.27 0.31 0.22 0.29 0.94 0.87
29 January 2005 11:20 0.36 0.34 0.35 0.33 0.23 0.28 0.72 0.65

11:50 0.48 0.52 0.45 0.51 0.34 0.45 1.07 1.14
12:20 0.81 0.89 0.76 0.91 0.43 0.69 1.34 1.80

Type-II snow

09:20 1.81 – 1.70 – 0.69 – 1.64 –

19 February 2008

10:10 1.80 – 1.66 – 0.66 - 1.67 –
11:00 2.04 – 1.91 – 0.85 – 2.28 –
12:00 2.11 – 1.96 – 0.84 – 2.26 –
13:00 2.07 – 1.95 – 0.94 – 2.43 –

Fig. 11. Retrieved grain sizes using channel 1050 and 1240 nm for
snow Type-I.

work better for albedo estimation from space, where narrow
band (spectral) albedo can be retrieved from reflectance as
discussed in Sects. 4.1. and 5.1.

6 Conclusions

The main advantage of the ART theory is the analytical solu-
tions of the radiative transfer theory for retrieving the snow
properties. This makes it possible to perform fast retrievals
instead of running radiative transfer codes. Therefore, this
technique can be used to generate the operational snowcover
grain size and albedo maps using air-borne or space-borne

(a)

(b)

Fig. 12. The comparison between spherical albedo simulated us-
ing grain size (using two channel model) and simulated from the
reflectance measurements for snow Type-I(a) 09:30 and(b) 10:20
local time.

mutispectral sensor data. Before directly applying the theory
to retrieve the snow properties from satellite data of the Hi-
malayan region, it was an important step to understand how
it behaves for the different types of seasonal snow.

With this study, it was found that the ART theory can
work well for simulating seasonal snow albedo (i.e., plane
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and spherical) from the reflectance. This is also an important
input for retrieving narrow band to broadband albedo. The
comparison of retrieved grain sizes using different models for
different types of snow helped in understanding the advan-
tage and limitations of these methods for the Himalayan re-
gion. The two channel method was found suitable for all the
types of snow studied. In this method, any one NIR channel
(0.865/1.05/1.24 µm) along with visible channel (0.443 µm)
can be used which can accommodate the absorption in NIR
channel due to the presence of soot. The other grain size
methods using directly visible channel reflectance forR0 to
retrieve grain sizes are found sensitive to visible snow re-
flectance and such models are inconsistent for retrieving the
grain sizes. The detection of vertical inhomogeneity within
the snowpack using grain retrievals by different ice absorp-
tion channels can be very helpful in snow avalanche studies
of the Himalayan region to find the stability of the snowpack.
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