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Abstract. Accurately reconstructing past changes to the
shape and volume of the Antarctic ice sheet relies on the
use of physically based and thus internally consistent ice
sheet modeling, benchmarked against spatially limited ge-
ologic data. The challenge in model benchmarking against
geologic data is diagnosing whether model-data misfits are
the result of an inadequate model, inherently noisy or biased
geologic data, and/or incorrect association between modeled
quantities and geologic observations. In this work we ad-
dress this challenge by (i) the development and use of a
new model-data evaluation framework applied to an uncu-
rated data set of geologic constraints, and (ii) nested high-
spatial-resolution modeling designed to test the hypothesis
that model resolution is an important limitation in matching
geologic data. While previous approaches to model bench-
marking employed highly curated datasets, our approach ap-
plies an automated screening and quality control algorithm
to an uncurated public dataset of geochronological obser-
vations (specifically, cosmogenic-nuclide exposure-age mea-
surements from glacial deposits in ice-free areas). This op-
timizes data utilization by including more geological con-
straints, reduces potential interpretive bias, and allows un-
supervised assimilation of new data as they are collected.
We also incorporate a nested model framework in which
high-resolution domains are downscaled from a continent-
wide ice sheet model. We highlight the application of this
framework by applying these methods to a small ensemble
of deglacial ice-sheet model simulations, and demonstrate
that the nested approach improves the ability of model simu-

lations to match exposure age data collected from areas of
complex topography and ice flow. We develop a range of
diagnostic model-data comparison metrics to provide more
insight into model performance than possible from a single-
valued misfit statistic, showing that different metrics capture
different aspects of ice sheet deflation.

1 Introduction

The overall goal of this study is to improve the ability to
benchmark ice sheet model simulations against direct ge-
ological constraints of ice sheet behavior during the last
~ 20000 years. Broadly, it is important to evaluate the per-
formance and accuracy of ice sheet models using the geo-
logic record because these models are used to project fu-
ture ice sheet change and consequent sea-level impacts. Be-
cause the time period of direct or remotely sensed observa-
tions of ice sheet variability is too short to adequately bench-
mark models of ice sheet processes operating on decadal to
millennial timescales, the use of geologic data is necessary.
Geologic records from across the Antarctic continent pro-
vide critical information about past ice sheet behavior, espe-
cially during the last glacial cycle, but are spatially and tem-
porally sparse and discontinuous, so cannot by themselves
produce a quantitative estimate of deglacial sea level con-
tribution. Reconstructing past changes in the shape and vol-
ume of the entire ice sheet, therefore, relies on the use of
physically based ice sheet models to interpolate sparse data
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and find internally consistent ice sheet change histories that
match the data. Used together, models and data can provide
a robust and physically based reconstruction of glacial evo-
lution. Geologically validated simulations of the last glacial
cycle are necessary for quantifying Antarctica’s contribution
to deglacial sea level rise in the past, providing a loading his-
tory and glacioisotatic boundary conditions for models that
aim to predict future ice sheet change and sea-level impacts,
and understanding the likely accuracy of these predictions.

Here we develop and implement a model-data compar-
ison framework for deglacial ice-sheet behavior recorded
by Antarctic terrestrial geologic data that record ice sheet
thinning. Specifically, the majority of geological evidence
for LGM-to-present thinning of the Antarctic ice sheet con-
sists of cosmogenic-nuclide exposure-age data from glacially
transported clasts collected from ice-free areas throughout
Antarctica. These clasts are first exposed to cosmic ray flux
when uncovered by ice thinning; thus, a number of clasts col-
lected at a range of elevations across a nunatak site produce
an age-elevation array in which clasts at higher elevations
were uncovered first and therefore have older exposure ages.

This work follows several previous seminal efforts to
benchmark ice sheet models against geological data. Briggs
and Tarasov (2013) compiled a relatively small and highly
curated dataset consisting of about 200 geologically based
constraints on past ice thickness (from cosmogenic-nuclide
exposure-dating), past ice sheet extent, and past relative sea
level; developed model-data evaluation metrics; and applied
their constraint database to score an ensemble of ice sheet
model simulations (Briggs et al., 2014). Pollard et al. (2016)
took a similar approach, adding more data (from a curated
community dataset of geologic constraints binned into 5 kyr
timeslices; The RAISED Consortium et al., 2014) and ex-
ploring more advanced statistical approaches for evaluat-
ing model-data fit. Pittard et al. (2022) build on this exist-
ing framework for evaluating Antarctic-wide model simula-
tions using a database of geologic constraints, implementing
modern-day elimination sieves and past ice-area metrics with
the ultimate goal of producing an ice history to drive models
of glacial isostatic adjustment. Lecavalier et al. (2023) fur-
ther curate and expand the Briggs and Tarasov (2013) con-
straint dataset, incorporating more recent literature as well as
new data types (for example, borehole temperature from ice
cores), and then applying this new curated dataset to a large
ensemble of model simulations (Lecavalier and Tarasov,
2025). Ely et al. (2019) complement these Antarctic-wide
model scoring exercises with a “timing accordance” tool to
evaluate ice sheet model output compared to a user-prepared
gridded geochronological dataset recording the timing of ice
presence/absence across the region of interest.

Overall, these studies provided a foundation for this work
by establishing good practices for model-data misfit calcula-
tions, but relied extensively on manual inspection, interpre-
tation, and curation of geologic data, which potentially intro-
duces interpretive bias and, more importantly, does not allow

The Cryosphere, 20, 931-961, 2026

for assimilation of new data as the available geologic data set
grows rapidly. Furthermore, prior efforts have relied heavily
on modern-day misfits for scoring model ensembles. Here
we expand on previous model-data comparison efforts by:

Replacing manual data curation with an inclusive auto-
mated methodology. Previous work has employed manual
curation of geologic datasets to ensure that each model con-
straint provides a robust metric for comparison. A highly cu-
rated approach is effective for eliminating outliers and erro-
neous or unphysical data points, but it only utilizes a fraction
of the extensive (though often imperfect) geologic records
that currently exist, and it also can potentially introduce in-
terpretation bias. In addition, assimilation of newly collected
data in an internally consistent way requires that the original
curator regularly revise the data set, which, in general, has
not been feasible in the past. Here we attempt an opposite
approach, with algorithms that utilize the ICE-D exposure-
age database, an inclusive, publicly available database of ter-
restrial geologic constraints that is continuously updated as
these data are collected.

We develop automated methodologies for data selection
and processing to replace manual curation: for example, at a
terrestrial site with cosmogenic nuclides, we establish a set
of processing steps and consistent criteria for systematically
selecting samples that record the last deglaciation rather than
previous ones (see Sect. 3.4) or identifying a limit on maxi-
mum ice thickness above present (Sect. 4.3).

The advantages of this uncurated, inclusive approach are
that (i) all known data can be used to inform our understand-
ing about deglacial ice sheet behavior; and (ii) newly col-
lected data can immediately be assimilated into the constraint
data set. The key potential disadvantage is that the process-
ing algorithm has a less than 100 % success rate at identifying
samples that would likely be interpreted as outliers or errors
by manual curation. It is hard to know the true significance
of this effect, because manual curation, even by experts, will
also very likely accept some erroneous data. An additional
feature of our approach, however, is therefore to accept that
some fraction of the constraint data set is spurious or aber-
rant, and design model-data comparison strategies to prevent
a single pathological site from having an outsize impact on
model scoring (see Sect. 4.2.4).

Providing publicly available and easily updated geologic
model constraint datasets. Our approach is publicly avail-
able, allowing user interaction and customization via a GHub
tool (https://theghub.org/tools/modeldatathin with open ac-
cess code and model output). Users can access the static
dataset of geologic constraints extracted from the public ICE-
D database on 24 April 2024 and used in this paper (see Code
and Data Availability statement), or re-query and re-compute
updated datasets through the GHub tool (as well as customize
the model-data scoring parameters). Our flexible framework
allows the geologic model constraint database to evolve with
the emergence of new data.
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Focusing on paleo geologic data rather than present-day
misfits. Here we focus on reconstructing ice sheet dynamics
through the last deglaciation as recorded solely by geologic
data, deliberately omitting present-day ice thickness and ice
extent misfits. Modern ice thickness and velocity fields have
high spatial resolution, complete spatial coverage, low mea-
surement uncertainty, and low structural uncertainty; by con-
trast, paleo data are patchily distributed in space and time,
with significant measurement and structural uncertainties.
This disproportionality in the extent and quality of present-
day vs. paleo data has the tendency to bias model evaluation
towards fitting the present-day rather than past data. For ex-
ample, in Briggs and Tarasov (2013) where model scores are
weighted by data type, 83 % of a model score reflects the
modern misfit (compared to 2 % from marine grounding line
retreat age, 7 % from terrestrial thinning, and 8 % from RSL
records). As another approach, Pittard et al. (2022) simula-
tions that do not pass a modern-day ice configuration “sieve”
are eliminated even before they are scored against geologic
data. Here, we shift the focus to the Holocene behavior of the
ice sheet, isolating model fit to only the paleo geologic data
in order to specifically investigate ice sheet dynamics through
the last deglaciation. Although we do not use the modern ice
sheet configuration to directly score model results, we note
that model members with patently incorrect modern config-
urations still score poorly against the paleo-data (discussed
below).

Implementing nested ice sheet modeling to achieve un-
precedented resolution. Exposure age data are collected from
rock outcrops, generally in mountainous regions of steep to-
pography characterized by complex flow evolution and mul-
tiple interacting glaciers throughout the last glacial cycle.
In these areas with significant topographic variation (e.g.,
mountainous regions), bed elevation, ice thickness, and ice
velocity can vary at much smaller spatial scales than can be
represented in coarse-resolution (typically 20km or larger)
continental-scale ice sheet models. In fact, there are many
sites where exposure-age data were collected adjacent to very
large, 10-20-km-wide glaciers that drain significant portions
of the ice sheet, but are not resolved as glaciers at all in
continental-scale models with 20 km or larger grid cells.

When glacier systems are below the model grid resolution,
dynamic thinning is not captured. In other words, a model
grid cell that should be acting like a glacier flowing through
topography is instead acting like an isolated icefield sitting
on top of a topographic high. In this situation, it is not rea-
sonably possible for the model simulation to match the data.
Thus, ice dynamics are often very different between model
simulations and reality, which means that coarse-resolution
models are most likely simply incapable of matching expo-
sure age reconstructions of local ice thickness variations at
many sites, except by accident.

Many sites are located at the transition from streaming ice
to interior thinning, and very different thinning rates have
been observed across short distances. This complexity cannot
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be represented by coarser-resolution models (Mas e Braga
et al., 2021), where glacier thinning records are generally
compared to modeled ice elevation along glacier centerlines
or at glacier mouths (Hillebrand et al., 2021), or averaged
ice thickness changes across large coastal regions (Lowry et
al., 2019). Furthermore, thinning occurs faster along the cen-
terline of glaciers compared to the flanks (Pritchard et al.,
2009); thus, exposure age dates may reflect delayed thinning
of the ice-marginal areas, which can only be investigated at a
high resolution.

Previous work has relied on continental-scale ice sheet
models at 40 km (Briggs and Tarasov, 2013; Lecavalier and
Tarasov, 2025) or 20km (Pollard et al., 2016 over West
Antarctica only; Pittard et al., 2022) to compare against
mountain-side-transect ice thinning measurements. Thus,
each of these preceding studies have grappled with the model
resolution issue in various ways. For example, Pittard et
al. (2022) de-weighted exposure age sites located in com-
plex topography, reducing the constraining value of these
datasets. Briggs and Tarasov (2013) apply a vertical uncer-
tainty to each model thinning curve that reflects the ice thick-
ness difference at a site that can be induced by a coarse res-
olution grid: they compare ice thickness in a modern 5km
gridded ice sheet product versus a downscaled version at
40km. Lecavalier and Tarasov (2025) widen their spatial
consideration to also include thinning profiles in neighboring
(40km) grid cells around a site. Similarly, although Lowry
et al. (2019) do not quantitatively score their model simula-
tions against cosmogenic nuclide data, they compare expo-
sure age thinning profiles at various sites against a modeled
regional average of ice thickness change across hundreds of
km (rather than identifying the precise grid cell registered to
each exposure age site).

Here, we implement high-resolution (2km) nested ice
sheet model domains, spanning all locations where expo-
sure age data have been collected across the continent, to
better resolve ice sheet thinning and complex flow patterns
across high-relief topography. This enables model-data com-
parison at an order-of-magnitude higher resolution than pre-
vious studies.

Quantifying multiple diagnostic metrics for model-data fit.
Here we develop and describe multiple model-data evalua-
tion metrics that highlight different aspects of deglacial ice
sheet evolution. For example, assessing terrestrial thinning
patterns using past ice elevations above modern, a standard
approach, blends together a model simulation’s ability to re-
produce the amplitude, timing, and rate of deglaciation at
a site. While all of these aspects are important character-
istics of deglaciation, if we wanted to specifically investi-
gate events of rapid ice-sheet change, for example (such as
abrupt terrestrial thinning during the mid-Holocene; Jones
et al., 2022, and refs therein), we might want to prioritize
model fidelity to the rate and/or timing of reconstructed ice
sheet thinning while de-emphasizing fit to the absolute mag-
nitude of thickness change. Isolating a particular component
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of model-data fit provides a targeted strategy for addressing
different specific scientific questions and improving under-
standing of what processes in the model might be responsible
for misfits.

In this paper, we describe the development and deploy-
ment of our model-data comparison toolkit. We first dis-
cuss the modeling techniques that we apply towards this
goal, including the underlying choices that shape the sim-
ulation and extraction of model deglacial history for com-
parison with geologic data (Sect. 2). In Sect. 3, we describe
the geologic dataset used here — cosmogenic nuclide mea-
surements — and the acquisition and processing of raw data.
We then introduce our automated methodology for identi-
fying youngest age-elevation bounding samples and discuss
our treatment of sample uncertainty. Having extracted analo-
gous thinning profiles from both geologic datasets and model
simulations, we develop and present two key methods to cap-
ture different aspects of model-data fit (Sect. 4.1). We in-
vestigate the impacts of our methodological choices and de-
scribe our formulation of model data fit (Sect. 4.2), formal-
izing two model-data assessment metrics (Sect. 4.2.2). In ad-
dition to the exposure-age dataset of thinning constraints, we
also compile an exposure-age dataset of maximum-thickness
constraints, comprised of sites where exposure age mea-
surements bracket the local last-glacial-cycle ice thickness
change. This secondary dataset also leverages cosmogenic
nuclide measurements but applies them to constrain the max-
imum ice thickness achieved during the last glacial cycle. We
correspondingly develop an independent model-data metric
to evaluate the modeled amplitude of ice thickness changes
(Sect. 4.3).

With these scoring techniques in hand, we apply our
model-data framework to the small ensemble of numerical
ice-sheet model simulations (Sect. 5). Model scores using
our uncurated and automated sample selection methods are
compared to model scores using a recent comprehensive cu-
rated dataset (Sect. 5.1) to ensure that we have not intro-
duced any systematic failures in our approach by eliminat-
ing manual curation. We also investigate the impact of model
grid resolution on model-data fit by comparing results from
continental simulations to nested high-resolution model do-
mains (Sect. 5.2), showing that these high-resolution nested
domains indeed improve model representation of ice thin-
ning patterns across mountainous terrestrial regions where
exposure-age data are often collected. In Sect. 6, we syn-
thesize and interpret our multiple metrics for model-data fit
across the deglacial model ensemble, providing scaffolding
to leverage this suite of model-data evaluation tools in var-
ious ways to address different questions about deglacial ice
sheet behavior.

While this work focuses on just terrestrial model-data
comparison techniques, our aim is to lay the groundwork for
future development of a complementary approach using ma-
rine radiocarbon data. Our ultimate goal is developing an in-
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tegrated framework for model scoring that leverages the full
geologic record.

2 Modeling tools
2.1 Model description

We use a 3-D ice sheet model (PSU-ISM) that has been
widely applied to simulate long-term (multi-thousand-year)
Antarctic evolution in the past and future (DeConto et al.,
2021; Pollard et al., 2016; Pollard and DeConto, 2012b). The
PSU-ISM model iteratively solves for internal ice tempera-
ture and ice thickness distributions as the ice sheet slowly
deforms under its own weight and responds to mass addi-
tion or removal (e.g., precipitation, surface or basal melt,
ocean melt, calving of ice shelves). The model uses hybrid
shallow ice/shallow shelf ice dynamics and a velocity-based
grounding-line parameterization (Schoof, 2007). These sim-
plified physics compare reasonably well to higher-order
models (Cornford et al., 2020) and enable computations
spanning many thousands of years across glacial cycles. The
PSU-ISM includes bedrock rebound in response to changes
in ice loading; deformation is modeled as an elastic litho-
spheric plate above local isostatic relaxation. The model
is able to capture marine ice shelf instabilities (Pollard et
al., 2015), although these mechanisms are only triggered
in warmer-than-present climates and therefore do not sig-
nificantly impact Last Glacial Maximum (LGM)-to-present
simulations (e.g., Pollard et al., 2016). Further details of
the model formulation are described in Pollard and De-
Conto (2012a, b).

As in Pollard et al. (2016), deglacial atmospheric forcing
is derived by scaling a modern climatology (ALBMAP: Le
Brocq et al., 2010) by a uniform cooling perturbation, calcu-
lated at each time step based on deep-sea §'80 (Lisiecki and
Raymo, 2005) and austral summer insolation (using modern
anomalies; see equation 35 in Pollard and DeConto, 2012b).
Oceanic forcing is provided by a global coupled climate-
ocean model simulation of the last 22 kyr (Liu et al., 2009),
which is updated in the model every 10 years; ocean temper-
atures at 400 m water depth are scaled quadratically to com-
pute sub-ice ocean melt rates. Eustatic sea level variation is
given by ICESG (Peltier, 2004), and bed topography is pro-
vided by Bedmap?2 (Fretwell et al., 2013).

2.2 Initialization

Ensemble simulations begin at 30 ka and run to present. Ini-
tial conditions are provided from a continental simulation
that begins at the last interglacial (125 ka) from an approx-
imately modern ice sheet configuration, and paused at 30 ka.
All continental simulations branch off from these same ini-
tial conditions at 30ka. Continental simulations use a static
basal slipperiness field based on an inversion from modern
ice velocities (Pollard and DeConto, 2012a).
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2.3 Nesting

Nesting permits high-resolution model simulations over re-
stricted domains. To provide spatial context for geologic
datasets, we use nesting to downscale our coarse continent-
wide simulations across the regions where terrestrial or ma-
rine data were collected. We establish 38 nested domains (at
2 km grid resolution) covering every site with at least three
post-LGM exposure ages (at the time of publication). We
additionally produce 5 nested domains (at 10 km grid reso-
lution, spanning relevant sectors), for assessing the resolu-
tion dependency of our results. Nested domains are shown in
Fig. la.

Time-evolving boundary conditions at domain edges are
obtained from the continent-wide simulation to be down-
scaled. At the beginning of each high-resolution nested sim-
ulation, initial conditions are generated by downscaling the
continental simulation boundary conditions across a 32—
30ka relaxation period, allowing the model to adjust to the
high-resolution domain, before branching off the 30-0Oka
ensemble experiments. The nested domains receive 3D ice
thickness and ice velocity boundary conditions at the domain
edges, provided by the “nestdriving” continental simulations,
and updated every 500 years. The basal inversion slipperi-
ness input field is downscaled at a correspondingly high res-
olution by conducting a new inversion for each nested do-
main. The nested model domains are designed to encom-
pass data locations as well as any fast-flow regions (e.g., up-
stream glacial catchment regions) that need to be resolved
in order to accurately reproduce thinning or deglacial be-
havior. We ensure that these domains are accurately down-
scaling the continental glacial behavior through sensitivity
tests of much larger domains (not computationally feasible
for the ensemble approach), to verify that modeled thinning
patterns and grounding-line behavior are independent of do-
main size. DeConto et al. (2021) demonstrated convergence
with respect to resolution below 10km for a nested domain
of Thwaites Glacier (their Extended Data 5g); here we addi-
tionally test different resolutions of the continental simula-
tion boundary conditions used to drive nested runs (i.e., we
compare nested model results driven by 40 km continental
simulations against those driven by 20 km continental simu-
lations), to ensure that there is no resolution dependence of
these “nestdriving” files.

2.4 Parameter variation

We generate a small ensemble of deglacial simulations to de-
velop, implement, and analyze our model-data comparison
framework. Thus, we focus on three key parameters, with the
goal of producing a large spread in deglacial behavior in or-
der to test the resolving power of our model-data comparison
methodology (rather than represent the full parameter space).
We vary “OCFACMULT”, a sub-ice oceanic melt coefficient,
with values 1, 3, and 5 (non-dimensional; corresponds to K
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in Eq. (17) of Pollard and DeConto, 2012b). This parameter
modifies the basal melt rate, which is a quadratic dependence
of melt to ocean thermal forcing (Pollard and DeConto,
2012b). The model uses a spatially-varying basal sliding co-
efficient that is derived by inverting of modern ice velocities;
auniform value, “CSHELF” is applied to modern continental
shelves. CHSELF provides a basal sliding coefficient value
for regions outside of the modern inversion product (e.g.,
across the modern seafloor, where ice was grounded during
the last glacial cycle, but is no longer present). Here we vary
CSHELF from 10°, 10°, or 107 (m yr_1 Pa~2, corresponds
to C in Eq. 11 of Pollard and DeConto, 2012a). Finally, we
vary “TLAPSEPRECIP”, which modifies the scaling of pre-
cipitation with temperature; because the model scales a mod-
ern climatology by a uniform temperature change through
the last glacial cycle, the precipitation should also be scaled
correspondingly. The PSU-ISM model employs a power-law
relationship where TLAPSEPRECIP modifies this temper-
ature shift to determine the spatial precipitation correction.
Our standard value of TLAPSEPRECIP = 10 is analogous
to the 7 % K~! best-fit Clausius-Clapyeron precipitation cor-
rection from Albrecht et al. (202b), and results in about 50 %
less precipitation at the Last Glacial Maximum; here we also
vary TLAPSEPRECIP to be 7 and 35 (corresponding to 2 and
10 % K~ ! Clausius-Clapyron rates, and about 20 % and 70 %
drier at the Last Glacial Maximum, respectively; this brack-
ets the range of deglacial precipitation changes that have
been reconstructed from ice cores by Buizert et al., 2021,
and also bounds the Clausius-Clapeyron parameter range ex-
plored by Albrecht et al., 2020b).

2.5 Preparing modeled deglaciation histories for data
comparison

The ice sheet model accounts for bedrock glacial isostatic
adjustment as the ice load distribution changes. Modeled bed
elevation and thus ice surface elevation is influenced by these
changes, so we extract only the ice thickness (ice surface
elevation minus bed elevation) as the quantity to compare
with geologic records of ice sheet thinning, following pre-
vious work (Briggs and Tarasov, 2013; Pollard et al., 2016;
Lecavalier and Tarasov, 2025).

Computational and file-size constraints limit both the
model grid size resolution as well as the time frequency that
model output is captured. We conducted sensitivity testing to
optimize these tradeoffs between model grid resolution and
output frequency compared to improvements in capturing ice
sheet behavior and the resulting differences in model scores.
For nested domains over exposure age sites, the ice thick-
ness field is written to the model output file every 500 years,
and the extracted ice thickness curves are linearly interpo-
lated down to a 20-year interval to more accurately identify
a model age associated with a given elevation. The model ice
thickness curve is isolated to thinning episodes only (in other
words, data samples cannot be scored against time periods of
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Figure 1. (a) Antarctic velocity map (MEaSUREs; Rignot et al., 2011) with locations of all exposure age sites from ICE-D (24 April 2024).
2 km nested domains are outlined, colored by region (TAM: Transantarctic Mountains; WAIS: West Antarctic Ice Sheet; Weddell: Weddell
Sea region; EAIS: East Antarctic Ice Sheet margin). (b) Zoomed-in view to TAM region. (¢) 2 km nested domain over Beardmore Glacier,
showing higher-resolution features of the glacier trough. Exposure age sites located around the glacier are labeled according to the ICE-D site
name (now showing only sites with > 3 youngest-bounding deglacial-age samples). The same domain is shown with a model grid resolution

of 20km (d) and 40 km (e).

model thickening; we assume that geologic deposits always
reflect thinning, so only the parts of the model ice surface
profile that follow an overall deglaciating trend are consid-
ered for model-data scoring). This methodology follows the
original approach pioneered by Briggs and Tarasov (2013).
We incorporate a vertical window approach when evaluat-
ing the model ice thickness profile, to account for model res-
olution uncertainty (i.e., sub-grid elevation or thinning vari-
ability) and potential non-linear behavior in between model
output write frequencies. Previous methodologies have var-
ied approaches to address this issue: for example, Lecavalier
and Tarasov (2025) account for modeled thickness change in
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neighbouring spatial grid cells — i.e., within a 120km win-
dow spanning the exposure age site, also across a 4500
year time window — in their error scoring method. Briggs
and Tarasov (2013) calculate the ice thickness difference
between different model resolutions in a modern gridded
ice sheet product, with a maximum error of 100 m. Ely et
al. (2019) similarly compare the model grid cell elevation
and data sample elevation to account for a vertical downscal-
ing uncertainty. Our approach most closely follows Pittard et
al. (2022), who apply a blanket vertical tolerance of 250 m
to each data point; this value was chosen because it repre-
sents a 5 % error on a possible 5000 m ice thickness maxi-
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mum. Here we simply tailor the vertical error to directly re-
flect the deglacial ice thickness change at each site. Specifi-
cally, we calculate the model vertical window at each site as
10 % of the total modeled ice thickness change from LGM to
present (for example, in our hypothetical model-data scoring
scenario illustrated in Fig. 5, this vertical window is 47 m).

3 Exposure-age reconstruction of ice thinning at a site

In this section we describe a series of steps to access, pre-
pare, and employ exposure age samples from across the
continent to evaluate model-data fit. Cosmogenic nuclide
measurements (Sect. 3.1) are first extracted from the inclu-
sive and continuously updated ICE-D database (Sect. 3.2),
and we develop an automated methodology to preprocess
data (Sect. 3.3) and identify the subset of samples recording
LGM-to-present deglaciation at a given site (Sect. 3.4). We
recalculate sample uncertainties based on Monte Carlo itera-
tion of the algorithm used to identify the post-LGM deglacia-
tion history (Sect. 3.5), as well as explore the concept of a
minimum “geologic” error at any given site (Sect. 3.6).

3.1 Measurement of cosmogenic nuclide concentrations

Cosmogenic nuclide measurements from clasts collected at
a range of elevations across a nunatak site produce an age-
elevation array in which clasts at higher elevations were un-
covered first and therefore have older exposure ages. How-
ever, several added complications affect this basic relation-
ship.

If a clast was derived not from the base of the ice sheet
but from another nunatak where it was exposed previously,
inheritance of cosmogenic nuclides produced during the first
period of exposure would result in a spuriously old appar-
ent deglaciation age. With the exception of a few sites where
clasts are locally transported a short distance, this issue is
fairly rare in Antarctica because 99 % of the continent is
ice-covered. A much more common situation arises when
clasts deposited on an ice-free area are repeatedly covered
and uncovered by ice during multiple glacial-interglacial cy-
cles. This is possible because in most locations in Antarctica,
ice that covers rock outcrops during glacial periods is frozen
to its bed and cannot transport or erode previously deposited
material. Thus, many ice-free areas have not only fresh clasts
that were first exposed during the most recent deglaciation
(and therefore provide the correct age for this deglaciation),
but also clasts that were originally emplaced during previous
glacial terminations and have been covered and uncovered by
ice several times. These multiply-exposed clasts have appar-
ent exposure ages that overestimate the age of the most recent
deglaciation. This is also true of bedrock surfaces, which typ-
ically display very old exposure ages integrating many peri-
ods of exposure. For this reason, bedrock surface exposure
ages are not generally used to reconstruct LGM-to-present
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deglaciation. However, an exception to this is provided by
measurements of cosmogenic *C in rock surfaces; '*C has
a half-life of 5730 years, so any '*C produced in previous
interglaciations has been lost by decay and therefore '4C ex-
posure ages on bedrock can be expected to accurately date
the most recent deglaciation.

It is also possible for apparent exposure ages of clasts to be
younger than the most recent deglaciation, typically because
of postdepositional movement or overturning. Although this
process is common in temperate environments, it is rare in
Antarctica because the lack of liquid water and biota limits
the possible processes that could cause postdepositional sur-
face disturbance. Thus, it is likely that there exist more than
zero exposure ages on Antarctic clasts that postdate the true
deglaciation age due to postdepositional disturbance, but ex-
amples are expected to be very rare.

Thus, age-elevation arrays from Antarctic nunataks typi-
cally display both (i) exposure ages from “fresh” clasts that
form a coherent array becoming older at higher elevation,
and (ii) exposure ages from multiply-exposed clasts that are
older than the most recent deglaciation.

3.2 The ICE-D exposure age database

This accessible online database contains all known Antarc-
tic exposure-age data (including data published in peer-
reviewed publications, and also unpublished data that have
been made public due to public release requirements of fund-
ing agencies). The ICE-D database is designed to be inclu-
sive (all exposure-age data known to have been collected
from Antarctica are present in the database) but uncurated:
although known measurement errors are corrected when dis-
covered, all measurements that are believed to be accurate in
the sense that the cosmogenic-nuclide concentrations were
correctly measured and reported are included, and no effort
is made to assess the degree to which exposure ages correctly
date LGM-to-present deglaciation. ICE-D is continuously
updated as new data are published; the dataset of exposure
age measurements used here to develop our model-data com-
parison framework therefore include many new geochrono-
logical data that have not yet been systematically integrated
into model reconstructions (for example: Rand et al., 2024;
Suganuma et al., 2022 in East Antarctica; Stutz et al., 2023
in the Ross Sea region; Nichols et al., 2023 in the Amundsen
Sea). Within the database, raw measurements are collated,
and exposure ages are calculated with a consistent production
rate scaling method so they are internally consistent (Balco,
2020).

3.3 Raw data preprocessing
Cosmogenic nuclide data are downloaded from ICE-D and
preprocessed for model-data comparison. Unpublished sites

are removed, along with sites located in the Antarctic Penin-
sula or sub-Antarctic islands. (We removed the Antarctic
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Peninsula sites in this study because the glacial dynamics in
this highly mountainous and fjord-bisected peninsula region
is difficult to meaningfully resolve in a continental-resolution
simulation; however, all of the methodologies described here
could be easily applied within that region as well.) The
dataset is further constrained to LGM-age or younger sam-
ples. This preprocessing results in a preliminary dataset of
1276 cosmogenic nuclide measurements from 187 total sites
(ICE-D dataset downloaded 11 May 2023).

We lump together sites that are located within the same
model grid cell (combining them by sample elevation above
the modern ice surface, rather than absolute elevation) in
order to compare the model thinning history at a grid cell
against all of the appropriate corresponding geologic infor-
mation. This results in a smaller total number of “lumped
sites” for model-data evaluation with the coarser-resolution
40 km continental domains compared to the 2 km nested do-
mains. Subsequently, we refer to a “site” as a model-grid-
cell-size area where exposure age data have been collected —
i.e., a lumped site.

3.4 Identifying the youngest age/elevation samples at
each site for model comparison

Cosmogenic nuclide measurements often result in a scatter
of age measurements at the same elevation (for example,
Fig. 2a) due to complications described above. Because in-
heritance issues lead to an old bias, the youngest-bounding
age/elevation measurements are most likely to be robust.
Therefore, in accordance with our goal of “non-curation”,
i.e., eliminating any potential interpretation bias, we de-
velop an automated methodology to identify the youngest
age/elevation samples at a given site. This methodology
connects a set of input samples with line segments, find-
ing the path of greatest decrease in age in order to iden-
tify the youngest boundary in age/elevation space. The sam-
ples that are connected by these steepest-descent line seg-
ments thus reflect the youngest age/elevation measurements
that can be interpreted to reconstruct ice thinning at a site.
We apply this youngest-sample selection analysis follow-
ing a Monte Carlo approach, randomly varying the age of
each input sample within the measurement uncertainty range
(Fig. 2b) and iterating 10000 times to identify all potential
“youngest” data points to use for our model/data comparison
(Fig. 2c). We lump together different nuclide measurements
in this youngest-sample selection analysis (i.e., treat them all
equally) in accordance with our goal of “data agnosticism”.
This procedure is applied only to sites with more than 3 sam-
ples that span more than 100m of elevation change, reduc-
ing the total number of sites to only those locations where a
measurable pattern of significant deflation can be leveraged
for model/data comparison (58 sites; 11 May 2023). Note
that these 58 sites are further reduced to 50 (44) locations
for evaluating 2 km (40 km) model simulations because sites

The Cryosphere, 20, 931-961, 2026

that fall into the same model grid cell are lumped together, as
described above.

This automated method for identifying the youngest
age/elevation samples to use for model-data comparison
aims to replace the manual step of “expert interpretation”
that is required for converting exposure age measurements
into a curated geologic constraint, e.g., as in Lecavalier et
al. (2023). While this automated approach will identify the
“true” youngest age/elevation space for most sites, there are
edge cases in which this method may fail; namely, (i) rare
postdepositionally-disturbed ages, (ii) a case where all or
nearly all samples have inheritance, so the youngest age-
elevation bounding samples are not statistically identifiable
from the surrounding “noise”, and (iii) data with analytical
errors. We note that although some of these “edge cases” may
be caught by manual curation (most likely iii), many would
not. Our approach accepts that some fraction of the constraint
data set is spurious, and we therefore prevent a single patho-
logical site from dominating the model score; see Sect. 4.2.4.

3.5 Measurement precision and sample age uncertainty

While each sample has a reported measurement error that is
derived from the analytical uncertainty on the nuclide con-
centration measurement, a number of datasets in which mul-
tiple exposure ages are measured at the same elevation show
that the measurement errors of each sample are typically
smaller than the range of sampled ages at a given elevation
(as one example, see Mt. Hope (HOPE) in Spector et al.,
2017). In other words, the uncertainty associated with a cos-
mogenic nuclide measurement is two-fold: the measurement
precision error (established through repeat measurements in
a laboratory), and the geologic uncertainty (i.e., the spread
in ages that would result from repeated sampling at a given
elevation at the field site). In general, geologic uncertainty
arises because nunataks are not smooth surfaces emerging
from a perfectly flat ice surface; both the bed topography and
the ice surface topography are variable, so all locations at the
same elevation do not deglaciate at exactly the same time.
We incorporate both sources of error within our misfit calcu-
lations by identifying the age range across the Monte Carlo
“cloud” at any given elevation (the 1o range) to use as the
uncertainty associated with each sample (Fig. 2d). We assess
Monte-Carlo-derived uncertainties only when a site has more
than 3 samples (otherwise, the measurement error is used).
This approach considers both the measurement precision er-
ror (which is encompassed by the Monte Carlo random vari-
ation of sample age within measurement uncertainty) as well
as the uncertainty associated with the spread in data points.
Although we consider only age misfits in our model data
evaluation framework, we indirectly account for elevation
uncertainty here by applying a vertical tolerance range when
identifying the Monte-Carlo-derived uncertainty. For each
data point, we find the associated Monte Carlo uncertainty
by calculating the greatest difference between the + 10 MC
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Figure 2. (a) Sample illustrative dataset of cosmogenic nuclide measurements collected along an elevation transect, with error bars denoting
measurement error. (b) One iteration of our youngest-sample identification scheme (identifying the youngest age/elevation bounding range
given randomly varied age/elevation data points within measurement uncertainty). (¢) 10 000 Monte Carlo (MC) iterations produce a range
of youngest-boundary age/elevation trajectories, and identify all possible youngest data points (green) to use for model/data comparison.
Data points shown in orange in (c¢) are never part of a possible deglaciation trajectory and are therefore considered to be the result of
nuclide inheritance and discarded (i.e., not shown in d). (d) Red dashed lines show the 1o standard deviation of the Monte Carlo youngest
age/elevation space; this width (the 1o range at a given elevation, including a 20 m vertical tolerance range) determines the uncertainty for
each data point (red error bar).

curves within a 20-meter-high vertical tolerance range. This 30
approach weights misfit calculations to prioritize samples
where glacial deflation is occurring; within a vertical toler- 25
ance range, uncertainties are greater for samples where the 1l
recorded ice surface elevation change is minimal (for exam- 20
ple, Fig. 2d samples from ~ 15-10ka), which reduces the -
misfit for these samples compared to samples that record § 15
rapid thinning. O | |
10 I |
3.6 Calculating a minimum geologic error 1 7T
5 1 I
The ideal site for reconstructing ice sheet thinning has dense
samples collected at a range of elevations. At these well- 0 X
sampled sites, repeated sampling at an elevation often reveals 0 200 400 ngars 800 1000 1200

a wider range of uncertainty than the measurement error (ge-

ologic uncertainty, as discussed above in Sect. 3.5). Sites
with only a few samples, however, can misleadingly appear
to have much smaller geologic uncertainties since there are
inherently fewer conflicting data points. We therefore iden-
tify a “minimum geologic error” reflecting the geologic un-
certainty associated with repeated sampling across a site.
We identify a uniform minimum geologic error of 495
years, based on the 95th percentile of all Monte-Carlo-
derived sample uncertainties from all sites. Figure 3 shows
that a large number of samples have much lower uncertain-
ties — these tend to be from sites with just a few samples,
with misleadingly low uncertainty derived from the Monte-
Carlo youngest-age-elevation-boundary algorithm. There is
also a significant fraction of locations where this uncertainty
is around 500 years, but uncertainties tail off after this value
(larger uncertainties tend to reflect larger measurement pre-

https://doi.org/10.5194/tc-20-931-2026

Figure 3. Calculated error for each age/elevation data point across
all sites (using the Monte-Carlo-derived youngest age/elevation
scheme described above). The “minimum geologic uncertainty” we
identified is 495 years (dotted line).

cision errors that drive up the Monte-Carlo-derived errors).
Thus, we interpret this value to reflect the smallest reason-
able uncertainty we could produce at a site with a large num-
ber of samples. This ‘minimum geologic error’ provides a
lower bound for the uncertainty for each sample when calcu-
lating misfit (€.g., Osamp in Eq. 3). This is intended to level the
playing field between sites with multiple widely distributed
samples and sites with only a few (or clustered) samples.
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4 Description of model-data comparison techniques

Model resolution presents a challenge for aligning modeled
and observed thinning at a site: specifically, that there is no
feasible model resolution that will exactly capture all small-
scale topography of rock and ice at an ice margin retreating
through mountainous terrain. Thus, key quantities that could
be compared across models and data — namely, the absolute
ice surface elevation, or the absolute magnitude of thickness
change — are not necessarily expected to exactly match be-
tween models and reality. However, the timing of thinning
and the variation in thinning rates through time should not
be strongly subject to these issues. We therefore develop two
methods to align modelled and measured thinning profiles,
that focus on these more robust features of model-data fit
(Sect. 4.1). We describe our formulation of model-data mis-
fit and introduce two corresponding metrics for model-data
assessment (Sect. 4.2). The “float scoring” approach evalu-
ates ice thickness change unregistered to a vertical datum,
allowing the modeled ice history to float vertically to mini-
mize model-data misfit at a site. We also identify a “best time
offset” value, the horizontal time adjustment that minimizes
site misfit, to specifically isolate timing differences between
modeled and measured ice thinning histories. These metrics
are applied at every exposure age site with multiple (> 3)
samples. Model scores are derived by averaging site misfits
across the continent and applying a site-by-site spatial weight
based on data density.

In addition to model-data fit with respect to ice thinning
patterns at a site, we also investigate model-data fit with re-
spect to the maximum amount of ice sheet thinning during
the last deglaciation (i.e., LGM ice surface relative to modern
ice surface) in Sect. 4.3. Specifically, we identify a separate
dataset of exposure-age sites where a maximum ice thick-
ness change can be estimated from the geologic record. Any
exceedance of the modeled maximum thinning at these lo-
cations is averaged across the continent (and weighted with
respect to the reliability of the geologic constraint); the re-
sulting “ice thickness exceedance” model score provides an-
other metric for evaluating model-data consistency. Table 1
provides a summary of terms for each of our three unique
model-data misfit metrics.

These individual metrics are designed to stand alone; each
approach addresses different questions about model-data fit,
and thus we do not combine these metrics together into one
total model score because the optimal weights for combining
these various metrics would differ based on the user’s interest
and motivating question.

4.1 Finding quantities in common: aligning modeled
and measured ice thinning reconstructions at a site

Here we develop several strategies that attempt to fairly com-

pare modeled and observed thinning, in response to two main
categories of obstacles: first, model representation of the cor-
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rect glacial setting; and second, vertically aligning models
and data with respect to an elevation datum.

4.1.1 Model-data alignment with respect to glacial
setting

While our high-resolution (2 km) nested simulations are now
able to capture most glacier trunks (Fig. 1c), this increased
spatial granularity can introduce a mismatch between the
glacier thinning that is recorded at an exposure age site and
model behavior at the precise sample locations. This mis-
match occurs because cosmogenic nuclide measurements at
a site are collected along an elevation transect; the progres-
sive exposure of bedrock along this transect is used to in-
fer the surface lowering of an adjacent glacier or ice mass.
However, especially at high grid resolutions, the modeled ice
thickness history corresponding to the precise sample loca-
tion(s) does not always capture the full thinning behavior of
the adjacent glacier. For example, mountain-side grid cells
cease recording glacial deflation once the grid cell becomes
ice-free, although ice sheet deflation continues in the adja-
cent glacial valley.

To identify the model grid cell capturing a comparable
quantity to exposure age data reconstructions, we develop an
automated methodology for identifying the nearest glacier
grid cell (rather than using the precise lat/lon of the site
samples to extract a model thinning history). We apply this
methodology only for the 2 km resolution nested domains,
where glacier valleys and adjacent topographic highs are re-
solved. Specifically, we identify the nearest adjacent glacier
grid cell based on average velocity throughout the simula-
tion. This automated methodology selects the location with
maximum velocity within a 4 x 4-grid-cell (8 km) search ra-
dius around the mean site lat/lon (the average location across
all samples in the site). This search radius was chosen in or-
der to encompass the spatial spread of individual sample lo-
cations for most sites; in other words, to properly reflect the
thinning history at a site, the search radius should cover the
entire hillside where an elevation transect of samples were
collected, and our model/data comparison approach should
use a thinning history from the grid cell at the base of that
hillside transect of samples.

For our continental (coarser resolution) simulations, we
extract modeled thinning history from the grid cell exactly
corresponding to the precise sample lat/lon location. If the
transect of samples comprising a single site spans different
model grid cells, we use the model thickness history corre-
sponding to each sample.

4.1.2 Model-data alignment with respect to a common
ice surface baseline

Vertically aligning modeled and measured ice surface ele-

vations at a given site requires a common elevation datum.
Comparing the absolute ice surface elevation change be-

https://doi.org/10.5194/tc-20-931-2026



A. R. W. Halberstadt and G. Balco: Antarctic ice sheet model comparison

Table 1. Description of terms and misfits.

941

Variable Variable name Role in the “float scoring” Role in the “best time offset”  Role in the “ice thickness
approach (model thinning approach (model thinning exceedance” approach
curve at each site is “floated”  curve at each site is “floated”  (model amplitude of
vertically — in elevation — to horizontally — in time - to LGM-to-present ice thickness
minimize site misfit) minimize site misfit) change is assessed against

data constraints)

Msamp Sample misfit (mean Difference between observed Difference between observed n/a

Eq. (1) squared error) and model-predicted and model-predicted
deglaciation age of a single deglaciation age of a single
sample, against a model sample, against a model
thinning curve with an applied thinning curve with an applied
vertical (elevation) shift horizontal (time) shift

Miite Site misfit (sum of The “site float misfit” is the The “site best-time-offset n/a

Eq. (4) sample misfits) minimum mgje that can be misfit” is the minimum mgjee
produced by “floating” the that can be produced by
model thinning curve applying horizontal shifts (time

offsets) to the “site float misfit”
model thinning curve
Best time offset value n/a The “best time offset” is the n/a

identified value, in kyr, of the
horizontal shift (time offset)
that minimizes mgjge

Minodel Model score (sum of The “model float score” is The “model best-time-offset n/a

Eq. (5) site misfits) computed by summing all “site  score” is computed by

float misfits” across a region
(or continent-wide)

summing all “site
best-time-offset misfits” across
a region (or continent-wide),
after shifting all model thinning
curves in that region uniformly
by the “best time offset” value

Msite, exceed  Site misfit n/a n/a The “site exceedance misfit” is
Eq. (6) the amount by which the
modelled ice thickness change
at a site exceeds the maximum
ice thickness change constraint
at that site (in elevation)
Mexceed Model score (sum of n/a n/a The “model exceedance score”
Eq. (7) site misfits) is computed by summing all

“site exceedance misfits”
across a region (or
continent-wide)

n/a: not applicable.

tween modeled and measured ice sheet reconstructions (even
when these quantities are capturing the same glacial setting)
is challenging because topography and ice flow vary at spa-
tial scales that are smaller than model grid cells (for example,
Fig. 4). Thus, except perhaps in the rare case of an isolated
nunatak emerging from a flat interior region of the ice sheet,
the ice surface elevation in a model grid cell is unlikely to
be exactly the same as the true ice surface elevation at any
specific location within that grid cell. In fact, true ice sur-
face elevation variability within a large grid cell in moun-
tainous topography may be much larger than the magnitude
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of LGM-to-present thinning. This issue is commonly dealt
with in model-data comparison endeavors by assuming that
while the model does not accurately predict the true ice sur-
face elevation at an exposure-dating site, the rate, timing, and
amount of ice thickness change should be similar between
model and data. That is, models and data are compared on
the basis of thickness change relative to present (registered
to the modern ice surface) and not on the basis of absolute
surface elevation; all previous model-data comparison efforts
(Briggs and Tarasov, 2013; Pollard et al., 2016; Pittard et
al., 2022; Lecavalier and Tarasov., 2025) have accordingly
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Figure 4. Model-data alignment at SUESS site, located along the Transantarctic Mountains (Mackay Glacier, Mt. Suess; location shown
in Fig. 1). (a) Exposure age record of thinning (green dots; original data from Jones et al., 2015) compared to modeled thinning from the
2 km nested domain (dashed black line shows thinning at the grid cell corresponding to the actual sample location; thick solid black line
shows thinning at the nearby grid cell with maximum velocity). (b) Site location in a 20 km (intermediate-resolution) model compared to
(c) the 2km nested domain. (b, ¢, d) The black dot shows the mean location of the site (averaged across all samples at the site). (d) This
approach searches for the location of maximum velocity near the site. Dot color shows the average velocity of each grid cell within the
search area throughout the run. The black star denotes the location with maximum velocity, which occurs in the adjacent glacier trough; the
thinning history at this location is used for model/data comparison. (e¢) Modern velocity from the MEaSURE:s dataset (Rignot et al., 2011)

superimposed over the modern model ice thickness for this nested domain.

aligned modeled and measured thinning profiles with respect
to ice thickness above modern. However, identifying a mod-
ern ice surface elevation that is common to both models and
data is often not straightforward. The true ice surface eleva-
tion at a mountainous exposure age site, already highly vari-
able due to topography, is further complicated by local fac-
tors such as snow buildup patterns like wind scoops and blue
ice areas (e.g., Bintanja, 1999), and ice flow perturbations
caused by the nunatak itself (e.g., Mas e Braga et al., 2021).
The modeled ice surface elevation is also not always reli-
able, since (a) many nunatak features are smaller than even
the high-resolution 2 km nested model domains, and (b) the
model ice sheet configuration in the last timestep (“modern’)
will not perfectly reflect the true modern ice sheet configu-
ration. Furthermore, the “modern” ice-sheet state is a rapidly
shifting baseline; many sites have deflating ice thicknesses
on decadal timescales, and models tend to produce WAIS
collapse under modern climatological forcings.

Due to these issues with aligning the modern baseline, nei-
ther the absolute ice surface elevation nor the absolute mag-
nitude of thickness changes are necessarily expected to quan-
titatively match between models and reality. However, the
timing of thinning and the spatiotemporal variation in thin-
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ning rates are mostly independent of these resolution and
alignment issues; we therefore develop two metrics that iso-
late these deglacial thinning characteristics that can be more
robustly compared across models and data (the float scoring
metric and best-time-offset metric, described quantitatively
in Sect. 4.2.2 below).

4.2 Quantifying model-data misfit
4.2.1 Site misfit calculation

Model-data misfit at a data sample (#amp) is calculated from
the time gap (Ar) between modeled and measured ice thin-
ning histories, relative to the sample uncertainty (0samp), as
illustrated in Fig. 5. The sample misfit #253mp is then provided
as a mean squared error:

Ar 2
Msamp = o (1
samp

This time gap At is defined as the difference between
Dpodel, the time that the model reaches the elevation of the
sample, and Dsamp, the closest time of exposure of the data
point (i.e., within the sample age uncertainty). Because we
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apply a vertical elevation window approach when evaluating
the model ice thickness profile (chosen here to be 10 % of the
total modeled ice thickness change from LGM to present),
At is set as the smallest time gap within this vertical eleva-
tion window (described in Eq. 2 and graphically illustrated
in Fig. 5 inset). Sample uncertainty is either subtracted or
added, to produce the smallest At.

if model and data
elevations intersect

(Dmodel — [Dsamp £ Usamp])

(Dsamp — Osamp) if model never thins

to data elevation
At= : 2)
Dinodel =0

Aty if model never
thickens to data
elevation

At, is a uniform time gap, designed to impose a misfit
penalty if the modeled ice thickness range fails to encom-
pass the observed range (see “Scoring samples outside of the
range of model ice thickness change” below).

Sample age uncertainty osamp is derived from the 1o width
of the Monte Carlo spread in possible youngest age/elevation
thinning histories at each site (Sect. 3.5). The sample uncer-
tainty ogamp is then constrained by the minimum geologic
uncertainty of 495 years (Sect. 3.6).

Osamp = Max (Gsamp_mc, 495) 3)

The site misfit mgje is calculated as the average of all (n)
sample misfits at a site:

Mite = ; (msampl + Msamp2 + .- -msampn) €]

Note that we assess model performance only with respect
to time — in other words, misfits are simply the squared er-
ror of the time gap between an exposure age at a given ele-
vation and the time that a modeled ice sheet simulation de-
flates to that thickness above present. Although some ear-
lier literature similarly isolated age misfits (e.g., Ely et al.,
2019), preceding comprehensive model-data comparison ef-
forts considered both time and elevation of the ice thickness
profile (i.e., sample misfit is calculated based on the time gap
as well as the vertical elevation gap; e.g., Briggs and Tarasov,
2013; Pollard et al., 2016). The decision to consider only the
time misfit is determined by (i) the fact that exact matches be-
tween model and actual ice surface elevations and ice thick-
ness changes are unlikely, due to model resolution limitations
as discussed above (even 2km model grid cells are much
larger than spatial variations in ice and rock topography sur-
rounding many sample locations); and (ii) the related obser-
vation that models are much more likely to correctly repre-
sent the large-scale timing of variations in the ice thinning
rate than the exact ice surface elevation at a particular site.
This reasoning leads to our strategy of varying the absolute
ice thickness change as a nuisance parameter in our “float
scoring” metric described above. Nevertheless, our approach

https://doi.org/10.5194/tc-20-931-2026

indirectly evaluates model ice thickness changes against real-
ity by attempting to match the shape, even if not the absolute
elevation, of the thinning curve (e.g., Fig. 6). In addition, the
misfit penalty applied when the model thinning history fails
to span the magnitude of the actual thinning history recorded
at a site (see discussion below) is an indirect assessment of
the model performance with respect to observed thickness
change.

4.2.2 Maetrics for model-data scoring

Float scoring metric (ice thickness change unregistered to
a datum). This approach allows the modeled ice history to
“float” vertically, by applying a vertical adjustment to mod-
eled ice elevations to minimize site misfit (Table 1). This iso-
lates the model fit to the reconstructed timing and amount
of ice sheet thinning. If model thinning occurs at the same
amount/same rate/same time as the exposure age dataset, the
vertical offset will produce a good misfit. But if model thin-
ning happens at the wrong time, or too slowly, or not enough,
this approach will produce a bad misfit even with the best-fit
elevation shift (Fig. 6). The “float scoring” metric is applied
to sites with > 3 samples (with Monte-Carlo-derived uncer-
tainties) and > 100 m of elevation change recorded at the site
(n =49, with 2 km grid resolution lumping, 24 April 2024).

Best-time-offset metric. Here, a range of time offsets are
applied to the model thinning curve at each site, to iden-
tify the best-fit time offset (in kyr) that minimizes site misfit
(Fig. 7). Specifically, this time-offset analysis is applied to
the best-fitting “float” curve obtained via the float scoring ap-
proach described above. The resulting best-time-offset met-
ric can be used to assess how well a model represents the tim-
ing of ice sheet thinning, and can also potentially provide in-
sights on systematic issues with model forcing datasets. For
example, a model run that systematically under- or overesti-
mates the timing of ice sheet change across a specific region
or even the entire ice sheet might indicate some persistent
offset issue in the atmospheric or ocean climatology model
forcings. On the other hand, if model-data offsets are ran-
domly (rather than systematically) distributed among sites in
close proximity, this could motivate a reassessment of poten-
tial issues with either model resolution or the interpretation
of geologic data.

In addition to isolating the model fit to the recorded tim-
ing of deglaciation, the best-time-offset analysis can also be
used to identify the “minimized” site misfit (the “site best-
time-offset misfit”) that eliminates any timing mismatches
and reflects only the model-data fit with respect to the shape
of the thinning curve. In other words, we can isolate just the
rate and pattern of thinning by identifying this best possi-
ble misfit at a site (i.e., the minimized site misfit after ap-
plying both the best-fit vertical elevation shift as well as the
best-time-offset horizontal shift to a model thinning curve).
This approach allows us to evaluate model ability to replicate
the overall style of deglaciation as recorded by exposure age
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data, independent of any potential time lag between models
and data.

4.2.3 Scoring misfits for samples outside of the range of
model ice thickness change

At some sites, the observed amplitude of deglacial thinning
exceeds the range of LGM-to-present ice-sheet deflation sim-
ulated by a model at the site location. Samples collected at
higher elevations than simulated by a model thus lack a corre-
sponding modeled age to use for determining the sample mis-
fit. In this case, we prescribe a uniform time-gap (At#,; Eq. 2;
Fig. 5). The absolute value of this imposed time-gap influ-
ences the misfit calculations; a relatively large time-gap (e.g.,
20kyr) would amplify site misfits where model thinning is
underestimated, heavily penalizing model simulations with
suppressed deflation patterns, while a relatively small time-
gap (e.g., Skyr) would produce model scores that are less
influenced by sites where modeled ice thickness change does
not exceed the measured thinning amplitude. Our model-data
scoring approach here is designed to identify model simula-
tions that reproduce not only the amplitude of deglacial ice
thickness change, but also the timing and rate; we therefore
select a uniform time gap Af, = 10 kyr, which inflates mis-
fits for sites where model thinning amount is underestimated
but does not over-amplify this particular type of model-data
mismatch to dominate the model score.

When we allow the model ice thickness curve to ‘float’
vertically (to find a minimized site misfit), exposure age sam-
ples collected from near the present ice margin can be located
below the adjusted model thickness curve. To assess a misfit
for these samples, a corresponding model age of deglaciation
is required; since the model never thins to the data eleva-
tion, we impose a modern age of model deglaciation (i.e.,
Dmodel = 0; Eq (2), Fig. 5). This reflects the need for the
model to continue to thin into the future in order to reach
the sample elevation.

4.2.4 Synthesizing site misfits into a model score

Capping site misfits. When modeled ice thickness patterns
are drastically different from the measured thinning history,
extremely large site misfits can be produced. These outliers
with significantly large site misfits often dominate the over-
all model score, which we consider to be a disproportion-
ate and undesirable impact. In this framework, model scores
should reflect the cumulative model “fit” to all sites: a model
simulation should score lower (better) if it reproduces ice
thinning at most sites satisfactorily but completely misses
a few sites, compared to a simulation that reproduces thin-
ning measurements poorly across the continent but has a
marginally better misfit at outlier site(s). We therefore im-
plement an upper limit on site misfits, to reduce the impact
of outliers on the overall model score and reflect more mean-
ingful model improvements that incrementally reduce mis-
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fits at the majority of sites. Here we deploy site misfit ceil-
ings (e.g., upper bounds) by empirically determining a max-
imum information-bearing site misfit — below this value, a
lower-scoring model simulation does reflect a physically re-
alistic improvement in model representation, but at higher
(worse) values, a smaller site misfit does not reflect mean-
ingful improvement in model representation of the data (and
thus does not have resolving power and should not impact the
total model simulation score). An example is shown below in
Fig. 8. We therefore establish a site misfit cap (mmax = 50, in
Eq. 5) for the float scoring metric.

Spatial weighting. We apply a spatial weight Sy, to each
site to avoid biasing model scores towards well-sampled re-
gions. Site misfits are inversely weighted based on the num-
ber of regional sites (Fig. 9). The number of regional sites
are identified at each site location within a region size of 10°
longitude by 5° latitude (cf. Briggs and Tarasov, 2013; ap-
proximately the characteristic scale of viscoelastic response).
Sw is calculated by normalizing the number of regional sites
around each site location, and taking the inverse, to provide
a spatial weight. Our approach deviates from the inter-data-
type weighting scheme of Briggs and Tarasov (2013) in that
we use the number of regional sites rather than the num-
ber of regional data-points (samples) to establish our spatial
weights; here we aim to treat every site as equally robust.

Each model simulation score (Mmogel) is calculated by tak-
ing the mean of all site misfits (n) across the continent after
multiplying each site misfit mgjee by the spatial weight Sy,:

1 n
Mnodel = ;Zizlmean(msite,is Mmax) * Sw,i (5)

4.3 Maximum ice thicknesses: geologic constraints and
model exceedances

Here we isolate and evaluate the amplitude of ice sheet de-
flation as an additional measure of model/data fit. To com-
plement our primary dataset of continent-wide deglacial ex-
posure ages, we compile an additional dataset of last-glacial-
cycle maximum ice thickness constraints at sites where the
local LGM ice thickness change can be estimated, and cor-
respondingly develop an independent model-data metric to
evaluate the modeled amplitude of ice thickness changes.
This metric complements the scoring approaches de-
scribed above, which do not explicitly penalize vertical mis-
fits (i.e., model thinning amplitudes that are drastically larger
than the amplitude of thinning recorded by terrestrial data).
We treat this particular challenge as a separate scoring met-
ric because of several characteristics of the exposure-age data
that make it difficult to estimate the total LGM-to-present ice
thickness change at most sites. First, many exposure-age data
sets are collected from nunataks whose exposed height is
shorter than the ice thickness change at the LGM (for exam-
ple, LONEWOLFTI site (Byrd Glacier, Lonewolf Nuntataks,
LW1 Nunatak; data collected by Stutz et al., 2023, and shown
below in Sect. 6.2). They only became uncovered, and capa-
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Fig. 6. The model thickness profile is systematically shifted earlier and later via an imposed “time offset”; time-offset model thickness profiles
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red dot.

ble of recording ice thinning, partway through deglaciation,
so data sets from these sites typically have a highest observed
exposure age sometime within the Holocene, when deglacia-
tion is expected to have been well under way. Sites of this
type provide a lower limit on LGM ice thickness change (be-
cause the ice must have been thicker than the highest post-
glacial erratic), but no upper limit. Nunataks that are tall
enough to have remained exposed at the LGM, on the other
hand, typically display a LGM-to-Holocene array of expo-
sure ages up to the LGM ice thickness, with only ages older
than the LGM (commonly much older by hundreds of thou-
sands of years) above this elevation (for example, at QZH
(Reedy Glacier, Quartz Hills; Todd et al., 2010). We use this
diagnostic pattern to identify sites that constrain the LGM
ice thickness. However, this relationship is never completely
unambiguous because of sampling bias; there is no way to
completely disprove the hypothesis that the LGM ice sur-
face elevation was higher but no post-LGM erratics were col-
lected at that elevation. Thus, it is likely that there are some
sites where the diagnostic feature that is identified here — pre-
LGM ages above a LGM-to-Holocene age array — is mislead-
ing.

We also exploit another feature of the exposure-age data
set to identify LGM ice thickness constraints: cosmogenic
carbon-14 exposure ages, which are a minority of the total
exposure-age data set but exist at a number of sites. Where
14C data exist, a boundary between below-steady-state and
at-steady-state '“C concentrations is unambiguously diag-
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nostic of the LGM ice thickness (Balco et al., 2019; Goehring
et al., 2019; Nichols, 2023; see Sect. 3.1 for more informa-
tion).

We note that LGM moraines with unambiguous weather-
ing contrasts could also be used as LGM ice thickness con-
straints to complement the exposure-age data. However, we
have not attempted to quality-control and compile these ob-
servations here, due to difficulties in distinguishing LGM
from pre-LGM moraines based on appearance alone (Balco
et al., 2016; Bentley et al., 2017), and ambiguous interpreta-
tions of weathering contrasts (i.e., as an LGM ice limit or a
subglacial thermal boundaries below the ice surface; Sugden
et al., 2005).

4.3.1 Identifying maximum ice elevation from a
transect of exposure ages at a site

We construct a dataset of LGM maximum ice thickness con-
straints using two cosmogenic-nuclide-based indicators that
can be recognized by simple data-processing algorithms:
(1) steady-state '*C measurements that preclude LGM ice
cover above a specific elevation; and (2) transitions between
lower-elevation measurements of post-LGM exposure ages
and higher-elevation measurements of extremely old ages
(i.e., samples that significantly predate the LGM). These el-
evation constraints are then translated into a maximum ice
thickness limit (based on the modern ice surface elevation)
to compare with model output. For the present data set, we
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Figure 8. Site float misfits at KRING (David Glacier, Mt. Kring)
for various model ensemble members (from top to bottom: 7-0.3—
35, 7-2-35, 5-5-35, 5-5-10, 5-2-10). Below mmax = 50, lower
(better) site float misfits indicate a physically realistic improvement
in model representation. Above this misfit cap, a lower misfit does
not reflect meaningful improvement in model representation of the
data. Original exposure-age data from Stutz et al. (2021).

Figure 9. Spatial weights at each exposure age site used for scoring
(i.e., with more than 3 samples that span more than 100 m of eleva-
tion change). Sites are inversely weighted based on the number of
nearby sites.
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identify 3 sites where steady-state '*C concentrations pro-
vide a maximum LGM ice thickness constraint, and 29 sites
where measurements reveal a transition between post-LGM
and pre-LGM ages, resulting in an LGM thickness constraint
dataset of 32 sites. (Data were extracted from ICE-D and an-
alyzed on 14 March 2024, see Code and Data Availability
statement)

To obtain a maximum thickness constraint from '“C data,
we identify sites that have at least one sample with a “C
concentration at or above the steady-state value that was col-
lected at a higher elevation than at least one sample with a
concentration below the steady-state value. We therefore as-
sume that measurements at this site span across the maxi-
mum LGM ice elevation. '4C saturation marks samples that
remained uncovered by ice throughout the last glacial cycle;
we therefore interpret the minimum elevation of saturated
14C samples to be a maximum elevation limit of the ice sheet
at that site.

When no steady-state '“C concentrations are observed at
a site, we identify LGM ice thickness constraints by rec-
ognizing the characteristic pattern of a cluster of very old
(pre-LGM) ages at higher elevations, and a record of post-
LGM ice thinning at lower elevations (an example is shown
in Fig. 10). We first require that the site includes more than
one pre-LGM age sample that is located higher than all of
the post-LGM ages. We then calculate the average youngest
age-elevation boundary for all samples (following the same
Monte Carlo procedure as in Sect. 3.4) to identify the ele-
vation at which this youngest age-elevation boundary inter-
sects the LGM (conservatively defined here as 30ka). We in-
terpret this intersection elevation as a minimum estimate of
the LGM limit (rather than the highest post-LGM-age sam-
ple, since it is unlikely that the highest young erratic is the
true LGM limit). Finally, we identify the next-highest sample
above this intersection elevation where old (pre-LGM) ages
are measured, as a constraint on the maximum thickness.

Both of these methods are more likely to underestimate
than overestimate maximum ice thicknesses, because it is
theoretically possible that the local LGM ice sheet could have
thickened past the identified elevation limit, but neither re-
moved old erratics nor deposited new erratics. Also, short-
duration ice thickening events would, presumably, be less
likely to deposit erratics. Thus, this methodology is pred-
icated on the assumption that if a post-LGM erratic was
present, it was sampled, which of course is not likely to
always be true. However, sites with numerous samples are
more likely to capture any young erratics that exist, so we
therefore assign each site a weight (Sigm, calculated as the
number of samples at the site and then normalized across all
sites in the dataset to range from O to 1). This assigns a site
a higher confidence where there are more samples and thus
a greater likelihood that all young erratics at the site were
sampled.

Steady-state '“C concentrations provide clearer and more
robust evidence for LGM ice-free conditions. Although ice
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Figure 10. (a) Identifying an LGM maximum ice-thickness-above-present constraint (395 m; cyan line) from a gap between pre- and post-
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(ice thickness change since the Last Glacial Maximum; shown here from model member 5-0.3—7). Maximum ice thickness constraints are
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confidence weighting, described below, from 0—1. Grey contour denotes the modern grounding line.

thickening events of very short duration (hundreds of years)
could theoretically have occurred and displaced the '#C con-
centration from steady state only at the level of measurement
error, the 14C data provide more reliable constraints on LGM
ice thickness compared to other nuclide data (from which we
infer LGM exposure simply based on an absence of young
ages). Thus, maximum thickness constraints based on l4c
saturation are given a weighting factor Sjg, of 10, an order
of magnitude greater confidence compared to the non-'4C
constraints.

4.3.2 Quantifying model ice thickness exceedances

At each constraint site, for a given model simulation (both
continental and nested domains), we identify the difference
between the maximum ice-thickness change over the simu-
lation time, max (Hmodel), and the identified maximum ice
thickness limit above present from exposure age measure-
ments, Higy. Thus, the “max thickness exceedance” at a site,
Mite, exceed 1S computed as:

Misite, exceed = Max (07 [max (Hmodel) — ngm]) (6)
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If the model ice thickness never exceeds the maximum ice
thickness limit, the site max thickness exceedance is zero.
The max thickness exceedance model score is calculated as
the mean of the site exceedances multiplied by the site weight
Sigm. Both Hjem and Sigm are defined differently across the
14C and non-'*C thickness constraints.

I
Mexceed = ;Zi=lmsite,exceed,i*slgm (7)
14
H — Holdest samp C 8)
lgm , , 140
Holdest samp above LGM intersection  NON—
¢ 10 l4cq ©
em =1 0—-1 non—'4C

We avoid conflating the model float score with the model
exceedance score into one parseable metric (i.e., a “best”
model score) for a number of reasons: (1) this masks the
complexity of different characteristics of deglaciation that
models can replicate (e.g., timing versus amplitude versus
rate of thinning), and requires us to impose a static and ar-
bitrary weighting on the importance of thinning amplitude
relative to other aspects of deglaciation; (2) model thinning
amplitude is more susceptible than other metrics to grid reso-
Iution (for example, a grid cell covering more high-elevation
mountain-top areas should thin less than a smaller grid cell
that excludes mountain peaks surrounding a glacier, for the
same regional surface deflation history); and (3) the interpre-
tation of a maximum LGM ice surface elevation from cos-
mogenic nuclide datasets requires even more uncertain as-
sumptions than reconstructing the pattern of ice surface low-
ering from a transect of exposure ages (in other words, the
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ice thickness exceedance misfits are underpinned by differ-
ent, more uncertain, assumptions, compared to float misfits).

5 Results

In this section we investigate the impact of our methodolog-
ical choices, specifically, the use of uncurated datasets and
the unprecedented high-resolution nested model domains. By
implementing the scoring techniques described above for a
small ensemble of deglacial ice sheet model simulations, we
show that our use of an uncurated data set does not create
systematic biases in relation to existing, highly curated, con-
straint data sets. Therefore, we detect no penalty in taking
advantage of an uncurated approach.

We compare model scores between continental simula-
tions and the downscaled high-resolution nested simulations:
high-resolution models improve model-data fit, better cap-
turing the thinning patterns across topographically complex
regions compared to continental simulations.

5.1 Comparison with a curated dataset

Our model-data evaluation approach is designed to incorpo-
rate all available geologic data, with two main aims: to easily
assimilate new datasets as they are collected; and to avoid po-
tential interpretation bias. While the interpretation of cosmo-
genic nuclide measurements can potentially introduce bias,
many studies rely on expert assessment to understand in-
dividual samples and their geologic context, and removing
manual curation will also entail the loss of this expert judg-
ment. It is likely, therefore, this uncurated approach entrains
a number of spurious or erroneous data that might have been
removed by manual curation but not by automated process-
ing, or misses elements of a complex site. For example, the
exposure-age record at DIAMOND (Darwin and Hatherton
Glaciers, Diamond Hill) is complex, with multiple nuclides
and sample types, and our automated methodology generates
a greatly simplified thinning history (Fig. 16a) compared to
the in-depth analysis by Hillebrand et al. (2021). Thus, we
endeavor to assess whether there is any significant large-scale
impact of curation on model scoring and evaluation.

To assess the impact of data curation, we compare model
float scores using our uncurated and inclusive ICE-D collec-
tion compared to a curated dataset of geologic constraints
(Lecavalier et al., 2023). We apply the same preprocess-
ing steps to both our ICE-D dataset and the Levacalier
et al. (2023) dataset (i.e., identify sites with > 3 samples
spanning > 100 m of elevation change; see Sect. 3.4), and
then calculate model float scores for each continental (40-
km-resolution) model simulation in our ensemble (Fig. 11).
Thus, the only difference in model scores shown in Fig. 11 is
therefore the strategy in selecting sites for model/data com-
parison: our automated preprocessing approach results in 44
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Figure 11. Model float scores for each simulation using either the
Lecavalier et al. (2023) curated dataset (y-axis) or the ICE-D all-
inclusive dataset (x-axis; this study). Blue diamonds indicate model
scores calculated using the Lecavalier et al. dataset with both Tier 1
and Tier 2 constraints, following their methodology (30 sites). We
also show the impact of scoring models with all three tiers (38 sites).

sites, whereas the curated Lecavalier et al. (2023) Tier 1 and
Tier 2 dataset comprises only 30 of these sites.

While the curated-dataset model scores are overall lower,
the overall “ranking” of model simulations remains similar.
In other words, both datasets implicate the same best- and
worst-scoring simulations. We thus conclude that, although it
is not possible to determine whether the curated or uncurated
dataset is a priori “better” for model-data comparison, the
use of automated data processing rather than manual curation
does not appear to introduce a new systematic bias or lead to
fundamentally different results. This result is promising for
future implementation of a flexible preprocessing approach
to assimilate new data as it is collected.

5.2 Improvements with high-resolution nested model
domains

Continental-scale modeling on millennial timescales requires
a relatively coarse model resolution due to computational
limitations; at these grid resolutions (20—40km), nunataks
and even entire glaciers that host exposure age measurements
are not resolved (Fig. 1), and thus are not well represented by
the thinning patterns in our continental-scale model simula-
tions. We performed nested modelling at 2 km grid resolution
over smaller domains to investigate the potential improve-
ment in model representation of local deglacial thinning pat-
terns.

We find that the higher-resolution domains better repre-
sent local deglacial thinning patterns. This finding is sup-
ported by two key observations: (a) the 2 km nested domains
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are less wrong compared to continental simulations (the 2 km
domains improve both model exceedance scores and model
float scores for most parameter combinations, Fig. 12); and
(b) they are wrong more consistently (have a more consis-
tent time bias, i.e., Fig. 13b compared to Fig. 13a). In other
words, applying the best-time-offset shift improves more site
misfits across the board.

First, using nested 2 km domains improves model scores
(both model float score and model exceedance score) com-
pared to the same simulation at a continental scale reso-
lution (Fig. 12). The overall timing of regional thinning is
consistent across model resolution, because the 2 km nested
domains are simply downscaling the continental-resolution
simulation; thus, the improvement in model performance
mainly derives from the improved spatial targeting of glacier
thinning. In other words, the higher-resolution domains are
revealing differential thinning patterns across glacier troughs
and mountains not resolved in the continental scale simula-
tions.

Second, site-by-site model-data discrepancies with the
2km domains are more consistent compared to the conti-
nental simulation, regardless of parameter value. We demon-
strate this observation using the best-fit time-offset metric.
This metric quantifies how much of an imposed time lag or
lead minimizes model-data misfit at any given site. The vari-
ation in best-time-offset values across all sites for a given
model simulation (i.e., how consistently the model timing is
wrong compared to the data) can be represented by the distri-
bution (histogram) of best-time-offsets for all sites (Fig. 13a,
b). A numerical simulation where the modeled timing of thin-
ning has to be shifted by a different amount at each site to
minimize model/data mismatch within a catchment is a poor
representation of the geologic record; this would produce
a histogram with a wide ranging distribution of best-time-
offsets, reflecting an inconsistent best-time-offset value that
varies between sites. A simulation where model/data mis-
match at each site can be minimized by shifting the mod-
eled timing of thinning by the same value everywhere within
a catchment is a good representation of the geologic record.
This suggests that the model is doing a good job at captur-
ing the relative timing of thinning across sites, but is sys-
tematically deglaciating too early or too late, likely due to
incorrect climatological forcings or parameterizations. This
scenario would produce a histogram with a narrow distribu-
tion, indicating that the same best-time-offset value improves
misfits for most sites in a region. We therefore interpret a
tightly distributed histogram of best-time-offset values to in-
dicate a more robust model-data match, because it suggests
that model-data misfits are reflecting systematic differences
in model parameterizations rather than an incomplete repre-
sentation of ice dynamics across exposure age sites.

We find that the best-time-offset histograms from the 2 km
nested model simulations tend to be more narrowly dis-
tributed, as indicated by smaller standard deviations of the
best-time-offset distributions (an example of one model en-

The Cryosphere, 20, 931-961, 2026

semble member, Fig. 13a versus b). The 2 km nested mod-
els also produce significantly less “best-time-offset outliers”
— sites where the best-time-offset value is an end-member
value (£ 15 kyr) which indicates that model-data fit at a site
is so poor that a best-time-offset assessment is not mean-
ingful (outlined in red, in Fig. 13a, b). Figure 13 illustrates
the improved ability of these 2km high-resolution nested
simulations to represent deglacial behavior; for all model
parameter combinations, the 2 km nested domains produce
less best-time-offset “outlier” sites (Fig. 13c), and tighter
histograms (more consistent best-time-offset values across
sites; Fig. 13d), while maintaining about the same mean best-
time-offset compared to the 40km continental simulation
(Fig. 13e). The consistency of mean best-time-offsets across
model resolutions simply provides a sanity check that the re-
gional modeled timing of deglaciation is preserved (which
we would expect from our downscaling approach, since the
2 km simulations are directly nested within the 40 km conti-
nental simulations).

These best-time-offset outliers generally occur at the most
interior sites. At these locations, the continental scale model
isn’t capturing upstream dynamic thinning because (a) if the
model does not resolve the glacier system, it cannot repre-
sent the resulting dynamic drawdown at that location; and
(b) the spatial scale of dynamic drawdown is often subgrid at
the 40 km resolution (i.e., a coarse model grid cell averages
out the surrounding area and thus produces either too much
or too little thinning). At 2 km resolution, the improvements
with these two issues result in far fewer best-time-offset out-
liers.

This analysis of best-time-offset distributions indicates
that higher-resolution models provide better context for cap-
turing the heterogeneity in exposure age geologic records.
These nested models take the same overall timing of
deglaciation across a region and downscale this thinning be-
havior across discrete glacier troughs and mountains to bet-
ter resolve the differential thinning patterns that are captured
by the existing geologic record. This improvement in repre-
senting site-by-site heterogeneity, as well as the overall lower
(better) site float misfits and site exceedance misfits, suggest
that our 2 km nested model domains provide significant im-
provements in representing ice dynamics.

6 Discussion

After investigating the application and effectiveness of our
new methodology in Sect. 5, here we proceed with interpreta-
tions of our model-data evaluation results across the deglacial
model ensemble. Based on the demonstrated improvements
with higher resolution (Sect. 5.2), we use the 2km nested
domains for model scoring. We explore model/data fit by
synthesizing and interpreting our three distinct misfit met-
rics: the float scoring approach, the ice thickness exceedance
approach, and the best-time-offset approach (summarized in
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iamond on the right-hand-side plots (c)—(e).
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Table 1). As presented in Sect. 4, float scoring evaluates
the overall shape of the modeled versus measured thinning
curves at a site; this shape is determined by a combination
of thinning timing, rate, as well as amplitude. Although the
model float score reflects poorly on model simulations where
model ice sheets do not grow sufficiently thick, it does not ex-
plicitly penalize sites where model thinning amplitudes are
larger than the amplitude of thinning recorded by terrestrial
data. Thus, the ice thickness exceedance score uses a sep-
arate dataset of deglacial ice thickness constraints to evalu-
ate the “over-thickening” of each model simulation. Finally,
the best-time-offset metric indicates the amount by which a
model thinning curve at each site must be horizontally shifted
in order to minimize the site float misfit.

Section 6.1 describes a tradeoff between the model float
score and model exceedance score: the model simulations
that best match the overall shape of the thinning curve at
a site (i.e., produce the lowest site float misfit) are not the
simulations that best match the amplitude of ice sheet de-
flation across the last deglaciation (i.e., produce the lowest
exceedance score). Section 6.2 leverages the best-time-offset
metric to contextualize this timing vs. thickness tradeoff: we
find that models with smaller thinning amplitudes (i.e., low
exceedance scores) often deglaciate too early, and those with
excess ice thickness (i.e., high exceedance scores) persist
longer. We also use the best-time-offset approach (i.e., cap-
turing the lingering misfits after applying the best-time-offset
value to each site’s float misfit approach; Table 1) to elimi-
nate the effect of model-data timing mismatches and evaluate
just the modeled rate and pattern of deglaciation. This allows
us to investigate whether the timing vs. thickness tradeoff is
attributable to a timing mismatch (an issue that could be ad-
dressed by improving the climatologies that are used to force
the model through time). We interpret the persistence of a
residual tradeoff, even after removing timing mismatches, to
indicate the presence of lingering challenges associated with
modeling the complex patterns of deglaciation as recorded
by exposure age data (such as adequate grid resolution).

6.1 No unique “‘best fit” simulation: tradeoffs between
“how fast” and “how thick”

When model simulations are compared to the pattern of thin-
ning revealed by exposure age thinning data (model float
score) and the maximum amount of ice thickening during the
last glacial cycle recorded by geologic constraints (model ex-
ceedance score), a notable gap appears at the bottom left of
the plot (e.g., Fig. 12). In other words, no individual model
simulation produces both the lowest float score and the low-
est exceedance score. While varying additional parameters
may result in slightly improved scores, the existing param-
eter variation here has already produced a wide range of
model deglacial behaviors and aligns with existing litera-
ture (for example, the range of LGM-to-present ice thickness
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change simulated in this small ensemble spans the same gen-
eral range as Albrecht et al., 2020a, in their Fig. 9).

When our higher-resolution nested model domains are im-
plemented, this tradeoff between ice thickness buildup and
deglacial thinning rate/timing is diminished yet still persists
(Fig. 12). The high-resolution domains result in greater im-
provements to model float scores compared to model ex-
ceedance scores, indicating that the model exceedance scores
have lesser sensitivity to model resolution. In other words,
nesting improves the ability of the model to match the gen-
eral shape of exposure-age thinning deglacial curves more
than it improves the model ability to represent the amplitude
of thinning at our LGM max-thickness constraint sites. We
interpret this observation as impetus for future work to im-
prove our understanding of Antarctic LGM thickness con-
straints, either through adding spatial coverage for exposure
age datasets, or including other data types (e.g., geomorphic
mapping).

Models with the best (lowest) float scores tend to pro-
duce a greater amplitude of ice thickness change than indi-
cated by the geologic record (e.g., OCFACMULT =5 and
CSHELF =7, top left in Fig. 12). Visual inspection of
model results reveals that these large amplitudes of model
ice thickness change often improve model-data fit by pro-
ducing delayed and more rapid deglaciation (compared to
models with smaller-amplitude ice thickness change), but
these simulations tend to “over-thicken” relative to the max-
imum ice thickness constraints (i.e., have higher exceedance
scores). This modeled ice sheet behavior can be attributed
to the impact of stiffer sliding parameter on the continental
shelf (CSHELF = 7), supporting larger LGM ice thicknesses,
along with heightened sensitivity to ocean melt (OCFAC-
MULT =5), driving rapid ocean-driven grounding-line re-
treat. We note that using a different basal friction parameteri-
zation with plastic bed rheology (compared to our PSU-ISM
power-law treatment) may also produce similar deglacial be-
havior as lowering the CSHELF value (i.e., smaller LGM ice
thicknesses and less abrupt deglacial thinning rates).

Conversely, models with low exceedance scores (e.g., OC-
FACMULT = 0.3 and CSHELF =5, bottom right in Fig. 12)
have worse float scores; modeled ice thicknesses generally
fall short of the thinning amplitudes recorded by the data
(and thus the highest-elevation samples are assigned a uni-
form time gap, specified here as 10 kyr, for calculating site
misfit). The third varied parameter TLAPSEPRECIP influ-
ences upstream ice thicknesses but had an inconsistent im-
pact on model-data fit. While constraining paleo accumula-
tion patterns is key for robustly reconstructing deglacial ice
sheet dynamics, the TLAPSEPRECIP parameter only scales
the precipitation field input to the ice sheet model relative to
temperature; future work will explore whether alternate time-
evolving precipitation histories can generate a more consis-
tent impact on model-data fit.

Given the large differences between regions that might be
more or less well-represented in a numerical model across
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correspond to parameter value, as in Fig. 12.

spatial scales — i.e., bathymetry, ocean circulation, and catch-
ment size — we would expect to see different styles of model-
data misfit in different sectors. Thus, we further investi-
gate this tradeoff between model float scores and model ex-
ceedance scores by partitioning our analysis into different
sectors of the Antarctic ice sheet (Fig. 14; see Fig. la for
region boundaries).

This regional analysis reveals that the timing vs. thickness
tradeoff (i.e., tradeoff between model float scores and model
exceedance scores) is prominent in East Antarctica (i.e., the
Transantarctic Mountain region, as well as the East Antarctic
margin though this large region has only a limited number of
sites) rather than West Antarctica. In the Transantarctic re-
gion, we have acquired the most exposure age data, but it is a
highly topographically variable area where the complexity in
ice thinning patterns may be subgrid to even the 2 km nested
model domains. Systematic mapping of LGM geomorphic
limits, or refining and adding exposure age transects across
LGM ice thickness extents, may improve our understanding
of model performance in this complex region.

Partitioning our analysis by sector, as in Fig. 14, can also
highlight major outliers. These outliers are generally asso-
ciated with large-scale model mismatches to the modern ice
sheet configuration. For example, the simulation in Fig. 14b
that produces an order-of-magnitude higher model float score
than the rest of the ensemble in Weddell Sea (7-0.3-35)
never deglaciates to an approximately modern extent, re-
maining expanded out halfway across the Weddell Sea conti-
nental shelf at the modern model time. Thus, although we do
not explicitly score model results with respect to the modern
ice sheet configuration (see description of our paleo focus
in Introduction), model members that produce patently in-
correct modern configurations still score poorly against the
paleo-data. This is likely due to the many “paleo” data sam-
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ples with ages of only a few thousand years, which nudge
model scores towards realistic present-day configurations.
This observation provides reassurance that our scoring ap-
proach is able to identify the model runs that best match
the deglacial thinning history without sacrificing a reason-
able modern configuration.

6.2 Aligning deglacial timing between models and data

The timing of model deglaciation is closely tied to the spatial
and temporal evolution of ocean and air temperatures that are
input into the model, which, unfortunately, remain highly un-
constrained. In this section, we therefore investigate whether
the timing vs. thickness tradeoff described above could be at-
tributed to potential systematic errors in the model input cli-
matology. For example, one region may be well-represented
by the input climatology if, say, ocean warming in the model
climatology co-occurs with the timing of exposure age thin-
ning; whereas another region may require a systematic mod-
el/data time offset to best explain thinning patterns.

To address this issue, we leverage the best-time-offset met-
ric. This approach gives the model as many degrees of free-
dom as possible — allowing the model thinning curve to float
in space and time — to see if we can reasonably simulate
the general characteristics of deglaciation (rate and pattern
of thinning) as recorded by the data. In other words, if we
account for some possible model resolution error (e.g., al-
low the model thinning curve to float vertically), and fur-
ther “correct” for some hypothetical systematic error in the
climatology forcings (allowing the model thinning curve to
float horizontally), do any of our models consistently repli-
cate the data-reconstructed shape of ice sheet thinning across
all sites?

We can use this analysis to contribute two added layers of
information about model/data timing of deglacial thinning. In
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plotted in blue.

Fig. 15, we contextualize the patterns revealed by the model
float score/model exceedance score plots using information
from the best-time-offset metric. We take the regional model
float scores from Fig. 14, and additionally plot the regional
model best-time-offset scores for each model ensemble (i.e.,
the minimum possible score — the best score — achieved
by vertically and horizontally shifting each model thinning
curve). These model best-time-offset scores for each simula-
tion are colored according to the identified best-time-offset
value (averaged across the sites in that region) that produced
this model best-time-offset score. A best-time-offset close to
zero indicates that the model simulation is well-matched to
the observed timing of thinning (regardless of the simulation
fit to thinning amplitude or rate).

First, we observe an overall trend, mostly in the
Transantarctic and EAIS regions, where the model simula-
tions that tend to deglaciate too early (reds in Fig. 15) also
have better (lower) exceedance scores. Modeled ice sheets
that build up ice thickness in excess of geologic constraints,
with worse (higher) exceedance scores, tend to persist for
longer into the deglacial period. Thinning curves at these
sites must be offset by a few kyr to maximize model fit to
the data (positive best-time-offset values; greens in Fig. 15).
Thus, combining these three metrics for model/data fit re-
veals that models with smaller thinning amplitudes often
deglaciate too early compared to the exposure age records,
while those with excess ice thickness persist longer but bet-
ter match the measured thinning patterns (lower model float
scores).

This behavior can also be visualized in Fig. 16, which
shows three simulated thinning curves for select Transantarc-
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tic sites; model member 7-2-35 overthickens, simulating a
delayed timing of thinning compared to the 5-0.3-35 model
which shows a smaller amplitude change and an earlier onset
of thinning.

However, we find that this timing difference does not fully
explain the observed tradeoff between model float scores and
model exceedance scores. When we eliminate the effect of
model/data timing mismatches (by considering just the min-
imized model float scores), the issue persists: no individual
model simulation produces the model best-time-offset score
and the best model exceedance score for the entire conti-
nent (Fig. 15). Therefore, this tradeoff stems from model-
data mismatches with respect to just the slope and shape of
the thinning curve. In some Antarctic regions (e.g., WAIS,
and Weddell, although there are limited data in these areas),
model simulations can approach a perfect model best-time-
offset score without over-thickening; but in the Transantarc-
tic Mountains, no one model simulation is able to produce
both a low float score and a low exceedance score (even after
eliminating any impact of a timing mismatch). This reflects
an inherent gap in realistic model representation of ice thin-
ning at the spatial scales recorded by exposure age data.

In the TAM region, models that accurately replicate the
steep thinning patterns that occur at some sites, corre-
spondingly produce too-steep thinning curves at sites where
data indicate slower or lower-amplitude thinning (for ex-
ample, model simulation 7-2-35 matches the steepness of
thinning at DIAMOND, LONEWOLF1, KRING sites in
Fig. 16a, but correspondingly produces steep thinning at sites
where slower thinning is recorded, e.g., DISCO, RIGBY,
HOPE sites in Fig. 16b). This model member that replicates
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and Spector et al. (2017) (RIGBY, HOPE). Sites (a)—(c) show relatively rapid thinning patterns, while sites (d)—(f) record slower thinning.
(g) Maximum ice thickness exceedances are plotted spatially for each model simulation (the color indicates the model over-thickening, in
elevation (m), compared to each maximum-ice-thickness geologic constraint. As in Fig. 10b, diamonds denote 14¢C constraints, and the size
of the scatter plot indicates confidence weight. The dark grey contour denotes the modern grounding line, and greyscale bed elevation shown
as the final timestep of each model simulation. Site locations for thinning profiles in (a)—(f) are shown in the inset panel of the Transantarctic
Mountains (alongside locations and values of maximum ice thickness exceedances for model simulation 5-0.3-35). These three model

simulations are labeled in Fig. 14c.

the steep thinning patterns also exceeds almost all of the
compiled geologic max-ice-thickness constraints (7-2-35 in
Fig. 16d). Conversely, models can better match the flatter
thinning curves at some sites but not produce sufficient am-
plitude of change recorded at other sites (for example, model
simulation 5-0.3-35 in Fig. 16a and b). This simulation pro-
vides a much better match to the total amplitude of deglacial
thinning (5-0.3-35 in Fig. 16d) and thus a much lower (bet-
ter) exceedance score.

The lingering disconnect between models and data in the
TAM region suggests that, despite the significant improve-
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ments in model representation of complex ice dynamics us-
ing our 2-km-resolution domains (Sect. 5.2), some impact-
ful glacial processes may be sub-grid even at this resolution.
This disconnect may also reflect other sources of uncertainty
such as poorly represented model physics or model spatial in-
put fields (such as basal friction or climatic forcings), or any
large-scale inaccuracy in the continental-scale ice dynam-
ics that provide boundary conditions for the high-resolution
nested domains. Because no single model simulation can re-
produce the thinning patterns across all sites, even given key
parameter variation and two degrees of freedom (vertically
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and temporally; Fig. 15), this remaining model-data misfit re-
flects an inherent gap in realistic model representation of ice
thinning at the spatial scales recorded in exposure age data.
Future work on improving LGM max-thickness constraints
may resolve this lingering tradeoff.

7 Conclusions

We present a model-data evaluation framework for bench-
marking numerical model simulations with exposure age
measurements of ice sheet deflation. We draw on publicly
available geologic databases and develop automated method-
ologies, rather than manual curation, to establish compre-
hensive geologic constraints for model evaluation. We find
that a programmatic approach to data identification and anal-
ysis does not create a systematic bias in model evaluation
compared to existing manually curated datasets, which is im-
portant because the use of uncurated datasets improves data
utilization and facilitates rapid and efficient assimilation of
newly collected geologic data.

Implementing high-resolution model domains, nested
within continental simulations, provides improved represen-
tation of differential thinning patterns across glacier troughs
and mountains that are not resolved in continental scale sim-
ulations. Modeled ice sheet thinning histories from these 2-
km-resolution nested model domains reveal a marked im-
provement in model fit to the observed terrestrial exposure
age records compared to the continent-wide simulations.
This innovation closes the spatial gap between continental
scale model output and mountain-side geologic information,
which has challenged previous efforts at model-data compar-
ison.

We further develop model-data alignment techniques to
isolate and extract the same specific quantities that are con-
sistent across both numerical simulations and exposure age
reconstructions. This improved alignment allows us to build
a suite of model-data evaluation metrics built on direct com-
parisons of thinning behavior.

By exploring a range of model diagnostics derived from
the model-data comparison exercise, instead of considering
only a single misfit statistic, we demonstrate that no sin-
gle metric for model-data evaluation satisfactorily produces
a best-fit result. Different metrics capture different aspects
of ice sheet deflation; an attempt to define a single best-fit
model simulation based on a combined misfit statistic loses
important diagnostic information. A combination of metrics
— assessing the timing, rate, and amplitude of ice sheet thin-
ning — sheds light on different aspects of model ability to
reconstruct deglacial ice sheet behavior.
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Appendix A: Code and data availability

Al Access and interface with model-data scoring
methodology via a GHub tool

A model-data evaluation toolkit is publicly available via the
GHub server (https://theghub.org/tools/modeldatathin; Hal-
berstadt et al., 2025). This tool provides hands-on, interac-
tive access for evaluating model performance at specific sites
around Antarctica, especially where exposure-age data have
been collected. The tool extracts modeled ice thinning his-
tories at any given site around Antarctica, spanning the last
deglaciation. If the specified site contains cosmogenic nu-
clide exposure-age measurements of ice surface deflation,
the tool plots and calculates a site misfit for each selected
model based on the methodologies described in this work.
Users specify the site location where the model ice sheet his-
tory is extracted (ICE-D site, or a lat/lon value anywhere over
Antarctica), and select which model simulation(s) to plot and
score, as well as model grid resolution (nested or continental-
scale).

Below we present an example of using this tool to inves-
tigate which model simulation best matches a site of inter-
est (say, RIGBY). For each model simulation selected by the
user, model-data misfits are summed across each sample at
the site, and the total model score is tabulated. Model thick-
ness profiles, extracted at the specified site location, are plot-
ted for all selected model simulations (colors randomly as-
signed). The model output file at the specified resolution (the
continental domain, or the 2 km nested domain over the spec-
ified site of interest) can be directly downloaded by clicking
“Download netcdfs” shown in the image below.

When multiple model simulations are assessed, the user
can easily identify which model best fits the thinning pattern
recorded at the site of interest.

Model simulations are, by default, evaluated using the
“float scoring metric”, where the model ice thickness curve
is vertically offset (“floats”) to minimize model-data misfit.
This approach is motivated by issues with aligning model
thickness change to a modern baseline, due to model reso-
lution issues (Sect. 4.1.2). A more traditionally used “height
scoring metric” (where model ice thickness changes are reg-
istered to the modern model ice surface, and the model thin-
ning curve is not permitted to “float” vertically) can be se-
lected in the dropdown menu under “Misfit calculations”.
Users can also optionally specify the “uniform time gap”
value (Sect. 4.2.3; set at 10kyr as a default) which allows
users to adjust the impact of outlier samples where the mea-
sured thinning curve is higher-amplitude than the modeled
thinning curve.

Note that when an ICE-D site is selected, all samples are
queried from the database. However, cosmogenic nuclide
datasets are often plagued by an old bias. Models should
be scored using only the youngest age-elevation samples
(Sect. 3.4), which theoretically reflect the progressive expo-
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Figure A2. As in Fig. A1, but with multiple model simulations of thinning at the selected site.

sure of the site as the ice sheet deglaciated. Selecting the
option “Calculate and use only the youngest age-elevation-
bounding samples” will apply an automated script to identify
these youngest samples (though this process can take up to
about 15 min to compute).

A2 Archived geologic constraint datasets

Although the data selection and analysis procedure is imple-
mented as a code that can be applied to the current state of the
ICE-D database (as in the publicly accessible GHub tool, see
section above), we archive several intermediate steps from
the data extraction we performed on 24 April 2024 that was
used for the analyses in the paper (Supplement).

https://doi.org/10.5194/tc-20-931-2026

During our data preprocessing, as described in Sect. 3.3,
we lumped together sites that located within the same model
grid cell (combining sample elevation above the modern ice
surface, rather than absolute elevation) in order to compare
the model thinning history at a grid cell against all of the
appropriate corresponding geologic information. This pro-
duces a geochronological constraint dataset unique to each
model grid resolution. We therefore archive two constraint
datasets here (in MATLAB “structure” file format), one
for each model resolution (2km or 40km), tabulating the
youngest age/elevation samples at each site that were used
to score model simulations with the specified grid resolution.
For each sample, the uncertainty is given as the age range
across the Monte Carlo “cloud” at any given elevation (the
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Figure A4. Site misfits are calculated by summing the sample misfits; therefore, using every measured sample at a selected site (left) produces
a worse and less representative model score than selecting and proceeding with model-data comparison using just the youngest-age-elevation-
bounding samples (right). Original data from HOPE are also from Spector et al. (2017).

lo range; Fig. 2d), or the minimum geologic uncertainty,
whichever is larger, as described in the main text.

We also archive the last-glacial-cycle maximum-thickness
constraint dataset (Sect. 4.3), based on data extracted from
ICE-D and analyzed on 14 March 2024.

A3 Accessing model output

Both continental-scale and nested model output files can be
plotted, queried, and downloaded via the publicly available
GHub tool (see above). This allows a user to not only identify
the best-fit model simulation to a site of interest, but also to
directly leverage model output to explore the regional context
that is associated with the thinning at their site of interest.
Model output can also be accessed and downloaded in bulk
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through the Zenodo data record (https://zenodo.org/records/
15284166, Halberstadt et al., 2025).

Data availability. The data used in this paper can be found in Ap-
pendix A3 and in the Supplement below.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-20-931-2026-supplement.
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