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Abstract. We present a dataset of Antarctic annual surface
melt rates (6.25 km resolution, 2011–2021) from 19 GHz
Special Sensor Microwave Imager/Sounder (SSMIS). First,
melt occurrence is detected via thresholds for brightness tem-
perature, diurnal variation, and winter anomaly, calibrated
with Automatic Weather Station (AWS) data. Second, AWS-
driven surface energy balance modeling yields an empiri-
cal relation between annual melt days and water-equivalent
melt volume. SSMIS-derived melt volumes correlate well
with AWS-based melt estimates (R2

= 0.83). Compared to
QuikSCAT and RACMO2.4p1 outputs, SSMIS captures a
similar spatial melt pattern but estimates a total melt volume
approximately 15 % lower than RACMO2.4, on the decadal
average.

1 Introduction

The occurrence of surface melt on the Antarctic Ice Sheet
constitutes a key indicator of cryospheric change, with pro-
found implications for ice-shelf stability, glacier dynamics,
and continental mass balance. Therefore, it is essential to
make observations of surface melt, both to monitor change,
and to collect data for the evaluation and development of
models.

Surface melt occurs from a surplus of energy in the sur-
face energy budget (Van Den Broeke et al., 2004). If the bal-
ance of radiative and turbulent energy fluxes is positive, and
the surface is at the melting point, the excess energy is used
for melting of the surface snow or ice. For snow, the surface
albedo is a dominant driver of the energy budget. Because

snow albedo is high, a small albedo change leads to large
changes in the available surface energy.

In Antarctica, most surface melt percolates into the firn
layer, and refreezes, rather than running off into the ocean
(Van Wessem et al., 2018). Although the direct contribution
of meltwater runoff to the negative Antarctic mass balance
is very small, the indirect effect of surface melt on ice-sheet
mass balance is important. In the Antarctic Peninsula, recent
warming has increased surface melt (Cape et al., 2015). Re-
freezing meltwater has depleted firn air (Holland et al., 2011)
and promoted the formation of meltwater ponds, a precursor
for hydrofracturing (Scambos et al., 2000; Kuipers Munneke
et al., 2014). A link with the sudden collapse of the Larsen A
and B ice shelves is thereby implied (Dunmire et al., 2024).
Future warming will promote more surface melt (Trusel
et al., 2015), firn air depletion (Kuipers Munneke et al., 2014;
Veldhuijsen et al., 2024) and thereby, possible ice-shelf insta-
bility.

Remote sensing is a practical way to monitor surface melt
across the vast Antarctic Ice Sheet. Passive-microwave ra-
diometry exploits the strong contrast in brightness tempera-
ture between wet and dry snow (Zwally and Gloersen, 1977).
It is a powerful technique to observe surface melt year-round,
and at high temporal resolution. The penetration depth of
the microwave signal varies strongly with frequency – only
a few centimetres at 37 GHz (∼ 2 cm), and increasing up
to ∼ 1.8 m at 1.4 GHz – so that each channel samples a
different layer of the snow/firn column (Colliander et al.,
2022). Several studies have introduced binary melt-day de-
tection approaches based on simple thresholds or polariza-
tion and spectral indices to identify liquid water (Zwally and
Fiegles, 1994; Abdalati and Steffen, 1997; Torinesi et al.,
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2003; Picard and Fily, 2006). Importantly, all these passive
microwave techniques measure the presence of liquid wa-
ter, rather than the actual physical process of surface melt
(de Roda Husman et al., 2022). In line with common prac-
tice in the remote sensing community (e.g. Torinesi et al.,
2003, Trusel et al., 2013, Leduc-Leballeur et al., 2020, Ban-
well et al., 2023), we will interpret the presence of liquid
water as snowmelt occurrence, even though liquid water can
be present in the snow without melt occurring at the sub-
surface. From this point onward, we will refer to observations
of liquid-water presence – whether derived from passive-
microwave data or from in situ AWS measurements – col-
lectively as “surface melt days.”

These approaches provide valuable insights into the spa-
tial and temporal distribution of melt days but do not directly
yield water-equivalent melt volumes. A smaller but growing
body of work has tackled the challenge of quantifying melt
volumes from satellite data. Trusel et al. (2013) empirically
calibrated active-microwave QuikSCAT Ku-band backscatter
against AWS energy-balance estimates to produce continent-
wide melt-volume maps at ∼ 4.5 km resolution. Unfortu-
nately, the QuikSCAT mission ended in 2009. After that, op-
tical satellite imagery has been used to estimate surface melt
volumes (Banwell et al., 2021). Other efforts to quantify sur-
face melt volume since then rely on model-based training
data. For example, Zheng et al. (2022) used a neural network
trained on modelled surface melt to estimate daily melt over
Greenland from passive-microwave data at 3.125 km reso-
lution. Banwell et al. (2023) combined passive-microwave
and ASCAT scatterometer melt-day counts with the SNOW-
PACK firn model to derive meltwater volumes on Antarctic
ice shelves, for the period 1980–2021, on a 25 km grid.

In this paper, we present the first method to estimate
Antarctic melt-volume from passive microwave data that
is calibrated solely against melt rate derived from in situ
AWS surface energy balance (SEB) observations, and we use
this method to produce a continent-wide annual surface-melt
rate dataset at 6.25 km resolution for the period 2011–2021.
We employ 19 GHz brightness temperatures from SSMIS on
DMSP-F17, chosen for high sensitivity to small amounts of
liquid water in the snowpack (de Roda Husman et al., 2022)
and continuity with earlier SSM/I instruments which poten-
tially enable long-term monitoring. Melt-day occurrence and
the melt-day-to-volume relationship are both calibrated di-
rectly to melt volumes from seven AWS sites in Antarctica
(Van Tiggelen et al., 2025b; Jakobs et al., 2020). By using
in situ observations for calibrating the satellite signal to melt
volume, we indirectly incorporate critical physical feedbacks
in the interaction between the snowpack and the atmosphere,
such as temperature–albedo interactions (Jakobs et al., 2020),
or refreezing dynamics. This multi-tiered approach – com-
bining high-resolution SSMIS retrievals, AWS-SEB calibra-
tion, and model intercomparison – delivers a reproducible,
quantitative baseline for Antarctic surface melt rate and iden-
tifies pathways for future methodological refinements.

2 Materials

This study relies on two main sources of data: satellite-
derived brightness temperature from the SSMIS sensor and
in-situ observations from AWS. These datasets are used for
melt detection, calibration, and validation. The following
subsections describe their characteristics and processing. We
use the MEaSUREs Antarctic Boundaries Version 2 dataset
(Mouginot, 2017) as the Antarctic mask. We define each
Antarctic hydrological year as running from 1 June through
31 May of the following calendar year. Accordingly, we anal-
yse ten hydrological years spanning 1 June 2011–31 May
2021, corresponding to melt years 2011/12 through 2020/21.
Throughout the manuscript, we therefore refer to the tempo-
ral coverage as 2011–2021, which reflects the actual range of
hydrological years included. This temporal window reflects
the overlap between AWS data availability and stable SS-
MIS observations, which together constrain the coverage of
the calibrated dataset.

2.1 SSMIS brightness temperature

This study uses brightness temperature from SSMIS on the
DMSP-F17 satellite over the hydrological years 2011–2021.
DMSP-F17 was selected for its sun-synchronous, dawn–
dusk orbit stability, which provides two consistent Antarc-
tic overpasses per day at approximately 06:00 LT (hereafter
“M”, morning observation) and 18:00 LT (hereafter “E”,
evening observation) local time (https://www.remss.com/
missions/ssmi/, last access: 1 December 2025). All bright-
ness temperatures were obtained from the National Snow and
Ice Data Center (NSIDC) (https://nsidc.org/data/nsidc-0630/
versions/2, last access: 6 June 2025) and preprocessed in
Google Earth Engine (Gorelick et al., 2017). Our analysis
concentrates on the H polarized 19 GHz channel, offering
a 6.25km× 6.25km enhanced footprint – the finest avail-
able at this frequency (Brodzik et al., 2024). This channel
is widely used for melt detection because 19 GHz is sen-
sitive to small amounts of liquid water while still penetrat-
ing into dry firn, yielding low brightness temperatures under
dry-snow conditions and a marked increase when liquid wa-
ter is present (Zwally and Gloersen, 1977; de Roda Husman
et al., 2022). We also evaluated the 37 and 91 GHz channels
at their enhanced resolutions (3.125 km), but these higher-
frequency channels, characterised by much shallower pene-
tration depths (Colliander et al., 2022) did not provide a con-
sistent improvement in our methodology for melt detection.

2.2 Automatic weather stations observations

AWS observations are the foundation for the method in this
paper. For the melt volume to be calculated, only AWSs that
measure sufficient variables to close the surface energy bal-
ance qualify. This grossly reduces the number of available
AWS locations, since the full radiation budget is only mea-
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sured at a handful of stations in Antarctica. A major provider
of data for this study is the Institute for Marine and Atmo-
spheric Research Utrecht (IMAU) AWS dataset, which is de-
scribed in Van Tiggelen et al. (2025b). Only the IMAU AWSs
with at least one entire hydrological year of data within the
June 2011 – May 2021 window were used for calibration
and evaluation. These comprise AWS11 (Halvfarryggen Ice
Rise), AWS14 (northern Larsen C ice shelf), AWS15 (cen-
tral Larsen C ice shelf), AWS16 (Princess Elisabeth sta-
tion), AWS17 (Scar Inlet as a remnant of Larsen B ice shelf)
and AWS18 (Cabinet Inlet on western Larsen C ice shelf)
(Fig. S1 in the Supplement). All six sites record the standard
meteorological variables and the four components of net sur-
face radiation, with measurements corrected for common er-
rors as detailed in Van Tiggelen et al. (2025b). Melt volumes
are subsequently computed at each station using the SEB
model of Jakobs et al. (2020). In this framework, turbulent
fluxes are calculated using similarity theory, surface tempera-
ture is determined via iterative closure of the SEB, and excess
energy at 0°C is converted into meltwater. Meltwater perco-
lates through the firn using a bucket scheme until refreezing
occurs. Shortwave radiation penetration into the subsurface
layers of the snowpack is neglected. Of the six IMAU AWS
stations meeting our requirements, four (AWS14, AWS15,
AWS17, and AWS18) are situated on or immediately ad-
jacent to Larsen C ice shelf, whereas the remaining two
(AWS11 and AWS16) provide a few years of measurements
in locations with lower melt. We augment the dataset with
a decade (2011–2021) of measurements from the German
Neumayer station. Although Neumayer also exhibits gener-
ally low melt rates, its continuous and long-term record sub-
stantially strengthens the calibration dataset and introduces a
well-sampled coastal East Antarctic climate distinct from the
high-melt conditions of Larsen C. At Neumayer, we use the
surface radiation observations from the Baseline Surface Ra-
diation Network (BSRN) station (Schmithüsen, 2021), me-
teorological observations (Schmithüsen, 2023a), and surface
height observations (Schmithüsen, 2023b).

For additional analysis, we also use observations of near-
surface air temperature scaled to a nominal height of 2 m
above the surface.

Modelling surface melt in an SEB model carries uncertain-
ties because of model settings, model assumptions, and errors
in the input. This uncertainty is estimated using a number of
sensitivity tests. First, the uncertainty from the IMAU AWS
forcing is estimated by separately including or removing one
of four measurement corrections: the window heating of the
pyrgeometer, the shortwave heating of the passively venti-
lated temperature sensor, the correction for relative humidity
for ice and sensor sensitivity at very low temperatures, and
the correction for tilt and bias of the pyranometer, which are
all described by Van Tiggelen et al. (2025b). To constrain
the uncertainty associated with the SEB model, five differ-
ent model settings were individually adjusted: (i) the sen-
sor height fixed to 2 m above the surface instead of varying

in time, (ii) the roughness length for momentum increased
from 0.1 to 1 mm, (iii) the surface longwave emissivity de-
creased from 1 to 0.97, (iv) the snow thermal conductivity pa-
rameterised after Anderson (1976) instead of Calonne et al.
(2019), and (v) allowing the snow height to freely evolve in
the model instead of being prescribed by surface height ob-
servations. These choices result in one reference and nine
perturbed time series of SEB components and surface melt
per IMAU station, where each perturbed timeseries results
from just one omitted measurement correction or one dif-
ferent model parameter at the time. This sensitivity analysis
was only conducted for the AWS where the uncertainty of
the observations and of the SEB model are both expected to
impact the melt volume computations. These are the AWS
that are left unattended for a year or more and located in ar-
eas with substantial melt, namely AWS14, AWS15, AWS17,
and AWS18.

3 Methods

We derive the occurrence of a surface melt day and annual
melt totals over Antarctica in two steps. First, we calibrate
SSMIS brightness temperature against in-situ surface melt
observations at AWS locations to identify robust thresholds
that discriminate surface melt from non-melt days (Sect. 3.2).
Second, we translate SSMIS-derived melt-day counts to a
water-equivalent surface melt volume using an empirical re-
lation derived from the AWS observations (Sect. 3.3).

3.1 Melt homogeneity

To assess whether the 6.25km× 6.25km resolution of an
SSMIS pixel is sufficient to represent melt conditions at
each AWS site, we compared it against the higher-resolution
U Melt binary melt product (de Roda Husman et al., 2024),
available at 500 m spatial resolution. For each station, a
13× 13 grid of U Melt pixels was centered over the AWS
location, and the melt/no-melt state of all surrounding pixels
was compared to that of the central pixel for all days, includ-
ing both melt and non-melt days.

Two metrics were computed: (i) homogeneity rate, defined
as the fraction of surrounding pixels with melt flags match-
ing the central pixel, which exceeded 98 % at all stations; and
(ii) local variability, defined as the standard deviation of bi-
nary melt values within the window, which remained below
0.02.

These results indicate that, around each AWS, the nature
of melt conditions is highly homogeneous at a scale similar
to that of the SSMIS pixel footprint. Therefore, we conclude
that the 6.25km× 6.25km resolution of the SSMIS pixel is
sufficient to represent local melt conditions and is appropri-
ate for calibration purposes.
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3.2 SSMIS Melt Detection: Calibration and Flagging

To translate SSMIS brightness temperatures (Tb) into surface
melt-day detections, we assembled a suite of candidate in-
dicators drawn from established microwave-based methods
and calibrated each against in situ AWS melt observations
(≥ 0.5 mmw.e.d−1). This threshold was applied to avoid la-
belling negligible melt amounts, often within the numerical
noise of SEB-derived melt estimates, as true melt events,
since very small daily values may reflect model uncertainty
rather than physically meaningful surface melt.

All metrics were computed at 19, 37, and 91 GHz, using
both horizontal (H) and vertical (V) polarizations. The indi-
cators were grouped as follows (see Table S1 in the Supple-
ment for a detailed description of all candidate variables):

1. Pure Brightness-Temperature: We tested absolute Tb at
each frequency and polarization, for both morning and
evening observations.

2. Winter-Anomaly: Difference between the Tb and its
winter mean (Zwally and Gloersen, 1977).

3. Diurnal and Day-to-Day Change:

(i) Diurnal amplitude: difference in Tb between
evening and morning overpasses (Ramage and
Isacks, 2002).

(ii) Day-to-day change: difference in Tb between con-
secutive days at the same overpass time, following
approaches similar to those used in short-term Tb
variability melt detection (Wang et al., 2016).

4. Normalized Polarimetric Ratio (NPR): Contrast be-
tween V and H polarizations at the same frequency and
overpass (Mousavi et al., 2021).

5. Normalized Seasonal Anomalies: Indicators that ac-
count for seasonal variability by comparing Tb to its
winter anomaly plus a multiple of the winter or annual
standard deviation (Torinesi et al., 2003).

Each candidate indicator’s day-by-day values were
compared against AWS-derived melt vs. non-melt clas-
sifications. Receiver Operating Characteristic (ROC)
analysis was performed on all candidates (Fig. S2 in the
Supplement), and thresholds were chosen to achieve an
optimal trade-off between true positive rate (TPR) and
false positive rate (FPR). The two best-performing met-
rics were the 19 GHz H polarization evening brightness
temperature, T (E)

b,19H (TPR ≈ 62 %, FPR ≈ 2 %), and the
winter anomaly (TPR ≈ 67 %, FPR ≈ 3 %). All other
candidates yielded TPR below 50 %.

3.2.1 Multivariate Optimization

Since no single indicator achieved both high TPR and true
negative rate (TNR; i.e. 1 – FPR) we selected triplets from

the analyzed metrics and applied logical rules (i) and (all
three thresholds must be exceeded for a melt day to be de-
tected); (ii) or (at least one threshold must be exceeded);
(iii) majority (at least two thresholds must be exceeded) to
their thresholds. In 1000 Monte Carlo trials (randomly sam-
pling 30 % of melt and 30 % of non-melt days), the majority
rule achieved the highest overall accuracy and the resulting
thresholds exhibited near-Gaussian distributions (Fig. S3 in
the Supplement). The optimal threshold combination under
the majority rule is:

{T
(E)

b,19H > 219.2K, Aw > 26.3K, 1Td > 19.7K},

where

Aw = T
(E)

b,19H−µwinter,

is the winter anomaly, with µwinter representing the mean
19 GHz H-polarization brightness temperature over 1 June–
31 August, and

1Td = T
(E)

b,19H− T
(M)

b,19H,

denotes the diurnal amplitude (difference between evening
(E) and morning (M) overpasses).

This triplet yields 95.3 % accuracy (TPR= 77.8%,
TNR= 97.2%), thus balancing false positives and false neg-
atives. Importantly, because negative samples greatly out-
number positive ones in our dataset, a 3% drop in TNR
(i.e. more false positives) produces an absolute error count
roughly equivalent to that resulting from a 22% drop in TPR
(i.e. more false negatives). This analysis is conducted on an
annual basis, and the balanced trade-off between false pos-
itives and false negatives is achieved at this temporal scale;
applying the same thresholds over shorter periods may lead
to a disproportionate increase in one error type. At annual
temporal resolution, a 3 % decrease in TNR produces an ab-
solute error count comparable to that from a 22 % decrease
in TPR, demonstrating a balanced trade-off between the two
error types at this scale.

3.2.2 Melt-Day Flagging and Annual Summation

These three criteria were applied to each set of twice daily
SSMIS overpasses for each pixel. A pixel is flagged as “melt”
on day d if at least two thresholds are met. SMISS-derived
annual melt-day counts are obtained by summing these daily
flags per pixel over an Antarctic year (1 June to 31 May). A
linear regression between AWS-derived and SSMIS-derived
annual melt-day counts yielded a coefficient of determination
of R2

= 0.91 (Fig. 1a).

3.3 Melt estimation

The second major step in the melt volume estimate is to re-
late the annual number of melt days (m) to total annual melt
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Figure 1. Evaluation of all available coincident SSMIS- and AWS-based (a) melt days and (b) melt fluxes across the seven AWS locations.

(M). To that end, we fitted the AWS-derived decadal record
(2011–2021) to an exponential model:

M = a
(
ebm− 1

)
, (1)

where parameters a and b were estimated using a least-
squares approach to minimize the residuals between the
model and the observed melt values (Fig. 2a). The above
functional form follows an empirically demonstrated non-
linear relationship between melt days and meltwater produc-
tion (Banwell et al., 2023; Trusel et al., 2013). This non-
linear behaviour likely reflects melt-albedo feedbacks, and
the longer time required for refreezing of larger melt vol-
umes, such that warmer summers produce disproportionately
more runoff (Banwell et al., 2023). By fitting a and b from
Eq. (1) to AWS stations, which compute melt via a full SEB
model, our approach embeds these physical feedbacks into
the SSMIS-derived, AWS-calibrated framework.

When the exponential model is applied to the satellite-
derived melt-day count, a pixel-level estimate of total an-
nual melt is obtained. A Monte Carlo-based confidence in-
terval for the m–M relationship is derived by propagating
measurement and model uncertainties (detailed in Sect. 2.2,
see Fig. 2a): for each AWS-year combination, tenm–M pairs
corresponding to distinct setups are available, and in each of
1000 Monte Carlo iterations one setup is randomly selected
for each AWS-year, yielding n data points. The exponential
model (1) is then fitted to each sample, producing 1000 re-
alizations of M(m) which are evaluated over m ∈ [0,100]
to characterize the variability of melt estimates. The light
pink band in Fig. 2a represents the 3σ confidence envelope,
the blue line denotes the median-fit relationship, and the red
line corresponds to the fit obtained using the reference setup
alone.

Fig. S4a in the Supplement shows the site-specific ex-
ponential fits at each of the four AWS locations (AWS14,
AWS15, AWS17, AWS18) where the sensitivity analysis
was conducted (see Sect. 2.2); Fig. S4b in the Supplement
presents the combined fit across the selected four AWS sta-
tions, illustrating how the ten SEB-model permutations pro-
duce a modest spread in the resulting m–M curves.

For an independent assessment of them–M relation, it was
also derived for fully independent, model-only, RACMO2.4
melt-day and melt-volume output for 2011–2021, both across
the entire Antarctic domain (Fig. 2b) and separately at four
selected AWS locations (see Fig. S4c in the Supplement). In
both cases, the resulting exponential parameters and curve
shape closely matched those derived from the AWS-SEB
calibration, demonstrating the robustness and spatial gener-
ality of the m–M relationship. This also demonstrates that
the collection of AWS observations used for this study suf-
ficiently captures the variability in surface melt conditions
across the Antarctic Ice Sheet as represented by a physically-
based model. The agreement in functional shape, despite the
melt days underestimation by SSMIS, supports the appli-
cation of the AWS-derived fit to satellite-derived melt-day
counts across the full Antarctic dataset.

4 Results

4.1 SSMIS-AWS comparison

Applying the fit described in Sect. 3.3, we produced esti-
mates of total annual melt across Antarctica (Fig. 3a). We
assessed our results by comparing annual SSMIS-derived
melt days and melt fluxes with coincident AWS-based obser-
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Figure 2. Exponential melt-day to melt-volume relationship. (a) Scatterplot of annual meltwater volume (M , from AWS-SEB) vs. melt days
(m) at six IMAU-AWS stations for 2011–2021, with the best-fit exponential curve shown in red (R2

= 0.91). The median fit from 1000 Monte
Carlo realizations is shown in blue, and the shaded pink band indicates the ±3σ confidence interval. (b) Comparison of the AWS-derived
m–M curve (black) against RACMO2.4 (R2

= 0.91): the red line is the RACMO2.4 fit, while blue dots represent RACMO2.4 pixel-level
data for all of Antarctica over 2011–2021.

vations, yielding a strong linear correlation (R2
= 0.91 and

R2
= 0.83, respectively; Fig. 1b). However, given the lim-

ited number of in situ AWS sites – which were also em-
ployed during calibration – this evaluation is inherently cir-
cular. Dividing the AWS record into independent calibration
and validation subsets was considered not feasible due to the
small sample size and the constrained spatial variability of
the available stations.

4.2 Comparison of SSMIS with QuikSCAT and
RACMO2.4

We compare our ten-year decadal-mean melt-flux estimates
from SSMIS with two independent products:

– QuikSCAT (1999–2009). decadal-mean annual melt flux
derived from Ku-band backscatter at 4.45 km resolution
(Trusel et al., 2013), see Fig. 3b.

– RACMO2.4p1 (hereafter, RACMO2.4) (2011–2021).
decadal-mean annual melt flux simulated at 11 km res-
olution (van Dalum et al., 2025), see Fig. 3c.

Across the Antarctic Peninsula, all three datasets show
consistently high decadal-mean surface melt rates. On
Larsen C Ice Shelf, SSMIS, QuikSCAT, and RACMO2.4
all exceed 350 mm w.e.yr−1. SSMIS and QuikSCAT place
their highest decadal-mean melt values along the western
inlets (e.g. Mill Inlet), whereas RACMO2.4 shifts its maxi-
mum eastward toward Scar Inlet, a spatial offset also noted in
earlier satellite-based analyses (Trusel et al., 2013). Farther

south, on Wilkins and George VI ice shelves, decadal-mean
melt rates exceed 200–250 mmw.e.yr−1 in all datasets.

Along coastal West Antarctica, including the Amund-
sen and Ross Sea sectors, decadal-mean melt rates remain
low, around 20–30 mmw.e.yr−1 in all products. These ar-
eas represent some of the lowest-melt regions outside the
high-elevation interior. Over the Ross Ice Shelf, SSMIS and
QuikSCAT show the strongest decadal-mean melt along the
western flank, whereas RACMO2.4 simulates higher melt
along the eastern margin.

In East Antarctica, the three products again show broadly
consistent patterns. Decadal-mean surface melt rates of
around 200 mmw.e.yr−1 occur on Roi Baudouin and the
inner Fimbul ice shelves, while northeast Amery Ice Shelf
shows rates near 150 mmw.e.yr−1 across all products.

To allow a direct comparison with QuikSCAT, we also
extracted RACMO2.4 outputs for 1999–2009 (Fig. 3d).
Over this shared period, the two datasets show comparable
decadal-mean melt magnitudes (within ∼ 10 %) and simi-
lar spatial patterns, including RACMO2.4’s modest eastward
displacement of melt maxima and QuikSCAT’s tendency to
underestimate melt in low-intensity coastal regions. These
agreements and discrepancies are consistent with those ob-
served between SSMIS and RACMO2.4 for 2011–2021.

Interannual melt volumes from SSMIS and RACMO2.4
over 2011–2021 exhibit similar temporal patterns. The mean
annual Antarctic melt volume is approximately 85 Gtyr−1

for SSMIS and 100 Gtyr−1 for RACMO2.4 (Fig. S5 in
the Supplement). The corresponding annual mean melt-
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Figure 3. Comparison of decadal mean meltwater volume across Antarctica. (a) SSMIS-derived annual melt flux averaged over 2011–2021.
(b) QuikSCAT-derived melt flux over 1999–2009 from backscatter observations (Trusel et al., 2013). (c) RACMO2.4 model output averaged
over 2011–2021 (van Dalum et al., 2025). (d) RACMO2.4 model output averaged over 1999–2009 (van Dalum et al., 2025).

flux maps (Fig. S6 in the Supplement) further demonstrate
the close spatial and temporal agreement between the two
datasets, and additionally provide a regional view of the
Antarctic Peninsula, where most Antarctic surface melt oc-
curs.

5 Discussion

A closer look at misclassified surface melt days reveals two
primary sources of false positive detections. About 71 %
of false positives (defined here as days classified as melt
by SSMIS while AWS-SEB reports zero melt) occur when

RACMO2.4 simulates liquid water content (LWC) in the firn
(See Fig. S7a in the Supplement). Nearly 90 % of false posi-
tives coincide with AWS near-surface air temperatures (T2m)
above −5 °C (See Fig. S7b in the Supplement). Taken to-
gether, these patterns indicate that the classifier is respond-
ing to liquid water within the near-surface firn, even when
surface melt is not diagnosed by AWS-SEB. This behaviour
is consistent with the known penetration depth of 19 GHz
microwave radiation, which is sensitive to both surface and
shallow subsurface wetting (de Roda Husman et al., 2022).
In this sense, SSMIS detects a broader physical melt–wetting
signal that includes processes not directly measurable by
AWS but captured by RACMO2.4’s subsurface hydrology.
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For this reason, we also explored the potential of additional
microwave indicators, such as the 37 GHz channel and var-
ious polarization or spectral ratios, to reduce false positives
by improving sensitivity to surface wetting. While these met-
rics offer theoretical advantages due to their shallower pene-
tration and enhanced surface melt response (Colliander et al.,
2022), our cross-validation results show no consistent perfor-
mance improvement across the AWS network. This outcome
supports our choice of the 19 GHz H-polarization channel as
the most robust and spatially consistent indicator under cur-
rent sensor constraints. A closer examination of Fig. 1 shows
that Neumayer station exhibits larger residuals than the other
sites. This discrepancy likely reflects Neumayer’s local cli-
mate, where subfreezing daytime temperatures drive nearly
instantaneous firn refreezing (van den Broeke et al., 2010).
Consequently, less liquid water remains at the surface during
SSMIS overpasses, diminishing the brightness-temperature
signal compared to other AWS locations – such as Larsen C
– where subsurface water retention prolongs wet-snow sig-
natures.

Although the SSMIS dataset covers all of Antarctica,
the calibration relies on a geographically limited set of
AWS sites, with four stations located on Larsen C and only
three additional sites elsewhere. This raises the question
of whether the melt–day to melt–volume parametrisation is
transferable across the full Antarctic melt zone. However,
two lines of evidence suggest that the calibration is broadly
representative: (i) the sensitivity analysis combining all AWS
years produces a stable, well-constrained m–M relationship,
and (ii) RACMO2.4 exhibits a nearly identical functional re-
lationship across the entire ice sheet (Fig. S4c). These com-
parisons indicate that, despite the sparse calibration network,
the underlying exponential relation is sufficiently general to
apply across contrasting climatic regions, though local devi-
ations cannot be fully excluded.

From a spatial perspective, our melt product reveals inter-
esting regional features. For instance, on the Larsen C ice
shelf, a distinct east-west gradient is visible, likely driven
by föhn winds over the Antarctic Peninsula mountain range
(Luckman et al., 2014) and supported by melt patterns in
QuikSCAT (Trusel et al., 2013), and firn air content observa-
tions across the ice shelf (Holland et al., 2011). The SSMIS-
based method shows less surface melt relative to QuikSCAT
– but the first was collected a decade after the second. Thus,
its difference may be attributed to the documented cooling
trend over the Peninsula in the first decade after 2000 (Turner
et al., 2016), which has been linked to decadal-scale natu-
ral climate variability. Taken together, our findings suggest
that the proposed SSMIS-based detection scheme reasonably
captures the spatial and temporal patterns of surface melt
across Antarctica. Its general consistency with known cli-
mate trends indicates that the classifier is likely robust to both
environmental variability and regional melt characteristics.
However, the sensitivity to shallow wetting layers – while
offering valuable insight into subsurface processes – also in-

troduces uncertainty when interpreting daily melt flags. Re-
fining this ambiguity represents a necessary direction for im-
proving the distinction between surface melt and the pres-
ence of sub-surface liquid water in future satellite-based al-
gorithms.

6 Conclusions

We introduce a novel 6.25 km gridded dataset of Antarctic
surface melt rates for 2011–2021, derived exclusively from
SSMIS 19 GHz passive-microwave observations and cali-
brated against seven AWS energy-balance melt records. Our
majority-rule framework – combining absolute evening Tb,
diurnal amplitude, and winter-season anomaly thresholds –
yields daily melt flags that, when transformed through an
exponential melt-day to melt-volume model, reproduce in-
situ melt volumes with fidelity. Comparative analyses with
QuikSCAT and RACMO2.4 confirm that our product accu-
rately maps melt hotspots, while misclassification analysis
clarify the conditions under which passive-microwave re-
trievals are least reliable.

By providing a spatially comprehensive SSMIS-derived,
AWS-calibrated record of Antarctic surface melt, this dataset
fills a critical gap between sparse in-situ measurements and
model outputs. It offers a transparent, reproducible base-
line for evaluating regional climate models, constraining firn-
hydrology schemes, and informing assessments of ice-shelf
vulnerability to meltwater-induced weakening. The complete
Antarctic-wide, decadal melt record is publicly available for
use in cryospheric process studies.

Code and data availability. The annual Antarctic surface melt–
water equivalent maps derived from SSMIS 19 GHz brightness
temperatures, covering the period 2011–12 to 2020–21, are pub-
licly available at https://doi.org/10.5281/zenodo.16738423 (Di Bi-
ase, 2025). The dataset includes GeoTIFF files providing annual
number of melt days and cumulative annual melt volume per pixel
(in mm water equivalent) with corresponding lower/upper bound
estimates based on the confidence intervals represented in Fig. 2a to
convey the uncertainty range.

The AWS data used as forcing for the SEB model is available
at https://doi.org/10.1594/PANGAEA.974080 (Van Tiggelen et al.,
2025a). The SEB model used to compute surface melt is available
at https://doi.org/10.5281/zenodo.15082295 (Van Tiggelen, 2025).
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