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Abstract. Arctic sea ice extent has declined significantly
over the past four decades, opening up the Arctic to ship-
ping and resource extraction while also impacting wildlife
and local communities. This has led to an increasing need
for skillful sea ice predictions. We focus on furthering the
understanding of the role that sea ice thickness plays in the
skilfulness of seasonal Arctic sea ice predictions. We look
at how observations of sea ice thickness can improve both
sea ice reanalyses and predictions. We use the Norwegian
Climate Prediction Model (NorCPM) with 1° horizontal res-
olution for the ocean and sea ice components and approxi-
mately 2° for the atmosphere and land components, which
has previously assimilated ocean and sea ice concentration
observations. We additionally assimilate two sea ice thick-
ness products: CS2SMOS, and, for the first time in any study,
ENVISAT. This allows us to produce a two-decade (2003—
2023) reanalysis with sea ice thickness assimilation focusing
on the Arctic Ocean. This reanalysis is then used to initialise
and generate a series of year-long seasonal hindcasts for each
season of the reanalysis. The reanalysis and hindcasts are
compared to observations and other reanalyses to assess the
impact of sea ice thickness observations. Assimilation of sea
ice thickness data strongly improves the representation of sea
ice thickness and volume, primarily in the central Arctic as
well as the ice edge location. Although ENVISAT observa-
tions have greater uncertainties, the dataset still provides a
useful impact on the model. For prediction, sea ice thickness
initialisation reduces the model biases of thickness through-
out the year as well as errors in the detrended anomalies.
Ice thickness bias correction results in improvements in the
representation of the ice edge location, i.e., the timing and
extent of the summer melting. Thickness initialisation has

little improvements for detrended sea ice extent anomalies,
but yields some skill in the Beaufort Sea and Central Arctic
during summer. Overall, we show the impact of sea ice thick-
ness assimilation has a positive effect on prediction skill in
NorCPM.

1 Introduction

In the Arctic, both the atmosphere and ocean have undergone
dramatic warming trends over the satellite era (Przybylak and
Wyszyiiski, 2020; Steele et al., 2008), and continue to expe-
rience warming much faster than the rest of the globe (Co-
hen et al., 2014), leading directly to sea ice loss (Dai et al.,
2019). The sea ice loss in this region is having a strong im-
pact on Arctic wildlife and habitats (Descamps et al., 2017).
There are also wide-reaching effects on tourism, resource ex-
traction and communities living in the Arctic (Arruda and
Krutkowski, 2017). This has led to increasing interest in the
study of Arctic sea ice and, in particular, of seasonal pre-
dictions, which aim to predict the sea ice on seasonal time
scales. As the Arctic climate has warmed, the sea ice has not
only retreated (Comiso et al., 2008; Stroeve et al., 2014b), but
also thinned (Nghiem et al., 2007; Giles et al., 2008; Kwok,
2018). Much of the Arctic sea ice has gone from being peren-
nial year-round to seasonal, with an increase in the length of
the open-water season (Nghiem et al., 2007; Sumata et al.,
2023). Such radical change also makes seasonal Arctic sea
ice prediction more challenging.

The field of seasonal Arctic sea ice prediction emerged and
rapidly developed within the past two decades, focusing on
identifying and improving our understanding of the physical
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properties of sea ice, in order to improve the prediction of
Arctic sea ice under a changing climate. This began with the
first seasonal sea ice predictions using global climate models
(GCM) and continued with prediction studies from a variety
of research centres and institutes around the world (Wang
et al., 2013; Chevallier et al., 2013; Peterson et al., 2015;
Guemas et al., 2016; Bushuk et al., 2017; Kimmritz et al.,
2019). The sea ice prediction network (SIPN) is at the cen-
tre of this field. The SIPN collects September sea ice extent
(SIE) forecasts initialised from June, July and August and
September into the Sea Ice Outlook (SIO) report (Stroeve et
al., 2014a; Bushuk et al., 2024). At present, over 30 different
research groups of polar scientists contribute to the SIPN,
using dynamical or statistical approaches to produce these
predictions. Idealistic model experiments in GCMs estimate
that sea ice area and extent in the Arctic could be predictable
between 12—48 months in advance, though predictability be-
yond 36 months is dominated by atmospheric forcing and
not the initial conditions (Blanchard-Wrigglesworth et al.,
2011a, b). Sea ice thickness (SIT) may be predictable up
to 2 years in advance (Holland et al., 2011; Koenigk et al.,
2012), and can be important for SIE predictions up to 2 years
ahead (Tietsche et al., 2014) in an idealised framework.

The evolution of the Arctic sea ice is governed by the evo-
lution of SIT distribution, and these changes come from two
sources: dynamical and thermodynamical. Sea ice dynam-
ics govern the movement of the sea ice either in space, or
within the thickness distribution (commonly known as ridg-
ing). Thermodynamic changes in the sea ice are composed of
melting (lateral, bottom and top melt) and freezing (congela-
tion and frazil ice formation). SIT therefore is a key variable
for modelling the sea ice state. SIT observations can substan-
tially improve reanalysis estimates of thickness, with smaller
impacts on other model variables such as sea ice concentra-
tion (SIC) and sea ice drift (SID), which has been shown in
a number of sea ice reanalysis studies using different obser-
vational sources of thickness (Xie et al., 2018; Fritzner et
al., 2019; Williams et al., 2023), and freeboard (Sievers et
al., 2023). For prediction of SIE, correct SIT initialisation
and its advection through the Arctic is believed to be one of
the key mechanisms for skill within the Arctic (Blanchard-
Wrigglesworth et al., 2011b; Ordofiez et al., 2018; Giesse et
al., 2021; Zhang et al., 2021; Min et al., 2023; Zhang et al.,
2023), and has been shown recently for CryoSat-2 (CS2) ob-
servations when using the CICE model standalone (Sun and
Solomon, 2024). This is particularly true during the growth
season which has been shown to translate to improved skill in
SIE during the summer melt season (Blockley and Peterson,
2018; Holland et al., 2019). Additional mechanisms identi-
fied as important in the Arctic for SIE prediction are ini-
tialisation, persistence and re-emergence of SIC (Blanchard-
Wrigglesworth et al., 2011b; Ordofiez et al., 2018; Giesse et
al., 2021), ocean heat transport (OHT), ocean heat content
(OHC) and melt onset timing (Schroder et al., 2014; Serreze
et al., 2016; Kwok, 2018; Zheng et al., 2021). Atmospheric
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processes, particularly wind, which determine the dominant
Arctic ocean currents of the Transpolar drift stream and the
Beaufort Gyre, are also important but have a short memory,
so its predictability can deteriorate quickly (Msadek et al.,
2014; Serreze and Meier, 2019). Though several mechanisms
have been identified in general, many are still poorly under-
stood. In this paper, we will focus on improving thickness
initialisation, and in doing so, using a longer period of SIT
observations to study Arctic sea ice predictability.

In the past 15 years, significant work has been done on de-
veloping and producing new SIT observation datasets. At the
forefront of this field are SIT datasets from CS2 (Laxon et al.,
2013), available since October 2010, the combined CS2 and
Satellite Moisture and Salinity (SMOS) dataset (Ricker et al.,
2017) known as CS2SMOS. These datasets are the longest
running available Arctic SIT observations, but until recently
summer observations of SIT were not available due to the
presence of melt ponds, though this has now changed with
the work of Landy et al. (2022) to produce a year-round CS2
thickness dataset. The launch of ICESat-2 in 2018 also led
to a winter SIT dataset using laser observations (Petty et al.,
2020). However, before these satellites were launched, there
were the forerunner satellites of ICESat (Kwok et al., 2004)
and ENVISAT (Louet and Bruzzi, 1999). As they were not
primarily designed for SIT retrieval, the datasets have issues,
particularly with spatial and temporal coverage, and also the
instruments used. Monthly observations of SIT have been de-
rived from ENVISAT for the winter months not available
during summer due to melt ponds, as with CS2 (Connor et
al., 2009), which spans from October 2002 to 2012. In this
work, we use the ENVISAT dataset to lengthen our reanal-
ysis and increase the number of predictions possible for our
statistical analysis.

In this study, we will investigate how assimilation of SIT
observations from ENVISAT and CS2SMOS can first benefit
our sea ice reanalysis and then summer Arctic sea ice pre-
dictions by using seasonal hindcasts (i.e. retrospective pre-
dictions) started from 2003 to 2023. To our knowledge, EN-
VISAT SIT observations have not been assimilated before in
a GCM, so this study will investigate their use and feasibility
of inclusion for assimilation in GCMs for the first time. As
we use ENVISAT observations, this also means we have a
longer time series of SIT observations to assimilate, and thus
a longer reanalysis and more hindcasts with which we can
analyse, study and verify its usefulness within these fields.
We investigate not only SIE/SIT predictions but also the pre-
diction of the sea ice edge location using the integrated ice
edge error (IIEE).

The paper is organised as follows. In Sect. 2, we outline
the climate model, observations and experimental design. In
Sect. 3, we outline the metrics and independent observations
used for evaluating and validating the performance of the
model. In Sect. 4.1, we show the results of the sea ice re-
analysis from 2003 to 2023, including verification of the re-
analysis with independent data from the Beaufort Gyre Ex-
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ploration Project (BGEP) moorings. In Sect. 4.2, we show
the results of the hindcast experiments. In Sect. 5, we discuss
the key results and conclude this study.

2 NorCPM

We use the Norwegian Climate Prediction Model (NorCPM,
Counillon et al., 2016; Wang et al., 2019), which combines
the Norwegian Earth System Model (NorESM Bentsen et
al., 2013) and the Ensemble Kalman Filter (EnKF, Evensen,
1994) data assimilation method. The version of NorCPM is
as in Kimmritz et al. (2019), which contributed to the SIPN
(Bushuk et al., 2024), but we are testing, in addition, a sepa-
rate version that assimilates ice thickness data.

2.1 NorESM

The NorESM version used here is NorESM 1-ME (Bentsen et
al., 2013). It is based on the Community Earth System Model
(CESM, Hurrell et al., 2013). However, the ocean component
is replaced with an isopycnal coordinate ocean general cir-
culation model (BLOM, Bentsen et al., 2013), and the Com-
munity Atmosphere Model version 4 (CAM4, Neale et al.,
2010) with the original prescribed aerosol formulation is re-
placed by the atmospheric model CAM4-OSLO with a prog-
nostic aerosol life cycle formulation using emissions and new
aerosol-cloud interaction schemes (Kirkevag et al., 2013). As
in CESM1.0.4, NorESM1-ME uses the Los Alamos Sea Ice
Model version 4 (CICE, Hunke et al., 2015) and the Commu-
nity Land Model (CLM) version 4 (Lawrence et al., 2011).
These are coupled using version 7 of the coupler designed
for the CESM (Craig et al., 2012).

The atmosphere and land model has an approximately 2°
finite volume grid, with horizontal resolutions of 1.9° in lat-
itude and 2.5° in longitude, while the ocean and sea ice
have approximately a 1° x 1° horizontal resolution. BLOM
uses 51 isopycnal layers plus 2 additional layers for the
bulk mixed layer, with time-evolving thicknesses and den-
sities. This version of NorESM is run with CMIPS5 histori-
cal forcings (Taylor et al., 2012) and the RCP8.5 (Moss et
al., 2010) beyond 2005. A similar version of NorCPM has
contributed to CMIP6 Decadal Climate Prediction Project
(Bethke et al., 2021). However, upgrading to CMIP6 forc-
ings degraded NorCPM’s baseline climate and hindcast per-
formance (Bethke et al., 2021; Passos et al., 2023), and we
use CMIPS5 forcings in this study.

The sea ice model CICE uses five categories in its thick-
ness distribution, optimal for representing the sea ice cover at
reasonable computing power (Bitz et al., 2001; Massonnet et
al., 2019). The horizontal transport of sea ice is solved using
an incremental remapping scheme (Lipscomb and Hunke,
2004), and solving for the sea ice stresses using the elastic-
viscous-plastic rheology (Hunke and Dukowicz, 1997). The
one-dimensional vertical Bitz and Lipscomb model (Bitz
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and Lipscomb, 1999), is used to solve the thermodynamic
equations, with melt pond, aerosol (Holland et al., 2012)
and radiation transfer parameterisations (Briegleb and Light,
2007). Sea ice transported in thickness space is solved using
a remapping scheme (Lipscomb, 2001).

2.2 Assimilation implementation

The EnKF is a sequential ensemble data assimilation (DA)
method using Monte Carlo integration followed by a linear
analysis update (Evensen, 1994). The method is multivariate
and updates the model state variables based on their ensem-
ble covariances with the observations. Specifically, we use
a deterministic formulation of the EnKF (Sakov and Oke,
2008), which solves the analysis without needing to perturb
the observations. The Deterministic EnKF outperforms the
standard EnKF, particularly for small ensemble sizes (Sakov
and Oke, 2008).

We assimilate the monthly average observations in the
middle of the model month (i.e., the 15th day) and update the
instantaneous model state based on all observations (Counil-
lon et al., 2016; Kimmritz et al., 2019). The update of the
model state during the assimilation is split into two steps:
the ocean model variables and the model variable SIC are
updated jointly by the assimilation of oceanic and SIC ob-
servations, and then the model variable SIC is again updated
by the assimilation of SIT observations. The atmosphere and
land components are not updated by the assimilation but ad-
justed dynamically via coupling in between the monthly as-
similation cycles.

Assimilation of ocean temperature and salinity profiles,
sea surface temperature (SST), and SIC observations is per-
formed as described in Kimmritz et al. (2019). We employ
anomaly-field assimilation, using a monthly reference cli-
matology calculated from 1982 to 2016. We update both
the ocean and sea-ice components based on the observations
from both components, so called strongly coupled ocean-
sea ice DA (Laloyaux et al., 2016; Kimmritz et al., 2018).
Strongly coupled ocean-sea ice DA in NorCPM was shown
to be more effective than weakly coupled DA in which sea
ice observations are used to only update the sea ice vari-
ables (Kimmritz et al., 2018). We update the full ocean
physics state vector in isopycnal coordinates (i.e., 3D tem-
perature, salinity, velocities and layer thickness) and up-
date the multicategory SIC in the sea ice state vector (i.e.,
the multicategory aicen within the 5 categories, see DEPTH
HI_PRESERVE in Kimmritz et al., 2018). The sea ice vol-
ume in each thickness category is changed proportionally so
that the thickness of each thickness category remains identi-
cal to that of the prior ensemble (i.e., the multicategory hicen
before assimilation). This prevents the need to reshuffle ice
to a different thickness category in the post-analysis, which
proved to be optimal in an idealised twin experiment (Kimm-
ritz et al., 2018). The post-processing step ensures that sea ice
state variables remain within physical ranges and recompute
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the energy budget of each of the multicategory sea ice quan-
tities (Appendix 1 in Kimmritz et al., 2018, for further de-
tails). However, in Kimmritz et al. (2019), assimilation was
carried out in 2 steps with SST and SIC updating the mixed
layer depth ocean and the sea ice state, followed by assim-
ilation of ocean profiles that update the full 3D ocean. This
degraded performance in the lower latitudes where there are
few profiles data to constrain the ocean interior. Therefore,
we carry out a single assimilation step based on all observa-
tion products, which updates the full ocean and sea ice state
jointly. This handled the degradation reported in Kimmritz et
al. (2019) and has no impact on performance at high latitudes
(not shown).

NorESM has a large SIT bias (Bentsen et al., 2013), and
while assimilation of ocean observation reduces it partially,
some of the bias remains. Bethke et al. (2021), compared
two versions of NorCPM assimilating ocean observations,
one that updates only the ocean component and one that up-
dates the ocean and sea ice components. The latter yields a
strong reduction of the bias of SIT and provides enhanced
predictions. Note also that it takes about ten years for the
model to rebuild the SIT bias once assimilation is stopped
(their Fig. S15). We, therefore, use full-field assimilation to
correct the SIT bias that can influence the variability. In the
first attempt, we used anomaly-field assimilation (Carrassi et
al., 2014). However, the assimilation impact of SIT anoma-
lies was inconclusive, with no added skill for predictions (not
shown).

When assimilating SIT observations, we only update the
individual category sea ice fraction, which can change the
sum of the ice fraction. In the post-processing of the as-
similation, the sea ice volume in each thickness category is
changed proportionally so that the thickness of each thick-
ness category remains identical to that of the prior. We do
not update the ocean component, as the covariances between
SIT and the ocean are very small, and may cause more harm
than benefit because of sampling error.

We use a series of ad-hoc techniques to handle issues re-
lated to sampling error, typically used in NorCPM (Counillon
et al., 2016; Bethke et al., 2021). First, we used the R-factor
(Sakov et al., 2012), which inflates the observation error by a
factor of 2 for the update of the ensemble anomaly. We also
use the K-factor formulation (Sakov et al., 2012), which in-
flates the observation error so that the analysis remains within
m times the standard deviation of the ensemble (i = 2 in this
study). This avoids producing too strong updates. Finally, we
use a local analysis framework (Evensen, 2003), which only
uses the local observations and limits the risk of spurious co-
variance. Tapering with a smooth distance-weighted Gaspari
and Cohn function (Gaspari and Cohn, 1999) ensures con-
tinuity in the update. The localisation radius for the ocean
variables is a function of latitude (Wang et al., 2017), and for
the SIC and SIT observations we use a localisation radius of
800 km as used previously (Kimmritz et al., 2018; Massonnet
et al., 2015).
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Our DA implementation assumes the observation errors
to be independent. However, since observations of SST, SIC
and SIT are gridded products, the observation error may be
correlated due to heavy post-processing during data produc-
tion. To mitigate this fact, we only retain the nearest observa-
tion of each observation type in the local analysis (Counillon
etal., 2016; Kimmritz et al., 2018). For the hydrographic pro-
files, all data within the local window are used (Wang et al.,
2017).

2.3 Assimilated datasets

SST and SIC monthly average data are from the NOAA OIS-
STV2 dataset (Reynolds et al., 2007; Huang et al., 2021)
available on a 1° x 1° global grid. The data is originally pro-
duced as weekly fields, NOAA then produces monthly fields
using a linear interpolation of the weekly fields to daily fields
then averaging those daily values over each month. The SST
data are produced by combining both in-situ and satellite ob-
servations and SST’s simulated by sea ice cover (Reynolds et
al., 2007). Note that SST data in the regions covered by sea
ice are not assimilated in this study (Kimmritz et al., 2019;
Wang et al., 2019). However, the ocean underneath the sea
ice is updated based on the ensemble covariance. Monthly
SST observation errors are estimated using the weekly er-
ror estimation provided by the dataset. We experience that
error in SST tends to be very low and we imposed a mini-
mum threshold of 0.1 °C. SIC observation errors are not pro-
vided with the dataset and thus we use a 20 % constant value
(Kimmritz et al., 2019), which is the generally agreed upon
value for the highest uncertainties in the summer melt season
(Ivanova et al., 2015; Cavalieri and Parkinson, 2012; Comiso,
2017).

The temperature and salinity profile data from Octo-
ber 2003 to October 2021 are taken from EN4.2.1 dataset
(Gouretski and Reseghetti, 2010; Good et al., 2013). The data
from then onwards are from EN4.2.2 dataset (Gouretski and
Cheng, 2020). The EN4 hydrographic dataset is split into dif-
ferent categories depending on its quality. In this study, we
only use data in category 1 (i.e., the highest quality). Their
associated observation errors are determined as in Wang et
al. (2017).

For the SIT observations, we use two datasets: the ESA
CCI dataset that includes SIT retrieved from ENVISAT
(Connor et al., 2009), and the AWI CS2SMOS dataset (V2.6)
(Ricker et al., 2018) that retrieves SIT from the SMOS satel-
lite and the CS2 satellite. The ESA CCI dataset covers the pe-
riod from October 2002 to April 2012, however we only use
data up to March 2010 because the more accurate CS2SMOS
product becomes available after this. For both datasets, data
is only available outside the melt season between October
and April. Melt ponds on top of sea ice make it challenging
to identify leads, which is crucial for the estimation of free-
board and SIT (Laxon et al., 2013). Additionally, we do not
use October or April data due to certain quality issues asso-
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ciated with the fringe months marking the change between
the melting and growth seasons in the Arctic sea ice. The
observation error statistics are provided by the datasets.

2.4 Experiment design

In this work, we want to test the added value of SIT assim-
ilation. For that, we have run several experiments. We use
an ensemble model simulation without data assimilation and
two reanalyses as follows:

FREE: a 30-member ensemble run without data assimi-
lation integrating from 1850 to December 2023 with
CMIP5 historical forcings and with RCP8.5 beyond
2005. The ensemble is initialized on 1 January 1850 by
randomly selecting 30 states on 1 January in different
years from a stable pre-industrial run (with one single
member).

CTRL: A 30-member reanalysis started in 1982 branched
from FREE (30 members), using a similar setting as
in Kimmritz et al. (2019); Bushuk et al. (2024). It
assimilates hydrographic profiles, SST, and SIC data
(Sect. 2.3) with an anomaly-field assimilation frame-
work.

+SIT: a 30-member reanalysis is branched off from CTRL
on the 15 October 2002. It assimilates SIT data
(Sect. 2.3) in addition to that assimilated in CTRL.

FREE allows us to estimate the skill related to external
forcings (Kimmritz et al., 2019). We use CTRL to compare
the model with and without the assimilation of SIT data,
while still assimilating the ocean and SIC observations. We
use an ensemble size of 30 members primarily due to limited
computational resources. In addition, many of the parame-
ters in NorCPM (localisation, inflation) have been tuned to
work ideally with an ensemble size of 30 which we found
large enough to provide robust results for ocean and sea ice
update with NorCPM (Counillon et al., 2014; Kimmritz et
al., 2018).

Three sets of seasonal hindcasts (i.e., retrospective predic-
tions) are created from FREE, CTRL and +SIT. They start
on the 15th of January, April, July and October each year be-
tween 2003 and 2023 and run for 1 year with 10 members.
This comprises 84 hindcasts in total (21 years and 4 hindcasts
per year) for each set of hindcast experiments.

3 Validation metrics and datasets

We validate the reanalyses and hindcasts using their ensem-
ble means. For the hindcast, we assess the performance for
different start and lead months. Note that our hindcasts start
in the middle of the month, but it has assimilated the monthly
average of that month — e.g., our hindcast started on the
15 April has assimilated April monthly average data. Lead
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month 1 starts after 15d of model integration (e.g., May is
lead month 1 of April-initialised prediction).

We define the SIE as the total sum of the area of grid cells
where the ensemble mean of SIC is at or above 15 %.

3.1 Validation metrics

We use bias and bias-free root-mean-square error (bfRMSE),
defined as

N
bias:ZW,-(xi—yi), (D

i=1

bfRMSE =

N
> Witk —yi)?, )
i=1

where N is the total number of data points, W; is a normal-
ising area-based weight constant — i.e. when the metric is
computed considering grid cells that do not have the same
area. For point-wise bias and bfRMSE calculations, W; is %
x; is the model ensemble mean values, and y; is the observed
values, which are both anomalies from their respective clima-
tology (model or observation). These are usually averaged ei-
ther over time or space (where each grid cell is then weighted
by its area). Note that root-mean-square error (RMSE) is the
quadratic sum of bias and bfRMSE.

We additionally use anomaly correlation coefficient
(ACQ) to test the variability of the reanalyses/hindcasts and
the observations, defined as follows:

N
Zi:ﬂi’)’,{
b
N 2 N 2
JEN 2Ny

where x/ and y! are model and observation values. For the re-
analysis, we use the standard ACC and bfRMSE, but for the
predictions, we use the detrended values — i.e. both time se-
ries are detrended before computing the metric. The reason is
that the trend in reanalysis is part of the signal that one aims
to represent and can be challenging due to discontinuity in
the observation data set or drift in the system. In prediction,
the trend is often removed as it is considered to be a trivial
predictor (Bushuk et al., 2020). The statistical significance
of the Pearson correlation coefficient is tested by using the
Student’s ¢ test with a significant level of 5 % with degrees of
freedom calculated as in Von Storch and Zwiers (2002).

The Degrees of Freedom for Signal (DFS) is calculated for
each set of assimilated observations in the analysis to test the
impact of their assimilation (Wahba et al., 1995; Cardinali et
al., 2004).

ACC =

3)

DFS=) —, “4)

where L is the total number of observations and x, is the
model posterior. The DFS metric quantifies how the assimi-
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lation of observations has reduced the dimension or rank of
the ensemble (Sakov et al., 2012). A larger DFS value im-
plies that the assimilation has more change into the system,
i.e., reducing the number of degrees of freedom (the unit
of the metric). The DFS can be between O (no impact) and
the total number of degrees of freedom minus one (where
all members collapse to a single member)!. A well-balanced
data assimilation system aims to make minimal changes nec-
essary to comply with observations, and as such, one should
reach neither the lower nor the upper DFS value. As a conse-
quence, DFS is often used to calibrate the strength of the data
assimilation system when observation error is poorly known
(Sakov et al., 2012) — prevent too strong or too weak assim-
ilation. DFS can also be used to isolate the relative influence
of each observation on the total impact of the assimilation,
which is our aim in this study. More specifically, DFS is used
here to diagnose the relative influence of the SIT assimila-
tion compared to other datasets, for instance, where it is most
beneficial, as well as to quantify the impact of ENVISAT SIT
versus C2SMOS.

Finally, we use the Integrated Ice Edge Error (IIEE) to as-
sess the error in the location of the ice edge (Goessling et al.,
2016). It is defined as

IIEE = fmax(cx —cy,0)dA + /max(cy —cy,0)dA,  (5)
A A

where A is the area, ¢ = 1 where the SIC is above 15 % and
0 elsewhere, with subscripts x and y denoting the model and
observations respectively. This works as essentially the sum
of all areas where SIE is overestimated (first term on right
hand side (RHS) of the above equation) and underestimated
(second term). The IIEE can also be decomposed in a differ-
ent way, using a mean absolute error (MAE) and a displace-
ment (DISP). This is formulated in Goessling et al. (2016)
as

IIEE = MAE + DISP (6)
MAE = |0 — U] @)
DISP =2 - min(O, U), ()

where O is the area where SIE is overestimated, and U is the
area where SIE is underestimated. The IIEE is a useful ver-
ification metric because it is conceptually simple. It is well
verified with existing long-term SIC satellite data, is an im-
portant characteristic of the sea ice cover and is more useful
to potential forecast users than total SIE (Goessling et al.,
2016).

3.2 Independent validation datasets

In the paper, a part of the validation will be carried out with
the assimilated dataset. In the reanalysis, such data cannot be

'Note that the total number of degrees of freedom is the min-
imum between the ensemble size and the number of observations
used in the local analysis.
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considered independent, but still represents a baseline verifi-
cation (that DA works as expected).

We use observations of sea ice draft from the BGEP moor-
ings for independent validation. BGEP includes upward-
looking sonar (ULS) measuring instruments (Krishfield et
al., 2014). There are a total of 4 moorings, 2 of which (A and
B) have been in operation since August 2003, C was in oper-
ation until 2008, and D has been in operation since 2005. All
moorings are located in the Beaufort Sea (their location in the
Arctic is shown in Fig. 3c). The ULS instruments measured
sea ice draft every 2s before 2014, and every second after.
The sea ice draft, which is the thickness of the sea ice under
sea level, is found by subtracting the range measured by the
ULS instrument from the known depth of the instrument. The
draft measurements have a stated error of £5—-10 cm (Krish-
field and Proshutinsky, 2006). To compare this data to our
model monthly mean thickness, we first convert the sea ice
draft into SIT using the method of Rothrock et al. (2008), and
then average all the measurements over each month or year
to convert to monthly or yearly averages respectively, which
we can compare to the model. If there was missing data in
a month, we discard the ULS data for that month for that
mooring, if there were more than thirty days of missing con-
tinuous data in a year, we do not compute a yearly average
for that year.

The Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS) reanalysis was first introduced in 2003
by Zhang and Rothrock (2003). PIOMAS is a coupled ice-
ocean model that assimilates SST data in ice-free grid cells
using optimal interpolation, and SIC using a relatively simple
nudging technique which aims to move the model variables
closer to their observed counterparts by use of a weighting
factor. PIOMAS has been substantially validated with a large
number of SIT observations (Schweiger et al., 2011), so is
often used as a comparison dataset for other SIT and sea ice
volume datasets. The PIOMAS reanalysis is used for valida-
tion in this study.

4 Results
4.1 Reanalysis

In this section, we analyse our 21 year reanalyses over the
period where satellite SIT observations are available.

In Fig. 1, we present the time evolution of the assimilation
diagnostic. We can first notice that the bias has a seasonal
signal that relates to the lack of observation during summer,
when the bias increases. For ENVISAT, the system is too
thick at the start but gets too thin at the end of the season,
while with C2S the too thick bias remains positive until the
end of the seasonal observation period. In an ensemble data
assimilation system, one can use the ensemble spread as a
measure of the system’s error. A first check to assess the re-
liability of the system is to ensure that the quadratic sum of
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Figure 1. The time evolution of five key metrics of the EnKF for
SIT assimilation (computed on the innovation vector — the differ-
ence between the observation and the model at the observation loca-
tion): which is the bias, model error (ensemble standard deviation),
observation error (standard deviation), total error (quadratic sum of
model error and observation error) and RMSE. Note that there are
gaps in the figure due to the lack of SIT observations outside winter.

the ensemble standard deviation and observation error (here
denoted as total error) matches the bias-free error of the en-
semble mean (RMSE, Rodwell et al., 2016). We can notice
that our system exhibits too high dispersion during the EN-
VISAT period, but that the reliability is very good in the C2S
period. The overdispersion during the ENVISAT may relate
to the observation error, which is very high. We can also no-
tice that the ensemble spread and RMSE covary in time very
well (both seasonally and inter-annually). There is a discrep-
ancy at the start of the assimilation season that relates to the
bias being large (not to be accounted for in the reliability
budget analysis).

We start by analysing the relative influence of each obser-
vation type in constraining errors in the system with the DFS
(Sect. 3.1). The observations assimilated complement each
other quite well and dominate in different regions (Fig. 2).
The ocean observations dominate in the sea ice-free regions
of the Arctic. SIC assimilation is most impactful at the sea
ice edge, where SIC shows the largest variability. SIT assim-
ilation is mainly effective in the central Arctic, where the ice
is thicker. As expected, the SIT assimilation becomes more
effective (higher DFS) when we switch over from assimilat-
ing ENVISAT to CS2SMOS. However, ENVISAT assimila-
tion is still having a substantial impact in the central Arctic
according to the DFS, where other observations are few, or
have limited impact.

We first verify performance against the SIT observations
(Fig. 3), which is assimilated in +SIT. We only present the
validation against the CS2SMOS period due to the differ-
ing regional coverage between ENVISAT and CS2SMOS,
but the conclusions are similar for ENVISAT (not shown).
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Figure 2. (a) Combined mean DFS of salinity, ocean tempera-
ture and sea surface temperature. (b) Mean DFS of SIC. (¢) Mean
DFS of ENVISAT SIT. (d) Mean DFES of CS2 SIT. (e) Pan-Arctic
monthly mean DFS for each observation assimilated in our +SIT
reanalysis. TEM refers to (ocean) temperature and SAL refers to
salinity.

FREE has a clear thick bias (up to 4 m), with the spatial pat-
tern of the bias increasing as the ice gets thicker — largest
close to the Canadian Arctic Archipelago (CAA). In CTRL,
the biases in the central Arctic Ocean have been reduced, but
there is still a thin strip of too-thick sea ice pushed against
the CAA. In +SIT the thickness biases in the marginal seas
surrounding the central Arctic have almost been completely
removed, which showcases the influence of assimilating ice
thickness data.

For bfRMSE, FREE features errors of around 20cm in
a majority of places, reaching errors up to 1 m close to the
CAA. Surprisingly, the SIT bfRMSE:s are increased in CTRL
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b)

bias

bfRMSE

Mean SIT

Figure 3. Bias (a—c), bfRMSE (d—f) and mean (g—i) of SIT in each of our NorCPM experiments in comparison to SIT observations from
CS2SMOS between 2010 and 2023. In panel (c) we also show the locations of the BGEP ULS moorings as green squares.

in much of the central Arctic compared to FREE. This sug-
gests that the assimilation of SIC and ocean observations has
led to increased bfRMSEs for SIT. However, as the bias is
much larger than bfRMSEs, the increased bfRMSEs result
more from the evolution of the SIT bias in between and dur-
ing the assimilation (the total RMSE is reduced). In the +SIT
reanalysis, almost all grid cells feature low bfRMSE, espe-
cially in the central Arctic and CAA. There remain higher
errors in the Fram Strait — albeit weaker than for FREE
and CTRL - that are typically driven by sea ice export
(Sumata et al., 2015). In this region, SIT observation errors
are very large, and SIT assimilation effectiveness is reduced
(Fig. 2). EXP-OCT performs better than EXP-OC against
SMOS for the April-June period, while EXP-OC performs
better against SMOS for the July—September period, with lit-
tle differences in October.

The Cryosphere, 20, 853-873, 2026

The previous comparison was done against assimilated ob-
servations of CS2SMOS, and we now compare with SIT de-
rived from the independent BGEP moorings (Sect. 3.2). The
moorings are all located in the Beaufort Gyre (Fig. 3c), so
do not provide an assessment over the whole pan-Arctic re-
gion. The comparison (Fig. 4 and Table 1) is well in line with
the above CS2SMOS validation. FREE has the largest biases
(as high as 1.5 m); CTRL has smaller biases than FREE due
to ocean and SIC assimilation. +SIT has the smallest biases
among the three reanalyses. FREE has bfRMSE from 0.06 to
0.15m, varying with the mooring and ACC around 0.7-0.8
as it captures the decreasing trends well with yearly data and
the seasonal cycle with monthly outputs. The assimilation of
the ocean and SIC data reduces bfRMSE (CTRL in Table 1)
but yields a slight degradation of ACC at stations C and D.
Assimilating SIT further reduces bfRMSE consistently with
Fig. 3 and improves correlation (about 0.9). Overall, +SIT
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shows the best performance for all four moorings and per-
formance is better during the CS2SMOS observations period
than during the ENVISAT period.

We further analyse the seasonal variability of error of SIT
and SIE (Fig. 5). There is little difference between the reanal-
yses in the bias of SIE (Fig. 5a) as we use an anomaly-field
assimilation framework for ocean and SIC, which takes the
climatology of FREE as an attractor. CTRL shows lower SIE
bias than FREE in the ice-retreat season but slightly larger
biases in the ice-advance season. SIE bias is substantially re-
duced in +SIT between April and September, and similar to
FREE in the rest of the year.

For bfRMSE of SIE (Fig. 5b), +SIT and CTRL have lower
errors than FREE, showing the positive impact of the assimi-
lation of ocean and SIC data. However, the bfRMSE in SIT+
is larger than CTRL from January to August.

CTRL reduces the SIT bias compared to FREE uniformly
throughout the year, and +SIT nearly removes entirely the
SIT biases (Fig. 5c), even outside of the assimilated sea-
son when compared to PIOMAS. The bfRMSE is slightly
increased in CTRL compared to FREE, likely for the same
reason explained above, i.e. bfRMSE being lower than bias
can be misleading. bfRMSE in SIT+ is interesting because
it is very low when computed against CS2SMOS (Fig. 5d),
but larger than FREE when computing bfRMSE against PI-
OMAS. PIOMAS tends to underestimate the interannual
variability of SIT because it overestimates the thickness of
thin ice and underestimates the thickness of the thick ice
(Schweiger et al., 2011; Wang et al., 2016). As such, the
ensemble mean of FREE, which is nearly indistinguishable
from the linear decline, compares favourably with PIOMAS
for bfRMSE.

We then investigate the time evolution of the SIE and SIV
throughout the reanalysis for March and September (Fig. 6
and Table 2) when SIE reaches a maximum and minimum.

In March, FREE shows a weak decreasing trend in agree-
ment with the observation but no year-to-year variability (as
internal variability is not synchronised). CTRL shows good
agreement with the assimilated NOAA observation estimate.
Interannual variability is also much larger, implying that the
individual members of CTRL are better constrained. +SIT
also shows improved agreement with observations (ampli-
tude of internal variability and ACC). The SIE bias is re-
duced from 7.4 x 10'° to 2.3 x 10'? km? by the SIT assimi-
lation. ACC and bfRMSE of SIE are slightly degraded com-
pared to CTRL (albeit better than FREE). This primarily re-
lates to a spurious increasing trend until 2010 during the EN-
VISAT SIT observation period (Fig. 6a). The performance
of ACC and bfRMSE for +SIT is comparable to CTRL in
the C2SMOS era (not shown). All systems capture the de-
creasing trend in SIV well. Interannual variability is stronger
in CTRL than in FREE and even more pronounced in +SIT
(Fig. 6d). Despite some visual agreement in CTRL, ACC and
bfRMSE are not improved compared to FREE. +SIT reduces
the bias but has a larger bfRMSE than CTRL when compared
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to PIOMAS. Still, ACC is improved, and Fig. 5d suggests
that PIOMAS underestimates interannual variability (quar-
relling results for bfRMSE depending on whether we use
C2SMOS or PIOMAS). +SIT has a strong discontinuity in
2010 for SIV during the transition between ENVISAT and
C2SMOS.

In September, all systems have high positive SIE biases
as a direct consequence of anomaly assimilation, as seen
in Fig. 6. Table 2 shows that CTRL and +SIT show higher
ACC values than FREE. The agreement is better in +SIT,
with ACC increasing from 0.7 to 0.8, and slightly reduced
bfRMSE. In Fig. 5, the ensemble mean of FREE shows,
again, nearly no interannual variability. In the same figure,
we see that +SIT better captures the amplitude of the peaks
and, in particular, the minimum in 2007 and 2012. This
shows a positive effect from the SIT assimilation, whereby a
bias reduction in SIT at the end of winter leads to more grid
cells becoming ice-free at the end of summer. For STV, FREE
captures the trend well. CTRL and +SIT show a good agree-
ment of interannual variability with PIOMAS, albeit with
+SIT showing overall the best agreement. +SIT also reduces
the bias effectively.

The ensemble spread in extent and volume is shown in all
experiments (Fig. 6). The spread in FREE is the largest of the
three experiments by far, particularly for the SIE. This is ex-
pected as FREE does not assimilate any observations, so the
spread is less constrained. The ensemble spreads in CTRL
and +SIT are comparable for the SIE in March and Septem-
ber, whereas +SIT has a lower spread for the SIV, particularly
in March. Again, this is no surprise, because SIT observa-
tions are not assimilated in summer, so we expect +SIT to
have a larger spread at the end of summer in September.

Finally, we investigate the mean climatology of IIEE
(Sect. 3.1). The results (Fig. 7) resemble the bias of SIE
(Fig. 5), which has the dominant contribution. However,
+SIT and FREE had comparable SIE bias in summer, while
for IIEE, SIT+ is superior, indicating it is not the sole contrib-
utor for IIEE. As such, FREE has the largest I[IEE through-
out the year, except in September, October and November
(where itis equal to CTRL, Fig. 7). +SIT performs best for all
months. It yields substantial improvement over FREE in the
winter months (with some minor improvements over CTRL)
and a substantial improvement over CTRL in the summer
months. This implies that the location of the ice edge is most
improved in summer by SIT assimilation. In winter, the lo-
cation of the ice edge is controlled by the growth of new ice
for which SIT plays a minor role, whereas in summer, the
location of the ice edge is influenced by the melting of ice —
i.e. when a grid cell becomes ice-free in summer (Sect. 5 for
more detailed discussions) — for which the initial volume of
ice is crucial. Thus, we can anticipate that SIT initialisation
can bring added value to the prediction of the SIE minimum.
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Figure 4. Yearly (thick line) and monthly (thin line) average sea ice thickness at ULS A (top left), B (top right), C (bottom left) and D
(bottom right) and the respective SITs in our reanalyses during our experimental period. In some years, there are not enough observations
(more than 30 d continuous of observations missing) from a ULS mooring to formulate a yearly average, so these years are masked.

Table 1. Bias, ACC and bfRMSE for the SIT of BGEP ULS A, B, C and D in comparison with the FREE, CTRL and +SIT reanalyses. The
statistics are based on monthly mean detrended data. The statistics with yearly data are given in brackets. The unit of bias and bfRMSE is
the metre. The system with the best performance are highlighted in bold.

Metric Experiment ULS A ULS B ULS C ULS D
FREE 1.51 (1.49) 1.51 (1.66) 1.03 (1.56) 0.43 (1.57)
Bias CTRL 0.96 (0.56) 0.62 (0.87) 0.58 (0.84) 0.34 (0.49)
+SIT 0.08(=0.1) —-0.14(—-0.11) -—-0.37(—0.55) —0.22(—0.15)
FREE 0.11 (0.35) 0.13 (0.37) 0.15(0.21) 0.06 (0.34)
bfRMSE CTRL 0.08 (0.15) 0.06 (0.20) 0.11 (0.12) 0.05 (0.12)
+SIT 0.03 (0.05) 0.03 (0.06) 0.08 (0.08) 0.04 (0.05)
FREE 0.87 (0.87) 0.77 (0.88) 0.73 (0.74) 0.80 (0.80)
ACC CTRL 0.85 (0.85) 0.79 (0.79) 0.55 (0.56) 0.76 (0.78)
+SIT 0.92 (0.92) 0.91 (0.91) 0.87 (0.88) 0.89 (0.89)

4.2 Prediction

We evaluate the prediction skill of our seasonal hindcasts for
SIT, SIE, and IIEE using the metrics outlined in Sect. 3.1, and
building on the reanalysis evaluation. For all quantities, we
remove the linear trend that is highly predictable. The FREE
experiment serves as a baseline for assessing skill driven
by external forcings but shows minimal skill for detrended
ACC (Kimmritz et al., 2019), so its results are not discussed
here. Prediction skill and underlying mechanisms vary sig-
nificantly by region (Bushuk et al., 2024). Our assessment
spans both the pan-Arctic region and specific basins, follow-
ing the approach of Bushuk et al. (2017). We use the same
regions as defined in Bushuk et al. (2017), shown in Fig. 8.

The Cryosphere, 20, 853-873, 2026

We compare the performance of CTRL and +SIT to high-
light the role of SIT in improving predictability across dif-
ferent regions. We present the central Arctic, Beaufort Sea,
Barents Sea, Bering Sea, and pan-Arctic regions, where the
largest differences in SIE, SIT and IIEE skill between CTRL
and +SIT are observed, but an assessment for other regions is
also available in the Supplement. Even if the time span of our
experiment covers an unprecedentedly long period to assess
the impact of SIT on seasonal predictions, the limited sam-
ple size of 21 hindcasts per season makes it challenging to
perform the significance test of the differences between the
systems.
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Figure 5. Bias (left-hand side) and bfRMSE (right-hand side) for SIE (top) and SIT (bottom) for FREE, CTRL and +SIT. SIC observations
compared to SIC observations from NOAA, and the SIT from the PIOMAS reanalysis between 2003 and 2023 and CS2SMOS observations
between 2010-2023. The blue-shaded area shows the time when SIT observations are assimilated.

Table 2. Bias, bfRMSE and ACC for the SIE and SIV in March and September in the FREE, CTRL and +SIT experiments. The unit of bias
and bfRMSE in SIE (SIV) is km? (km3). Observed SIE is computed from NOAA OISSTV2 and we use SIV computed from PIOMAS. The

system with the best performance is highlighted in bold.

SIE March ‘ September

Experiment Bias bfRMSE ACC ‘ Bias bfRMSE ACC
FREE 6.5x 1010 9.8 x 1010 0.1 | 33x1019 24x100 0.6
CTRL 74%1010  22x1010 08| 34x100 39x1019 07
+SIT 23x1010  29x1010 06| 29x10® 38x101" 0.8
SIV March ‘ September

Experiment Bias bfRMSE ACC ‘ Bias bfRMSE ACC
FREE 16x 1012 2.1x1012 0.8 19x 1012 2.4x 1012 0.7
CTRL 7.0 x 1012 3.25 x 1012 0.8 | 10.0x10'2 3.3 x 102 0.9
+SIT —1.0x1012 372x102 09| 40x102 25x10!2 0.9

4.2.1 Prediction of sea ice thickness

The assimilation of SIT observations improves detrended
ACC and detrended bfRMSE of SIT prediction (Figs. 9
and 10). In each region, ACCs of +SIT are positive and
higher than the ones of CTRL, which are mostly not statis-
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tically significant (the top row of Fig. 9). However, in most
cases, ACC of +SIT does not pass the student’s ¢ test due
to the small sample size (the bottom row of Fig. 9). Results
are clearer with bfRMSE. +SIT shows lower bfRMSE than
CTRL in almost all four regions and target months (Fig. 10).

The Cryosphere, 20, 853-873, 2026



864 N. Williams et al.: Assimilation of ENVISAT and CS2SMOS sea ice thickness for sea ice prediction
a) March b) September
— FREE
= CTRL
- — 4SIT
NE —— NOAA Obs
-
3
&
]
8
T
-
£
°
g
s
>
g
%

T T T
2011 2015 2019

Year

T T
2003 2007 2019

Figure 6. Arctic SIE (top) and SIV (bottom) in March (left-hand side) and September (right-hand side) for validation datasets and our
experiments (FREE, CTRL and +SIT). Shaded region shows the ensemble mean plus/minus one standard deviation for each experiment.
SIC observations from NOAA, and the SIV from the PIOMAS reanalysis between 2003 and 2023. The dashed vertical lines split the whole
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Figure 7. Climatology of IIEE, MAE and displacement (DISP) of
three NorCPM experiments averaged over 2003-2023. The blue-
shaded area shows the time when SIT observations are assimilated.

In the central Arctic, there is an overall improvement of

detrended ACCs and bfRMSE for all lead months, but sig-
nificant detrended ACCs +SIT are only found for +SIT in
January—March. This coincides with times when detrended
bfRMSE is also most reduced from CTRL. There is also a
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small reduction of detrended bfRMSE in winter. This sug-
gests that the year-to-year anomaly of SIT can be predicted
beyond 12 lead months.

In the Beaufort Sea, there is again an overall increase in
detrended ACC (as for the central Arctic), but it is only
significant in November—December, for hindcast initialised
in January. Detrended bfRMSE is also strongly reduced for
this hindcast. A clear improvement is also found in January—
March for long lead times. It is somewhat surprising to see
a degradation, in January for hindcasts started in October (at
lead month 3), but an improvement for hindcasts started in
March (at lead month 9). Both hindcasts assimilated the last
SIT in March, but the October hindcast assimilated SIC and
ocean observation from April to September in addition. This
implies that the SIC assimilation degraded the accuracy of
the SIT. Hence, we have seen in Sect. 4.1, that CTRL re-
duces error compared to FREE, but still performs substan-
tially poorer than SIT+ for SIT. This indicates that the per-
sistence of SIT initialisation across summer is more accurate
than using SIC for updating SIT.

The benefit is much less clear in the Barents Sea. For the
July-initialised prediction, there was significant ACC up to
lead month 8 in February—March. There is also a significant
correlation associated with a strong reduction of bfRMSE at
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Figure 8. A map showing the regions used in this study. The regions
are defined by Bushuk et al. (2017).

lead month 12 in December. This is associated with a good
climatology for SIT, SIE and (possibly) SID in November,
December and January.

The pan-Arctic is the region for which we see the largest
benefit from initialising SIT. The detrended ACC values are
improved and the correlations are significant in January—
March up to lead months 12. The associated detrended
bfRMSE values are in agreement and also strongly reduced.
Improvements in November—December are comparatively
smaller than that of the later winter months, which can again
be attributed to the lack of SIT observations in summer.

Overall, the SIT prediction results are quite promis-
ing and consistent with some previous studies (Blanchard-
Wrigglesworth et al., 2011b, a). The impact is largest in the
central Arctic and Beaufort Sea, where the observations are
most accurate and where SIT anomalies persist longest. Our
analysis did not assess prediction skills beyond 12 months
lead time, but significant prediction skills of SIT were found
to reach this limit — e.g. in the Beaufort and the Pan-Arctic.

4.2.2 Prediction of sea ice extent and sea ice edge

For the predictions of SIE, we focus on bfRMSE and IIEE,
as results from the ACC are less clear. ACC differences for
detecting benefits from initialization can be problematic if
the skill from the externally forced climate trend is high and
the ACC differences are small — the normalisation step can
yield misleading results (Smith et al., 2019).

The differences in bfRMSE between CTRL and +SIT
are more nuanced than for SIT, as shown in Fig. 11 and
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somewhat disappointing. In the central Arctic, there is lit-
tle change except in the September SIE prediction for the
April and July initialisations, which shows some improve-
ments in +SIT. In the Barents Sea, the results mixed, with
some improvements in predictions from January, but degra-
dation in the other start months. In the Beaufort Sea, there are
quite strong improvements around August—October for every
lead time, but it does also appear to lead to some degrada-
tions in the months preceding. Finally, in the Bering Sea, im-
provements are more homogeneous for the first few months,
with January initialised hindcast showing more substantial
improvements. There are some improvements in bfRMSE in
some other Pacific-side marginal regions.

As we did for the reanalysis, we investigate the IIEE of
the hindcasts in Fig. 12. The IIEE shows substantial im-
provement centered around September for all lead months,
with improvement generally occurring between August to
November. The result for the full RMSE of SIE looks very
similar (not shown). As such, the location of the ice edge is
improved primarily due to the bias changes in SIT, which
improved the SIE bias during that period (Fig. 5). In order to
better exemplify that we will look in more detail at the Beau-
fort Sea has consistently shown the most positive results for
predictions of SIE in our study so far.

We look at the SIE climatological mean of the hindcast
in the different systems and for different start months in the
Beaufort Sea (Fig. 13). The +SIT system climatological min-
imum is in better agreement with the NOAA observations for
each start month than the CTRL and FREE predictions. The
improvements are largest during the melt season — even for
the October initialised hindcast. This is in good agreement
with the improvements we saw for the IIEE and confirms
that the main reason for improvements in IIEE relates to im-
proving the SIT bias that reduces the bias in SIE during the
melting season.

5 Discussions and conclusions

In this study, we have used the NorCPM coupled global cli-
mate model to assimilate SIT data alongside SIC, SST and
ocean profiles of temperature and salinity data. We compared
the performance of our system that assimilated SIT in addi-
tion to the other datasets, to highlight the role of SIT in im-
proving predictability across different regions. We first pro-
duced a reanalysis and then used this reanalysis to initialise
seasonal hindcasts (+SIT). We validated our results not only
using the standard metrics (bias, bfRMSE and ACC), but also
IIEE, which provides unique insights on skill at the ice edge.
We also measured our results against independent SIT mea-
surements from the BGEP ULS moorings.

We evaluated the assimilation of ENVISAT and
CS2SMOS SIT data into NorCPM. While ENVISAT
has higher uncertainties than CS2SMOS, it extended the
reanalysis period and improved SIT and ice edge hindcast
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Figure 9. Detrended ACCs of our seasonal hindcasts for SIT from CTRL and +SIT with observations of SIT from CS2SMOS. Crosses

are shown when comparison with observations is not possible due to lack of observations. The dots represent the ACC values that are not
statistically significant.
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Figure 12. Difference of IIEE between CTRL and +SIT over the
whole Arctic. Blue (red) means +SIT is better (worse) than CTRL.

estimates in the central Arctic, particularly during the melt
season through the SIT bias reduction in winter.

CS2SMOS provided more accurate data and greater re-
ductions in biases in comparison to ENVISAT. Despite its
limitations, ENVISAT data proved useful for reanalyses —
highlighted by the DFS metrics that quantify the influence
of each observational product — and provides meaningful ob-
servations in a period and location where observations are
crucially lacking. We experienced some challenges in the
transition period between ENVISAT and CS2SMOS, notice-
able by discontinuities in the time series of SIE and SIV. It
is because ENVISAT has a high uncertainty due to the in-
strumentation, which disproportionately observes thicker ice
(Louet and Bruzzi, 1999; Schwegmann et al., 2016; Tilling

https://doi.org/10.5194/tc-20-853-2026

et al., 2018). There has been some initiatives to harmonize
the two products by correcting for the bias in ENVISAT us-
ing CS2 and the period where the two products observational
period overlapped between 2010-2012 (Tilling et al., 2019).
Using a bias-corrected ENVISAT together with CS2 could
lead to further improvements in reanalysis and prediction for
SIT and SIE. There will also be a possibility in the future
to assimilate a recently developed ice thickness dataset dat-
ing back to 1994 (Bocquet et al., 2024), substantially length-
ening the reanalysis by a further ten years and ensuring the
consistency of the different sources of observations.

Our newest reanalysis +SIT showed substantial improve-
ments compared to previous NorCPM versions (i.e., CTRL
and FREE) with regard to ice thickness and ice volume. Bias
and bfRMSE in SIT were both significantly reduced in +SIT,
as our FREE and CTRL reanalyses have too thick ice all over
the central Arctic and then large positive thickness biases in
some places of up to 5 metres in comparison to CS2SMOS.
The positive effects of the thickness assimilation in the +SIT
reanalysis thus led to improvements in the ice volume esti-
mates. The improvements in the volume estimates are dif-
ficult to completely validate due to the lack of sea ice vol-
ume observations, but compared well with the PIOMAS re-
analysis, which has been extensively validated with thickness
measurements over a long period (Schweiger et al., 2011).
The +SIT reanalysis also showed a reduced bfRMSE of SIV,
highlighting that the assimilation does correct more than just
the SIT bias. Validation with independent BGEP ULS mea-
surements of SIT showed that the +SIT reanalysis had sub-
stantially smaller bias and bfRMSE than CTRL and FREE,
including during the ENVISAT period from 2003 to October
2010. The improvement in SIT also yielded improvement in
SIE during the melting season and, therefore, also for IIEE.

We found that thickness prediction was substantially im-
proved by the ice thickness assimilation across almost all re-
gions. The largest part of the error reduction was from cor-
recting model bias, which persisted throughout the year in
good agreement with previous studies (Bushuk et al., 2017;
Schrider et al., 2019). However, our results also showed that
the SIT assimilation improved the detrended bfRMSE up to
12 lead months, with the most notable improvement in the
Pan-Arctic, Beaufort Sea and the central Arctic. Skill was
not as clear in the Barents Sea. The results showed that we
could predict SIT anomalies for at least up to a year in some
regions. It would be interesting to extend the length of the
hindcast to asses up to which time scale year-to-year anoma-
lies of SIT are predictable. We could also clearly identify
the detrimental impact of the lack of SIT observations during
summer, highlighting the need to consider a product that ex-
trapolates SIT estimate during that season — as for example
Landy et al. (2022).

Correcting the SIT bias and anomaly had a lower-than-
expected impact on the Arctic SIE predictions. Correcting
the SIT bias yielded improvements in the climatology of SIE
in the melting season and, as a consequence for the IIEE
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Figure 13. Climatological mean of SIE predictions from our NorCPM experiments and observations from NOAA in the Beaufort Sea. The

region is as defined by Bushuk et al. (2017).

metric. This improvement in late summer agreed with pre-
vious sea ice prediction studies with thickness initialisation
(Bushuk et al., 2017; Schroder et al., 2019), which have
found SIT assimilation can help to reduce thickness biases
and thus improve SIE prediction. The reason is that SIT re-
duced the positive bias in our model and, as a consequence,
increased the area and the transition pace towards a sea ice
minimum. However, if one removes the trend and the mean
bias, the SIT brings some but little added value. Some skills
were identified in the Beaufort Sea during summer, central
Arctic and Bering Sea. This was when and where NorCPM
(CTRL) tends to perform the poorest compared to other dy-
namical models submitted to SIPN (Bushuk et al., 2024).
Still, SIT assimilation also yielded some degradation in the
other basins (e.g., Barents Sea). This was likely related to
the discontinuity in the observation period (summer observa-
tions missing and transition from ENVISAT to CS2SMOS).
Furthermore, it should be remembered that even if our study
covers an unprecedentedly long period (21 years), this is
still too short to assess robustly year-to-year variability, es-
pecially considering the large trend in Arctic sea ice that can
module internal variability.

Overall, this study advances the prediction capabilities of
sea ice in NorCPM through additionally assimilating SIT

The Cryosphere, 20, 853-873, 2026

data alongside SST, ocean profiles of salinity and tempera-
ture and SIC data. Here, we showed some improvements in
SIT, SIE and IIEE prediction using SIT initialisation. While
the improvement of SIT was extended for the whole year and
all lead time, SIE and IIEE were improved primarily dur-
ing summer and in the central Arctic, where the improve-
ment relates to a reduction of bias. We also found that the
ENVISAT dataset can be useful for sea ice reanalyses and
prediction (for monthly averages), which, to our knowledge,
have been assimilated into a global climate model for the first
time. Still, the SIT improvement on detrended SIE anoma-
lies is lower than expected. As SIT plays an important role in
the dynamics and thermodynamics of sea ice, a possible rea-
son may be that the sea ice model parameters used in this
study have been calibrated to compensate for model bias.
This can be bias in SIT, but also bias in the other compo-
nents. A new ensemble-based parameter estimate was devel-
oped in NorCPM to tune model parameters efficiently (Singh
et al., 2022, 2025). For our next steps, we aim to test the use
of sea ice drift assimilation for refining three key sea ice pa-
rameters: air-ice stress, ocean-ice stress, and ice strength in a
version of the model state that is sustained to a low level.
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