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Abstract. Sea-ice biogeochemical models are key to under-
standing polar marine ecosystems. We present an intercom-
parison of six one-dimensional models, assessing their abil-
ity to simulate algal phenology and nutrient dynamics us-
ing physical-biogeochemical data from an Arctic drift expe-
dition in spring 2015. While no model fully captured ob-
served bloom dynamics with default settings, tuning im-
proved biomass but had a limited impact on nutrients. The
experiment revealed challenges in simulating short-lived, dy-
namic ice habitats, which are expected to become more com-
mon in a changing Arctic. Variability in tuning strategies un-
derscores key knowledge gaps and highlights the need for
coordinated future model developments to improve reliabil-
ity and predictive capacity.

1 Introduction

Sea ice is home to an active microbial community, with ice
algae displaying some of the highest Chlorophyll-a (Chl-a)
concentrations of any aquatic environment (Arrigo, 2017).
Ice algae play multiple pivotal roles in polar oceans, rep-

resenting the largest biomass fraction in sea ice (Poulin et
al., 2011), contributing to overall marine primary production
(Dalman et al., 2025), acting as a critical food source for the
marine food web, especially during winter (Schaafsma et al.,
2017), and efficiently contributing to the ocean carbon sink
(Boetius et al., 2013). Together with phytoplankton, ice algae
form the foundation of the polar marine food web, support-
ing key under-ice foraging species such as Arctic cod (Bore-
ogadus saida) in the Arctic Ocean (Geoffroy et al., 2023) and
Antarctic krill (Euphausia superba) in the Southern Ocean
(Kohlbach et al., 2017). These species depend on the pres-
ence of sea ice and play a crucial role in transferring car-
bon to higher trophic levels, including humans (Steiner et al.,
2021).

Current environmental changes are placing considerable
pressure at the base of the food web, triggering significant ef-
fects throughout trophic levels (e.g., Post et al., 2013; Koch et
al., 2023). Despite the recognised importance of the sea-ice
ecosystems (Lannuzel et al., 2020), our knowledge remains
limited due to their remote location and extreme weather
conditions, which restrict observational data – particularly
biological observations – to sparse spatial and temporal dis-
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tributions. As a result, the representation of sea-ice biolog-
ical and ecological processes in numerical models has his-
torically been limited. However, in recent decades, signifi-
cant advances have been made in modelling sea-ice habitats
and the evolution of sea-ice biological communities (Castel-
lani et al., 2025). Progress includes improved representa-
tion of physical processes, greater biodiversity, and enhanced
ecosystem complexity.

An intercomparison of three-dimensional models has al-
ready been conducted to understand similarities and dif-
ferences in simulated ice algae abundance and distribution,
the Ice Algae Model Intercomparison Project – Phase 1
(IAMIP1, Watanabe et al., 2019). This study investigated
the seasonal-to-decadal variability in ice-algal primary pro-
ductivity across four Arctic regions during 1980–2009, as
simulated by five participating models. Its conclusions indi-
cated that, despite the ongoing reduction in Arctic sea ice,
the decadal trend in ice-algal productivity remained unclear.
The vernal bloom shifted towards an earlier onset and shorter
duration over the simulated period, and the choice of maxi-
mum algal growth rate was identified as a key driver of inter-
model differences in simulated ice-algal primary productiv-
ity. A second phase, expanding the study’s scope to global
coverage and centennial timescales following CMIP6 (Cou-
pled Model Intercomparison Project Phase 6, Eyring et al.,
2016) protocols, is currently underway (IAMIP2, Hayashida
et al., 2021). However, given the numerous limitations and
uncertainties associated with these large-scale models, they
are more useful for deriving bulk properties than for investi-
gating more detailed ecological processes.

To this end, one-dimensional (1D) process models become
essential for addressing knowledge gaps in sea-ice biogeo-
chemistry and ecological dynamics, as they provide a level
of detail that large-scale models lack. They also allow for
direct comparisons with in-situ observations, improving the
ability to validate results. However, existing process models
have been developed independently during periods of lim-
ited observations and incomplete process understanding, val-
idated by observations at different locations, leading to sub-
stantial differences across models. These differences make an
intercomparison of models performances challenging. To ad-
dress this, the BEPSII (Biogeochemical Exchange Processes
at Sea-Ice Interfaces, https://www.bepsii.org, last access: 20
January 2026) expert group initiated an intercomparison of
1D sea-ice biogeochemical models, presented here, aimed at:
(i) understanding variability among models in representing
key processes and responses to a common set of boundary
conditions, (ii) identifying divergences in models’ behaviour,
the variety of tuning strategy, and the drivers of model sen-
sitivity, (iii) testing transferability, and finally (iv) promot-
ing harmonisation for future model developments. The focus
has been on understanding the similarities and differences
in simulated ice algae dynamics and investigating the con-
trolling factors responsible for the temporal variability and

magnitude of ice-algal productivity among participating 1D
models.

We present in this study an intercomparison of 1D sea-ice
biogeochemical models (briefly described in Sect. 2.1 and
more comprehensively in Appendix A), focusing on their
ability to simulate ice algal dynamics and nutrient cycling.
Using a refrozen lead time series (described in Sect. 2.2) as a
test case, we assess model performance through a structured
comparison of simulated and observed biogeochemical vari-
ables. Two experiments – “no tuning” and “tuning” – were
conducted (Sect. 2.3) to evaluate the baseline model config-
urations as well as the impact of targeted parameter adjust-
ments on model accuracy. We analyse differences in model
outputs, identify key sources of variability, and discuss the
challenges associated with simulating ice algal growth and
nutrient fluxes (Sect. 3). Finally, we highlight the implica-
tions of our findings for future model development and pro-
pose directions for improving the representation of biogeo-
chemical processes in sea-ice models (Sect. 4).

2 Methods

2.1 Sea-ice biogeochemical models

1D process models are typically designed to represent only
vertical processes, assuming that horizontal advection is neg-
ligible. Since they are computationally efficient, these mod-
els can incorporate a high level of ecosystem complexity,
such as representing multiple functional groups of organisms
and providing high vertical resolution by discretising sea ice
into several layers.

1D sea-ice biogeochemical models vary in vertical reso-
lution, ecosystem complexity, and whether they are coupled
to the ocean and/or atmosphere (Castellani et al., 2025). The
biogeochemically active part of sea ice, also known as the Bi-
ologically Active Layer (BAL, Tedesco et al., 2010), is repre-
sented either as a single layer near the ice-ocean interface of
prescribed or variable thicknesses depending on sea-ice per-
meability, or as multiple layers spanning the vertical range of
the sea ice with an active brine network (e.g., Jeffery et al.,
2016). Single-layer approaches are computationally more ef-
ficient than multi-layer models. A single-layer model with
variable thicknesses in response to thermodynamic growth,
often referred to as dynamic layering, provides a more real-
istic representation of bottom community dynamics (Tedesco
et al., 2010). Multi-layer models, on the other hand, capture
the vertical variability of biogeochemical variables and allow
simulating surface and infiltration communities.

As in ocean models, the structure of sea-ice microbial
ecosystems is represented using a set of “Plankton Functional
Types” (PFTs), which in our model framework include sea-
ice algae, sea-ice heterotrophic bacteria, and sea-ice fauna
(grazers), and non-living inorganic (e.g., sea-ice micro- and
macronutrients) and organic matter (e.g., sea-ice detritus).
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The simplest models are N-P models, which include only one
nutrient (N) and one algal functional type (P). The elemen-
tal composition of ice algae is typically fixed, based on pre-
scribed Redfield carbon, nitrogen, silicon, phosphorous ra-
tios (106 : 16 : 16 : 1), along with fixed Chl-a : carbon ratios.
The more comprehensive N-P-Z-D models also include graz-
ers (Z) (such as sea-ice fauna) and sea-ice detritus (D). In the
simplest version of these models, only one limiting nutrient
is considered. More complex models may represent multi-
ple nutrients and different PFTs for ice algal communities,
as well as bacteria and grazers. In simpler models, the pro-
cesses associated with bacterial remineralisation or grazing
are often implicitly parameterised using constant rates.

The intercomparison included five modelling teams and a
total of six model configurations. These models varied in sev-
eral aspects, encompassing differences in physical and bio-
geochemical process complexity, radiation schemes, vertical
resolution, choice of limiting nutrient, area of original tuning
of the model, and coupling to an interactive sea-ice physical
model and/or ocean biogeochemical model of various com-
plexity. Table 1 summarises the main commonalities and dif-
ferences among the models. For more details on a specific
model, we refer to the model’s original reference (Table 1)
and further description in Appendix A.

Most of the models had interactive physical components,
while only one (i.e., SIMBA) required prescribed ice physics.
Additionally, only half of the models were coupled to an in-
teractive ocean biogeochemical model. Among the sea-ice
physical models, complexities ranged from a Semtner 0-layer
scheme (SM 0L) to multi-layer energy-conserving models
(EC ML). All models, except one, used a single-band radi-
ation transfer scheme, with several assuming Beer-Lambert
(BL) light attenuation, while only one employed a Delta-
Eddington (DE) scheme. The majority of the models simu-
lated ice algae only in the bottom sea-ice layer, either as a
static or dynamic system, while two models were multi-layer
models, simulating ice algae along the entire ice column. In
terms of ecosystem complexity, models varied from simple
Redfield-based models (RFD) with a single limiting nutrient,
one algal group, and a detritus compartment to more compre-
hensive quota models with several functional groups, includ-
ing ice bacteria, ice fauna, and multi-nutrient limitations.

2.2 The N-ICE2015 Dataset

The refrozen lead time series monitored during the N-
ICE2015 expedition (Granskog et al., 2018) was selected as
a test case for the model intercomparison due to the high fre-
quency of available physical and biogeochemical measure-
ments (e.g., Kauko et al., 2017; Olsen et al., 2017). The N-
ICE expedition was a field campaign conducted aboard the
RV Lance, which was frozen into pack ice north of Svalbard,
drifting between approximately 83 and 80° N in the south-
ern Nansen Basin of the Arctic Ocean between January and
June 2015. Among the four ice floes monitored during the

study period, the refrozen lead data were derived from Floe
3, which was studied from mid-April to early June 2015 as
it drifted southward from 81.8 to 80.5° N (see Appendix A,
Fig. A1).

The lead, approximately 400 m wide, opened on 23 April,
began refreezing on 26 April, and was fully refrozen by 1
May. The newly formed young ice in the lead was sampled
from 6 May along a 100 m-long transect extending from the
edge of the lead toward its centre every 2–3 d until it broke
up on 4 June (Kauko et al., 2017). The algal growth period
occurred in April and May. While the ice algal community
was initially diverse, pennate diatoms of the genus Nitzschia
became dominant later in the season.

The N-ICE2015 refrozen lead time series was chosen for
this intercomparison based on two key factors:

– Observational data availability: It provides sufficient
observations (Kauko et al., 2017) for comparison with
model simulations of physico-biogeochemical vari-
ables.

– Ancillary data availability: It includes detailed time se-
ries of atmosphere and ocean data, necessary to force
model runs, and has been tested for feasibility in a pre-
vious 1D modelling study (Duarte et al., 2017).

2.3 Experimental setup

A strict protocol was developed and followed by all mod-
elling groups. To accommodate the diversity of models,
a minimum set of variables was selected for comparison
with observations. These included sea-ice season timing,
ice thickness, and snow thickness for coupled physical-
biogeochemical models, as well as sea-ice nutrient concen-
trations and algal biomass (represented by Chl-a) for all
models.

Two distinct experiments were conducted to assess model
performance. The first experiment, labelled “no tuning”,
aimed to run each model in its default configuration. The
primary objective was to analyse the differences between
model outputs and observational data and quantify the ex-
tent of biases. The intercomparison within this experiment
sought to identify potential reasons for deviations from ob-
servations, such as the omission of key processes or inad-
equate parameterisations. The second experiment, labelled
“tuning”, involved adjusting the models to better align with
observed physical and biogeochemical properties. This ex-
periment aimed to identify which processes needed to be
modified or added, as well as the specific parameterisations
or parameters that were adjusted and fine-tuned to improve
agreement with observations.

Both experiments were carried out independently by each
modelling group, without prior knowledge of the work un-
dertaken by others. This approach was adopted to eliminate
potential biases, whether conscious or unconscious, during
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Table 1. Sea-ice biogeochemical models participating in the 1D intercomparison project. BGC stands for biogeochemistry. Please see the
main text for the remaining nomenclature used in the table.

Model/Properties BFM-SI BFM-SI-Clim CICE 5.1 CSIB-1D SIESTA SIMBA

Ice Physics Modified SM
0L

Modified SM
0L

EC ML SM 0L EC ML Prescribed

Transport Growth/melt Growth/melt Growth/melt,
brine
drainage/diffu-
sion

Melt Desalination Growth/melt

Radiation 1 band; BL 1 band; BL 1 band; BL 1 band; BL 32 bands; DE 1 band; BL

Grid for sea ice
BGC

1L, bottom,
dynamic

1L, bottom,
dynamic

Multi-layer 1L, bottom,
static

Multi-layer 1L, bottom,
static

Sea-ice
functional
groups

4N-2P-2D-1B-
1Z

1N-1P-2D 3N-1P-1D 3N-1P-1D 4N-1P-1D 1N-1P-1D

Cell
quotas/Chl:C

Quota/Prognostic Quota/Prognostic RFD/Constant RFD/Constant RFD/Constant RFD/Constant

Limiting
element(s)

Nitrogen,
Phosphorous,
Silicon

Silicon Nitrogen,
Silicon

Nitrogen,
Silicon

Nitrogen,
Phosphorous,
Silicon

Nitrogen

Ocean BGC 1D slab 1D slab n.a. 1D n.a. n.a.

Area of model
original tuning

Greenland
fjord (Arctic)

Greenland
fjord (Arctic)

Barents Sea
(Arctic)

Resolute
Passage
(Arctic)

Weddell Sea
(Antarctic)

Central Arctic
Ocean (Arctic)

Reference Tedesco et al.
(2010)

Tedesco and
Vichi (2014)

Duarte et al.
(2017)

Mortenson et
al. (2017)

Saenz and
Arrigo (2014)

Castellani et al.
(2017)

the implementation phase. To ensure a standardized com-
parison across models, all simulations used the same atmo-
spheric and ocean forcing, as well as identical initial and
boundary conditions, described in Duarte et al. (2017). Forc-
ing time series included air temperature, precipitation, spe-
cific humidity, and wind speed (Hudson et al., 2015; Co-
hen et al., 2017); incident surface short and longwave radi-
ation (Taskjelle et al., 2016; Hudson et al., 2016); sea ice
temperature and salinity (Gerland et al., 2017); surface cur-
rent velocity, heat fluxes, salinity, and temperature (Peter-
son et al., 2016, 2017); and ocean surface nutrient concen-
trations (Assmy et al., 2016). Atmospheric forcing was pro-
vided at hourly resolution, while oceanic forcing was avail-
able daily. For the sea-ice biogeochemical model without a
thermodynamic component (i.e., SIMBA), observed ice and
snow thickness data were provided. This standardised ap-
proach improved the comparability of the models, allowing
for a robust evaluation of model performance. In the final
phase, results were presented by each modelling group, and
teams collaboratively discussed challenges, adjustments, and
tuning choices.

3 Results and discussion

To support the interpretation of the biogeochemical model
performances, we first compared modelled and observed sea-
ice physical properties, in particular sea-ice thickness and
surface (snow/ice) temperature (Fig. 1). While the models
were forced with 2 m air temperature, the surface temper-
ature shown here refers to the simulated snow or ice sur-
face temperature, which may diverge from the atmospheric
forcing depending on the model physics and surface energy
budget. We did not include snow thickness in this compar-
ison, as observed values were relatively low with low vari-
ability, ranging between 2 and 6 cm between 7 May and 3
June (Kauko et al., 2017) and thus had a limited influence on
model differences for this specific case.

Observed sea-ice thickness shows relatively stable values
around 0.2 m from early May to early June, with minor vari-
ability in the observations (Fig. 1). Models with thermody-
namic components (BFMSI/BFMSI-CLIM, CICE5.1, CSIB-
1D, and SIESTA) generally captured the observed thick-
ness range and seasonal trend, although some diverge more
notably (Fig. 1a). Surface temperature simulations show

The Cryosphere, 20, 723–736, 2026 https://doi.org/10.5194/tc-20-723-2026



L. Tedesco et al.: Sea-Ice Biogeochemistry Model Intercomparison 727

Figure 1. Model results for sea-ice thickness (a) and surface temperature (b). Observations of sea-ice thickness are shown as dots for the
mean among replicates (at least 5 each) from different ice cores, while associated bars indicate the variability of the measurements between
their maximum and minimum. The observed air temperature (Hudson et al., 2015; Cohen et al., 2017) is part of the forcings provided to the
modelling groups and it is shown for comparison with modelled surface temperature.

stronger deviations across models. Although all models fol-
low the overall seasonal warming trend observed in the N-
ICE2015 air temperature data, the amplitude and short-term
variability differ (Fig. 1b). While some models reproduce
much of the daily variability, others exhibit smoother or
warmer biases. These differences in physical conditions in-
fluenced light penetration and melt timing, which in turn af-
fected the timing and magnitude of simulated algal blooms,
which will be analysed next.

Although the N-ICE refrozen lead resembles a typical ice
season, in the “no tuning” experiment, none of the models
accurately captured the observed algal phenology and bloom
magnitude (Fig. 2a). All but one model underestimated Chl-
a and produced a delayed bloom onset, though performances
varied across diagnostic measures. Since most of the models
tended to overestimate sea-ice thickness (Fig. 1), the delay
in the simulated algal bloom could be attributed to reduced
light transmittance through thicker ice. However, the delay
also occurred in models that did not overestimate ice thick-
ness, suggesting that other factors must have contributed to
this bias. Due to limited nutrient data, few considerations can
be drawn about simulated nutrient dynamics beyond an as-
sessment of the potential model error’s order of magnitude.
Here, all but one model underestimated nitrate and silicate
concentrations (Fig. 2c, e), though all remained within a rea-
sonable range.

In the “tuning” experiment, all models were able to reason-
ably simulate the ice algal phenology, though performance
still varied across models (Fig. 2b). However, little improve-
ment was achieved in the simulation of nitrate and silicate dy-
namics. Interestingly, tuning focused on different processes
and parameters among models (Table 2), including:

– Change in the algal growth rate and/or in the size of the
initial seeding population (initial ice algal biomass)

– The possibility of downward vertical migration of algae
during melting

– Magnitude of silicic acid limitation by changing the half
saturation constant and/or the nitrogen: silicon ratio of
ice algae and/or the reference quota of silicon in sea-ice
algae.

Overall, all tuning strategies aimed to either lessen nutri-
ent limitation or increase algal seeding or growth. However,
despite tuning efforts, none of the models significantly im-
proved the simulation of nitrate magnitude, except for BFM-
SI, which was also the only model that did not underestimate
nitrate and silicate before tuning (Fig. 2d, f). When com-
paring nutrient parameterisations across models (Table 1),
BFM-SI stands out as the only model in which the variability
of the dynamic sea-ice BAL modulates the upward fluxes of
dissolved inorganic matter. CSIB-1D also performed well in
simulating the silicate dynamics, matching the magnitude of
the observations before and after tuning. For most models,
silicon had the strongest effect on ice algal growth during
tuning, suggesting a potentially dominant role of silicon lim-
itation. This would also explain why SIMBA was the only
model that did not underestimate, but rather overestimated,
ice algal growth, since it did not include silicon among its
limiting nutrients.

In general, models performed more poorly when simu-
lating sea-ice nutrient dynamics. The limited improvement
in nutrient representation compared to biomass can be at-
tributed to model groups prioritising fitting simulations to
Chl-a observations during the tuning phase, as these data
were more temporally resolved and directly linked to the
main focus of the study, i.e., the ice algal bloom. In contrast,
nutrient observations were limited to a single time point,
which made them more difficult to constrain reliably. Never-
theless, despite the scarcity of available data, the simulation
of nutrient processes appears poorly constrained, pointing to
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Figure 2. Experiment with no tuning (a, c, e) and tuning (b, d, f). Model results for ice algae Chl-a (a, b), nitrate (c, d), and silicate (e, f).
Observations are shown as dots for the mean of the entire ice core or the bottom 10 cm (5 replicates each), while associated bars indicate the
variability of the measurements between their maximum and minimum measures.

the need for more in-depth observational and experimental
work.

The tuning experiment highlights the diversity of tuning
parameters across models (Table 2), prompting critical ques-
tions about model functionality and calibration. While mod-
els can be adjusted to align with observations, there is a risk
of achieving accurate results for the wrong reasons, partic-
ularly when tuning compensates for a missing or misrep-
resented process. In our case, none of our models included
young ice formation. Observations indicate that a consistent
fraction of the sea-ice sampled from the refrozen lead was
granular (Graham et al., 2019), formed as frazil ice in tur-
bulent conditions. As turbulence subsides, frazil crystals rise
and can entrain suspended particles, including biological ma-
terial, during ascent, effectively concentrating them in the
newly forming ice (Weeks and Ackley, 1982; Janssens et al.,
2018). This may explain some of the tuning strategies, such
as increases in algal growth rate (CSIB-1D) or the size of the
initial seeding population (BFM-SI, BFM-SI-Clim).

However, other factors likely influenced tuning choices as
well. For example, some models used diatom Si : N ratios
more appropriate for Antarctic waters, which overestimate
the silica demand of Arctic diatoms. For example, CICE used

a Si : N ratio close to 4 : 1, whereas Arctic diatoms may be
closer to 1 : 1 (Duarte et al., 2017). In addition, the presence
of relatively low Si : N ratios in Atlantic Water entering the
region, as discussed in studies such as Duarte et al. (2021),
supports the potential for silica limitation to emerge before
nitrogen is exhausted. These regional nutrient characteris-
tics and model structural features may have prompted tuning
strategies involving relaxed silica limitation (BFM-SI, BFM-
SI-Clim, CICE 5.1, and SIESTA). Furthermore, the apparent
need to reduce nutrient limitation in order to simulate realis-
tic biomass may indicate that ocean-to-ice nutrient fluxes are
underestimated in some models (Duarte et al., 2022).

Taken together, this intercomparison underscores how
model tuning decisions can reveal not only numerical sen-
sitivities but also areas where physical and biogeochemi-
cal process representations remain uncertain or incomplete.
These insights are valuable for guiding future model devel-
opment and targeted observations.

4 Conclusions

This study presents an intercomparison of one-dimensional
sea-ice biogeochemical models, evaluating their ability to
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Table 2. Comparison among models’ performances before and after tuning. For reference, observed chlorophyll-a concentrations peaked on
3 June at∼ 2.1 mg m−2 in bottom sea ice and ∼ 2.6 mg m−2 in whole sea ice, aiding comparison of simulated bloom timing and magnitude.
Only parameters that were explicitly tuned are listed. Parameters not shown were kept at their default values or followed the standard initial
and boundary conditions provided for the intercomparison.

Model/
Properties

BFM-SI BFM-SI-Clim CICE 5.1 CSIB-1D SIESTA SIMBA

Ice algal
phenology
before
tuning

Good algal growth
timing but lower algal
biomass.
Max [Chl-a]
= 0.18 mg m−2.
Day of the year of peak
of Chl-a = 146.

Good algal growth
timing but lower algal
biomass.
Max [Chl-a]
= 0.26 mg m−2.
Day of the year of peak
of Chl-a = 146.

Good algal growth
timing but lower algal
biomass.
Max [Chl-a]
= 0.56 mg m−2.
Day of the year of peak
of Chl-a = 142.

Good algal growth and
lower algal biomass.
Max [Chl-a]
= 0.90 mg m−2.
Day of the year of peak
of Chl-a = 152.

Good algal growth
timing but lower algal
biomass.
Max [Chl-a]
= 0.41 mg m−2.
Day of the year of peak
of Chl-a = 147.

Earlier algal growth
and higher algal
biomass.
Max [Chl-a]
= 3.77 mg m−2.
Day of the year of peak
of Chl-a = 131.

Tuning
strategy

Lower silica limitation
and higher algal
biomass in seawater.

Lower silica limitation
and higher algal
biomass in seawater.

Lower silica limitation
and reduced
recruitment.

Higher algal maximum
specific growth rate.

Active algal migration
against brine
movement and lower Si
half-saturation
constant.

Lower algal growth
rate and removal of
winter drainage of
nutrients.

Parameter(s)
before
tuning

Initial seawater [Chl-a]
= 0.05 mg m−3.
Reference Si quotum
for adapted diatoms
= 0.0085 mmol m−3.

Initial seawater [Chl-a]
= 0.05 mg m−3.
Reference Si quotum
for adapted diatoms
= 0.0085 mmol m−3.

Diatom Si : N ratio
= 1.8.

Half saturation for
silicon uptake =
4.0 µM.
Diatom boundary
concentration =
0.002 µM.

Chl-a maximum
specific growth rate
= 0.85 d−1.

Algae fixed in ice layer
grid.
Half saturation of
silicon uptake
= 4.0 µM.

Chl-a maximum
specific growth rate
= 0.86 d−1.

Parameter(s)
after tuning

Initial seawater [Chl-a]
= 0.5 mg m−3

Reference Si quotum
for adapted diatoms =
0.0025 mmol m−3.

Initial seawater [Chl-a]
= 0.5 mg m−3

Reference Si quotum
for adapted diatoms =
0.0025 mmol m−3.

Diatom Si:N ratio =
1.0.
Half saturation for
silicon uptake
= 2.2 µM.
Diatom boundary
concentration
= 0.0011 µM.

Chl-a maximum
specifc growth rate
increased to 0.95 d−1.

Algae allowed to
migrate downward
with ice growth, up to
1.5 cm,d−1.
Half saturation of
silicon uptake
= 1.0 µM.

Chl-a maximum
specific growth rate
= 0.5 d−1.

Ice algal
phenology
after tuning

Algal phenology and
magnitude within
observed range; Nitrate
and silicate within
range.
Max [Chl-a]
= 1.67 mg m−2.
Day of the year of peak
of Chl-a = 146.

Algal phenology and
magnitude within
observed range;
Silicate within range.
Max [Chl-a]
= 2.14 mg m−2.
Day of the year of peak
of Chl-a = 147.

Algal phenology and
magnitude within
observed range; Lower
nitrate; Silicate within
range.
Max [Chl-a]
= 1.26 mg m−2.
Day of the year of peak
of Chl-a = 141.

Algal phenology and
magnitude within
observed range; Lower
nitrate; Silicate within
range.
Max [Chl-a] =
1.56 mg m−2.
Day of the year of peak
of Chl-a = 152.

Algal phenology within
observed range; Earlier
algal decay; Lower
silicate and nitrate.
Max [Chl-a]
= 1.23 mg m−2.
Day of the year of peak
of Chl-a = 147.

Algal phenology and
magnitude within
observed range; Lower
nitrate.
Max [Chl-a] =
0.89 mg m−2.
Day of the year of peak
of Chl-a = 137.

simulate algal phenology, bloom magnitude, and nutrient dy-
namics in a refrozen lead environment. The results high-
light significant disparities in model performance, with most
models struggling to accurately reproduce the observed algal
biomass and nutrient concentrations. For some models, this
difficulty persisted even after tuning. While adjustments im-
proved the representation of ice algal phenology, they had a
limited impact on nutrient concentration across most models,
emphasizing the challenges of parameterizing key processes
such as nutrient fluxes and reinforcing the need for continued
model development and validation supported by dedicated
field and experimental observations.

The intercomparison highlights the unexpected challenges
encountered in simulating a refrozen lead, primarily at-
tributed to the short ice season and the difficulty most mod-
els faced in accumulating sufficient sympagic (i.e., in-ice)
biomass. In a future Arctic Ocean characterized by increased
lead openings, refreezing events, and young ice formation,

there is an urgent need for models to be able to represent
such a dynamic environment. This study underscores the im-
portance of understanding and addressing the complexities
involved in simulating specific and dynamic environmental
scenarios.

The diversity of adjustments across models highlights
both the range of tuning options available and the persist-
ing knowledge gaps. The insights gained contribute valuable
knowledge to ongoing efforts aimed at refining and improv-
ing numerical models, ensuring their accuracy and reliabil-
ity in capturing complex interactions. To further advance this
field of science, collaborative and harmonized modelling de-
velopments are recommended. Variability in tuning strate-
gies underscores key knowledge gaps and the need for fur-
ther model development using more coordinated approaches,
such as common evaluation criteria and/or shared parame-
ter ranges. In doing so, sea-ice biogeochemical modelling
can build on lessons learned from open-ocean biogeochemi-
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cal intercomparison and tuning efforts (e.g., Schartau et al.,
2017), while addressing the unique challenges of simulating
sympagic systems. A Phase 2 of the intercomparison would
be highly valuable, potentially extending the study to the
variability of habitats characterizing Antarctic sea ice. Col-
laborative sensitivity tests could be conducted, with all mod-
els evaluating biological responses to the same tuning ad-
justments, tuning options could be expanded, and standard
parameter ranges could be revisited based on newer data col-
lected in recent years. Increased clarity of model sensitivities
would improve future model robustness and enhance con-
fidence in simulations of biogeochemical processes in ice-
covered oceans.

Appendix A: Model descriptions

A1 BFM-SI and BFM-SI-Clim

A1.1 Overview

The Biogeochemical Flux Model for sea ice (BFM-SI,
Tedesco et al., 2010) is derived from the Biogeochemical
Flux Model (BFM) framework (Vichi et al., 2023 and ref-
erences therein), retaining its structure based on Chemical
Functional Families (CFFs) and Living Functional Groups
(LFGs). CFFs represent the elemental composition of living
and non-living matter (C, N, P, Si, etc.), while LFGs describe
groups of organisms with similar functional behaviour.

The model simulates biogeochemical processes within the
Biologically Active Layer (BAL, Tedesco et al., 2010), the
time-varying, permeable fraction of sea ice where liquid
brine channels remain interconnected and biological activ-
ity can occur. This dynamic layer, typically located at the
ice bottom, evolves according to physical conditions (e.g.,
temperature, salinity, brine volume) computed by a sea-ice
physical model. The biological model simulates algal growth
and elemental cycling only within this layer, assuming all
biomass is confined to the permeable ice fraction continu-
ously connected to seawater, maintaining full mass conser-
vation at the ice–ocean–atmosphere interfaces.

The sea-ice physical model used in this study is ESIM (En-
hanced Sea Ice Model). ESIM is a sea-ice thermodynamic
model originally based on the Semtner 0-layer model (Semt-
ner, 1976), but with more physical processes. It was initially
built as a 1-D thermodynamic model of the sea-ice growth
and decay (Tedesco et al., 2009), calculating vertical heat
fluxes based on the 1-dimensional heat conduction equation.
ESIM has been later enhanced with a halodynamic compo-
nent (Tedesco et al., 2010). Initial salt entrapment, gravity
drainage, and flushing processes have been added to sim-
ulate the salinity evolution of the sea ice. In addition, the
model takes into account other processes such as different
forms of snow metamorphism (snow compaction, snow ice
and superimposed ice formation). ESIM has been developed

targeting biological applications, thus with a focus on the
physical requirements to model the biogeochemistry of the
sea ice. The feature that makes this coupling possible is the
innovative concept of the sea-ice BAL (Tedesco et al., 2010).
The application of the BAL concept is more realistic than a
prescribed static bottom BAL and is lighter than multi-layer
models, thus it is suitable for large-scale applications without
losing performance (Tedesco et al., 2010; Tedesco and Vichi,
2014).

A1.2 State variables and structure

BFM-SI resolves 28 state variables organized as:

– 2 LFGs for sea-ice algae:

a. Adapted diatoms (20–200 µm; Si-limited, highly
acclimated)

b. Surviving nanoflagellates (2–20 µm; low acclima-
tion capacity)

– 1 LFG for sea-ice fauna

– 1 LFG for sea-ice bacteria

– 6 inorganic CFFs: phosphate, nitrate, ammonium, sili-
cate, oxygen, carbon dioxide.

– 2 organic non-living CFFs: dissolved and particulate de-
tritus.

Each algal group is described by up to five state variables
(C, N, P, Si, and Chl-a), while ice fauna and bacteria by
up to three state variables (C, N, P). The model includes
four macronutrients (phosphate, nitrate, ammonium, sili-
cate), oxygen, and two detrital pools (dissolved and partic-
ulate, featuring up to 4 state variables C, N, P, Si). Biological
processes include primary production respiration, exudation,
nutrient uptake, lysis, and chlorophyll synthesis, with flexi-
ble stoichiometry (C : N : P : Si : Chl-a).

BFM-SI-Clim (Tedesco and Vichi, 2014) is a simplified
version of BFM-SI, retaining the same ecological dynamics,
but including a reduced number of state variables. BFM-SI-
Clim features only one single limiting macronutrient (Si) and
one single group of sea ice algae (i.e. ice diatoms), same de-
tritus and gases for totally 11 state variables.

A1.3 Coupling and boundary fluxes

BFM-SI and BFM-SI-Clim are coupled online to the pelagic
BFM with matching LFGs and CFFs.

– Ice–ocean fluxes: The entrainment or release of dis-
solved and particulate matter is proportional to ice
growth/melt rate and brine volume.

– Ice–atmosphere fluxes: The nutrient input from snow
and precipitation can be considered and scaled to snow-
melt rate.
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These exchanges ensure conservation of mass and consistent
carbon, nutrient, and gas cycling across the interfaces.

A1.4 Applications and relevance

BFM-SI represents the first process-based, biomass-explicit
sea-ice biogeochemical model within a generalized marine
biogeochemical framework. It can be used as a standalone
1-D module (Tedesco et al., 2010, 2012, 2014) or in coupled
online or offline configuration to 3-D ocean circulation mod-
els (Tedesco et al., 2017, 2019) to study seasonal productiv-
ity, biomass export, and the contribution of sea-ice biogeo-
chemistry to the global carbon cycle.

A2 CICE 5.1

A2.1 Overview

A comprehensive description of the Los Alamos Sea Ice
Model physics and biogeochemistry can be found in Hunke
et al. (2015) and Jeffery et al. (2016). The implementation
used in the present work is detailed in Duarte et al. (2017).
Therefore, in the next paragraphs we provide only a brief de-
scription of the model based on the cited references. There
are two main approaches to simulate biogeochemical pro-
cesses with CICE: one based on bottom ice biogeochem-
istry and another based on vertically-resolved biogeochem-
istry, which was used in the present study. This configura-
tion uses a biogrid of variable height which overlaps part of
the physical grid, used to compute thermodynamic processes.
The number of layers of both grids is the same but their ver-
tical resolution differs. The vertical extent of the biogrid is
defined by the brine height which represents the sea ice ver-
tical extent with an active brine network.

A2.2 State variables and structure

The number of biogeochemical state variables in CICE bio-
geochemistry depends on user-defined options. In the sim-
ulations presented herein, these included brine height, the
concentrations of nitrate, ammonium, silicic acid and diatom
nitrogen. Brine concentrations are used for internal calcula-
tions and bulk values stored in model output files. The brine
is exchanged across the layers of the biogrid and across the
ice-ocean interface. These exchanges include brine drainage,
driven by hydrostatic instability, and diffusion, driven by
concentration gradients. Other exchanges occur during freez-
ing and melting. In the case of sea ice inundation or snow
melt, exchanges occur also at the ice-snow or ice-atmosphere
interface. The biogeochemical model uses nitrogen as its
“currency”. The model computes nutrient and silicic acid (in
the case of diatoms) uptake by ice algae, remineralization and
nitrification. Ice algal growth and production may be light,
temperature or nutrient limited (nitrogen and silica, in the
case of diatoms), following the Liebig’s law of minimum.
Some tracers may cling to the ice matrix, such as ice algae,

resisting expulsion during desalination, unlike dissolved nu-
trients.

A2.3 Coupling and boundary fluxes

The CICE model may be coupled with ocean models and at-
mospheric models. We used a standalone configuration with
an ocean slab layer as the bottom boundary. Time series
of current velocities, heat fluxes, salinity, temperature, and
nutrient concentrations forced the model. The atmosphere
boundary was implemented using time series of air temper-
ature, humidity, short and long wave radiation, precipitation,
and wind velocity.

A2.4 Applications and relevance

The CICE model is a community-type model used in several
Earth System Models. It is one of the few models resolving
biogeochemistry vertically.

A3 CSIB-1D

A3.1 Overview

The Canadian Sea Ice Biogeochemistry 1-Dimensional
(CSIB-1D) model simulates ice algae and changes to nu-
trients within the ice. It is designed to simulate a sympa-
gic ecosystem and biogeochemical processes coupled to a
pelagic ecosystem in the underlying water column in order
to represent the Arctic marine environment. An in-depth de-
scription of the development and application of this model
can be found in Mortenson et al. (2017).

A3.2 State variables and structure

The CSIB-1D ecosystem is represented by one functional
sea-ice algal group dependent on three nutrients (silicate, ni-
trate and ammonium) in the lower skeletal layer of the sea
ice, set as a default in the bottom 3 centimetres of the ice. The
sea ice algae are limited by nutrients, light, and ice melt. The
model uses a subgrid-scale non-uniform snow depth distri-
bution to represent gradual snow melt and formation of melt
ponds impacting light transmissions and heat fluxes during
melt periods (Abraham et al., 2015). CSIB-1D ice algae are
meant to represent diatoms, prevalent in the Arctic sea-ice
environment.

The ocean biogeochemistry model is a ten-compartment
(small and large phytoplankton, microzooplankton, meso-
zooplankton, small and large detritus, biogenic silica, ni-
trate, ammonium, and silicate) based on Steiner et al. (2006).
The module was updated by including mesozooplankton as a
prognostic.

A3.3 Coupling and boundary fluxes

Exchange of nutrients between the skeletal layer and the
water column is by molecular diffusion and parameterized
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based on currents at the ice-water interface. The model is
coupled to a physical-biogeochemical ocean model based on
the General Ocean Turbulence Model (GOTM). GOTM pro-
vides the physical quantities required for computation of bio-
geochemical variables in the water column, such as horizon-
tal velocity fields, turbulent transports, photosynthetically ac-
tive radiation (PAR), and temperature. They contribute to
pelagic diatoms and detritus following Lavoie et al. (2009):
sloughed ice algae enter either the large phytoplankton pool
in which they continue to grow or the large detritus pool in
which they sink rapidly as aggregate products in the coupled
ocean model.

A3.4 Application and Relevance

CSIB has been applied to studies on the evolution of the ice-
water exchange of dissolved inorganic carbon (Mortenson
et al., 2018) and ice-water-air exchange of dimethyl sulfide
(Hayashida et al., 2017a) in the marine Arctic.

A4 SIESTA

A4.1 Overview

The Sea-Ice Ecosystem State (SIESTA) model is a thermody-
namic vertically-layered sea ice and snow model coupled to
an algal ecosystem model. The model and associated equa-
tions and parameterizations are described in Saenz and Ar-
rigo (2012, 2014). The model was developed to vertically re-
solve sea ice brine processes (and associated nutrient trans-
fer), sea-ice optics, shortwave radiation transfer, and the sea
ice algal productivity that is controlled by those processes.
The model uses a minimum layer thickness of 2 cm. When
the snow or ice thicknesses become greater than is resolved
by the maximum number of layers (snow: 26, ice: 42), model
layers grow and shrink in an accordion-fashion to preserve
2 cm resolution at the surface and snow-ice boundaries.

A4.2 State variables and structure

Sea ice algae in SIESTA is represented by a single (diatom)
class of algae with a fixed stoichiometry, with internal units
of carbon (mg m−3). Algae may be present in any layer of sea
ice. Besides algal carbon, the ecological state variables used
by the SIESTA model include temperature, salinity, density,
particulate organic carbon (detritus that is remineralized to
liberate macronutrients), and 4 macronutrients (ammonium,
nitrate, phosphate, silica). The model dynamically calculates
sea ice brine density and volume, and has parameterizations
of snow metamorphosis, sea ice surface melt and ponding,
snow-ice formation, brine pumping and drainage, and en-
hanced convection in the skeletal layer of growing sea ice.
Sea ice algae are considered motile and can migrate down-
ward at a limited rate, but do not migrate upward and are
considered released to the water column during bottom ice
melt.

A4.3 Coupling and boundary fluxes

SIESTA simulations in this manuscript were forced by time
series of surface atmospheric and surface ocean parameters.
SIESTA is mass- and energy-conservative to the accuracy of
its 1st-order implicit solver. Coupling at the surface boundary
requires the following atmospheric parameters: air tempera-
ture, wind speed, air pressure, dew point temperature, cloud
cover, downward longwave radiation, downwelling short-
wave radiation, total precipitation. Coupling at the lower
boundary requires the following surface ocean parameters:
temperature, salinity, and macronutrient concentrations (am-
monium, nitrate, phosphate, silica). SIESTA calculates, and
can return to coupled models, energy and mass fluxes from
the snow/ice/brine. Boundary flux calculations in SIESTA
are derived from CICE version 4 (Hunke and Lipscomb,
2008).

A4.4 Applications and relevance

SIESTA has been used to help bound the contribution of
sea ice algae to overall Southern Ocean primary produc-
tion (Saenz and Arrigo, 2014). SIESTA is also coupled
to a 1-dimensional vertical ocean model (KPP-Ecosystem-
Ice [KEI]) for investigation of dynamic-thermodynamic sea-
ice-ocean-ecosystem controls and interactions (Saenz et al.,
2023).

A5 SIMBA

A5.1 Overview

A comprehensive description of the Sea Ice Model for Bot-
tom Algae (SIMBA) can be found in Castellani et al. (2017).
Different from Castellani et al. (2017) where the process
of growth/melt was responsible for only algal loss, in the
present study it is applied to nutrients as well, and it is re-
sponsible for nutrient replenishment in the bottom of the ice.

A5.2 State variables and structure

SIMBA resolves only 3 state variables:

– 1 for sea-ice algae:

– 1 for nutrients (nitrate)

– 1 for detritus

The simulated biological processes are primary production
and nutrient uptake, whereas respiration, mortality, and rem-
ineralization are taken as constant. Equations are solved in
mmol N m−3. Equations are solved in the bottom of the ice,
the thickness of the ice bottom can be set according to the
available observations. In the case of N-ICE we used 10 cm.

The Cryosphere, 20, 723–736, 2026 https://doi.org/10.5194/tc-20-723-2026



L. Tedesco et al.: Sea-Ice Biogeochemistry Model Intercomparison 733

Figure A1. RV Lance drift between 18 April and 5 June 2015 during
the drift of Floe 3 of the N-ICE2015 expedition, from the Nansen
Basin and across the Yermak Plateau. The segment corresponding
to the time span of the simulations described in this study is shown
in red (Duarte et al., 2017).

A5.3 Coupling and boundary fluxes

SIMBA is coupled with the underlying ocean through the
growth and melt processes which are responsible for nutrient
exchanges and for algal loss. Ocean variables (i.e., nutrients
concentrations, ocean currents, and ocean temperature) must
be provided as forcing. Other required forcings includes ice
and snow thickness, integrated downward shortwave radia-
tion, and atmospheric temperature.

A5.4 Applications and relevance

SIMBA was developed to study algal phenology on a pan-
Arctic scale in two different environments: level ice and
deformed ice. With this aim, SIMBA requires prescribed
physics. In Castellani et al. (2017) the physical constraints
were provided by the MITgcm (Marshall et al., 1997; Losch
et al., 2010). This characteristic of the model enhances its
flexibility in applications and studies with different models
(see e.g., Castellani et al., 2022).

Code and data availability. All relevant data, model code, and sim-
ulation outputs used in this study are publicly available.

Model codes (by modelling group):

– BFM-SI and BFM-SI-Clim:
https://doi.org/10.5281/zenodo.18050331 (Tedesco, 2025).

– CICE5.1: https://doi.org/10.5281/zenodo.4675097 (Duarte,
2021a); https://doi.org/10.5281/zenodo.4675021 (Duarte,
2021b).

– CSIB-1D: https://doi.org/10.5281/zenodo.825274 (Hayashida
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