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Abstract. Seasonal snow is a critical resource for society by
providing water for billions, supporting agriculture, clean en-
ergy, and tourism, and is an important element within the
climate system by influencing the global energy balance.
However, accurately quantifying snow mass, particularly in
mountainous regions, remains a challenge due to substan-
tial observational and modeling limitations. As such, data
assimilation (DA) offers a powerful solution by integrating
observations with physically-based models to improve es-
timates of the snowpack. Previous snow DA studies have
employed an Ensemble Kalman Filter (EnKF) to assimilate
Sentinel-1 satellite-based snow depth retrievals, demonstrat-
ing improved accuracy in modeled snow depth, mass, and
streamflow when evaluated against in-situ measurements. In
those studies, the uncertainty of the assimilated retrievals was
assumed to be static in time and space, likely leading to a
suboptimal use of the observational information. Here, we
present several advances in snow DA. Using an EnKF, we
assimilate novel snow depth retrievals derived from a ma-
chine learning product that leverages Sentinel-1 backscatter
observations, land cover, and topographic information over
the European Alps. We also incorporate a spatiotemporally
dynamic observation error, whereby the uncertainty of the as-
similated snow depth retrieval varies in space and time with
snow depth (DA,r experiment). The machine learning snow
depth retrieval product is assimilated into the Noah-MP land
surface model over the entire European Alps at 1 km reso-
lution for the years 2015-2023 and snow depth, snow water
equivalent, and snow cover are evaluated against indepen-
dent in-situ data and satellite observations. The DAy, ex-
periment offers small, but significant improvements to snow
depth and snow water equivalent (SWE) mean absolute er-

rors (MAE), and slightly reduces snow cover, thereby bet-
ter matching satellite-based snow cover observations. Com-
pared to an open loop (no DA) experiment (OL), and an ex-
periment with an assumed static observation error (DAconst),
DAy, reduces SWE MAE by 25 % and 13 %, respectively,
compared with over 8000 manual SWE measurements. This
work demonstrates the benefits of machine learning based
snow depth retrievals and the impact of incorporating dy-
namic observation errors in EnKF-based snow DA.

1 Introduction

Snow is a valuable natural resource, integral for societal
needs and in the climate system. The runoff from seasonal
snow serves as a water source for billions of people (Barnett
et al., 2005; Mankin et al., 2015), supports clean hydroelec-
tric energy generation (Wasti et al., 2022), and sustains irri-
gated agriculture (Qin et al., 2020). Snow is also necessary
for the multi-billion dollar winter tourism industry (Outdoor
Industry Association, 2017; Parthum and Christensen, 2022;
Steiger et al., 2019). The total economic value of snow is es-
timated to be in the trillions of dollars (Sturm et al., 2017).
Furthermore, snow has a high albedo and therefore plays an
important role within the climate system by exerting a large-
scale cooling effect. Variability in snow cover therefore im-
pacts the Earth’s surface energy balance and has been shown
to potentially affect Northern Hemisphere atmospheric circu-
lation (Henderson et al., 2018). Significant changes including
a decline in snow-covered area, particularly at low elevations
(Bormann et al., 2018; Estilow et al., 2015), shifts in the tim-
ing of snow melt (Musselman et al., 2021; Vorkauf et al.,
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2021), and an increasing transition from snowfall to rainfall
at lower elevations (Safeeq et al., 2016) have been observed
in recent decades, with these changes projected to intensify
throughout the 21st century (IPCC, 2021).

Despite the importance of snow within Earth’s climate and
as a natural resource, accurately quantifying snow mass (or
snow water equivalent, SWE) in mountainous, complex ter-
rain remains a challenge. Because SWE is difficult and costly
to directly quantify (Dozier et al., 2016), measurements and
retrieval algorithms more commonly focus on snow depth,
which is related to SWE via snow density. In-situ observa-
tion stations provide point-based snow depth measurements
with good temporal frequency, but fail to capture spatial
snow variability, which can be great even in a small area
(Lépez-Moreno et al., 2015; Miller et al., 2022). Airborne
surveys provide accurate snow depth maps at a fine spatial
resolution (Deems et al., 2013), but their high costs and lo-
gistical constraints limit the frequency and spatial coverage
of these measurements. Snow depth has also been retrieved
using satellite observations, which have the benefit of pro-
viding frequent, global coverage (Lievens et al., 2019). One
approach estimates snow depth by comparing digital eleva-
tion models (DEMs) from snow-on and snow-off conditions.
These DEMs can be generated from satellite laser altimetry
such as ICESat-2 (Enderlin et al., 2022; Deschamps-Berger
et al., 2023; Besso et al., 2024) or from very-high-resolution
stereoscopic satellite imagery via photogrammetric methods
(Marti et al., 2016; Shaw et al., 2020; Deschamps-Berger
et al., 2020). Globally, passive microwave and synthetic aper-
ture radar (SAR) observations are more commonly used to
estimate snow depth. (Kelly et al., 2019; Luojus et al., 2021;
Lievens et al., 2022). However, passive microwave imagery
has a coarse spatial resolution (~ 25 km) and saturates above
1 m snow depth (Tedesco and Narvekar, 2010; Vander Jagt
et al., 2013), while SAR observations are challenged by wet
snow, shallow snow, and forest cover (Broxton et al., 2024,
Hoppinen et al., 2024; Lievens et al., 2022). Although recent
work has utilized machine learning (ML) techniques to en-
hance SAR-based snow depth retrievals (Daudt et al., 2023;
Broxton et al., 2024; Dunmire et al., 2024), there is still some
way to go for accurate global SWE estimation.

Ultimately, complex feedbacks between changes in snow
and other components of the global climate system are cur-
rently best studied using physics-based models (Girotto et al.,
2020). Since in-situ SWE observations are far sparser than
snow depth measurements (Dunmire et al., 2024), snow mass
estimates also rely primarily on modeling approaches. How-
ever, these models are limited by uncertainties in mountain
precipitation and low-quality forcing data (Giinther et al.,
2019; Raleigh et al., 2016; Terzago et al., 2020). In light of
these observational and modeling challenges, data assimila-
tion (DA) offers a way to overcome shortcomings of both
the model and observations by integrating in-situ and remote
satellite observations with physics-based models to improve

The Cryosphere, 20, 609-628, 2026

modeled snow variables (Helmert et al., 2018; Smyth et al.,
2020, 2022).

One method for assimilating observations into a physi-
cal model is via direct insertion, whereby the model’s state
variables are directly replaced with observations without any
statistical blending or error weighting (Rodell and Houser,
2004; Toure et al., 2018). Increasing in sophistication, opti-
mal interpolation methods, which consider model and obser-
vational uncertainty to blend the model and observations us-
ing statistically optimal weights (Liston and Hiemstra, 2008),
are commonly used at operational centers (Helmert et al.,
2018). Also common among operational centers (Helmert
et al.,, 2018), and one of the most used DA techniques
within the land surface modeling community, is the Ensem-
ble Kalman Filter (EnKF; Reichle et al., 2002). With an
EnKEF, the background-error covariance is not explicitly com-
puted, but instead estimated using an ensemble of model tra-
jectories. While this ensemble approach is advantageous for
high-dimensional, nonlinear systems where an exact com-
putation of the background-error covariance is impractical,
the assumption of unbiased, normally distributed model-state
errors is often violated for cumulative state variables like
snow depth. Despite its reliance on Gaussian assumptions,
the EnKF has been extensively used in previous snow data
assimilation work (Slater and Clark, 2006; Durand and Mar-
gulis, 2006; De Lannoy et al., 2012; Huang et al., 2017; Pflug
et al., 2024). An alternative solution that is commonly used
in snow DA, particle batch filters and smoothers are capable
of handling non-Gaussian noise and complex posterior dis-
tributions. In particular, particle batch smoothers have been
commonly applied to create snow reconstructions (Margulis
et al., 2015; Baldo and Margulis, 2018) or to downscale
model variables such as precipitation (Girotto et al., 2024;
Bachand et al., 2025).

Recent studies have used both particle batch smoothers
and the EnKF to assimilate SAR-based snow depth re-
trievals from Sentinel-1 (S1), thereby improving modeled
snow depth, SWE and streamflow compared to in-situ mea-
surements (De Lannoy et al., 2024; Brangers et al., 2024;
Girotto et al., 2024; Mirza et al., 2025). However, these pre-
vious snow DA studies make the simplifying assumption that
the observation uncertainty is constant in space and time,
meaning that a 10 cm snowpack is assumed to have the same
absolute uncertainty as a 400 cm snowpack, contributing to a
suboptimal use of the observational information.

Here, we present several advances in snow DA. First, we
assimilate snow depth retrievals from an ML product that
uses S1 observations, land cover, and topographic informa-
tion to estimate snow depth in the European Alps (Dun-
mire et al., 2024). These ML-based snow depth retrievals
have a higher accuracy and lower bias compared to previ-
ous Sl-based retrievals from a conceptual model (Lievens
et al., 2022), when validated against in-situ observations and
airborne snow depth maps from the European Alps. For
instance, compared to 798 Alps-wide in-situ measurement
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sites, the ML model has an average site mean absolute error
(MAE) of 0.18m and an average site bias of —8 mm, com-
pared to an MAE of 0.22 m and a bias of —99 mm for the con-
ceptual model, respectively. We assimilate these ML-based
snow depth retrievals within a land surface model over the
entire European Alps, a domain much larger than most pre-
vious snow DA efforts which focus primarily on smaller, re-
gional scales. Finally, we incorporate a dynamic observation
error, whereby the uncertainty of the assimilated snow depth
observation varies in space and time, reflecting the more real-
istic dynamics of uncertainty in snowpack observations. The
primary goal of this work is to assess the utility of incorporat-
ing dynamic observation errors versus commonly used static
observation errors in EnKF-based snow DA.

2 Materials and methodology

In this work, we utilized the NASA Land Information Sys-
tem (LIS; Kumar et al., 2006; Peters-Lidard et al., 2007) ver-
sion 7.5.0 to assimilate snow depth retrievals in the Noah-
MP land surface model (Niu et al., 2011; Yang et al., 2011)
version 4.0.1. The snow depth retrievals, land surface model,
DA experiments, and evaluation data and methods are further
described below.

2.1 Model setup and data
2.1.1 Noah-MP land surface model

To simulate snow processes over the European Alps (3.9945—
17.0175°E, 42.9945-48.6195°N), we ran Noah-MP on a
regular latitude-longitude grid with a spatial resolution of
0.009°. In Noah-MP, snow is simulated in up to 3 layers,
depending on the total snow depth. Snow processes and
properties such as melt metamorphism, canopy intercep-
tion, and snow cover fraction are represented by detailed
physically-based parameterizations (Niu et al., 2011). For
snow albedo, we used the Canadian Land Surface Scheme
(CLASS; Verseghy, 1991). For other parameterization op-
tions, we followed Brangers et al. (2024).

Before beginning our DA experiments, we performed
a 15 year model spin-up (2000-2015). The experiments
were conducted over the period spanning 1 October 2015-
30 April 2023 (8 snow seasons). Noah-MP was run with a
15 min model time step and daily averages of state variables
were written to output.

2.1.2 Atmospheric forcing for Noah-MP

The model was forced with atmospheric forcing from the
ECMWF Reanalysis, version 5 (ERAS; Hersbach et al.,
2020). The ERAS data were downscaled from their native
resolution (31 km) to the domain grid through bilinear spa-
tial interpolation and by applying a topographic lapse-rate
correction to correct the air-temperature forcing. ERAS has
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previously been used as atmospheric forcing in other snow
DA studies (Pflug et al., 2024; De Lannoy et al., 2024; Mirza
et al., 2025), and Brangers et al. (2024) additionally demon-
strated that ERAS forcing leads to superior modeled snow
depth, compared with simulations forced with The Modern-
Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2; Gelaro et al., 2017), and MERRA-
2 gauge-corrected precipitation (M2CORR; Reichle et al.,
2017). From Fig. 10 of Brangers et al. (2024), the ERAS,
MERRA-2, and M2CORR atmospheric forcing led to av-
erage modeled snow depth MAEs of 0.367, 0.404, and
0.434 m, and average snow depth biases of —0.07, 4+0.138,
and —0.363 m, respectively, compared to in-situ measure-
ment stations in the Western European Alps.

2.2 Machine learning snow depth retrieval

Previous work has assimilated snow depths retrieved from
the S1 satellite constellation over the European Alps (SDsg;
Brangers et al., 2024; De Lannoy et al., 2024). Here, we as-
similated snow depth estimates from Dunmire et al. (2024)
(SDmL), which uses machine learning to enhance S1-based
snow depth retrievals. Dunmire et al. (2024) use an eXtreme
Gradient Boosting (XGBoost) model that incorporates 12 in-
put features (elevation, slope, aspect angle, topographical po-
sition index, snow class, forest cover fraction, day of snow
season, snow cover fraction, cumulative snow cover fraction,
local incidence angle of the S1 observation, S1 VV backscat-
ter, and S1 cross-polarization ratio) to estimate snow depth
across the European Alps at 100 m resolution. When com-
pared to in-situ snow depth stations and airborne photogram-
metry snow depth maps, SDyp, is shown to reduce MAE
and improve bias compared to SDg; (MAE reduction from
0.22 m for SDg; to 0.18 m for SDyqg,, bias improvement from
—99mm for SDg; to —8 mm for SDyp.) (Dunmire et al.,
2024; Lievens et al., 2022).

We spatially averaged the SDyp retrievals to the 0.009°
model resolution and masked pixels with a glacier fraction
above 50 %, according to version 7 of the Randolph Glacier
Inventory (Pfeffer et al., 2014; RGI 7.0 Consortium, 2023).
We also temporally averaged the SDy retrievals every 7d
and assimilated these estimates weekly, in the center of the
7d averaging window. This step was taken to avoid assimi-
lating outlier snow depths (the SDyp, retrievals can be noisy
in time) and to avoid negative consequences (e.g. spurious
temporal trends) associated with a changing assimilation fre-
quency (Dee, 2005).

2.3 Data assimilation approach and experiments

We conducted 3 different experiments: (1) an open loop,
model-only experiment (OL) which serves as a benchmark
to evaluate the added value of assimilating SDypp retrievals,
(2) a DA experiment with an assumed constant observation
error (DAconst), and (3) a DA experiment with a dynamic ob-
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servation error that varies spatially and temporally (DA ;).
For all experiments, we utilized 12 ensemble members, cre-
ated by perturbing forcing variables (precipitation, 2 m air
temperature, and incident longwave and shortwave radiation)
and the total forecasted snow depth (with the total snow depth
perturbations distributed over the snow layers). Although a
larger ensemble size is more optimal, our choice of 12 en-
sembles is reasonable as the control vector used in the assim-
ilation consists of just total snow depth (Pflug et al., 2024).
The perturbation parameters are summarized in Table 1 and
follow Modanesi et al. (2022), Bechtold et al. (2023), and
Pflug et al. (2024).

For the DA experiments, we used a one-dimensional EnKF
to assimilate the SDyy retrievals into Noah-MP. The Kalman
gain matrix determines the strength of the model corrections
at each location (x) and timestep (¢), and is given by Eq. (1)
below:

ofz(x,t)

sz(x, 1) —{-ogbs

K(x,1)= ey

where oy is the standard deviation of the forecast error and
represents the uncertainty in the forecast’s total snow, and
Oobs 1S the standard deviation of the observation error and
represents the uncertainty in the observations. The EnKF ex-
tends a traditional Kalman Filter by estimating oy using fore-
cast ensembles, while opg 1s a user-defined parameter. Here,
we tested two different approaches for ogpg, One that is con-
stant (DA onst) and one that varies in space and time (DAygr).

As per De Lannoy et al. (2024), the DA onst €Xperiment
assumes a constant value of o,ps =0.3 m. The multiplica-
tive factor for the snow depth state perturbations (Table 1)
was determined experimentally through trial and error, with
the optimal value selected based on its performance com-
pared to in-situ snow depth observations over a subset re-
gion (Brangers et al. (2024), personal communication, Isis
Brangers).

The DAy, experiment expands upon DA onst by varying
Oobs throughout space (x) and time (¢) following Eq. (2) be-
low:

0.0, SDy (x. 1) < 0.167,
Oobs(x,1) = { m x SDmL(x,1), 0.167 < SDmp(x,1) <3.5, (2)
1.05. SDy (x, 1) > 3.5.

where SDyp (x, ¢) is the assimilated observation at loca-
tion x and time ¢ and m is a user-defined multiplier. We
calibrated m experimentally by selecting the optimal value
when comparing modeled snow depth with in-situ observa-
tions in a subset region (45-46°N, 6—8°E). Here, we used
m = 0.3. Equation (2) assumes that oopg varies linearly as a
function of assimilated snow depth. Figure S1 in the Supple-
ment demonstrates that this assumption is valid at indepen-
dent in-situ measurement sites. For SDy, below 0.25 m, the
average error of the SDyy, product compared to in-situ mea-
surements is 0.05 (Fig. S1), and as such we chose this as a
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Figure 1. Assumed observation error standard deviation (oyps) as a
function of the assimilated snow depth (SDyr.) for the two DA ex-
periments.

minimum threshold value for ogps (Eq. 2). Setting this min-
imum threshold also avoids issues when SDyp(i,t) =0m.
We can see from Fig. S1 that there are no assimilated snow
depths above 3 m at these in-situ measurement sites, making
it difficult to characterize the observation error for deeper as-
similated snow depths. As such, we also defined an upper
threshold for ogps of 1.05 m, corresponding to an assimilated
snow depth of 3.5m (Eq. 2). This value was also chosen as
an upper threshold because we observed that o, which repre-
sents the uncertainty in the model-only (OL) simulated snow
depth, given by the standard deviation of the model ensem-
bles, levels off above 3.5 m snow depth (Fig. S2). We chose to
reflect this feature of the forecast error in our characterization
of the observation error. Figure 1 compares o,ps from DAconst
and DA, as a function of the assimilated snow depth obser-
vation (SDy).

For both DA experiments, the snow updates were ap-
plied following the methodology of Brangers et al. (2024),
whereby the increments applied to the total forecasted snow
depth are divided over the different snow layers, proportion-
ate to each layer’s forecasted share of the total snowpack, and
SWE is updated accordingly assuming snow density remains
unchanged during each update. The compaction and redistri-
bution of snow layers is done during the model propagation.
This approach circumvents the need to compute dynamic
error covariances between total snow depth and a varying
number of snow state variables in varying numbers of lay-
ers. We assimilated SDypr, estimates weekly each year from
1 September through 31 March, excluding assimilation fur-
ther into the ablation period when wet snow complicates the
S1 signal. Due to limitations of using S1 observations to es-
timate snow depth in forested terrain, and the unsuitability of
the ML SD retrieval over glaciated terrain, we do not assim-
ilate over forested areas or glaciers. Following De Lannoy
et al. (2024), we also do not assimilate when the soil or veg-
etation temperature is above 5 °C.
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Table 1. Perturbation parameters applied for the OL and DA runs. * We perturb the total snow depth and propagate these perturbations into

the different snow layers.

Variable Perturbation type  Standard deviation ‘ Cross-correlation
Forcing variables ‘ SW LW P T
SW: Incident shortwave (W m_2) multiplicative 0.6 —-05 =05 0.3
LW: Incident longwave (W mfz) additive 50.0 1 0.5 0.6
P: Precipitation (kg m~2 s—2) multiplicative 05 —o 5 05 1 —0.1
T: 2m air temperature (K) additive 1.0 0.6 —0.1 1
Forecast variable™ ‘

Snow depth (m) multiplicative 0.0005 ‘

2.4 Evaluation

For each of our three experiments (OL, DA¢onst, DAvar), we
utilized a variety of in-situ and satellite-based products to
evaluate (1) snow depth, (2) SWE, and (3) snow cover frac-
tion (SCF) and snow disappearance date (SDD). We also
compared our results with those from De Lannoy et al.
(2024), in which the SDg; retrieval was assimilated with a
static observation uncertainty.

2.4.1 Snow depth evaluation

Snow depth estimates from each experiment (OL, DA onst,
DA ,,r) were compared with in-situ snow depth observations
from across the European Alps. For comparing the perfor-
mance of our DA experiments against the OL experiment,
we utilized independent in-situ observations that were not in-
cluded in the training for the ML model from Dunmire et al.
(2024), and sites located in places where the SDyr retrievals
were assimilated (i.e. not in dense forest, over glaciers). In
total, we utilized snow depth data from 588 measurement
sites, which report for varying parts of the 8§ year study pe-
riod. We obtained these point-scale snow depth measure-
ments from the WSL — Institute for Snow and Avalanche Re-
search SLF (Switzerland, 220 sites), Météo-France (France,
57 sites), GeoSphere Austria (Austria, 108 sites), the Inter-
national Center for Environmental Monitoring CIMA Re-
search Foundation (Italy, 10 sites), Provincia autonoma di
Trento (Italy, 48 sites), Provincia autonoma di Bolzano —
Alto Adige (Italy, 19 sites), Valle d’ Aosta (Italy, 27 sites), the
Agenzia Regionale per la Protezione Ambientale — Piemonte
(Italy, 28 sites), the European Centre for Medium-Range
Weather Forecasts” SYNOP snow depth measurement net-
work (Global, 35 sites; de Rosnay et al., 2015), and Global
Historical Climatology Network (Global, 36 sites). For each
experiment, we computed the mean absolute error (MAE),
bias, and Pearson correlation coefficient (R) of the modeled
snow depth compared with the in-situ observations obtained
at these sites. To investigate how well the model captures
spatial and temporal anomalies in snow depth patterns, we
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also computed spatial and temporal anomaly correlation co-
efficients (ACC). The spatial ACC was computed for each
day throughout the snow season with more than 10 in-situ
snow depth measurements available. Spatial anomalies were
computed for each site by subtracting the spatial mean snow
depth recorded across all measurement sites on that day.
The temporal ACC was computed for each measurement
site with 5 or more years of in-situ observations. Tempo-
ral anomalies were calculated at each site by subtracting the
site’s multi-year climatology (2015-2023) with a 10d mov-
ing mean smoothing function applied. In order to utilize more
sites with a longer time series of observations, we also in-
cluded sites that were used in the ML training. Thus, for this
metric, we only compared the two DA experiments, which
both assimilated the same SDyy;. retrievals.

2.4.2 SWE evaluation

Next, we evaluated modeled SWE, with in-situ measure-
ments of SWE located (1) in places where DA was applied,
and (2) not on a glacier, according to the Noah-MP glacier
land cover class and the Randolph Glacier Inventory (Pfeffer
et al., 2014; RGI 7.0 Consortium, 2023). We consolidated
8211 manual SWE measurements from the Bundesminis-
terium fiir Land- und Forstwirtschaft, Regionen und Wasser-
wirtschaft (Austria, 676 measurements), The Climate Data
Center of the German Weather Service (Germany, 2311 mea-
surements), the WSL - Institute for Snow and Avalanche
Research SLF (Switzerland, 1546 measurements), Provin-
cia autonoma di Trento (Italy, 944 measurements), and Valle
d’Aosta (Italy, 2793 measurements). As with snow depth, we
compared MAE, bias, and R for the different experiments.

2.4.3 SCF and SDD evaluation

We further evaluated the impact of the DA on the timing of
snow disappearance and modeled SCF. We first compared the
SDD of the model experiments at the in-situ snow measure-
ment sites. We defined the SDD as the first day of five con-
secutive days with less than 0.1 mm snow depth, following
the date of peak snow. For in-situ SDD, the day of peak snow
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was computed using the in-situ snow depth and for model
SDD, the day of peak snow was computed using snow depth
output from the appropriate model experiment. We also, in
the same manner, computed SDD using the Interactive Mul-
tisensor Snow and Ice Mapping System (IMS) product. IMS
is a 1 km horizontal resolution binary snow cover dataset that
is derived from a variety of satellite and in-situ data.

We also compared SCF and total snow covered area from
our three model experiments with both the IMS product (U.S.
National Ice Center, 2008) and the Copernicus Fractional
Snow Cover product (European Union’s Copernicus Land
Monitoring Service information). The Copernicus product is
available at a 20 m spatial resolution and is computed from
Sentinel-2 Level-1C imagery. The product is not gap-filled,
thus data gaps exist when clouds are present. We regrid-
ded both snow cover products to our model domain grid
using nearest neighbor interpolation for IMS, and averag-
ing for the Copernicus product. For comparison with the
IMS product, we converted modeled SCF to a binary value:
SCF < 50% = 0, SCF > 50% = 1. For comparison with the
Copernicus product, we ignored areas with data gaps.

2.4.4 Comparison to SDg; DA

To compare with previous work that assimilates snow depth
retrievals from the S1 change detection algorithm (SDgy;
Lievens et al., 2022), we compared output from our two
DA experiments with DA output from De Lannoy et al.
(2024) (experiment DAg;). This DAg; experiment utilized
the same DA setup as in DA onst, With a static observation
uncertainty (oops = 0.3 m), but assimilates SDg retrievals in-
stead of SDy.. Here, we utilized 4548 manual SWE mea-
surements collected within the Po River basin (the study do-
main of De Lannoy et al., 2024) to compare SWE MAE be-
tween the DAconst, DAvar, and DAg;) experiments.

3 Results
3.1 Snow depth

The practical impact of the DAy, and DA¢onst €xperiments
on snow depth estimates is illustrated in Fig. 2. When the as-
similated snow depth retrieval is 1 m, the observation uncer-
tainty is equivalent for both experiments (Fig. 1). The vari-
able observation uncertainty approach in DAy, dynamically
adapts to assimilated snow depth, resulting in stronger cor-
rections for shallow depths while DA ong provides stronger
corrections at higher depths (Fig. 2). For assimilated snow
depths below 1 m, the observation uncertainty is smaller in
DA than in DA¢ongt, resulting in a lower observation error
covariance (o,hs) in the EnKF (Eq. 1) and stronger correc-
tions of the posterior state toward the observations in DA,y
(Fig. 2a). In contrast, the constant ogps 0f 0.3 m in DA opgt 1S
relatively large for shallow snow depths and results in mini-
mal corrections of the posterior state.
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A measurement site with assimilated snow depths greater
than 1 m is demonstrated in Fig. 2b. In this case, the ob-
servation uncertainty is smaller for DAcong than for DAy,
resulting in stronger posterior state adjustments in DAcong.
At this measurement site we see that the OL experiment is
closer to the in-situ snow depth than the assimilated observa-
tions, leading to a deterioration in model performance when
the DA is applied (both with DAy, and DAcongt). For DAyar,
this phenomenon occurs at ~ 16 % of all measurement site
(Fig. 3a), with 1 % experiencing a deterioration in SD MAE
greater than 125 mm.

Across the 588 in-situ snow depth measurement sites used
for evaluation, the corrections applied in DAy,; result in snow
depth estimates that align more closely with in-situ observa-
tions (Fig. 3). The OL experiment yields a site-average MAE
of 0.244 m, a RMSE of of 0.300m, a bias of 0.113m and a
Pearson correlation coefficient of 0.75. Both the DA onst and
DAy experiments improve these metrics, with site-average
MAE values of 0.237m and 0.215m (median values of
0.207 m and 0.185 m), RMSE values of 0.292 m and 0.268 m,
and biases of 0.106 m and 0.055 m, respectively. These im-
provements are illustrated in Fig. 3, which compares MAE
from the DA, experiment with the OL experiment (Fig. 3a)
and DA ongt (Fig. 3b). Relative to the OL, MAE is reduced in
DAy by more than 25 mm at 245 sites (42 %), while 92 sites
(16 %) have an MAE increase exceeding 25 mm. Comparing
DA ,ur to DA¢onst, we find that MAE is reduced in DA, by
more than 15 mm at 297 sites (51 %), while 71 sites (12 %)
experience a deterioration greater than 15 mm. While im-
provement in MAE from the OL experiment is not significant
for DAconst (Mann—Whitney U test p-value = 0.59, median-
test p-value = 0.68), the MAE improvement is small, but sig-
nificant for DA, (Mann—Whitney U test p-value =0.001,
median-test p-value =0.03). The site-average Pearson cor-
relation coefficient slightly deteriorated for DAconst and im-
proved for DA, to 0.75 and 0.76, respectively.

While the OL experiment already does a good job at rep-
resenting spatial snow depth patterns (spatial ACC =0.71),
Fig. 3c highlights that, for most of the snow season, the
DA, experiment offers slight improvements in the repre-
sentation of these spatial patterns. Averaged across the en-
tire year, the spatial ACC increases from 0.71 for the OL
experiment to 0.72 for DA¢opst and to 0.73 for DAy, The
greatest improvement in spatial ACC for DA, occurs dur-
ing the early snow season (November), with values exceed-
ing those of the OL and DA qns¢ experiments by 0.058 and
0.047, respectively. From December through April, the spa-
tial ACC for DA, remains approximately 0.021 greater than
that of the OL experiment. By mid-April, all three experi-
ments exhibit similar performance in capturing spatial snow
depth patterns. Additionally, both DA¢ons¢ and DAyar well-
capture temporal snow depth patterns, with average tempo-
ral ACC values of 0.68 and 0.72, respectively (median tem-
poral ACC values of 0.73 and 0.76, respectively). The im-
provement in temporal ACC for DAy, from both the OL
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Figure 2. Snow depth estimates and independent in-situ measurements at two example sites. (a) Snow depth from DA¢ongt (red, left) and
DAyar (orange, right) compared with the OL (navy) from a measurement station in Austria (47.0944° N, ~ 13.6228°E, 1050 m elevation).
The shading represents =+ 1 standard deviation in the model ensembles. The sage green dots represent the assimilated SDyp, retrievals, with
error bars for the assumed observation error standard deviation (ogpg, Eq. 2). (b) Same as (a), but for a different measurement station in
Switzerland (45.9872° N, ~ 7.7836° E, 2948 m elevation). These two sites were chosen due to a lack of gaps in the in-situ measurements and
their general representativeness of locations where the DA removes and adds snow.

and DA ong is statistically significant (p < 0.01 for both a
Mann—-Whitney U test and median-test, Fig. 3d). Across the
948 sites evaluated, 491 sites (52 %) have an improved tem-
poral ACC in DAy, (> +0.02 compared to DA¢onst), while
103 sites (11 %) experience a deterioration in temporal ACC
(< —0.02 compared to DAconst)-

The OL experiment has an elevation-dependent snow
depth bias, characterized by an overestimation of snow depth
at lower elevations and early in the snow season, and an
underestimation at higher elevations during peak snow ac-
cumulation (Fig. 4a). Both of these issues are mitigated in
the DAy, experiment, which brings seasonal biases closer
to zero across all elevation bands (Fig. 4c). In contrast, the
DA onst experiment minimally corrects snow depth overesti-
mation in the early season and at low elevations, due to the
relatively higher assumed observation uncertainty for shal-
low snow (e.g., Fig. 2a). From 1 September through 31 Jan-
uary, the DA, experiment reduces the average bias across
all sites by 46 %, while the DA ons €xperiment achieves a
10 % reduction over the same period. These improvements
are particularly notable at mid-elevations (1000-2000 m),
where DAy, reduces model bias by 54 % throughout the sea-
son, compared to a 13 % reduction in model bias at these
same sites in DA ongt.
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The MAE is also reduced by DA, across most elevation
bands and throughout much of the season. The difference in
MAE between the OL and DA, experiments (Fig. 4e) in-
dicate that the largest MAE improvements occur from early
winter through peak accumulation. However, an increase in
MAE at high elevations during the melt season (March on-
wards) suggests a tendency for the DA experiments to retain
snow for too long, which could be due to limitations in the
modeled melt processes or biases introduced by the assimi-
lated observations at higher elevations (e.g., Fig. 4d).

3.2 SWE

Compared with 8211 manual SWE measurements from 231
different measurement sites across the Alps, the DAy, ex-
periment also offers small, but significant improvements for
SWE MAE compared to both the OL and DA qpg exper-
iments (p < 0.001 for both a Mann—Whitney U test and
median-test). Relative to the OL, DAy, reduces SWE MAE
by at least 15 mm at a majority of these sites (57 %), while
23 % of sites experience a deterioration in SWE MAE of
more than 15 mm (Fig. 5a). Similar improvements are ob-
served when comparing DAy, to DAconst, With DAy, out-
performing DA onst at 56 % of measurement sites (Fig. 5b).
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Figure 3. Experiment evaluation at in-situ snow depth measurement sites. (a) Change in MAE at each measurement site from the OL
experiment to DAyar. Green colors indicate an improvement in MAE in the DAy, experiment. On the color bar, the number of sites that fall
within each color range is indicated and points within the white color are not plotted on the map. (b) Change in MAE at each measurement
site from the DAconst experiment to DAyay. (€) Change in the spatial anomaly correlation coefficient (ACC) for each DA experiment from the
OL experiment. The spatial ACC is averaged over all snow seasons (2015/16-2022/23). (d) Change in the temporal ACC from the DA¢onst
experiment to DAy,r. Green colors indicate an improvement in temporal ACC in the DAy, experiment.

In the OL experiment, we observe a positive bias for low
observed SWE and a negative bias for high observed SWE
(Fig. 5¢), similar to the bias patterns seen for snow depth.
The DA, experiment reduces both biases, with the largest
improvements occurring for low observed SWE values. For
instance, for in-situ SWE below 200 mm, the bias is reduced
by 52 % in DA, compared to the OL (OL bias = +166 mm,
DAy, bias =+80mm), meanwhile the bias in-situ SWE
measurements above 600 mm is reduced by 7 % in DAy,
(OL bias = —362 mm, DAy, bias = —335 mm). As a result,
the overall average SWE bias decreases from +81 mm in
the OL to +18 mm in DA,;. In comparison, the bias reduc-
tion for the DA opst (+76 mm bias) experiment is limited, be-
cause DA ongt marginally corrects the positive bias for low
observed SWE, due to minimal model adjustments for shal-
low assimilated snow depths (e.g., Fig. 2a). Both DA onst
and DA, also improve the Pearson correlation coefficient
(R=0.60for OL, R =0.72 for DAconst, R =0.71 for DAya;),
indicating a stronger correlation with measured SWE.

Across all experiments, SWE typically peaks during the
first week of March (1-7 March). Water Year 2017 recorded
the lowest modeled SWE in our OL experiment, and cor-
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respondingly saw the largest SWE increases in DA, prior
to early March, particularly in the Central Alps and Aus-
trian Alps (Fig. 6a). However, DA,;; SWE improvements
were mixed during this year. Of the 41 manual measure-
ments taken between 1 and 7 March 2017, only 24 % demon-
strated improved SWE MAE of more than 15 mm in DA ,;.
While the DA led to more accurately estimated SWE at some
sites (e.g., Fig. S3b and d), it resulted in an overestimation of
SWE at others (e.g., Fig. S3c, e, and f). For example, three
measurement sites in Italy (dark pink dots in Fig. 6a) ex-
perienced an average increase of 101 mm in added SWE in
DA, relative to the OL. The average SWE MAE at these
sites increased by 134 mm in DA,,;, indicating that the as-
similated SDy, observations overestimate snow at these lo-
cations. The degradation is even larger in DA qng;, Where the
SWE MAE increases by 193 mm compared to the OL. This
stronger deterioration arises from the lower assumed ogps in
DA onst at these locations, which leads to stronger correc-
tions toward the observations. A time series of modeled and
observed SWE at one of these sites is shown in Fig. S3e.
The largest SWE reductions from the OL to the DA, ex-
periment occurred during Water Year 2018, particularly in
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Figure 4. Seasonal evolution of bias and mean absolute error (MAE) stratified by elevation. Panels (a—d) show the seasonal snow depth bias
for the (a) OL, (b) DAconst, and (¢) DAyar experiments, and for (d) the assimilated observations (SDyyr ). Bias is computed relative to in-situ
snow depth measurements and is grouped by elevation bands (indicated by different colors). Panels (e) and (f) show the change in MAE
between the OL and DAy, experiments (e) and between the DAconst and DAy,r experiments (f). Negative values in (e, f) indicate improved
performance (decreased MAE). Statistics are computed for each day, averaged over the entire 8 year period (2015-2023). A 14 d smoothing
is applied to each timeseries and the number of in-situ measurement sites (n) within each elevation band is provided in the legend.

the Bavarian Alps, Swiss Alps, and French Alps (Fig. 6b). In
general, the reduced SWE in DA,; aligns more closely with
in-situ observations (e.g., Fig. S4). The average SWE MAE
for in-situ measurements taken between 1-7 March 2018 de-
creases from 164 mm in the OL, to 137 mm in DA o and
116 mm in DAy, In DA s, SWE MAE is improved by more
than 15 mm in 59 % of the 68 manual measurements taken
between 1 and 7 March 2018.

Water Year 2021 also experienced a large SWE reduction
between the OL and DA, experiments, especially in the
Swiss Alps and Eastern Dolomites. In the Dolomites region,
where SWE reductions are often greater than 100 mm, a lack
of in-situ observations makes it difficult to assess whether
these reductions are realistic. However, limited measurement
sites along the Italy-Austria border suggest that the SWE re-
ductions may be too strong (e.g., Fig. S5d). For instance, two
in-situ measurements sites along the Italy-Austria border (in-
dicated with yellow circles in Fig. S5a) have an average SWE
decrease of 142 mm in DA, and a corresponding degrada-
tion in SWE MAE of +113 mm. Meanwhile, southwest of
these locations, eight measurement sites in Italy (black box
in Fig. S5a) demonstrate contrasting improvements in DA,
SWE MAE. At these 8 sites, SWE decreases by an average
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of 100 mm in DA,;, with a corresponding 74 mm reduction
in SWE MAE. This result highlights some of the spatial in-
consistencies of the DA improvements, which are likely due
to spatial and temporal variation in the quality of the assimi-
lated observations.

3.3 Snow cover and snow disappearance

The DA also affects snow cover estimates, contributing to a
decrease in total snow-covered area leading up to peak snow
accumulation in early March, and a slight increase in snow-
covered area later in the season (April-May), compared with
the OL experiment (Fig. 7a). During peak snow accumu-
lation in early March (1-7 March), the DAy, experiment
reduces total snow-covered area by 6077 km? compared to
the OL, averaged across the 2016-2023 period. Total snow-
covered area during this same period in the DAcong experi-
ment is comparatively reduced by only 1409 km?. The rela-
tive difference in snow-covered area between DA, and the
OL fluctuates more than for DA ong (Fig. 7a), primarily due
to the shallower early-season and low-elevation snowpacks
in DAy, which melt out more quickly.

The Cryosphere, 20, 609-628, 2026
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The reduction in snow cover primarily occurs in low-
elevation areas along the northern Alps (Fig. 7b), and aligns
more closely with observed snow cover estimates from the
IMS and Copernicus snow cover products, both of which in-
dicate less snow-covered area than any of our model simu-
lations. For example, on 1 March 2021, the OL and DA,
experiments have, respectively, 79 345 and 58 091 km? more
snow-covered area than the Copernicus fractional snow cover
product, and 55 578 and 32 526 km? more than the IMS snow
cover product (Fig. S6). These discrepancies will be dis-
cussed further in Sect. 4.

At the majority of in-situ snow depth measurement sites,
the estimated snow persists for too long compared to in-situ
observations. Figure 8 presents cumulative distribution func-
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tions (CDFs), which show the cumulative number of sites
with snow-free conditions after peak snow, stratified by ele-
vation band. In all three model experiments, the snow disap-
pearance date (SDD) occurs later than observed, indicating
an overestimation of snow persistence across all elevation
bands.

In DA 4y, the SDD timing is improved at a majority of the
observation sites located below 2000 m, with 51 % of sites
experiencing a SDD closer to in-situ observations, 22 % ex-
periencing a SDD farther from in-situ observations, and 27 %
remaining unchanged. The improvement is less pronounced
for DAconst, in which 40 % of sites show better agreement
with observations, 24 % show worse agreement, and 36 %
remain unchanged. The reduced SWE at lower elevations in
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Figure 6. Change in SWE during the period 1-7 March, between the DAy, and OL experiments for (a) 2017 and (b) 2018. Manual
SWE measurements taken during this period are plotted as dots, colored according to the change in absolute error between the DAy, and
OL experiments. On the error change color bar, the number of sites that fall within each color range is indicated.

DA, (see Sect. 3.2) likely results in more realistic timing
for snow-free conditions at these sites. As we only assimi-
late observations through March, thus limiting assimilation
during times of ablation, changes in SDD are mainly a result
in changes of peak SWE. In general, the IMS observations
underestimate snow persistence (Fig. 8), leading to an ear-
lier SDD compared to in-situ observations, which may result
from the binary (as opposed to fractional) nature of the IMS
observations.

3.4 DA increments and spread

In DA¢onst, model updates predominantly occur later in the
accumulation season, with positive average increments above
2500m and negative average increments below 1500 m
(Fig. 9a). In contrast, DA, exhibits stronger negative in-
crements earlier in the snow season, and at lower elevations
(Fig. 9b), suggesting that assimilated observations influence
the entire accumulation period rather than just times near
peak SWE. Additionally, the magnitude of positive incre-
ments in DAy, is reduced, meaning that less snow is added
at higher elevations in DA,,;. While the OL has a negative
snow bias in these higher elevation areas, the weaker posi-
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tive increments in DAy, may be more realistic, given that
Fig. 4b indicates a strong positive snow depth bias for sites
about 2500 m in DAonst, and a reduced positive bias at these
same sites in DA y;;.

The change in observation uncertainty also has an impact
on the analysis ensemble spread, with primarily decreased
ensemble spread in DAy,r, compared to DA¢onsi, especially
in lower elevation regions (Fig. S7a). Changes in analysis
spread are related to changes in the observation uncertainty,
with decreases in spread corresponding to decreases in av-
erage observation uncertainty (Fig. S7b). For example, for
all model grid cells where oyps decreases, on average, from
DAconst t0 DAvar, 83 % indicate a corresponding decrease in
the snow depth analysis ensemble spread. In contrast, for all
grid cells where ogps increases, 65 % have a corresponding
increase in analysis ensemble spread. The reason for this
decrease in ensemble spread is likely two-fold. This over-
all decrease in ensemble spread is likely driven by two fac-
tors: (1) lower observation uncertainty in many regions, and
(2) reduced snow depth, which results in smaller multiplica-
tive perturbations to the forecast state.
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4 Discussion

This work enhances snow DA by incorporating an ML-based
snow depth retrieval product using spatio-temporally dy-
namic error estimates into the assimilation scheme. The ML
snow depth retrieval integrates multiple sources of informa-
tion, including S1 backscatter observations, fractional snow
cover from optical imagery, and land cover information to
estimate snow depth. Future work could experiment with in-
tegrating additional satellite-based information into the as-
similated ML product (e.g., passive microwave, X-band, li-
dar data). The snow depth estimated from this ML model has
been shown to possess superior accuracy compared to prior
S1 snow depth retrieval work by Lievens et al. (2022) (SDs1)
(Dunmire et al., 2024), which has previously been assimi-
lated into the Noah-MP land surface model using an Ensem-
ble Kalman Filter (De Lannoy et al., 2024; Brangers et al.,
2024). Recent work by Mirza et al. (2025) has questioned
the utility of assimilating S1 snow depth retrievals, highlight-
ing inconsistencies in temporal and spatial errors of the SDg;
in the Western United States, where less regular S1 data are
available. Despite advancements made by SDyr, the qual-
ity of the ML-based observations assimilated in this study
also varies across space and time, which can lead to localized
degradations in DA performance (e.g., Fig. 3). Although im-
proving mountain snow-depth estimation is an active area of
research, progress is limited by the current suite of satellite
sensors, which are not specifically designed for snow-depth
or SWE retrieval. Future DA efforts that incorporate more
reliable snow-depth or SWE products should reduce these
spatial and temporal inconsistencies, improving overall DA
performance.

In the OL, we see an overestimation of SWE at mea-
surement sites with low recorded SWE, and an underesti-
mation of SWE at measurement sites with high recorded
SWE (Fig. 5¢). Previous work has demonstrated that forcing
bias is the dominant source of uncertainty in snow modeling
(Raleigh et al., 2015). Here, we use ERAS atmospheric forc-
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ing, which has a relatively coarse spatial resolution (31 km).
While we apply a standard lapse-rate correction to downscale
the near-surface air temperature forcing, precipitation is not
downscaled, and therefore is unable to resolve orographic
precipitation. This limitation results in relatively low precipi-
tation and SWE spatial variability and an underestimation of
high SWE values. Furthermore, the SDyp, product has also
been demonstrated to underestimate deep snow, likely due to
these measurements being underrepresented in the ML train-
ing (Dunmire et al., 2024). As such, the assimilation of this
product is unable to fully correct the negative SWE bias for
measured SWE > ~ 800 mm, as can be seen in Fig. 5d and e.

Here, we also highlight the implications of accounting
for dynamic estimates of the observation uncertainty and
demonstrate that this system generally results in a more re-
alistic modeled snow state. The EnKF depends on accurate
uncertainty estimates for both the model and observations,
using these to weigh the information and obtain an optimal
state. With this in mind, Dee (1995) argues that proper char-
acterization of both model and observation uncertainties is
necessary for successful implementation of the EnKF. While
the specification of observation uncertainty influences DA
performance, in snow DA systems, this uncertainty is often
prescribed as a constant value (Helmert et al., 2018). Some
previous studies have incorporated dynamic observations er-
rors (e.g., Magnusson et al., 2017; Oberrauch et al., 2024);
however, the utility of dynamic observation errors, relative
to an assumed static observation error, in snow DA has not
yet been explored prior to this work. Moreover, most op-
erational land data assimilation systems (e.g., NASA Land
Data Assimilation Systems, ECMWF Land Data Assimila-
tion System) and recent studies that assimilate SAR-based
snow depth retrievals assume a static observation error. For
instance, Brangers et al. (2024) assumed oyps = 0.36 m, and
Girotto et al., 2024) and De Lannoy et al. (2024) both assume
obs = 0.30 m (applied here in DAcongt)-

We find that assimilating SDy;, with a dynamic observa-
tion error (DA,) offers a significant improvement to SWE
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MAE (p « 0.001) compared to assimilating SDg; with a
static observation error (DAg1, Fig. S8). Meanwhile, DA onst
does not demonstrate any significant improvements to SWE
MAE (Fig. S8). Using 4548 manual SWE measurements col-
lected within the Po River basin, we find an MAE of 225 mm
from the OL experiment, while the MAE for DAg1, DA¢onst,
and DAy, is 193, 195, and 177 mm, respectively. Generally,
the SDyr retrievals are more accurate than SDg; for in-situ
snow depths below 2.5 m, while for snow depth exceeding
3 m, SDg; performs better (see Fig. 3a from Dunmire et al.,
2024). This suggests that assimilating SDyr, should provide
improvements particularly for shallower snow. However, in
the DA onst €xperiment, the use of a static observation uncer-
tainty, where relatively large errors are assumed for shallow
snow observations, limits these potential improvements (e.g.
Fig. 2a) and results in an overall performance of DA ¢y that
is similar to DAg;. This analysis highlights that the treatment
of the observation uncertainty can be as critical as the ob-
servations themselves. A poorly parameterized observation
uncertainty can restrict the benefits of DA, underscoring the
need for options in DA systems to dynamically vary the ob-
servation error.

Implementing the dynamic observation error generally im-
proves performance in both places the DA adds and removes
snow. In the OL experiment, snow depth has a positive bias at
low elevations and a negative bias at high elevations (Fig. 4a).
The DA onst experiment applies a static observation error that
is relatively too large for shallow assimilated snow depths
(e.g. Fig. 2a), limiting snow removal at lower elevations and
leading to a still large positive bias at these locations. At
higher elevations (above ~ 1500 m), the assimilated observa-
tions exhibit a strong positive bias (Fig. 4d). The relatively
small static observation error for deeper assimilated snow
depths (e.g. Fig. 2b) leads to too much added snow in some
cases, particularly above 2500 m (Fig. 4b). In contrast, in
DAuvar, less snow is added at high elevations (Fig. 9), result-
ing in improvements where snow needs to be added as well
(Fig. 4f). However, we see that the DAy, experiment per-
forms worse than DA pst between February and May within
the 2000-2500 m elevation band (Fig. 4f). In this range, the
OL experiment has a positive snow depth bias until approxi-
mately February, followed by a negative snow depth bias un-
til May (Fig. 4a). DA, more effectively reduces this early
season positive bias, resulting in lower mean snow depths
later in the season, and poorer performance during the period
when the OL is negatively biased. This suggests that a lack of
early-season corrections in DA qns¢ can, in some cases, prop-
agate to more accurate late-season snow depths, although this
effect is likely limited to locations where the snow depth is
not consistently positively or negatively biased throughout
the season.

While DAy, improves performance at most snow depth
and SWE measurement sites, some locations see little ben-
efit, or even a deterioration in performance (approximately
12 % of snow depth sites and 20 % of SWE sites). These
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degradations are more likely to occur where the SDyr, prod-
uct is less accurate than the OL experiment, and the DA,
experiment more strongly corrects to these inaccurate ob-
servations. To account for known limitations of SAR-based
snow depth retrievals, we did not assimilate the SDyp, prod-
uct over dense forests or glaciers, and after 31 March. Never-
theless, SDy1. remains inaccurate in some places, leading to
localized deterioration when these observations are assimi-
lated. Locations with minimal differences between DA ongt
and DAy, typically occur where the observations already
agree well with the OL, or where ogphs > or, thus the DA
increments are small, and the model receives limited ben-
efit from the observational information. Despite these spa-
tial inconsistencies, DAy, nearly doubles the improvement
in absolute SWE error compared to DA¢onst. For instance, the
SWE MAE decreases from 152 mm in DAt to 132 mm in
DAyar (—13.2 %), while the overall impact of DAcons; rela-
tive to the OL is a 13.6 % reduction (176 mm in the OL to
152 mm in DAcopst)-

Snow cover fraction affects the energy balance, and con-
sequently, has implications for numerical weather predic-
tion. While the DA experiments generally reduce the snow-
covered area by largely removing snow at lower elevation
regions, all three experiments still exhibit an overestimation
of total snow-covered area compared with both Copernicus
and IMS snow cover products. Several factors may contribute
to this discrepancy. First, a positive bias in snowfall forc-
ing data at low elevations will result in unrealistically large
snow-covered area. Second, the higher-resolution Coperni-
cus product (20 m) inherently captures finer-scale variation
between snow-covered and snow-free conditions, often re-
sulting in lower overall snow cover estimates compared to
coarser-resolution products. Third, inaccuracies in the pa-
rameterization of snow cover fraction within Noah-MP may
also play a role. In Noah-MP, the snow cover fraction is pa-
rameterized as a function of snow depth, density, and ground
roughness length. (Niu et al., 2011; Lee et al., 2024). It
should be investigated whether the current parameterizations
in Noah-MP remain appropriate for regions with complex
terrain, where subgrid variation in topography can influence
fractional snow cover. Finally, uncertainty in the Copernicus
and IMS snow cover, for example due to cloud and forest
cover, contribute to errors in these validation data sets and
potentially influence the perceived model biases.

Finally, in DAy,r, Eq. (2) (0obs =m X SDML, m = 0.3) is
used to adapt the standard deviation of the observation er-
ror in space and time based on the assimilated snow depth.
This relationship is a first-order approximation that assumes
that the observation error increases linearly with the obser-
vation magnitude; however, ops could be defined to vary in
more complex ways. Future work could explore applying re-
lationships where oops varies non-linearly with the assimi-
lated snow depth observation, or statistical parameterizations
of oops depending on other conditions such as elevation, or
forest cover. Furthermore, oy, could be directly linked to
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the SDyp retrieval quality which could be obtained, for ex-
ample, through error propagation. The effectiveness of a dy-
namic observation error also depends on the magnitude of the
forecast error, as the Kalman gain matrix, which determines
the strength of the corrections, depends on both forecast and
observation error. To maximize benefits, the observation er-
ror, whether static or dynamic, should be properly tuned in
relation to forecast error. While most operational systems do
not currently include options to dynamically vary the obser-
vation error, this functionality is not complicated to incor-
porate, and the snow-specific MuSA (Multiple Snow Data
Assimilation System) system does already provide an option
for a user-defined observation error that can vary dynami-
cally (Alonso-Gonzélez et al., 2022).

4.1 Limitations of bias-blind DA systems

The EnKF is widely used in snow DA systems due to its ef-
ficiency; however, a key assumption is that both the observa-
tions and model are unbiased. We see from Fig. 4 that this
assumption is not satisfied by neither the observations nor
the model. Here, we implement a bias-blind system by not
bias-correcting either the observations or the model, thereby
violating this assumption. Bias-aware systems which a pri-
ori correct the model bias to align with the observation cli-
matology assume that the assimilated observations are more
realistic than the model. While this assumption may be real-
istic in many situations, satellite-based snow retrievals also
have inherent biases. Since snow is a cumulative variable, bi-
ases in either the observations or the model typically persist
throughout the snow season. While in-situ measurement sta-
tions can help quantify these biases, they are often inconsis-
tent spatially and on an interannual basis (i.e. Fig. S9), which
provides a challenge for correcting them a priori.

Two major issues exist with bias-blind systems: (1) model
drift towards its original state, leading to a sawtooth-like pat-
tern that can result in unrealistic fluxes in other variables,
and (2) unrealistic model trends in DA output due to changes
in assimilated observation frequency (Dee, 2005). For snow,
model biases primarily stem from errors in precipitation forc-
ing data. Consequently, we do not expect model drift to occur
as observed in De Lannoy et al. (2007); Mocko et al. (2021);
Scherrer et al. (2023), unless there is an instantaneous precip-
itation forcing error. We also assimilate observations weekly
throughout the study period, thereby mitigating the potential
effects of assimilation frequency in bias-blind DA. Scherrer
et al. (2023) further compare bias-blind and bias-aware as-
similation of leaf area index — a cumulative variable — using
the EnKF. Their results show that the bias-blind DA more ef-
fectively updates the model state variable, and leads to larger
improvements in water balance components such as evap-
otranspiration and runoff. In contrast, while the bias-aware
approach yields smaller improvements in state variables, it
improves temporal anomalies and internal DA diagnostics
indicate a more optimal DA system performance. Given our

https://doi.org/10.5194/tc-20-609-2026

focus on improving the modeled snow state rather than snow
anomalies, along with the inherent challenges of a priori bias
correcting the observations and model, we opt for a bias-
blind approach, recognizing that this may lead to suboptimal
DA performance (i.e. temporally correlated residuals).

4.2 Limitations of site evaluation representativeness

Previous studies have shown that mountain snow is highly
variable, and point-scale measurements don’t necessarily
well-represent the surrounding area, even at spatial scales as
fine as 10 m (L6pez-Moreno et al., 2011; Fassnacht et al.,
2018). Meromy et al. (2013) found that approximately half
of the SNOTEL sites they analyzed where representative
of the surrounding 1km area, defining “representative” as
snow station biases within 10 % of the surrounding mean ob-
served depth. More recently, Herbert et al. (2024) reported
that roughly one-third of 476 paired lidar—station data obser-
vations were representative at the 1 km scale, with represen-
tativeness defined as in-situ measured snow within &+ 10cm
of the lidar-mean snow depth at that scale. However, they
also showed little change between the 500 m and 1 km scales,
with 35 % of stations considered as representative at 500 m.
Generally, in-situ snow stations exhibit a positive bias as
these sites are often located in flat terrain that preferentially
accumulates snow (Griinewald and Lehning, 2011).

In this study, we use in-situ snow depth and manual SWE
measurements as the best-available reference in the Euro-
pean Alps that cover a range of terrain conditions and spans
many years. Unlike in the western United States, where high-
resolution spatial snow depth products from the Airborne
Snow Observatory and NASA SnowEx missions are avail-
able, such publicly available products are extremely lim-
ited in the European Alps. As such, it is not feasible to
assess the representativeness of all 588 snow depth mea-
surement sites and 8211 manual SWE measurements at the
1 km scale, and these point-scale measurements provide the
best available Alps-wide, multi-year data available for eval-
uation. Nevertheless, by leveraging a large network of sites
that span a range of elevations and terrain types, we can re-
duce sampling-related limitations by increased coverage of
terrain diversity, although this does not mitigate the general
positive bias noted above.

5 Conclusions

In this work, we explore how incorporating a dynamic ob-
servation uncertainty can influence a snow depth data as-
similation scheme. For the first time, we assimilate satellite-
based snow depth estimates from a novel machine learn-
ing model into the Noah-MP land surface model using the
EnKF to update snow depth and SWE. We compare two data
assimilation experiments: one with a static observation er-
ror (DAconst), and one with an observation error that is dy-
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namic in space and time (DAy,,). The performance of these
DA experiments is evaluated against the open-loop experi-
ment (OL, model-only) using in-situ snow depth observa-
tions, manual SWE measurements, and two different snow
cover products. Overall, the dynamic observation error ap-
pears to make better use of the assimilated observations,
thereby leading to stronger model corrections, particularly at
times when the assimilated snow depth observation is much
shallower than the model forecast (e.g., early in the accumu-
lation period or at lower elevations). By doing so, DAy, re-
duces biases tied to forcing errors and improves SWE MAE
by 25 % and 13 % compared to the OL and DAops exper-
iments, respectively. While snow cover is overestimated in
all three model experiments, DAy, also leads to stronger
reductions in snow cover than DAcqng, better aligning with
existing snow cover products. However, given limitations of
the assimilated satellite-based snow depth product, improve-
ments from the DA, or from the specific implementation of
a dynamic observation error in DA, are limited in magni-
tude and not spatially consistent. As most snow DA work and
operational snow DA systems assume that the observational
uncertainty is constant in space and time, this work high-
lights the impact of these assumptions, and the importance
of observation uncertainty considerations when designing a
DA system. Future studies should put effort into the consid-
eration of observation uncertainties and the parameterization
of observation uncertainty should depend on study goals, the
DA system used, and specific characteristics of the assimi-
lated observations.

Code and data availability. The ML-based snow
depth  retrieval  product is  publicly available  at
https://doi.org/10.5281/zenodo.13342108 (Dunmire,
2024). The NASA LIS software is available at https:
/Igithub.com/NASA-LIS/LISF (Kumar et al., 2006).
The IMS snow cover dataset is publicly available at:
https://nsidc.org/data/g02156/versions/1#anchor-data-access-
tools, last access: 1 May 2025 (U.S. National Ice Center, 2008),
and the Copernicus snow cover product can be found at: https:
/Mland.copernicus.eu/en/products/snow/fractional-snow-coverlast
access: 1 May 2025 (European Union’s Copernicus Land Monitor-
ing Service information). Publicly available in-situ snow depth and
SWE data used for evaluation can be accessed at:

https://doi.org/

— 10.16904/15 (Switzerland; Marty, 2020)
https://doi.org/

— 10.16904/envidat.380 (Switzerland; Stihli, 2018)
https://doi.org/

— 10.16904/envidat.590 (Switzerland; Magnusson and Jonas,
2025)

https://doi.org/

— 10.16904/envidat.406 (Switzerland; Intercantonal Measure-
ment and Information System IMIS, 2023)
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— https://www.arpa.piemonte.it/rischi_naturali/snippets_arpa_
graphs/map_meteoweb/rete=stazione_meteorologicalast
access: 1 May 2025 (Italy)

— https://www.meteotrentino.it/index.html#!/homelast
1 May 2025 (Italy)

access:

— https://data.civis.bz.it/de/dataset/
p-bz-southtyrolean- weatherservice- weatherstations/
resource/ef2f6f24-cffd-4993-8699-5023696a49b5last ac-
cess: 1 May 2025 (Italy)

— https://dataset.api.hub.geosphere.at/app/frontend/station/
historical/klima-v2-1dlast access: 1 May 2025 (Austria)

— https://donneespubliques.meteofrance.fr/?fond=recherchelast
access: 1 May 2025 (France)

— https://cdc.dwd.de/portal/last access: 1 May 2025 (Germany)

Additional snow depth and SWE data were obtained from the
Italian Department of Civil Protection and processed by the Centro
Internazionale in Monitoraggio Ambientale (CIMA). The configu-
ration files used for the modeling experiments can be found at https:
//github.com/drdunmire1417/Snow_DA_LIS_configfiles.git (Dun-
mire, 2026).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-20-609-2026-supplement.
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