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Abstract. Sea ice and snow volume are essential variables
for polar predictions, but operational systems still struggle
to accurately capture their evolution. Satellite measurements
now provide estimates of sea ice freeboard and snow depth.
The combined assimilation of sea ice concentration (SIC),
along-track altimetry radar freeboard data from Cryosat-2
and observations of snow depth from Cryosat-2 and SARAL
is implemented in a multivariate approach in a global 1/4°
ocean/sea ice coupled NEMO4.2/SI3 model. A multivariate
experiment, performed on two full seasonal cycles 2017-
2018, is compared to a free (no assimilation) and a SIC-
only assimilation simulations. The multivariate technique in-
creases the sea ice volume, even in the absence of free-
board and snow measurements during summer, and rapidly
changes the spatial patterns of ice and snow thicknesses in
both hemispheres, in accordance with the assimilated ob-
servations. The sea ice volume from the multivariate ap-
proach compares better with independent (not assimilated)
estimates from ICESat-2 and CS2SMOS or SMOS in both
hemispheres. The multivariate system performs better in the
Arctic than in Antarctica where the ice and ocean separate
analyses are not designed to handle properly the strong in-
teractions between upper oceanic layers and sea ice cover in
the Southern Ocean. These results also confirm the impor-
tance of using variable snow and ice densities in a freeboard
assimilation context. This study shows promising results for
enhancing the capacity of assimilation systems to monitor

the volume of sea ice and snow and paves the way for future
satellite missions.

1 Introduction

In response to climate change, Arctic sea ice is continuing
to decline and is regularly breaking historically low records,
and, more recently, the entire year of 2023 showed the lowest
sea ice extent in Antarctica ever seen in the satellite record
(Gilbert and Holmes, 2024) October 2020 was the lowest
end-of-summer sea ice volume since 2010 in the Arctic (Per-
ovich et al., 2020). Given the rapid transformations affect-
ing sea ice due to climate change, sea ice monitoring is of
the utmost importance. Assimilation techniques allow us to
combine models and observations to improve our ability to
monitor the ocean and sea ice state. Sea ice concentration
(SIC) is currently assimilated in most sea ice data assimila-
tion systems using different methods: nudging, Kalman filter
variants, or 3DVAR variants (Uotila et al., 2019). However,
one of the challenges in assimilating SIC is to extend the
SIC information to other prognostic model variables such
as sea ice thickness (SIT). Tietsche et al. (2013) concluded
that in their Arctic model configuration, a proportional rela-
tionship between SIT and the SIC update was most effective
for adjusting the modelled SIT. Massonnet et al. (2015) and
Kimmritz et al. (2018) used the model covariances with a
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multivariate Ensemble Kalman Filter (EnKF) to update dif-
ferent sea ice variables, propagating the information from the
observed SIC to the unobserved variables. Experiments have
used the EnKF or variations of this multivariate scheme with
multidata frameworks: both SIC and SIT products have been
assimilated in the Arctic (e.g. Chen et al., 2024; Cheng et al.,
2023; Williams et al., 2023). The assimilation methods can
vary, but the assimilated SIT products are usually thin SIT
from the European Space Agency’s (ESA) Soil Moisture and
Ocean Salinity (SMOS) mission, thick SIT measured by the
ESA satellite mission CryoSat-2 (CS2), with two processing
techniques available (Kurtz and Harbeck, 2017 or Ricker et
al., 2014), or an observational product that statistically com-
bines information from the two (CS2SMOS, Ricker et al.,
2017).

Xie et al. (2016) found that assimilating SMOS thin SIT
data had significant benefits for SIC and SIT modelling in
some regions near the ice edge. Mu et al. (2018) combined
the use of both SMOS thin SIT and CS2 SIT product in
their assimilation system and obtained better results than
the observation-only CS2SMOS product, demonstrating the
added value of the model dynamics. The assimilation of
CS2SMOS merged product (Xie et al., 2018) reduced model
biases compared to the assimilated data, and results were in
better agreement with independent datasets, with no degra-
dation of other sea ice variables. Fritzner et al. (2019) com-
pared the assimilation of SIC combined separately with ei-
ther CS2 SIT, SMOS SIT, or a snow thickness (SNT) dataset
in a short simulation and concluded that CS2 SIT provides
the best long-term model improvements compared to SMOS
SIT. They also found that SNT assimilation had a weaker ef-
fect on the model than SIT assimilation. Other teams meth-
ods updated SIT in the Arctic with nudging (Balan-Sarojini
et al., 2021; Blockley and Peterson, 2018; Fritzner et al.,
2018), with ensemble optimal interpolation (Lee and Ham,
2022, 2023) and with an enthalpy-adjusting scheme to en-
sure a consistent update of all sea ice variables (Liu et al.,
2024). These numerous studies highlight that sea ice assimi-
lation remains an active and evolving research area. The ab-
sence of a clear consensus on the optimal method reflects the
complexity of balancing model uncertainties, data availabil-
ity, and computational efficiency to achieve the best possible
agreement with observations.

Cipollone et al. (2023) and Mu et al. (2020) imple-
mented multidata and multivariate sea ice assimilation in
global configurations, but with Arctic-only CS2, SMOS, and
CS2SMOS SIT products. They both found their experiments
to agree with in-situ data. Luo et al. (2021) implemented a
multivariate assimilation system in Antarctica and success-
fully assimilated SIC and SMOS SIT. They had to inflate
their atmospheric ensemble forcing, even though it was un-
necessary in a similar Arctic assimilation scheme, suggesting
differences in the impact of sea-ice data assimilation between
the two poles. They stated that the implementation of Arctic
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sea-ice data assimilation cannot be simply extended to the
Antarctic.

SIT can be retrieved from altimeter radar freeboard (RFB)
measurements by using hydrostatic equilibrium and taking
into account the height of the snow penetrated by the radar
wave, a medium where the radar velocity is modified (Gar-
nier et al., 2022). The sea water, ice and snow densities and
the snow depth above the ice are required for the RFB-SIT
conversion, and the assumptions made on these variables re-
sult in a significant uncertainty in the sea ice volume products
(Kern et al., 2015; Kwok and Cunningham, 2015). The snow
layer accounts for most of the uncertainty in the calculation
of SIT from RFB (Garnier et al., 2021). The CS2 SIT prod-
ucts mentioned above use the Warren 99 (W99) snow clima-
tology (Warren et al., 1999) or a modified version of it which
is now known to be outdated and unreliable in most regions
of the Arctic (Kern et al., 2015). Fiedler et al. (2022) is the
first study to use the along-track CS2 RFB data in the Arc-
tic, and to convert it into SIT using the modelled snow cover
prior to the assimilation step. Their study results in a general
improvement of the modelled SIT, with, in particular, a bias
reduction in the Canadian Basin. This improvement extends
into the summer period, when no data is assimilated. How-
ever, they noted no substantial improvement in the Beaufort
region due to a degradation of ice thicknesses below 1 m.
Mignac et al. (2022) performed the same experiment, adding
the SMOS SIT data to the along-tracks SIT computed from
CS2 RFB and modelled snow, arguing that the SMOS SIT
product performs better in thin ice areas of the Arctic. The
thin SMOS ice assimilation was able to counteract the SIT
overestimation that happens in the Arctic marginal seas when
assimilating only CS2 products.

Other sources of uncertainty in the RFB-SIT conversion
stem from the choice of ice and snow densities. The NEMO
model uses constant snow and ice densities, whereas the ob-
servation products usually parametrize the ice density de-
pending on the ice type (multi-year ice MYI, or first-year
ice FYI, see Alexandrov et al., 2010) in the Arctic and on the
season (see Kurtz and Markus, 2012) in the Antarctic. The
choice of snow density varies in different SIT retrievals from
RFB measurements, including options such as constant den-
sity, seasonally varying density, climatology-based density,
or modelled density. Kern et al. (2015) stated the importance
of having well calibrated density for the ice and they recom-
mended using seasonally varying snow density instead of a
constant. Positive model biases in sea ice volume compared
to satellite altimetry estimates have been attributed mainly
to ice density differences (Bocquet et al., 2024). New efforts
are currently being made to get fresh measurements of sea
ice densities: Jutila et al. (2022) measured ice densities on
average higher than the values from Alexandrov et al. (2010)
for both the FYI and MYI, resulting in 12.4 % and 16.7 %
larger sea ice thickness values for FYI and MY

Knowing the large uncertainty associated with the sea ice
volume products derived from RFB measurements, Sievers et
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al. (2023) directly assimilated the radar freeboard in the Arc-
tic. In their assimilation scheme, they used a varying den-
sity for the ice, set as a function of the modelled salinity
of the ice, and a linearly varying snow density depending
on the season, following Mallett et al. (2020). The densi-
ties were not modified in the sea-ice model physics. They
used the modelled snow to convert the freeboard to ice thick-
ness and they updated sea ice concentration and sea ice thick-
ness through data assimilation. They compared the resulting
sea ice thickness with in-situ data, showing improvements in
some regions of the Arctic and degradation in others, using
a simulation without assimilation and another with assimila-
tion of sea ice concentration only as references.

In this study, we use the operational Kalman filter scheme
deployed in the production of global reanalysis and forecast
at Mercator Ocean to implement a multivariate sea ice assim-
ilation scheme with sea ice concentration (SIC), sea ice vol-
ume (SIV) and snow volume (SNV). In contrast to the usual
ice assimilation where the SIC model variable (univariate)
is updated using SIC observations (monodata), this approach
aims to assimilate along-track radar freeboard and altimetric
snow depth observations in addition to the SIC observations
(multidata) and to update SIC, SIV and SNV model variables
(multivariate). We use the same assimilation method for the
Arctic and Antarctic. We aim to provide first answers to the
following scientific questions:

— Does the multivariate/multidata approach provide
added value over the widespread univariate/monodata
method? What are the impacts of using altimetric radar
freeboard and altimetric snow observations in addition
to the SSMIS SIC data?

— Are the current parametrizations in sea ice models suf-
ficient for accurate assimilation of radar freeboard and
snow measurements?

— What challenges arise when applying the same sea ice
assimilation scheme to both the Arctic and Antarctic,
given their differing physical environments and ice dy-
namics?

Our work is in line with that of Sievers et al. (2023). How-
ever, we decided to assimilate RFB together with snow thick-
ness observations to update the snow in addition to the sea
ice variables at a global scale, i.e. including the Arctic and
Antarctica. Moreover, we kept a coherent parametrization
between the assimilation scheme and the sea ice model, so
we used the model fixed snow and ice densities. Data using
varying sea ice and snow densities are only shown in the fig-
ures indicatively for users of the original product.

Prior studies have shown that assimilating SIC alone sig-
nificantly reduces concentration errors but yields limited im-
provement in ice thickness, despite strong correlations be-
tween both variables (Duli¢re and Fichefet, 2007; Liseter et
al., 2003). Moreover, there is no a priori link between SIC
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and the depth of the snow over sea ice. We therefore an-
ticipate the following outcomes for each experiment: mon-
odata/univariate SIC assimilation should improve modelled
SIC but may degrade SIT and SNT due to the necessary
adjustment for SIV and SNV implemented in the analy-
sis scheme (Table 2). Conversely, the multidata/multivari-
ate assimilation is expected to better fit all assimilated vari-
ables (SIC, RFB, SNT), but may impact SIC accuracy due
to uncertain SIC-SIT/SNT covariances. The different spatio-
temporal resolutions of SIC, RFB, and SNT (e.g. daily grid-
ded SIC vs. sparse altimeter tracks with seasonal gaps) may
also introduce uncertainty into the impact of assimilation. Fi-
nally, few studies have focused on the constraints of the ice/s-
now system by assimilation in Antarctica, a region where
the interaction between the ice and the upper ocean is much
more dynamic than in the Arctic. In regions of open water
surrounded by sea ice — known as polynyas — the ice-ocean
interactions are particularly strong (e.g. Cheon and Gordon,
2019; Kjellsson et al., 2015) and difficult to reproduce by
models (Mohrmann et al., 2021). The outcomes of the as-
similation experiments could reveal whether improvements
in SIC are offset by errors in SIT/SNT, how additional data
sources interact, and how the scheme affects coupled ice—
ocean behaviour.

We describe the modelling and assimilation components,
the data assimilated in the analysis system, and the exper-
imental design in Sect. 2. Section 3 focuses on the per-
formances of the assimilation setup while Sect. 4 presents
a comparison with independent satellite observations. Sec-
tion 5 discusses the main results and conclusions are given in
Sect. 6.

2 Analysis system and experimental design
2.1 Global ice-ocean coupled model configuration

We use the ocean/sea ice coupled model Nucleus for Euro-
pean Modelling of the Ocean (NEMO) version 4.2 (Madec
et al., 2022), coupled to the Sea Ice modelling Integrated Ini-
tiative (SI3, Vancoppenolle et al., 2023). Simulations are run
on a 1/4° tripolar horizontal grid (Madec and Imbard, 1996)
with 75 oceanic vertical levels. The atmospheric forcing is
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERAS5 atmospheric reanalysis (Hersbach et al.,
2020) with a 1 h frequency

The sea ice model SI3 describes the ice and snow be-
haviour with assumptions that for dynamics, ice is a non-
newtonian 2D continuum, whereas for thermodynamics, it is
a mushy layer covered by snow. Subgrid variability is rep-
resented through 11 sea ice thickness categories, with fixed
boundaries. Global prognostic variables in SI3 are the sea ice
velocity u and its stress tensor o, and quantities computed in
each thickness category: sea ice concentration, sea ice and
snow volume per unit area, sea ice and snow enthalpy per
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unit area, and sea ice salt content. The model uses constant
densities for the sea water, sea ice and snow with respec-
tive values of 1026, 917 and 330 kg-m_3. Snow exclusively
comes from the solid precipitations of the atmospheric forc-
ing and disappears either by melting processes or by snow-
ice conversion. The model accounts for snow-ice formation
when snow is deep enough to depress the snow-ice interface
below the sea level. Then seawater infiltrates and refreezes
into the snow, creating a new ice layer whose thickness de-
pends on the ice and snow densities (Fichefet and Maqueda,
1997; Vancoppenolle et al., 2023).

In this study, we use the adaptative elastic-viscous plastic
rheology and a parametrization to represent landfast sea ice.
The ice model component is called every 3 ocean timesteps,
that is, every 30 min.

2.2 Assimilated observing network
2.2.1 Seaice concentration SSMIS

The observation data used for sea ice concentration (SIC) as-
similation is the global daily reprocessed passive microwave
dataset, measured with Special Sensor Microwave Imager/-
Sounder (SSMIS) satellites instruments, from the European
Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT) Ocean and Sea Ice Satellite Application
Facility (OSISAF) OSI-450 (OSI SAF, 2022) (Table 1). Con-
sidering the large errors in satellite measurement in low SIC
regions (Ivanova et al., 2015), we arbitrarily set to O the
data values below 7.5 %. Moreover, we only consider nom-
inal data from the OSISAF algorithm, excluding data with
coastal correction, interpolation, or climatology corrections.
We use the daily- and spatially-varying “standard_error” pro-
vided with the dataset to construct the observation error for
the assimilation but we inflate linearly the error to obtain a
maximum of 25 % in the Arctic (same value as Lellouche
et al. (2021) and 40 % in Antarctica, and we set a minimum
value of the error to 1 %.

2.2.2 Radar freeboard RFB-LEGOS

The “laboratoire d’etudes en géophysique et océanographie
spatiales” (LEGOS) scientists have used along tracks mea-
surement from the CS2 satellite to create a freeboard dataset
(Guerreiro, 2017; Laforge et al., 2021). Thanks to hydro-
static equilibrium, freeboard can provide sea ice thickness
values using information of snow depth, and water, ice and
snow densities. Altimetry measurements measure radar free-
board (RFB) due to the slower velocity of the radar wave
when travelling through the snow (see equations in Bocquet
et al. (2023). Radar freeboard measurements depend on the
radar speed reduction in the snow layer and are consequently
not physical measurements. The ice/snow interface is there-
fore not necessarily underwater when the RFB is negative.
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We multiply the RFB values by the SSMIS data to assim-
ilate radar freeboard volume per unit area (RFBV) in consis-
tency with volumetric prognostic model quantities. We use
the uncertainty provided for each track as the observation
error, constraining it to a range of 0.01 to 5m. The RFBV
model equivalent is calculated from Bocquet et al. (2023)
with constant sea water, sea ice and snow densities (Eq. 1).

REB — Pw — Pice .SIT — <,Osnow

Pw Pw
+(1 4 0.00051 penow) > — 1) .SNT = 0.106
.SIT — 0.584 - SNT (1)

We use the LEGOS data because it provides concomi-
tant RFB and snow data in both hemispheres. We assimi-
late two modes of CS2 instruments: the Synthetic Aperture
Radar (SAR) for offshore regions and SAR Interferometric
(SARIin) for coastal areas. Due to potential truncation prob-
lems with the filtering of RFB measurements, and to be able
to use the same method across different spatial resolutions of
the configuration, we kept the full scales of SAR and SARin
measurements. The data are only available during winter in
both hemispheres, November to April in the Arctic and May
to October in the Antarctic (Table 1). Apart from north of
88° N, CS2 satellite tracks cover the entire ice domain of each
hemisphere in about a month: during each assimilation cycle,
important areas remain unobserved, especially at lower lati-
tudes (Antarctica).

2.2.3 Snow thickness SNOW-KaKu

Snow thickness (SNT) data come from the KaKu LEGOS
data (Garnier et al., 2021) and consist in the difference be-
tween CS2 Ku-band altimetric measurements, reflected by
the ice, and SARAL Ka-band altimetric measurements, re-
flected by the snow. The data are provided in monthly grid-
ded files, available during the same winter periods as RFB,
in each hemisphere (Table 1). A temporal linear interpolation
is applied to get SNT data at each weekly analysis. Due to
SARAL orbital characteristics, no data are available for lati-
tudes higher than 81.5° N. The observation error used in the
analysis comes from the monthly varying uncertainty sup-
plied with the data, constrained to an arbitrary range of 0.01
to Sm. The snow data are assimilated as a thickness quan-
tity, with the snow volume increment subsequently computed
using the Kalman filter. Multiple processings are applied to
the Ku-band CryoSat-2 measurements to create the SNOW-
KaKu product: a degraded version of the SAR measurements
(pseudo-LRM mode) is used to get a similar footprint as
the SARAL-AItiKa measurements, a 25 km radius median
smoothing is applied, and the data is gridded at a monthly fre-
quency, as described by Garnier et al. (2021). However, the
SNOW-KaKu product remains not fully independent from
RFB-LEGOS measurements.
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Table 1. Assimilated observation products and their specificities.

373

Observations SIC SSMIS RFB-LEGOS SNOW-KaKu

Producer EUMETSAT OSI-SAF  LEGOS LEGOS

Temporal resolution Daily 20Hz Monthly — weekly
(linear interpolation)

Temporal coverage All-time Winter: November to April in the Arctic; May to

October in the Antarctic.

Spatial resolution 40km (effective Along tracks 12.5km (grid
resolution); 25 km (grid resolution).
resolution).

Spatial gaps None (reprocessed). Central Arctic Central Arctic
(latitude > 88° N); (latitude > 81.5° N);
in-between satellite coastal areas.
tracks.

nsel 400 4000 400

2.3 Assimilation scheme

The assimilation system is the one used in the current near
real time operational system (Lellouche et al., 2021). The 7d
assimilation cycle proceeds as follows: firstly, the model runs
for the full cycle length for a “forecast” trajectory, resulting
in a forecast state. Observations available during the cycle
time are loaded and processed as needed, with special care
taken to define the observation errors. Using the forecast out-
put and an observation operator, model variables are trans-
formed into observation-equivalent variables that are con-
sistent in space and time with the assimilated observations.
Then, the analysis step produces 4D increments or model up-
dates of the forecast trajectory. The increment depends on the
innovation (observation minus model equivalent), weighted
by the Kalman gain. We use a reduced-order Kalman filter
derived from a singular evolutive extended Kalman (SEEK)
filter (Brasseur and Verron, 2006; Lellouche et al., 2021).
The Kalman gain is meant to balance the information from
the model and the observations to get closer to the real ocean
and sea ice state: as such, it is based on the error covariance
of the forecast and the observation errors. The model fore-
cast error covariance is computed from a fixed ensemble of
4D ocean and ice state anomalies that vary seasonally.

The static anomalies are computed from a long simula-
tion (2010-2020) without assimilation, using the same model
configuration and parameters with respect to a 7d running
mean. This approach is based on statistical ensembles in
which the ensemble of these anomalies is representative of
the error covariances (Lellouche et al., 2013).

The increments at each model grid point are calculated
independently in a local scheme, where a localization algo-
rithm controls the spatial influence of observations. This ap-
proach helps to limit the impact of sampling noise on the
increments. The radius of the localization scheme is set as
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the minimum between an arbitrary fixed distance of 176 km
and a radius defined by the inclusion of a number of obser-
vations nsel (see the chosen nsel values in Table 1). The last
step of the assimilation cycle is the Incremental Analysis Up-
date (IAU) that allows us to gradually introduce the analysis
increments into the model (Benkiran and Greiner, 2008). The
model runs a second time over the 7d cycle for a “best” tra-
jectory; and at each timestep a tendency term is added to the
model variables in the prognostic equations. The tendency
term comes from the increment, modulated by a distribution
function (Lellouche et al., 2013).

The ice and ocean analysis are separate, which means
that ocean covariances are used for the ocean vari-
ables only, and the same applies for sea ice variables.
The ocean analysis is multivariate and multidata, us-
ing sea level anomaly datasets from satellite altimetry
(SEALEVEL_ GLO_PHY_L3_NRT_008_044, 2023),
sea surface temperature (SST) from OSTIA (Opera-
tional Sea Surface Temperature and Sea Ice Analysis,
SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001,

2023), and temperature and salinity vertical pro-
files from in situ ARMOR and CORA-REP mea-
surements (INSITU_GLO_PHYBGCWAYV _ DIS-

CRETE_MYNRT_013_030, 2024). The ocean observations
are not assimilated under the sea ice in the original oper-
ational system. Following experiments to set up the new
ice assimilation system, instabilities in the water column
appeared in the Southern Ocean. To reduce these static
instabilities, we activated the OSTIA SST assimilation under
the ice to maintain the ocean temperature at the freezing
point. We also stopped assimilating in situ data to the south
of 60°S, regardless of the season, because the surface
thermohaline properties were being durably modified on
large spatial scales, despite the few profiles present. As-
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similating these in situ data modified ocean stratification,
causing upwellings of warm water at the surface and creating
unrealistic open water areas within the sea ice cover.

Assimilation systems can be described by the terms mon-
odata or multidata, depending on the number of observations
assimilated. Two different methods exist for the assimilation
system: univariate and multivariate. They refer to the num-
ber of variables in the Kalman filter state vector, determining
for which variables the increments are created. In a univari-
ate configuration, the Kalman filter runs for each observa-
tion to create only one increment. In a multivariate configu-
ration, multiple analysis increments are created at once, using
the model covariances to simultaneously correct a number of
variables in a coherent manner. Hence, different assimilation
systems could be defined: monodata/univariate, monodata/-
multivariate and multidata/multivariate.

In the univariate configuration, only a SIC increment is
created, and only SIC observations are assimilated. In the
multivariate configuration, the state vector is made of sea
ice concentration SIC, sea ice volume SIV, snow volume
SNV, radar freeboard volume RFBYV, and snow thickness
SNT. This multivariate configuration allows us to assimilate
a larger variety of data and to update the modelled ice ac-
cordingly. It is not required to use observational data on each
of the state vector variables: when no data are given, the
Kalman filter uses the model covariances to propagate the
information from the observed variables to the unobserved
ones. Similarly, the model covariances are used to create in-
crements where and when there are data gaps in the assimi-
lated observations. RFBV and SNT variables are included in
the state vector due to the availability of observation datasets
for these quantities. SIV and SNV are included because they
are global prognostic variables of the ice model, essential
for accurately describing the model state. SIC is included for
both reasons.

The different variables updated in the sea ice assimila-
tion cycle are listed in Table 2. The increments do not dis-
tinguish ice categories; they present total values aggregated
over each grid cell. All increments are tempered by the [AU
factor. The first updated model variable is the SIC. The
analysis is created by adding the increment to the forecast:
SIC, = SICs + SICjpc. Then, the total ice concentration is
redistributed into each existing thickness category using a
Gamma-type distribution commonly found in observed mea-
surements (Petty et al., 2020; Toppaladoddi et al., 2023). This
chosen distribution (with parameters k =2.0 and 6 =0.4)
adds most of the increment to the middle and smallest thick-
ness categories and less to the extreme categories.

In the univariate system, all other updates are computed
from this SIC increment: following Tietsche et al. (2013), the
SIV is proportional to the sea ice concentration, with a con-
stant varying depending on the hemisphere: 4§, = 1 m and
h{y = 2m. The SNV increment is set to zero in the univari-
ate method. In the multivariate method, SIV and SNV incre-
ments come directly from the Kalman filter algorithm. The
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algorithm updates the total ice and snow volumes for each
grid cell, and then redistributes the updates to the individual
ice categories. For the SIV, the algorithm adjusts the SIT in
each category, starting with the thinnest ice. This prioritizes
melting thinner ice first when the ice volume increment is
negative. Changes are applied proportionally to the analysis
SIC in each category, ensuring larger changes in categories
with greater ice surface area. If the change of thickness of a
category exceeds its bounds, any excess or deficit in volume
is transferred to the next thicker category, and this redistribu-
tion continues until the entire SIV increment is applied. The
SNV update accounts for the forecast SNT, analysis SIC, and
SNV increment. When the SNV increment is zero, correc-
tions are still applied, aiming at maintaining a constant SNV
even under varying SIC conditions. Redistribution preserves
the snow distribution across ice categories by adjusting the
forecast SNT by the same ratio in each category.

Then, the volumetric ice salinity and enthalpy are cor-
rected in both methods by adjusting the previous ice salinity
and enthalpy to the new ice volume SIV, = SIV¢+ SIVjpc.
The volumetric snow enthalpy is also corrected following the
same procedure. The updated volumetric ice salinity and en-
thalpy and the volumetric snow enthalpy are used to compute
the ice salinity vertical profile, the salt mass content, and the
snow and ice vertical temperature profile.

2.4 Experiments setup

To assess the impact of the multivariate and/or the multi-
data approach versus the more widespread SIC monodata/-
multivariate assimilation approach, we have not considered
the most relevant approaches that can be combined with a
single-variety or multi-variety approach and the use of data
in multi-data or single-data mode. We performed a mono-
data/multivariate experiment assimilating the SIC OSISAF
SSMIS product only with the multivariate assimilation sys-
tem described previously. The results of this experiment are
presented in Sect. S2 to let the article focus on the major
differences brought by the innovative multidata/multivariate
configuration. We then restricted the study to the compari-
son of the results using the monodata/univariate and the mul-
tidata/multivariate configurations. Three experiments have
been performed to assess the performance of the assimilation
and the impact of the multivariate approach:

— FREE. experiment without any assimilation, used as a
baseline of the model capacities which has consistent
biases in all sea ice variables due to model and forcing
limitations, providing a baseline for evaluating the im-
pact of assimilation.

— UNIVAR. experiment similar to the current operational
system, using the previously described univariate SIC
assimilation method. Assimilating SIC alone is ex-
pected to significantly reduce sea ice concentration er-
rors but may induce unrealistic adjustments in sea ice
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thickness (SIT) and snow depth (SNT), due to uncertain
or non-physical covariances.

— MULTIVAR. experiment with the multivariate assimi-
lation scheme described previously, assimilating SIC,
RFB and SNT observations, and updating the SIC, SIV
and SNV model variables. Assimilating multiple vari-
ables is anticipated to improve agreement with all as-
similated observations (SIC, RFB, SNT), though possi-
bly at the cost of reduced SIC accuracy and increased
risk of numerical or dynamical imbalances, especially
in a coupled ice—ocean model.

Characteristics of the three experiments are summarized
in Table 3. All three experiments were conducted over two
full annual cycles, 2017 and 2018, covering the period from
14 December 2016 to 26 March 2019. Initial conditions are
based on the reanalysis GLORYS12V1 (Lellouche et al.,
2021).

3 Performances of the assimilation system
3.1 Seaice concentration and sea ice leads

As expected, the two assimilation experiments outperform
the FREE experiment during summertime in terms of sea ice
concentration coverage. In both hemispheres, FREE is not
able to prevent excessive melting and shows a significant lack
of sea ice, mainly in marginal areas, during July—October in
the Arctic (i.e. Fig. 1a for July 2017) and in January—April in
Antarctica (see Figs. S1 and S2 in the Supplement).

Maps of the sea ice concentration in the assimilated ob-
servations and their difference to the experiments are shown
on Fig. 1 for both hemispheres. The well-known Weddell
Sea “Maud-rise polynya” that appeared in winter 2017 (Jena
et al., 2019) is not reproduced by the FREE experiment
(Fig. 1b). The UNIVAR and MULTIVAR experiments are
able to reproduce this polynya. However, in the assimilated
simulations, the Maud-rise polynya begins to take shape from
June 2017, earlier than in the observations, and the system
struggles to keep an ocean uniformly covered in ice in the
Weddell Sea. Other polynyas are present in few locations
around the Antarctic: in the Amundsen Sea offshore of Pine
Island Bay at 120° W in the UNIVAR and MULTIVAR sim-
ulations (Fig. 1b), and near Iselin Bank at 180° E in the Ross
Sea in the MULTIVAR simulation. These events appear re-
peatedly during the ice freezing period in 2017 and 2018.

On the maps on Fig. 1, sea ice concentration modelled by
the UNIVAR simulation stands out and compares very well
with the assimilated SSMIS dataset in the Arctic (RMSE of
0.04 in July 2018) and remains below the observation error
in Antarctica (RMSE of 0.06 in September 2017). Multivari-
ate assimilation of RFB and SNT data reduces the Arctic
SIC compared to SSMIS, mainly in the central Arctic. This
lower SIC in the central Arctic results in a RMSE of 0.18 for
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July 2018, the highest among the experiments. In that sum-
mer period, there are no RFB and SNT observations and the
multivariate assimilation system creates the SIV and SNV
increments from SIC observations and model covariances
only. During the other months, the RMSE of 0.08 for the
MULTIVAR simulation is lower, falling between the mean
RMSEs of the UNIVAR and FREE simulations, which are
0.04 and 0.13, respectively. The Arctic mean RMSE of the
UNIVAR and MULTIVAR simulations are similar in winter,
but they differ in summer with the MULTIVAR simulation
RMSE being 0.07 higher. In Antarctica, the FREE simula-
tion presents mainly positive SIC biases in winter, partic-
ularly in the marginal ice zone (MIZ, defined by SIC val-
ues between 15 % and 80 %), and places the ice edge too far
north compared to SSMIS observations (Figs. 1 and S2) with
mean RMSEs of 0.16 in September 2017 and 0.23 over the
whole 2017-2018 months. The ice edge overestimation in
the FREE experiment is corrected by the SIC assimilation in
both UNIVAR and MULTIVAR simulations with compara-
ble RMSE:s of respectively 0.06 and 0.08 in September 2017
and the same values for the mean RMSEs over the whole
2017-2018 months.

We also assess the experiments on their ability to correctly
reproduce the amount of open waters within the sea ice ex-
tent, referred to as “leads” hereafter. The area of sea ice leads
offers valuable insights for predicting the Arctic sea ice ex-
tent (Zhang et al., 2018). The daily sea ice leads area time-
series are represented on Fig. 2a in the Arctic and Fig. 2b in
the Antarctic. The sea ice leads area is computed by subtract-
ing the sea ice area from the sea ice extent defined by cells
where SIC > 15 %. We use two others different SIC datasets
in order to quantify the spread among observations (Ivanova
et al., 2015): the OSI-408 product (OSI SAF, 2017), derived
from AMSR-2 satellite measurements and processed by the
EUMETSAT OSISAF; and the Climate Data Record (CDR)
dataset (Meier et al., 2017; Peng et al., 2013) from the Na-
tional Snow and Ice Data Center (NSIDC). All SIC data are
interpolated on the polar stereographic SSMIS grid and use
a consistent continental mask, ensuring the same area cover-
age.

In the Arctic, the maximum lead surface area occurs in
summer, more precisely at the beginning of the melting sea-
son. The daily surface area of leads peaks in July and then
decreases with the retreat of the sea ice extent. The amount
of leads remains constant from October to May in all the
observations. In Antarctica, the lowest lead surface area is
synchronous with the sea ice extent minimum in February—
March. The observations then show an increase in leads area
until its peak in November—December, corresponding to the
first third of the melting season. The southern observational
datasets show strong agreement regarding the minimum lead
surface; but diverge as the lead area increases. In both hemi-
spheres, NSIDC and SSMIS observations respectively dis-
play the smallest and the largest amount of leads. The FREE
experiment shows the smallest amount of leads remaining
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Table 2. Variables updated during the assimilation cycle and their origin in both the univariate and multivariate systems.

Updated variable Univariate method Multivariate method
SIC Increment Increment
SIV SIVine = h* x SICjpc Increment
SNV SNVipc =0 Increment

Volumetric ice salinity

Computed from SIVj, and forecast value.

Volumetric ice enthalpy

Volumetric snow enthalpy No update

Computed from SIVj, and forecast value.

Computed from SNVj,,. and forecast value.

Table 3. Experiments setup in terms of assimilated data, analysis increments and updated model quantities.

Experiment name Assimilated data Analysis increments Updated model
variables
FREE None None None
UNIVAR SSMIS SIC SIC, SIV
MULTIVAR SSMIS, RFB-LEGOS, SNOW-KaKu SIC, SIV, SNV, RFBV, SNT SIC, SIV, SNV

outside the range of the observations for most of the year in
both hemispheres, and has a weaker seasonal amplitude in
the Arctic than the assimilated experiments and SSMIS and
AMSR? estimates, but comparable to NSIDC’s amplitude.
Despite leads metrics that moderately resemble the observa-
tions on average in the FREE experiment, its Arctic RMSE
of 0.15 on Fig. la highlights inconsistencies in the mod-
elled spatial patterns of sea ice concentration. The assimi-
lation process rapidly and realistically increases the amount
of leads in both the Arctic and Antarctic sea ice cover. The
two assimilated experiments remain very close to the NSIDC
leads area estimates during the northern hemisphere constant
sea ice leads period, and they reproduce very well the rapid
increase in lead surface area during spring. The UNIVAR ex-
periment remains within the range of observational estimates
throughout the year. The MULTIVAR simulation exhibits the
highest amount of leads during the peak period in July, even
higher than the SSMIS observations.

In Antarctica, both the UNIVAR and MULTIVAR experi-
ments have a consistently higher sea ice leads area than the
FREE experiment and are thus in better agreement with the
observations. They correctly reproduce the minimum leads
area and its maximum, with the MULTIVAR experiment
showing the highest amount of leads during the peak period
in early December, still coherent with the SSMIS observa-
tions. However, during the second half of the increase in lead
surface, the assimilated experiments show significant fluctu-
ations that exceed the range of the observations. The fluctu-
ations are linked to the occurrence of localized low-SIC and
thin ice areas in the ice cover, called polynyas when they be-
come open-water areas.

In both hemispheres, the assimilation of SIC creates a
larger lead area in the sea ice cover, in accordance with
the SSMIS assimilated observations. The multivariate exper-
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iment alone even overestimates the quantity of leads dur-
ing the seasonal maximum in the Arctic summertime. In the
Antarctic, the two assimilated experiments generate a large
number of polynyas that are not detected by the satellite ob-
servations, with the MULTIVAR experiment showing them
more frequently and broadly across the region (Figure S2).
While some smaller polynyas may go undetected in the ob-
servational data, the modelled polynyas are likely overesti-
mated.

3.2 Snow volume

Figure 3a shows the probability density functions for snow
thickness, radar freeboard using SAR mode, and radar free-
board using SARin mode, along with their model equiva-
lents for the three experiments in the Arctic in April 2017.
The SNOW-KaKu data in the Arctic present a zero-inflated
bimodal, asymmetrical and positively skewed snow distribu-
tion with the first mode representing a snow thickness of 0 cm
(no snow observed on the grid cell), and the second mode
increasing in thickness as winter progresses and peaking at
13.6cm in April 2017. The MULTIVAR snow distribution is
very close to the Arctic SNOW-KaKu during winter (Figs. S3
and S5) and matches perfectly in April. The UNIVAR and es-
pecially the FREE simulations accumulate excessive snow as
winter progresses, leading to a positive bias by the end of the
winter assimilation period as shown on Fig. 3a. The linear
correlation (r-value) computed against the SNOW-KaKu ob-
servations in the Arctic results is consistently above 0.5 for
MULTIVAR, peaking at 0.7 in December 2018 (Fig. S6). The
FREE and UNIVAR experiments exhibit systematic lower r-
values, with the UNIVAR experiment having the lowest av-
erage correlation of 0.37. Compared to SNOW-KaKu esti-
mates, the FREE and UNIVAR simulations present a spa-
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(a) July 2018 Arctic SIC differences relative to OSISAF SSMIS
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Figure 1. July 2018 in the Arctic (a) and September 2017 in the Antarctic (b) maps of the sea ice concentration, representing the observation
SSMIS on the first column, and the difference between the experiments and the reference SSMIS observation on the following columns. The
simulations are, in that order: FREE, UNIVAR and MULTIVAR. Root mean squared errors (RMS) are provided under each map.

tially homogeneous overestimated snow thickness in Central
Arctic and an underestimation in few areas such as north of
the Canadian Archipelago, the east coast of Greenland, and
in the Barents and Greenland seas (Fig. 3b). This results in an
excessive total snow volume of 1.24 million km? in the FREE
experiment compared to that of 0.94 millionkm? estimated
by SNOW-KaKu observations. In April 2017 (Fig. 3b), the
MULTIVAR simulation represents closely both the SNOW-
KaKu spatial pattern and the total snow volume amount with
0.91 million km?>. This result is robust and remains valid for
the other months of the year.

In the Antarctic, the SNOW-KaKu data again exhibit a
bimodal and positively skewed distribution, with a mode at
0.6 cm another at 11.6cm in the first month of assimilation
in May 2017 on Fig. 4a. As winter progresses, the second
mode gets thicker and more frequent, peaking at 17.6cm
in October 2017. Among the simulations, the FREE exper-
iment matches better the observations in May 2017 but then
diverges the most from the observations, showing an increas-
ing accumulation of snow as winter progresses, with a main
mode 11.2cm higher than the observed mode in October
2017. The UNIVAR and MULTIVAR experiments present
lower snow thickness values compared to the observations
during the whole 2017 and 2018 seasons, with main modes
respectively 8.2 and 7.5 cm lower than the observed mode.
The most significant snow positive biases in the FREE exper-
iment are associated with thinner snow measurements in the
SNOW-KaKu data, suggesting a thicker and more uniform
snow cover, with a snow accumulation in the interior of the
Weddell Sea, resulting in an excess of 1.06 million km? of
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snow compared to the SNOW-KaKu estimate (see Fig. 4b).
In comparison, the UNIVAR simulation presents a general
thinner snow depth, maintaining however the accumulation
in the Southwestern part of Weddell Sea. The MULTIVAR
simulation has the weakest biases and is even able to re-
duce the high snow accumulation in the Weddell Sea present
in the FREE simulation and to represent the thicker snow
pattern measured in the SNOW-KaKu product downstream
the Antarctica Peninsula. The biggest incoherence between
the MULTIVAR simulation and the SNOW-KaKu observa-
tions is on the Pacific Ocean/Eastern Antarctic coastal sec-
tor, where the assimilated experiment does not reproduce the
high snow thicknesses. The UNIVAR and MULTIVAR sim-
ulations have respectively 1.02 and 0.85 million km? less
snow than SNOW-KaKu estimations in October 2017. The
two simulations underestimate the SNOW-KaKu snow vol-
ume estimate for all the winter months of 2017 and 2018.

In both hemispheres, the MULTIVAR experiment consis-
tently simulates snow depths closest to those used in the
multivariate assimilation scheme. While a localized assim-
ilation scheme is expected to modify the spatial distribution
of the variable to match the observations, it is noteworthy
that the assimilation of SNT leads to rapid corrections, with
most spatial biases already reduced within the first month
(Fig. S3). The agreement between the MULTIVAR experi-
ment’s snow thickness and the observations is higher in the
Arctic than in the Antarctic.
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Figure 2. Daily time evolution of Arctic (a) and Antarctic (b) surface covered by sea ice leads in millions of km? for SSMIS (black), AMSR2
(dashed black), NSIDC (dotted black) satellite data with the range covered by them (shaded grey) and for FREE (blue), UNIVAR (green)

and MULTIVAR (pink) experiments.

3.3 Radar freeboard volume

FREE and UNIVAR have biases of respectively —6.6 and
—7.9 cm in RFBV compared to the LEGOS observations in
April 2017 (Fig. 3c). The MULTIVAR simulation logically
exhibits a very small bias of —0.5 cm in the assimilated re-
gion and a RMSE of 2.2 cm, below the observation error of
both the SAR and SARin data. The largest differences com-
pared to the LEGOS RFB estimates are located along the
coasts around the Canadian Archipelago and to the east of
Greenland, i.e. in SARin areas. The SARin data are provided
with higher observation errors compared to SAR data, with
mean values of 19.2 and 9.2 cm, respectively. The highest
difference (> 40 cm) between MULTIVAR RFB values and
LEGOS RFB estimates arises at the end of both 2017 and
2018 winters in the north of Greenland, an area where snow
observations are not available. In summer, when no RFB ob-
servations are assimilated, the probability density function of
the MULTIVAR RFB values remains more positively skewed
than in other simulations. In November, when the observed
data return after the summer break, the MULTIVAR exper-
iment shows the lowest RMSE (2.6cm) compared to the
FREE (7.6 cm) and UNIVAR (8.3 cm) experiment based on
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the 2017 and 2018 averages. However, the MULTIVAR sim-
ulation presents larger RFB biases in November, than during
the rest of the winter months when the errors relative to the
RFB LEGOS dataset stay consistent.

LEGOS RFB measurements in the Antarctic present a sim-
ilar gamma-type distribution as in the Arctic, with a decreas-
ing SAR mode (from 3.3 to 0.5cm) and increasing SARin
mode (from 3.9cm to 4.9cm) between May and October
2017 (Fig. 4a). The simulations exhibit more uniform RFB
values than in the Arctic with up to 20 % of the RFB having
the same value in the UNIVAR experiment in May 2017. The
FREE, UNIVAR and MULTIVAR experiments have similar
RFB SAR modes of respectively —0.4, —1.0 and 0.3 cm in
May 2017, lower than the observed SAR mode of 3.3 cm.
As the season progresses, the FREE and UNIVAR simula-
tions present an even more negative bias, with RFB modes
respectively 8 and 3 cm lower than the LEGOS RFB SAR
mode in October 2017. A similar behaviour is shown for RFB
SARin model equivalents, with the FREE and to a lesser ex-
tent the UNIVAR simulations frequently modelling negative
RFB values that decrease as winter progresses. The MUL-
TIVAR experiment is the only experiment to show a posi-
tively skewed distribution with positive modes in both SAR
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Figure 3. Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard SARin
observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) experiments. Total
snow and RFB volumes values and root mean squared difference (RMS) are provided under each map.

and SARin model equivalents throughout the duration of the
simulation, aligning more closely to the LEGOS observa-
tions variability for the positive RFB values. The FREE and
UNIVAR simulations display a general low bias in RFB all
around the Antarctic (respectively —13.1 and —9.6 cm in av-
erage), with the most significant negative biases located in
the two thicker RFB areas, indicating a more uniform RFB
spatial distribution (Fig. 4c). The MULTIVAR experiment
has the lowest biases, —3.5 cm in average, and a RMSE of
4.47 cm. The FREE, UNIVAR and MULTIVAR simulations
represent respectively 1.80, 1.33 and 0.48 million km? less
RFBV than the LEGOS dataset. The underestimation of the
southern RFB in the FREE simulation is likely due to the
overestimation of the snow thickness in the Antarctic.

For all simulations and in both hemispheres, SAR mea-
surements are in better agreement with the RFB model equiv-
alent values compared to the SARin measurements. The
MULTIVAR experiment shows the closest agreement with
the observations among the simulations. The agreement be-
tween the RFB and SNV model equivalents from the MUL-
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TIVAR experiment and the observations is not as high in the
Antarctic as in the Arctic.

4 Validation with independent datasets
4.1 Total freeboard: ICESat-2 data

Both ICESat-2 (Ice, Cloud and Land Elevation Satellite) AT-
LAS and SARAL/AItiKa satellites measure total freeboard
but the first one using a laser altimeter (Markus et al., 2017),
and the second one with a radar altimeter. However, the
ICESat-2 product presents a smaller orbital hole (88° latitu-
dinal limit) and a full-year availability, starting from 14 Oc-
tober 2018. The monthly ICESat-2 NSIDC ATL-20 gridded
along-tracks product (Petty et al., 2023) is used on Fig. 5,
as a scatterplot between its total freeboard values and the to-
tal freeboard collocated in time and space for the LEGOS
data and the FREE, UNIVAR and MULTIVAR experiments
in the Arctic. The LEGOS total freeboard is made using
LEGOS RFB and SNOW-KaKu data, and the model con-
stant water, ice and snow densities. The MULTIVAR sim-
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Figure 4. Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard SARin
observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) experiments in the
Antarctic for May and October 2017. Middle (b), resp. bottom (c), row panels: snow volume per unit area, resp. radar freeboard volume
per unit area, from SNOW-KaKu, resp. RFB LEGOS, (first column) and differences with FREE, UNIVAR and MULTIVAR experiments in
October 2017. Total snow and RFB volumes values and root mean squared difference (RMS) are provided under each map.

ulation and LEGOS data present anticipated similar linear
correlation statistics (slopes and r-values), MULTIVAR has
then logically better statistics than the FREE and UNIVAR
experiments, MULTIVAR simulation and the LEGOS data
have similar mean RMSE compared to ICESat-2 data (6.7
and 7.2 cm respectively) and the MULTIVAR simulation and
LEGOS data also display comparable mean total freeboard
in January—February 2019, with values of 22.2 and 22.0cm
respectively, slightly thinner than the ICESat-2 estimate of
23.7cm. The mean total freeboard for the FREE and UNI-
VAR experiments was found to be 19.4 and 15.0 cm, respec-
tively, for the same period, due to thinner sea ice and snow
cover in the UNIVAR experiment. The change in the total
freeboard modelled by the MULTIVAR experiment is mainly
due to a larger SIV, thanks to the assimilation update, com-
pared to the UNIVAR experiment. The FREE and UNIVAR
simulations consistently underestimate ICESat-2 total free-
board, especially in October 2018 with mean values of 9.2
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and 6.6 cm respectively while the MULTIVAR experiment
shows a mean value of 15.8 cm, aligning better with the mean
total freeboard ICESat-2 estimate of 23.9cm. In late sum-
mer, total freeboard has decreased during the melting season;
however, the thinning is more pronounced in our simulations
than in the ICESat-2 observations which does not seem to
show a reduction in the mean freeboard compared with win-
ter. The FREE experiment is not able to prevent excessive
summer melting and exhibits unrealistic ice-free zones in Oc-
tober 2018. Higher statistical agreement in October 2018 for
the MULTIVAR experiment shows that the data assimilation
from the last winter positively impacts the simulation during
the entire summer. However, compared to ICESat-2, MULTI-
VAR still underestimates the thickness of the total freeboard
at the end of Arctic summer.

In Antarctica, simulated total freeboards show less agree-
ment with ICESat-2 measurements compared to those in the
Arctic (Fig. 6). All the experiments and the LEGOS esti-
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Figure 5. Scatterplots of the monthly Arctic ICESat-2 total freeboard against FREE, UNIVAR, MULTIVAR experiments and LEGOS
RFB/SND-KaKu data computed with model densities (black) for October 2018, beginning on the 14/10/2018 (experiments respectively in
blue, green and pink; no LEGOS data), and for January—February 2019 (experiments respectively in orange, red and cyan). The x = y line
(grey) and linear regressions for October 2018 (dashed black) and January—February 2019 (dotted black) are shown. Values of the linear
slopes (s) and the r-values (r) are provided and all statistics are significant.

mations present a general more scattered plot in the south
than in the north. In October 2018, the last month of the
assimilation season in the southern hemisphere, the MUL-
TIVAR total freeboard shows a greater variability than the
FREE and UNIVAR total freeboard, in accordance however
with the dispersion of the assimilated CS2 LEGOS RFB
and SNOW-KaKu datasets. Both the MULTIVAR experi-
ment and LEGOS data have a positive mean bias compared
to the ICESat-2 data, of respectively +10.7 and 4-8.6 cm.
The FREE simulation has a positive bias cluster for thin total
freeboard but underestimates the thicker freeboard values, re-
sulting in a mean bias of +2.4 cm. The UNIVAR experiment
is underestimating ICESat-2 total freeboard values the most,
with a mean bias of —11.9 cm. The melting season (January—
February 2019) highlights the excessive thinning of the to-
tal freeboard in the simulations compared to the ICESat-2
data. The FREE experiment again has large unrealistic ice-
free zones with total freeboard values at 0 cm. The MULTI-
VAR experiment presents the highest total freeboard summer
values among the experiments, with mean value of 19.6cm
(resp. 7.3 and 4.4 cm and for the FREE and UNIVAR exper-
iments), still underestimating to a lesser extent the ICESat-2
mean values of 34.2 cm.

Assimilating radar freeboard and snow depth observations
in the multivariate framework significantly reduces biases
found with ICESat-2 total freeboard in both hemispheres.
The MULTIVAR shows systematic increase of the slopes in
winter as in summer. The agreement between modelled vari-
ables and ICESat-2 estimates is stronger in the north than in
the south.

4.2 Comparison with in-situ measurements

The in-situ data include Upward-Looking Sonar (ULS)
moorings measurements in the Beaufort Sea, from the Beau-
fort Gyre Exploration Project (BGEP) with moorings A, B
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and D; and in the Fram Strait, from the Norwegian Polar In-
stitute (NPI) (Sumata et al., 2021) with moorings F11, F12,
F13 and F14. We also use airborne laser and radar altimeter
measurements in the western Arctic from the Operation Ice
Bridge Quick Look product (OiB-QL, Kurtz et al., 2016).

The ULS moorings are located in regions where the LE-
GOS data are fully available (both RFB and SNOW-KaKu).
A distinction is made for OiB-QL measurements based on
the availability of LEGOS data, highlighting the orbital hole
that results from using SARAL-AItiKa measurements.

BGEP ULS measurements, available all year long, are
available for the whole duration of the simulations, and the
NPI ULS data are available until August 2018. Airborne
OiB-QL observations are collected only in spring, but they
sample a variety of ice (MYI and FYI) and cover a signif-
icant area in the Arctic. OiB-QL measurements campaigns
took place during 7d in March 2017, 3d in April 2017, 1d
in March 2018 and 6 d in April 2018. The comparison for all
measurements is made at monthly frequency. The LEGOS
values presented in this section are made from the LEGOS
RFB data, the SNOW-KaKu data, and the model fixed densi-
ties (LEGOS_mD).

4.2.1 Beaufort Sea: BGEP ULS

The Fig. 8 shows a remarkable agreement of ice drafts be-
tween BGEP data and all experiments. The LEGOS obser-
vations have less coherence with the BGEP ULS measure-
ments than the experiments but still with very high statistics.
The values that underestimate the BGEP measurements in
all 3 experiments are mostly during summertime (Table 4).
The MULTIVAR experiment exhibits less accuracy than the
FREE and UNIVAR simulations, with more scattered val-
ues and higher RMSE (Table 4), inheriting the behaviour of
assimilated LEGOS data. However, MULTIVAR ice drafts
have higher correlation than those from LEGOS estimates
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Figure 7. Map of the Arctic and the different in-situ measurements
used for validation of the simulations.

and, further, the MULTIVAR experiment is able to keep the
strong correlation obtained with the FREE ice draft values
during summertime (Fig. 8).

4.2.2 Fram Strait: NPI ULS

The ULS ice draft measurements are thicker in the Fram
Strait than in the Beaufort Sea. The LEGOS data is in gen-
eral agreement with the NPI data but presents mostly thicker
ice drafts than the ULS measurements. The FREE and UNI-
VAR ice drafts consistently underestimate the ULS measure-
ments, with very low slopes and r-values (Fig. 9). These two
experiments have most of the ice drafts at Om and show a
deficit of up to 1.4 m compared with in-situ measurements
(Table 5). Assimilating LEGOS RFB and SNOW-KaKu re-
sults in higher ice drafts, especially in winter when the assim-
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ilation is effective, and drastically reduces errors. Large er-
rors in the MULTIVAR experiment’s summer ice drafts val-
ues still remain in this region of the Fram Strait where the ice
front is highly variable.

4.2.3 Operation IceBridge QuickLook sea ice thickness

The LEGOS data and the OiB-QL ice thickness measure-
ments are in general good agreement (Fig. 10). The OiB-QL
data presents a cluster of measurements between 1 and 2m
that is well reproduced by all experiments and by the LE-
GOS data. Thicker measurements from the OiB-QL 2017
and 2018 campaigns are underestimated by the FREE and
UNIVAR experiments (Table 6). These two experiments do
not show ice thickness values higher than 4 m, whereas the
OiB-QL measurements signal ice up to 6.6 m thick. The
MULTIVAR simulation is able to reproduce thicker ice, re-
sulting in a general reduction of errors, especially bias, with
the OiB-SL measurements, in regions where all the assim-
ilated data is available, and also where some or all of the
assimilated data are missing (Table 6). However, the MUL-
TIVAR experiment’s ice thickness values are very scattered,
especially in the region where the LEGOS data is not entirely
available (no SNOW-KaKu poleward of 81.5° N; and no RFB
LEGOS poleward of 88°N).

4.3 Seaice volume
4.3.1 Total sea ice volume

The daily total ice volume values for each experiment are
shown on Fig. 11 (dotted lines). Figure 11 also presents the
experiments collocated within the spatial coverage of the as-
similated observations, which excludes the central Arctic or-
bital gap and limited coverage of marginal seas (solid lines).
This area, where both the RFB and KaKu data are avail-
able, is hereafter referred to as the “LEGOS zone” or the
“LEGOS observations domain”. Three different products are
shown: (1) LEGOS_og, the original SIV LEGOS (Guerreiro,
2017), based on CS2 RFB and SNOW-KaKu measurements
with varying snow and ice densities; (2) LEGOS_mD, which
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Figure 8. Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 km of the
Beaufort Gyre Experiment Program ULS Moorings for the summer (empty circles) and winter (solid circles). The linear regression (dashed
b lack line for winter, dotted black line for summer), slope (s) and r-value (r) are shown for each dataset. Methodology from Laxon et

al. (2013).

Table 4. Root mean square error (RMSE) and mean differences (MD) between the BGEP ULS measurements and LEGOS data (only winter
months: November to April), FREE, UNIVAR and MULTIVAR experiments, by season (summer: May to October and winter) and over the

two seasons as a total.

BGEP ULS DATA RMSE total MD total RMSE winter MD winter RMSE summer MD summer
LEGOS 0.194 0.113

FREE 0.134 0.011 0.121 0.095 0.150 —0.087
UNIVAR 0.139 —0.038 0.141 —0.020 0.137 —0.058
MULTIVAR 0.191 0.068 0.182 0.160 0.202 —0.039

uses the same measurements but applies constant snow and
ice densities from the SI3 model; and only in the Arctic (3)
CS2SMOS AWI, which combines SIV estimates from CS2
altimetric freeboard measurements of thicker ice and SMOS
brightness temperature measurements of thinner ice (Ricker
et al., 2017), using a modified W99 snow climatology and
variable ice and snow densities.

In the Arctic, the amount of sea ice remains consistently
high throughout the entire simulation in the MULTIVAR ex-
periment, resulting in sea ice maximums on average 13 %
and 48 % higher than respectively the FREE and UNIVAR
experiments (Fig. 11a). The FREE and UNIVAR simulations
start each winter with a low sea ice volume compared to
the observations. The MULTIVAR experiment presents sys-
tematically higher volume estimates and aligns better with
CS2SMOS product in the beginning of November 2017 and
2018. The MULTIVAR SIV values increase rapidly during
the first month of assimilation and follow closely the LE-
GOS_mD observations. Even in summer, the MULTIVAR
simulation maintains more ice volume in the Arctic than the
other simulations. The UNIVAR simulation shows a partic-
ularly drastic decrease in its ice volume estimate relative to
the FREE experiment and is consistently lower than all the
observation products. On average over the entire simulation
period, the UNIVAR experiment shows a decrease in sea ice
volume of 23 % while the MULTIVAR experiment shows a
21 % increase compared to the FREE experiment. The assim-
ilation of CS2 LEGOS RFB and SNOW-KaKu in the MUL-
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TIVAR experiment modifies the seasonal cycle of the sea ice
volume estimates, with a maximum earlier than in the other
simulations, and is more consistent with the observations.

As in the Arctic, MULTIVAR has the highest freezing rate
and the highest total sea ice volume in Antarctica among
the experiments for the most part of the simulation periods
(Fig. 11b), with, on average, 25 % and 141 % higher ice vol-
ume than FREE and UNIVAR estimates respectively. UNI-
VAR consistently presents the lowest ice volume. The assim-
ilated experiments have irregular time series during the sec-
ond half of the growing season, the MULTIVAR simulation
especially collapses many times before reaching its peak.
These collapses coincide between the two assimilated exper-
iments and are also present in the observation space (solid
lines, Fig. 11b). These sudden ice volume losses are due to
the occurrence of large open waters or polynyas within the
sea ice cover which first and foremost causes an increase of
sea ice leads from July to September 2017 and in August
and September 2018 (Fig. 1b). Some of them also appear in
the observation products such as the well-known Maud-rise
polynya in the Weddell Sea in 2017.

The use of the model constant densities (LEGOS_mD) re-
sults in higher SIV estimates than the LEGOS_og product
using seasonally varying ice and snow densities to convert
RFB into ice thickness (Fig. 11b). The deviation between
these two datasets is maximum in October because of the sig-
nificant drop in ice density from 900 to 875 kg-m > between
September and October. With one exception (October 2018),
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Figure 9. Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 km of the
Norwegian Polar Institut (NPI) Fram Strait ULS Moorings for the summer (empty circles) and winter (solid circles). The linear regression
(dashed black line for winter, dotted black line for summer), slope (s) and r-value (r) are given for each dataset.

Table 5. Same as Table 4 with the NPI ULS measurements.

NPI ULS DATA RMSE total MD total RMSE winter MD winter RMSE summer MD summer
LEGOS 0.427 0.366

FREE 1.040 —1.040 0.696 —0.696 1.402 —1.402
UNIVAR 1.238 —1.238 1.029 —1.029 1.458 —1.458
MULTIVAR 0.645 —0.571 0.316 —0.189 0.991 —0.972

both LEGOS_og and LEGOS_mD observations present sys-
temically higher SIV values than MULTIVAR simulation.
And even if the MULTIVAR experiment remains the clos-
est experiment to the LEGOS observations, it is still up to
10 million km3 below the LEGOS_mD estimates. Over both
2017 and 2018 winters, the datasets present mean SIV of re-
spectively 4.6, 8.0, 10.8, 15.2 and 18.5 million km? for the
UNIVAR, FREE and MULTIVAR simulations, and the LE-
GOS_og and LEGOS_mD products. The LEGOS_og prod-
uct displays a sea ice maximum in September, a month earlier
than the FREE simulation. LEGOS_mD also has a SIV max-
imum in September for 2018 winter only, but the differences
in densities make it unclear to identify the exact peak period
in 2017. Similarly, the occurrence of polynyas in assimilated
experiments makes it impossible to accurately determine the
maximum period.

In both hemispheres, the MULTIVAR experiment shows
the largest sea ice volume, while UNIVAR has the smallest.
Among the different products, LEGOS_mD has the highest
volume, followed by LEGOS_og and -only in the Arctic-
CS2SMOS. Notably, the products are highly sensitive to vari-
ations in snow and ice densities, with LEGOS_mD showing
in average respectively 1.48 million km>, resp. 5.6 million
km? , more sea ice volume than the original LEGOS_og in
the Arctic, resp. the Antarctic.

4.3.2 Comparison with SMOS satellite measurements

The CS2SMOS AWI product uses measurements from the
SMOS satellite in addition to CS2 measurements. SMOS
is known to have less uncertainties than CS2 on thin ice
measurements (less than 1m, Ricker et al., 2017). Based
on CS2 measurements, the LEGOS_og logically displays
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a consistent sea ice thickness spatial distribution compared
to the CS2SMOS product with the smallest RMSD (resp.
mean difference) of 30 cm (resp. 5 cm, Fig. 12). LEGOS_mD
presents a higher RMSD (resp. mean difference) of 39 cm
(resp. 34 cm). The FREE simulation shows thinner ice than
the CS2SMOS data in the central Arctic and on the east coast
of Greenland, and thicker ice elsewhere. The UNIVAR simu-
lation has a globally much thinner ice coverage with approxi-
mately half of its ice area covered by ice below 1 m thickness
and the other half with ice between 1 and 2 m height. The
MULTIVAR experiment shows a higher ice volume com-
pared to the other experiments, with a significant ice accu-
mulation thicker than in the CS2SMOS product on the north
of the Canadian Archipelago and Greenland. In that area
of important deviation between CS2SMOS and MULTIVAR
values, the assimilated SNOW-KaKu measurements are not
available. In the LEGOS SIV observation domain, the simu-
lations present a similar RMSD against the CS2SMOS prod-
uct of 33cm (FREE, MULTIVAR) and 31cm (UNIVAR).
The MULTIVAR modelled ice thickness has the same pos-
itive biases as the LEGOS_mD product but keeps a thinner
ice than the CS2SMOS data on the east coast of Greenland,
similarly to the two other simulations. Outside of the LE-
GOS observations domain, the UNIVAR simulation shows
the highest RMSD (65 cm) for the CS2SMOS SIT values
thicker than 1 m, while the FREE simulation has the high-
est RMSD (48 cm) for CS2SMOS SIT values thinner than
1 m among the three experiments. The RFB and snow assim-
ilation in the MULTIVAR simulation corrects the FREE and
UNIVAR underestimation of the ice thickness in the central
Arctic region (RMSD of 38 cm) and presents lower positive
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Figure 10. Comparison of monthly average ice thickness from LEGOS data, FREE, UNIVAR and MULTIVAR experiments collocated with
OiB-QL airborne measurements in the Arctic. Areas where LEGOS SNOW-KaKu and RFB measurements are available are respectively in
black, blue (FREE), green (UNIVAR) and pink (MULTIVAR) with linear regression in dashed black line; otherwise, orange (FREE), red
(UNIVAR) and cyan (MULTIVAR) with linear regression in dotted black line refer to regions where SNOW-KaKu data are not available.
All ice thickness values are gridded onto a 0.4° latitude by 4° longitude Arctic grid, following the methodology of (Tilling et al., 2018). The

slope (s) and r-value (r) are given for each dataset.

Table 6. Same as Table 4 with the OiB Airborne data and, according to the areas where SNOW-KaKu data is present (< 81.5°N) or not

(> 81.5°N) and for all OiB Airborne data.

OiB AIRBORNE RMSE MD RMSE MD RMSE MD
DATA total total lat<81.5°N lat<81.5°N lat>81.5°N lat>81.5°N
LEGOS 0.449 0.068

FREE 0.639 —0.503 0.459 —0.200 0.744 —0.681
UNIVAR 0.869 —0.794 0.574 —0.416 1.042 —1.016
MULTIVAR 0.652 0.182 0.486 0.135 0.750 0.209

biases than the FREE simulation for the thin ice around the
ice edge (RMSD of 27 cm).

In Antarctica, the SMOS product (Tian-Kunze and
Kaleschke, 2021) detects ice thinner than 1m using bright-
ness temperature measurements, hence the data is completely
independent from the LEGOS altimetric data assimilated in
the MULTIVAR experiment. The LEGOS observations, con-
sidering both fixed and varying densities, present a very thick
ice volume in the southern hemisphere (Fig. 13). Similarly to
the Arctic, the LEGOS_mD shows thicker ice volumes than
the LEGOS_og data. Compared to SMOS data, both LE-
GOS estimates show a different ice field: the CS2 Antarc-
tic ice thickness processed by the LEGOS is thicker with
RMSE values of 78 cm (resp. 97 cm) for LEGOS_og (resp.
LEGOS_mD) and the ice accumulations are measured on
the northernmost part of the Weddell Sea with CS2 mea-
surements, whereas SMOS satellite detects thick ice on the
southernmost part of the Weddell Sea. The FREE and UNI-
VAR simulations have spatially homogeneous SIV distribu-
tions and similar RMSD compared to the SMOS data on the
LEGOS domain (respectively 24 and 26 cm). The FREE ex-
periment has a consistent positive SIV bias compared to the
SMOS dataset. Although most of the UNIVAR experiment’s
ice thickness is below 1 m, it underestimates SMOS ice thick-
ness, except on areas close to the ice edge, where UNIVAR
values align well with the SMOS measurements (mean dif-
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ference of —2cm). Compared to FREE and UNIVAR, the
MULTIVAR simulation shows more important ice accumu-
lations, in consistency with both LEGOS SIV data, and there-
fore has the highest RMSE relative to the SMOS data on the
LEGOS domain (38 cm). The MULTIVAR simulation does
not reproduce the largest LEGOS SIV values and is therefore
closer to the SMOS data than the LEGOS estimates. Outside
the LEGOS domain, MULTIVAR corrects the positive bias
noticed along the ice edge in the FREE simulation but de-
grades the performances of the UNIVAR simulation with a
higher error (mean difference of 7cm). The FREE simulation
is the only experiment that does not reproduce correctly the
Maud Rise polynya, which is seen in all observation products
and in the two assimilated experiments.

In both hemispheres, for SIT < 1 m, using the multivariate
assimilation scheme better aligns the modelled sea ice vol-
ume with the SMOS data, presenting a lower RMSE for the
MULTIVAR experiment than the FREE experiment and the
LEGOS_mD data. However, the UNIVAR experiment shows
more accurate sea ice volume estimates for thin ice than the
MULTIVAR experiment when using SMOS measurements
as a reference.
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Figure 11. Time evolution of Arctic (a) and Antarctic (b) sea ice volume. The daily values are presented for the simulations FREE (blue),
UNIVAR (green) and MULTIVAR (pink), integrated over the whole hemisphere (dotted) and over the observation domain (plain lines). SIV
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Figure 12. April 2017 sea ice volume in the Arctic for CS2SMOS dataset (reference) and its difference with the FREE, UNIVAR, and
MULTIVAR experiments (first line) and the observations LEGOS_og (original) and LEGOS_mD (with model constant densities). Table:
root mean square error (RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, LEGOS_og, LEGOS_mD and CS2SMOS
data, calculated on the LEGOS zone and outside the LEGOS zone and for CS2SMOS sea ice thickness of less than or greater than 1m. The
table colours highlight the values close to O (white) and the extremes (green for the RMS, and blue/red for the negative/positive MD). The
LEGOS zone corresponds to areas where the KaKu snow depth is available.
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September 2017 Antarctic sea ice volume, comparison with SMOS product
Ref: SMOS
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Figure 13. September 2017 sea ice volume in the Antarctic for the SMOS data (reference) and its difference to the FREE, UNIVAR, and
MULTIVAR experiments (first line) and to the observations LEGOS_og (original) and LEGOS_mD (with model constant densities). The
colorbar shows only which only measures the ice that is thinner than 1 m (thicker ice is represented in yellow). Table: root mean square error
(RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, LEGOS_og, LEGOS_mD and SMOS data, calculated on the
LEGOS zone and outside the LEGOS zone. The table colours highlight the values close to 0 (white) and the extremes (green for the RMS,
and blue/red for the negative/positive MD). The LEGOS zone corresponds to areas where the KaKu snow depth is available.

5 Discussion
5.1 Performances of the multivariate assimilation

The radar freeboard and snow thickness assimilation al-
lows the multivariate assimilation experiment to correct the
model biases against the assimilated datasets: the MULTI-
VAR simulation has the closest results to the RFB LEGOS
and SNOW-KaKu products in both hemispheres. However,
the comparison of the Antarctic snow and RFB equivalents
shows less agreement with the assimilated observations than
in the Arctic.

The univariate assimilation system only corrects the SIC
variable and keeps a constant SNV. In the Antarctic, and to a
lesser extent in the Arctic, the UNIVAR experiment displays
a lower SNV compared to the FREE experiment. Thanks to
the snow assimilation, in the MULTIVAR simulation, the to-
tal volume of snow is adjusted but does not recover the to-
tal amount of observed snow in the Antarctic. The SNOW-
KaKu assimilation enables the simulations to reproduce the
snow observations spatial distribution in both hemispheres.
The snow cover completely melts in summer in both hemi-
spheres, and while the timing of melt should influence the
sea ice evolution, our results do not indicate a persistent or
clearly attributable long-term impact of the winter snow as-
similation.

The MULTIVAR simulation shows higher RFB values
than the FREE and UNIVAR simulations in both hemi-
spheres, even in the absence of observations during the sum-
mer. However, a drift in the RFB equivalent is still observed
during this season, leading to a negative bias in November/-
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May, when the assimilation begins. This small negative bias
suggests that the model’s trajectory is below the observed
values, a hypothesis supported by the significantly more pro-
nounced bias observed in the FREE and UNIVAR simula-
tions. In the Antarctic, the RFB is significantly underesti-
mated in the FREE and UNIVAR simulations, reflecting an
imbalance between snow and ice thicknesses: the snow cover
is too thick and the sea ice too thin, resulting in radar free-
board values that are more negative than observed. The ini-
tial state of ice and snow in the southern hemisphere found
in the FREE experiment is much more different from the as-
similated observations compared to the north. The multivari-
ate assimilation process is then less effective in aligning the
model with the observed data in the Antarctic than it is in the
Arctic.

In both hemispheres, the MULTIVAR simulation produces
RFB extremums that extend beyond the minimums and max-
imums observed in the FREE and UNIVAR simulations, and
more closely align with the LEGOS observations. Despite
this improvement, the MULTIVAR simulation does not cap-
ture the thickest and thinnest RFB LEGOS measurements.
This discrepancy could be attributed to the spatial resolution
mismatch between the observations and the model. Further-
more, it is important to recognize that the MULTIVAR sim-
ulation is not designed to replicate every extreme observa-
tion (such as a notably high SARin RFB of 4.3 m observed
in October 2017 in Antarctica) as the assimilation scheme
seeks to balance observational data with the model’s physi-
cal constraints. Given the use of unfiltered RFB data in the
assimilation, we do not expect the model to reproduce the
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exact observed values but rather a smoothed representation
that respects the model’s inherent dynamics.

The LEGOS observations are characterized by spatially
significant data gaps in the central Arctic and in the Cana-
dian Archipelago. The MULTIVAR simulation smoothly as-
similates the RFB and SNOW-KaKu data in these areas with-
out any visible demarcations. Furthermore, due to the choice
of parameters for the localisation algorithm in the assimi-
lation scheme, the assimilated satellite tracks do not print
on the modelled patterns. However, the largest RFB differ-
ences between the MULTIVAR experiment and the RFB LE-
GOS assimilated observations are located on the north of
the Canadian Archipelago and Greenland, with an especially
thin RFB in our simulation locally north of Greenland. No
snow observations are available in this area, and the MULTI-
VAR presents thicker snow values than the FREE and UNI-
VAR simulations. No particular RFB bias is present in the
large snow KaKu observation gap around the North pole,
suggesting that in the absence of snow observations, an inac-
curate modelled snow depth does not affect the RFB assim-
ilation performance on a large scale, but can result in higher
RFB biases very locally. When considering the sea ice vol-
ume, the experiments provide similar results in both hemi-
spheres: the assimilation of SIC with the univariate method
decreases the ice volume compared to the FREE simulation.
The assimilation of RFB LEGOS and SNOW-KaKu creates
the highest sea ice volume of all the simulations. The MUL-
TIVAR experiment also displays a more accurate spatial dis-
tribution of the ice than the other experiments. The MULTI-
VAR modelled ice volume in the Arctic is very coherent with
the LEGOS_mD dataset in the Arctic, which is more consis-
tent with our observation operator in terms of sea water, sSnow
and sea ice densities. In the Antarctic, the modelled sea ice
volume is consistently lower than the LEGOS_mD product,
probably due to lower model skills in representing sea ice in
the Antarctic than in the Arctic (Massonnet et al., 2011) and
more divergence between the modelled initial state and the
assimilated observations, as discussed earlier.

5.2 Comparison with independent data

The ICESat-2 satellite measures the total freeboard through
laser altimetry instruments, it is therefore completely inde-
pendent from the radar altimetry-based LEGOS freeboard
estimates. Previous section shows that assimilating LEGOS
data reduces the errors in the simulations total freeboard es-
timates compared to ICESat-2 measurements. The compari-
son in the Antarctic also shows weaker correlations between
ICESat-2 data and the experiments than in the Arctic. It
should be emphasized that most of the comparisons made
in the southern hemisphere with ICESat-2 data is done dur-
ing summertime, without assimilation of radar freeboard and
snow. The summer period of the southern ice is also known
to be poorly represented by the models (e.g. Roach et al.,
2020; Shu et al., 2020). In addition, the LEGOS data present
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less coherence with ICESat-2 compared to the Arctic. Nev-
ertheless, the MULTIVAR simulation exhibits higher perfor-
mance in terms of total freeboard compared to the other two
simulations, particularly during the summer months. This
demonstrates that the multivariate assimilation process in-
duces changes in total freeboard that persist even when radar
freeboard and snow are not assimilated.

Further comparison with in-situ independent observations
in the Arctic only show general improvement with the mul-
tivariate assimilation system compared to the FREE and the
UNIVAR experiments. The MULTIVAR experiment is able
to maintain the remarkable agreement found with the FREE
experiment with ULS moorings in the Beaufort Sea and
favourably thickens all types of ice in the Fram Strait region.
At the same time, the multivariate approach also positively
increases the thickest ice even in the absence of snow data.
Comparisons during the summer season show no particular
deterioration or improvement with the multivariate system.

Sea ice thickness products obtained from brightness tem-
perature measured by the SMOS satellite can be considered
complementary to the altimetric ice products because they
provide thin ice estimates (Kaleschke et al., 2024). In the
Arctic, the CS2SMOS data shows thinner ice thicknesses
than the LEGOS products (same as other CS2 products in
Sallila et al. (2019) but the observational datasets are still
coherent (better spatial alignment and RMSD of the same
order as the FREE simulation). In that hemisphere, differ-
ences between the simulations and the CS2SMOS data show
a generally better agreement for the MULTIVAR simulation
compared to the FREE and UNIVAR simulations. The pre-
dominant positive biases observed in the MULTIVAR simu-
lation are consistent with the biases in the LEGOS_mD prod-
uct (i.e., north of the Canadian Archipelago and Greenland).
However, Sallila et al. (2019) established that the CS2SMOS
product tends to underestimate the thickness of thick ice in
the Arctic when compared to in-situ measurements. There-
fore, an overestimation of the CS2SMOS estimates is not an
unexpected outcome for thicker ice. The CS2SMOS product
estimates of thin ice, however, are in closer alignment with
the in-situ Arctic measurements (Sallila et al., 2019). The
more precise thin ice estimates from the UNIVAR experi-
ment are compromised by the assimilation of CS2 data in the
MULTIVAR experiment, when compared to the CS2SMOS
values. It may be beneficial to increase the observation errors
for the thicker RFB or in the marginal ice zone in order to
reduce this degradation in comparison to the UNIVAR simu-
lation.

In Antarctica, the SMOS product is restricted to ice with
SIT < 1 m, and a similar situation as with the thin Arctic ice
arises: the comparison with the SMOS Antarctic data shows
a better agreement with the UNIVAR simulation. The MUL-
TIVAR simulation predominantly overestimates the SMOS
measurements, due to an overestimation of the assimilated
LEGOS data compared to the SMOS estimates. The SMOS
data however display a systematic underestimation of sea ice
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thickness in areas of ice divergence (Kaleschke et al., 2024);
and the Antarctic sea ice shows generally divergent ice drifts
(e.g. Petty et al., 2021). Moreover, the assimilated LEGOS
data present little resemblance with the SMOS Antarctic
measurements. However, the Southern Ocean lacks consis-
tent in-situ data measurements of sea ice and snow to better
evaluate satellite observations and models estimates. While
the assimilation improves the agreement between assimilated
products, the contrasting patterns seen in LEGOS and SMOS
sea ice thickness highlight the current observational uncer-
tainty in Antarctica, making it difficult to assert which prod-
uct more accurately represents the true state of the sea ice. In
the future, the system could also assimilate both CryoSat-2
(for thick ice) and SMOS (for thin ice) products in both hemi-
spheres, provided that Antarctic sea ice thickness estimates
have greater consistency and agreement. Here, The MULTI-
VAR simulation provides better statistics than the two other
experiments against the ICESat-2 data thanks to the multi-
variate assimilation of LEGOS observation product, and it
shows a better alignment with the SMOS data than the FREE
simulation despite the assimilation of a LEGOS product that
does not align with the SMOS data. The validation against
these two independent datasets hence proves that the multi-
variate ice assimilation scheme in the Antarctic created an
intermediate sea ice state between the LEGOS observations
and the model.

5.3 Ice and snow densities

Sea ice thickness products obtained from CS2 radar altime-
try measurements have significant uncertainties due to the
assumptions made on values of snow thickness and ice and
snow densities during the radar freeboard to ice thickness
conversion (Garnier et al., 2021; Kern et al., 2015; Kwok
and Cunningham, 2015; Mallett et al., 2020). Assimilating
directly the radar freeboard allows us to control the origin of
the uncertainties by using the rawest measurement possible
and controlling all the assumptions made during the assimi-
lation process. We decided to assimilate a satellite observed
altimetry snow thickness, which uses the same radar altime-
try techniques as the RFB product. Garnier et al. (2022)
show that using coherent measurement techniques between
the snow and freeboard datasets gives an accurate total free-
board value even when the snow-ice interface is biased.

The multivariate data assimilation proceeds for the RFB
volume observations by constructing a model equivalent us-
ing the model SIV and SNV variables and the model fixed
densities for water, ice and snow. The water density is nearly
consistent in all the sea ice volume datasets, with values vary-
ing by only a few kg-m~>. However, the ice and snow den-
sity values vary a lot. The model’s constant ice density is
917kg-m~3, but the ice density in the Arctic depends on
the ice age for LEGOS_og and CS2SMOS with the values
from Alexandrov et al. (2010) as extremums: 882 kg~m_3 for
the MYI and 917 kg-m~> for the FYI. Hence, assimilating
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radar freeboard and snow with the model constant ice density
primarily affects regions dominated by MYI in the Arctic,
which corresponds to the thicker ice regions that do not melt
during summer, in the north of the Canadian Archipelago
and Greenland. The difference of ice density results in an
ice thickness 32 % higher on MYI in the Arctic. The model
constant snow density is 330 kg-m~>. Garnier et al. (2022)
used a constant snow density of 300kg-m™> in the Arctic
for the LEGOS_og product, with a consequently lower sea
ice thickness than the model for equal RFB, snow thickness
and ice density values. Densities in the observation products
in the Antarctic are generally seasonally varying densities.
The model’s ice density (constant 917 kg-m~3) exceeds that
of the LEGOS_og observations (895kg-m™> on average),
with a particularly significant difference in October (LE-
GOS value: 875kg-m~3). The model snow density is com-
parable on average to the LEGOS observation’s snow den-
sities in Antarctica but presents differences up to 40 kg-m™3
for some winter months. This discrepancy between ice and
snow densities brings additional variability in sea ice volume
even when similar radar freeboard and snow measurements
are used, as illustrated by the difference between the LE-
GOS_og and LEGOS_mD datasets. The constant densities
parametrization in the model enhances the positive bias of
the sea ice volume in the Arctic compared to the CS2SMOS
product. In the experiments presented here, the uncertainties
due to the densities are related to the RFB observation opera-
tor. Hence, these uncertainties increase the representation er-
ror in the analysis. Varying ice and/or snow densities are cru-
cial features to be incorporated in the next version of the sea
ice model: it would ensure a more accurate radar freeboard
assimilation by lowering this representation error. One could
for instance use the method from Zhang et al. (2022) to se-
lect the optimal freeboard-to-thickness conversion ratios val-
ues by fitting the resulting ice thickness to in-situ or airborne
measurements. Moreover, implementing seasonally evolving
densities in the model could improve the realism of key phys-
ical processes such as snow—ice formation particularly in the
Antarctic. For instance, Mallett et al. (2020) offers a linear
evolution of the snow density to account for the densifica-
tion of the snow as winter passes. Sievers et al. (2023) use
this relationship to implement a radar freeboard assimilation
scheme with a varying snow density, but did not modify the
density in the model physics.

5.4 Seaice openings in Antarctica

In both hemispheres, results showed that all assimilated ex-
periments successfully corrected the biases of the FREE ex-
periment with respect to the SIC variable. Univariate SIC
assimilation provides the best performance for sea ice con-
centration as the covariances are not negatively affected by
other quantities. The degradation of modelled SIC in summer
in the MULTIVAR configuration, while UNIVAR uses the
same SIC observations, suggests that the multivariate assim-
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ilation may introduce erroneous corrections through model
covariances between SIC, SIV, and SNV. These propagated
increments, applied in the absence of direct summer observa-
tions of SIV or SNV, appear to deteriorate SIC consistency,
underscoring the need to reassess or seasonally adapt the co-
variances used in the assimilation. Still, summer remains the
most difficult season for systems to reproduce in both hemi-
spheres. SIC passive microwave observations also have the
greatest uncertainties during the melting season (Ivanova et
al., 2014).

Sea-ice models using Viscous-Plastic or Elastic-Viscous-
Plastic rheologies have been shown to reproduce the ob-
served sea ice deformations only with high resolution hor-
izontal grids (4.5km grid spacing or lower, Hutter et al.,
2018; Spreen et al., 2017; Wang et al., 2016). Both assim-
ilated experiments increased the amount of open water com-
pared to the FREE experiment and increase the amount of
sea ice leads on a coarser grid of 1/4°, i.e. grid cells of
size between 10 and 24 km in the Arctic. The multivariate
experiment shows an even higher presence of open waters
than the UNIVAR experiment during the peak period in the
boreal summer. These features are not supported by the as-
similated SIC SSMIS observations and are likely artificial,
though some may be related to the assimilation of along-
tracks RFB data, which is capable of detecting finer-scale
polynyas that are not visible in the coarser SIC SSMIS prod-
uct.

The assimilated experiments timeseries in the Antarctic
display oscillations that are due to the occurrence of very
localized low-SIC or open water areas, e.g. the so-called
polynyas (Fig. 1b). These openings only appear in the as-
similated experiments. As none of these openings occur in
the FREE experiment, the thick snow and ice layer likely in-
sulates the ocean from the atmosphere, maintaining the tem-
perature inversion beneath the ice and limiting oceanic heat
flux toward the ice base. The occurrence of the Maud Rise
Polynya in September—October 2017 (Jena et al., 2019) is re-
produced by the UNIVAR experiment, but its size is underes-
timated (Fig. 1b). On the other hand, the size of this polynya
is greatly overestimated by MULTIVAR and appears about
3 months in advance of the one observed by satellite. Fur-
thermore, the MULTIVAR (and UNIVAR to a lesser extent)
experiments show the presence of other polynyas this winter
2017 and a few more during winter 2018. These events are
the combination of a general reduction of snow and increase
of ice freeboard with respect to the FREE simulation, but
in specific areas where SIC or RFB observations show local
minima. These reductions in the areas covered by ice finally
expose the surface to the warm waters of the ocean. Once
triggered, assimilation is no longer able to counteract the
strong vertical instability and oceanic warming that prevent
these openings from closing. However, some of these acti-
vation zones correspond to fracture zones that have already
been identified, either for reasons of atmospheric divergence
(low pressure systems in Kwok et al. (2017) or linked to the
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local bathymetry (Reiser et al., 2019). These polynyas are the
consequences of intense interactions between the ocean and
the surface in our simulations in places where the equilibrium
of the model is very sensitive to any disturbance. The modifi-
cations in the assimilation scheme of the SST and in-situ pro-
files described in Sect. 2.1.2 have reduced the likelihood of
triggering polynyas in both UNIVAR and MULTIVAR sim-
ulations, but have not been able to prevent their occurrence.

6 Conclusion

This study presents the first implementation of a multivariate
sea ice assimilation scheme in both the Arctic and Antarc-
tica within a global 1/4° modelling and analysis system.
This system, largely based on the Mercator operational sys-
tem, already includes a multivariate ocean assimilation but
currently only assimilates sea ice concentration (SIC). Our
study enhances this capability by incorporating a multivari-
ate ice assimilation approach, assimilating along tracks radar
freeboard and snow depth jointly with sea ice concentra-
tion. By comparing simulations without assimilation, with
univariate SIC assimilation, and with this innovative multi-
variate system, we assess the capabilities of the assimilation
scheme. The univariate SIC assimilation method systemati-
cally decreases the ice volume compared to the FREE exper-
iment and shows a thin ice bias compared to observations.
The multivariate assimilation increases the sea ice volume
in both hemispheres, enabling the modelled sea ice to con-
verge on assimilated data sets. The spatial distribution of the
sea ice and the snow is modified in accordance with the as-
similated observations. Even in summer and in the observa-
tion’s spatial holes, when no satellite altimetry observations
are assimilated, the MULTIVAR experiment’s ice variables
are favourably modified by the multivariate ice assimilation.
Moreover, the diagnosed freeboard from the multivariate sys-
tem compares better with Iceat-2 independent observations
in the Arctic and, to a lesser extent, in Antarctica. Despite the
heterogeneous nature and varying resolutions of the assimi-
lated data sets, the multidata/multivariate assimilation system
demonstrates robust behaviour even in the absence of certain
observations (summer, spatial hole), indicating a consistent
and physically coherent adjustment of the sea ice state.

The comparison with observations coming from SMOS
satellite shows that the UNIVAR experiment agrees better
with the more reliable SMOS sea ice volume estimates for
thin ice (less than 1 m) than the MULTIVAR experiment. In
the Antarctic, CS2 and SMOS sea ice volume estimates di-
verge, so assimilating CS2 radar freeboard takes the model
results away from SMOS measurements. Increasing the er-
ror of altimetry measurements over marginal zones and thin
ice surfaces or merging altimetry with SMOS estimates for
ice are potential options in this multi-variate approach. Ulti-
mately, the results of the assimilation scheme reflect a bal-
ance driven by our selection of assimilated observations: the
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simulation is restricted to an intermediate position between
the assimilated data and the model’s trajectory. Therefore, a
degree of consistency between the assimilated and indepen-
dent validation datasets is essential to effectively detect an
improvement of the sea ice fields thanks to data assimilation
techniques.

The multivariate assimilation system performs better in the
Arctic than in the Antarctic, largely due to differences in the
model’s initial free state. In the southern hemisphere, the ini-
tial biases in the free simulation are larger than those in the
northern part, making it more challenging for the assimila-
tion to reconcile the model with observations. This highlights
the critical role of the model’s baseline state in a data assim-
ilation system. Further, the significant differences in ice vol-
ume estimates due to the use of constant or non-constant den-
sities show and confirm the importance of having a compre-
hensive modelled physics with observations measurements.

In the Southern Hemisphere, the results highlight the
strong interactions between sea ice and the upper ocean lay-
ers. These interactions lead to complex impacts on polynya
dynamics, which underlines the need for further investiga-
tion and the development of assimilation strategies that are
better suited to these sensitive, coupled environments. The
choice of the assimilation parameters (observation errors, lo-
calization radius) is still an ongoing work and further study
in the assimilation methodology is needed to fully handle the
strong coupled ocean/ice interactions at work in the Southern
Ocean.

This multivariate assimilation system paves the way for
the future integration of CIMR and CRISTAL satellite
measurements in synergy into operational systems. The
CRISTAL satellite, set for launch in 2028, will carry altime-
try radar instruments equipped with both Ku-band and Ka-
band radars, enabling simultaneous altimetry measurement
of the air—snow and ice—snow interfaces. Moreover, a higher
inclination orbit will enable measurements with a smaller
hole around the North pole with the CRISTAL satellite. The
CIMR satellite will measure the sea ice concentration with
passive microwave imagers, allowing for sub-daily and high
resolution (5 km) polar measurements. CIMR will also pro-
vide thin ice estimates from L-band radiometry, similar to
SMOS.
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