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Abstract. Water storage in snowpacks in mountainous areas
is critical for hydropower production, hydrological forecast-
ing, and freshwater availability. Spaceborne synthetic aper-
ture radar (SAR) is a powerful tool for quantitatively mea-
suring snow mass because of its high spatial resolution and
signal sensitivity to snow depth (SD). In particular, the first
SAR SD product (C-snow) based on Sentinel-1 satellites dis-
plays high sensitivity to depolarization signals for dynamic
SD monitoring in mountainous areas. Moreover, upscaled C-
snow retrievals (e.g., 10 and 25 km) have been used to pro-
vide reference data to train machine learning models, im-
prove passive microwave-based retrieval, and calibrate many
hydrological models. However, to date, a systematic assess-
ment of C-snow products at various scales has not been con-
ducted. In this study, the performance of C-snow products
at three scales (1, 10 and 25 km) is compared via station-
based measurements and airborne LiDAR observations, and
the scale patterns associated with the heterogeneity of the ge-
ographic environment and the representativeness of so-called
true data are analyzed. The scale patterns of C-snow prod-
ucts vary across resolutions. They differ from the patterns ob-
served in the station and airborne reference data. As the spa-
tial scale increases from 1 to 25 km, the error of C-snow re-
trieval in reference to station measurements tends to increase
(e.g., ubRMSE from 69.43 to 81.87 cm; bias from −8.89 to
11.66 cm), whereas it tends to decrease compared with Air-
borne Snow Observatory (ASO) data, with ubRMSE values
ranging from 104.3 to 83.29 cm and bias values ranging from
−91.31 to −52.73 cm. We also found that land cover types,

e.g., tree cover and permanent ice, affect the C-snow prod-
uct at various scales. Overestimation tends to occur in coarse
pixels covered with even a small amount of permanent ice.
The findings indicate that C-snow retrieval at three scales
is characterized by high uncertainty. Therefore, researchers
should focus on developing a robust SD retrieval algorithm
by combining SAR backscattering signals and polarimetric
and interferometric information.

1 Introduction

Snow storage and seasonal meltwater in mountains are com-
ponents of the “water towers” that form in mountainous ar-
eas globally. Therefore, quantitatively estimating snow mass
in mountainous areas is very important for hydropower pro-
duction, hydrological forecasting, and freshwater availability
(Barnett et al., 2005; Dozier et al., 2016; Daloz et al., 2020;
Qin et al., 2020). The snow water equivalent (SWE) is a pa-
rameter that reflects how much water the snowpack contains
and can typically be estimated from snow depth (SD) and
snow density. Satellite remote sensing has been demonstrated
to be an effective tool for monitoring multiscale SD informa-
tion, which enhances our understanding of water availability
in snowpacks (Chang et al., 1987; Kelly, 2009; Takala et al.,
2011; Lievens et al., 2019).

Conventional SD monitoring methods, such as manual
field measurements and ground station observations, can pro-
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vide accurate local data but are difficult to implement in re-
mote mountainous areas with complex terrain. Microwave
remote sensing is the most widely used technology for re-
trieving SWE because of its ability to penetrate snowpack
and the volume scattering effects caused by snow particles
(Chang et al., 1987; Tsang et al., 2022). While passive mi-
crowave remote sensing (e.g., radiometer-based methods) is
typically employed, its coarse spatial resolution (∼ 25 km)
limits its ability to capture fine-scale spatiotemporal variabil-
ity in snowpack properties, particularly in complex moun-
tainous terrain. In general, active microwave remote sens-
ing, especially synthetic aperture radar (SAR), has advan-
tages over passive microwave techniques for characterizing
the SWE across high-mountain regions (Dozier et al., 2016).
Notably, compared with passive microwave remote sensing
(dozens of kilometers), spaceborne SAR can support fine-
spatial-resolution (dozens of meters) monitoring. The snow-
pack in mountainous areas is typically deep (up to one or
several meters), and the evolution of snowpack in these ar-
eas is generally much more complex than that in flat areas.
For example, the snow density typically ranges from 100 to
550 kg m−3 for seasonal snow (Sturm et al., 2010). Owing
to snowfall accumulation and prolonged wind- and gravity-
driven compaction, it can reach 550–700 kg m−3 (Lemme-
tyinen et al., 2016; Venäläinen et al., 2021). In addition, ow-
ing to the large negative temperature gradient between the
air temperature and ground temperature, the development of
depth hoars is common (Fierz et al., 2009). For example, the
snow grain size in depth hoars can reach the centimeter level
at high elevations and on shady slopes (King et al., 2018; Pi-
card et al., 2022). Thus, the signals of typically used frequen-
cies (e.g., the Ka band) in passive microwave remote sensing
tend to be saturated within the SD range of 40–80 cm (Derk-
sen et al., 2010; Takala et al., 2011; Picard et al., 2018).

In recent years, the scientific community has increasingly
focused on monitoring the SWE in mountain regions us-
ing C-band SAR observations because of their strong pen-
etration depth and data accessibility. Early studies on C-
band SAR for SD estimation were limited primarily to shal-
low snow environments outside mountainous regions and co-
polarization measurements, which showed limited sensitivity
to dry snow conditions (Bernier et al., 1999; Shi and Dozier,
2000). Theoretical advances in microwave scattering mod-
els (Ulaby et al., 1982; Chang et al., 2014) have improved
the understanding of snowpack interactions with C-band sig-
nals. Notably, although snow volume scattering is stronger
in high-frequency Ku-bands than in other bands (e.g., X-,
C, or L-band) in theory, the sensitivity of the backscatter-
ing coefficient at this frequency is also limited to approxi-
mately 150 cm (Rott et al., 2010; Cui et al., 2016; Zhu et
al., 2021). Moreover, Lievens et al. (2019) observed the sen-
sitivity of the depolarization signal (cross-polarization ra-
tio VH / VV) in the C-band to the SD and innovatively de-
veloped a C-band-based SD retrieval algorithm for moun-
tains in the Northern Hemisphere. In particular, the backscat-

tering coefficient at cross-polarization is more sensitive to
volume scattering than co-polarization is because of the
anisotropic nature of snow grains (Du et al., 2010; Chang
et al., 2014; Leinss et al., 2016), and this physical mecha-
nism is used for SD retrieval; in addition, co-polarized and
cross-polarized signals are similar for surface scattering at
the snow–soil boundary (Shi and Dozier, 2000; Lievens et al.,
2022; Borah et al., 2024). Thus, the ratio of cross-polarized
to co-polarized signals increases snow volume scattering and
weakens surface scattering between snow and soil.

The C-snow product provided SD retrievals at a 1 km res-
olution without wet snow masking (Lievens et al., 2019). It
reported a temporal correlation ranging from 0.65 to 0.77 and
a mean absolute error of 0.18–0.31 m. Given its high resolu-
tion of 1 km, the C-snow product can potentially be used to
assess the heterogeneity of snow distribution in mountainous
areas (Alfieri et al., 2022; Girotto et al., 2024). However, to
date, it has only been evaluated from the point to regional
scales and not at the global scale. For example, an evaluation
across the Po River Basin in Italy revealed that the RMSE
ranges from 20 to 60 cm in reference to ultrasonic sensor
measurements (Alfieri et al., 2022). Sourp et al. (2025) com-
pared C-snow retrieval products with the results of airborne
LiDAR surveys in the Sierra Nevada region from 2017–2019
and reported that the RMSE ranged from 21 to 138 cm and
that the bias reached−124 cm. Hoppinen et al. (2024) evalu-
ated algorithm performance at six study sites across the west-
ern United States (US) using airborne LiDAR observations
collected during the winters of 2019–2020 and 2020–2021,
with mean RMSE and bias values of 92 and −49 cm, respec-
tively. In addition, C-snow SD data at 10 and 25 km resolu-
tions, which are derived from the 1 km C-snow product, have
been used as reference datasets for training machine learn-
ing models to improve passive microwave SWE estimates
(Xiong et al., 2022; Yang et al., 2024). Lievens et al. (2022)
employed Sentinel-1 backscatter observations to retrieve SD
across multiple spatial resolutions in the European Alps and
evaluated the retrieval performance. Compared with the per-
formance at the 500 m and 1 km resolutions (by linearly av-
eraging the 100 m retrievals), the performance at the 100 m
resolution slightly decreased because of the impacts of radar
speckle noise, geometric distortions, and local heterogeneity
in topography, land surface properties, and snow characteris-
tics.

High-resolution SD data at 1 km are suitable for hydro-
logical modeling and snow disaster monitoring (Wan et al.,
2022). SD data at a 10 km resolution are appropriate for op-
erational environmental prediction, hydrological forecasting
and seasonal forecasting at regional scales (Alonso-González
et al., 2018), whereas 25 km resolution data are widely used
for SD monitoring, climate change analysis, and model eval-
uation at global and regional scales (Tanniru and Ram-
sankaran, 2023). The accuracy of the C-snow product at 1,
10 and 25 km still requires further investigation. The scale
effect across three spatial resolutions and sensitive influenc-
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ing factors (e.g., topography, land cover and wet snow) are
crucial to consider when evaluating the performance of the
C-snow product. However, exploration of these factors re-
mains insufficient, thus hindering our understanding of ways
to improve C-band SD retrieval technology.

Therefore, the specific objectives of our study are to (1)
systematically evaluate the error of the C-snow retrieval
across 1, 10 and 25 km spatial scales via both station-based
measurements and airborne LiDAR data and analyze the sen-
sitivity of the error to various factors, as well as (2) quan-
titatively compare the scale patterns of the SD products at
three spatial scales and explain the inconsistency of scale ef-
fects on the basis of different reference datasets (stations vs.
Airborne Snow Observatory, ASO). To achieve this goal, we
used measurements from point-scale stations and airborne
LiDAR campaigns. The latter provides spatially extensive
SD mapping, which is more extensive than that provided by
station data, and its coverage remains within the western US,
whereas the station data are valuable for characterizing the
SD distribution and assessing snow heterogeneity. This pa-
per is structured into five sections. Section 2 describes the
methods and data. The results and discussion are presented
in Sects. 3 and 4, respectively. Finally, Sect. 5 presents the
conclusions, and future research is discussed.

2 Data and Methodology

2.1 Sentinel-1 SD product

The first 1 km SD product based on C-band SAR, covering all
mountain ranges in the Northern Hemisphere, was developed
by Lievens et al. (2019). The dataset is publicly available
through the C-SNOW project. An empirical change detection
method is used to retrieve the SD (Lievens et al., 2019). The
available C-snow dataset covers the period from 1 September
2016 to 19 May 2019. The spatial resolution of the C-snow
product is 1 km, and the temporal resolution varies from daily
to every two weeks, depending on the frequency of Sentinel-
1 observations.

2.2 Reference SD data

2.2.1 Station-based measurements

In this study, we collected six station-based observational
datasets as reference data to evaluate and compare the
performance of the C-snow product across three scales
(Fig. 1a). They include the Global Historical Climate Net-
work (GHCN), Canadian Historical Snow Water Equivalent
(CanSWE), in situ measurements from Chinese weather sta-
tions (China-SD), SD measurements from Maine (Maine-
SD), SD variables from Snow Telemetry (SNOTEL) and an
SWE dataset in the range of the former Soviet Union (Russia-
SWE). For the Russia-SWE datasets, we used a fixed snow

density of 0.24 g cm−3 to convert the SWE to the SD (Takala
et al., 2011; Luojus et al., 2021).

The station-based observations span multiple regions and
stations. The CanSWE dataset from Canada includes data
from 273 stations in mountainous regions and can be ac-
cessed via https://doi.org/10.5281/zenodo.5217044 (Vionnet
et al., 2021b, a). The GHCN dataset includes data from
4133 stations in mountainous regions and provides SD val-
ues worldwide (Menne et al., 2012; available at ftp://ftp.
ncdc.noaa.gov/pub/data/ghcn/daily/, last access: 18 Novem-
ber 2025). The China-SD dataset from the China Meteo-
rology Administration (http://data.cma.cn/, last access: 18
November 2025) includes observations from 744 stations in
mountainous regions. The SNOTEL dataset was acquired
from 677 stations in mountainous regions in the US (Ser-
reze et al., 1999; available at https://toolkit.climate.gov/tool/
snow-telemetry-snotel-data-viewer, last access: 18 Novem-
ber 2025). The Russia-SWE dataset from former Soviet
Union regions contains observations from 52 stations in
mountainous regions (Bulygina et al., 2011), and it can
be downloaded from the All-Russia Research Institute of
Hydrometeorological Information–World Data Center (http:
//meteo.ru/, last access: 18 November 2025). Additionally,
the Maine-SD dataset for the Maine region includes in-
formation from 92 stations in mountainous regions; it can
be accessed via Maine Geological Survey Data (https://
mgs-maine.opendata.arcgis.com, last access: 18 November
2025).

To control the quality of the station observations, we ex-
cluded observations with an SD of zero and then removed
outliers using the interquartile range (IQR) method, where
observations were classified as outliers if they fell outside
the range [Q1−1.5×IQR, Q3+1.5×IQR]. Here, Q1 repre-
sents the 25th percentile, Q3 represents the 75th percentile,
and IQR is calculated as Q3−Q1. This filtering was per-
formed separately for each station to account for differences
in data distribution across locations. Finally, we excluded sta-
tions with fewer than three SD measurements over the entire
study period. Later, we calculated the averages of measure-
ments from multiple stations within pixels at the scales of 1,
10 and 25 km (see details in Sect. 2.4). Figure 1b–d show the
processed grids of the SD as the reference datasets at the 1,
10 and 25 km scales in the two selected areas; the number of
grids decreases from 2838 to 2223 and to 1500 grids as the
scale increases.

2.2.2 ASO data

The ASO data provide high-resolution, spatially comprehen-
sive measurements of SD, SWE, and snow albedo in moun-
tain basins by combining airborne lidar, imaging spectrom-
etry, and physically-based snow modeling (Painter et al.,
2016). Airborne remote sensing campaigns over the west-
ern US were conducted from 2013 to the present, and hy-
perspectral reflectance and LiDAR SD data were collected in
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Figure 1. Spatial distribution of (a) stations in various SD datasets and of the matched grids at the (b) 1 km, (c) 10 km, and (d) 25 km scales.
Zoomed-in views show the detailed distributions of grid locations in the Sierra Nevada range over the US and the Jotunheimen mountain
range in Norway and Sweden. Base map sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS.

Colorado, California, Oregon, and Washington. These data
are used to develop standard basin-scale instantaneous SD
maps, with a resolution of 3 m and an evaluated accuracy of
0.08 m (Painter et al., 2016). The ASO SD is calculated us-
ing scanning LiDAR measurements, a straightforward and
robust approach involving the subtraction of snow-free sur-
face elevation data from snowpack surface elevation data. To
assess and compare the accuracy of the C-snow product at
different scales, we obtained 59 ASO maps (within Califor-
nia and Colorado) at a 3 m resolution from September 2016
to May 2019. Figure 2 provides the statistics of the available
measurements by basin and date.

2.3 Auxiliary data

To evaluate the influence of land cover type, forest fraction,
and topography (elevation and its standard deviation) on the
accuracy of C-snow SD, we collected auxiliary datasets (Ta-

ble 1) from the Google Earth Engine and processed them at
various scales (1, 10, and 25 km). The land cover data used in
this study are from the ESA WorldCover 10 m 2020 product,
which includes 11 land cover types: tree cover, shrubland,
grassland, cropland, built-up, bare or sparse vegetation, snow
and ice, permanent water bodies, herbaceous wetland, man-
groves, moss and lichen. In this study, the tree cover type is
labeled “tree cover”, the snow and ice types are labeled “per-
manent ice”, and all the remaining types are labeled “other
type”.

To match the scales of the C-snow SD data, we resam-
pled the auxiliary data accordingly. The land cover type data
were first resampled to a 1 km resolution via the mode re-
sampling method. These 1 km land cover data were subse-
quently further resampled to 10 and 25 km resolutions. Dur-
ing the resampling process, if a certain land cover type occu-
pied 80 % or more of a large grid of 10 or 25 km, that type
was then assigned to the resampled grid; otherwise, no land
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Figure 2. Temporal distribution of the ASO observations used in this study. The markers with different colors represent different basins.

Table 1. Description of the auxiliary data used in this study.

Name Source Initial Coarse resolution
resolution

Land cover type European Space Agency (ESA) WorldCover 10 m 1, 10, and 25 km

Forest fraction 10 m 2020 product (Zanaga et al., 2021) 10 m

Elevation Multi-Error-Removed Improved-Terrain 3 arcsec

Standard deviation (MERIT) DEM (Yamazaki et al., 2017)
of elevation

cover type was assigned. The forest fraction, elevation, and
standard deviation of the elevation at a 1 km resolution were
resampled to 10 and 25 km resolutions via the average re-
sampling method.

2.4 Methodology

Figure 3 shows the workflow of this study. To assess the ac-
curacy of C-snow retrieval at different scales, the 1 km C-
snow product was resampled to 10 and 25 km. Here, we di-
rectly used the mean resampling method according to previ-
ous studies (Broxton et al., 2024; Herbert et al., 2024). More-
over, we tested and compared the mean and median sampling
methods and obtained similar validation results. To control
equality and the representativeness of coarse-resolution pix-
els, we selected only the 10 and 25 km grids in which the
percentage of the snow-covered area was at least 80 %. The
average 1 km SD values within the coarse-resolution pixels
were then used as the 10 or 25 km-scale products (Fig. 3). To
compare C-snow with station-based data and ASO observa-
tions at different scales, we also resampled the 3 m-resolution
ASO data to 1, 10, and 25 km. When the ASO data were re-
sampled, we calculated only the average for grids for which
the number of 3 m ASO observations at larger scales (1, 10,
and 25 km) was not less than 30 %. Here, we selected 30 %

to ensure a sufficient quantity and representativeness of the
validation samples.

Additionally, we explored the relationships between the
land cover type, forest fraction, elevation and standard de-
viation of the elevation and the C-snow SD across different
scales. The difference in elevation between the station and
the corresponding grid was computed by subtracting the grid
elevation from the station elevation. Four evaluation metrics
were used to assess the C-snow products: the Pearson corre-
lation coefficient (corr.coe), bias, unbiased root mean square
error (ubRMSE), and relative bias (Rbias).

3 Results

3.1 Comparison of the SD retrieval results with
station-based measurements and ASO LiDAR data

We evaluated the C-snow SD retrievals through compar-
isons with station-based measurements across different spa-
tial scales. Figure 4 displays a comparison of the station mea-
surements and the C-snow products at different scales. As
the scale increases, corr.coe decreases from 0.52 to 0.32.
Additionally, ubRMSE increases from 69.43 to 81.87 cm,
reflecting increased uncertainty. Moreover, as the scale in-
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Figure 3. Diagram of the research workflow. Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS, NRCan, Parks
Canada, State of Alaska.

creases, the mean bias shifts from a slight underestimation
of −8.89 cm to a slight overestimation of 11.66 cm. The de-
creased correlation is reasonable because the station obser-
vations are point-scale measurements. Even for pixels with
multiple stations, it is difficult to obtain a continuously dis-
tributed SD map using a limited number of samples.

Figure 5 shows the average time series of the C-snow prod-
ucts compared with the station measurements. In general, at
all scales, the C-snow SD is underestimated in the snowmelt
season starting in March. As the spatial scale increases from
1 to 25 km, both the magnitude and duration of the discrep-
ancies between C-snow and station SDs increase. Specifi-
cally, the average SD from the stations becomes increasingly
greater than the C-snow SD during the dry snow season and
increasingly lower during the melt season. This explains the
decreased correlation between the two datasets as the scale
increases in terms of temporal variation. The underestima-
tion of the SD for C-snow at 1 km in the wet snow season
can be explained as the damping effect of liquid water on
microwaves. The differences at 25 km are more difficult to
explain. This is because a long snow season is usually associ-
ated with a high SD. Therefore, this pattern makes it difficult
to provide a consistent answer that explains why the stations
are characterized by lower SD during the dry snow season
and higher SD during the wet snow season. To explore this

question, we must assess the relevant spatially distributed in-
fluential factors.

The C-snow retrieval results are assessed at different
scales on the basis of the ASO data (Fig. 6). At the 1 km
scale, the C-snow SD is underestimated, with a bias value
of −91.31 cm and an ubRMSE as high as 104.3 cm. As the
scale increases, the accuracy of C-snow increases, with the
ubRMSE decreasing from 104.30 to 83.21 cm and the bias
decreasing from −91.31 to −52.73 cm. Overall, the results
of the ASO-based validation indicate an increasing trend in
the accuracy of C-snow as the scale increases, which is dif-
ferent from the conclusions based on the station-based mea-
surements in Fig. 4. A detailed discussion of this difference
is provided in Sect. 4.1.

Figure 7 shows a comparison of time series of the C-snow
SDs and ASO observations in different basins at three scales.
At all scales, the C-snow retrievals match well with the ASO
data in 2017. In 2018, when the ASO observations were pri-
marily concentrated between March and June, the C-snow
retrieval results were underestimated because of wet snow.
During the heavy snow season of 2019, compared with the
ASO data, the C-snow SD data significantly underestimated
the SD and fail to accurately capture the changes in snow-
pack during this period.
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Figure 4. Comparisons (left column) and distributions (right col-
umn) between the C-snow SD and the station-observed SD at (a)
1 km, (b) 10 km, and (c) 25 km scales. The dashed lines in the right
column indicate the 25th, 50th and 75th percentiles.

3.2 Different scale patterns of C-snow retrievals with
station and ASO measurements

We compared the C-snow retrievals with both station data
and ASO observations across various scales, with different
trends identified with increasing scale. Compared with that
of the station data, the accuracy of the C-snow data tended to
decrease as the scale increased, whereas the accuracy of the
ASO data tended to increase (Fig. 8a). Furthermore, we com-
pared the station data and ASO observations (Fig. 8b). There
is a significant correlation between the station and ASO data,
with a corr.coe of 0.92. Moreover, the bias is−12.19 cm, and
the ubRMSE is 22.91 cm, indicating that some errors remain.
Thus, the uncertainty of the ASO data may affect the results,
although the data are reliable.

To investigate the contrasting accuracy trend, we counted
the number of stations within each grid at the 10 and 25 km
scales (Fig. A2). We found that most grids, namely, 63.06 %
at the 10 km scale and 51.09 % at the 25 km scale, contain
only one station. We compared the accuracy of the C-snow
retrievals from grids with only one station and those with
more than one station (Fig. 9). The results show that the per-
formance of C-snow is related to the number of stations in
the sample grids. For example, at the 10 km scale, corr.coe

increases from 0.40 to 0.57, and ubRMSE decreases from
75.88 to 61.73 cm with increasing number of stations. At
the 25 km scale, the improvement in accuracy is also obvi-
ous, with the corr.coe improving from 0.27 to 0.43 and the
ubRMSE decreasing from 86.91 to 71.39 cm. In addition, the
C-snow retrievals from grids with only one station are over-
estimated, and the bias ranges from 10.72 to 22.91 cm. For
grids with more than one station, the C-snow retrievals are
typically underestimated, with biases ranging from −4.00 to
−7.19 cm.

3.3 Effects of landscape and terrain on the SD retrieval
results

The impact of land cover on C-snow accuracy was inves-
tigated at different scales, as shown in Fig. 10. Here, sta-
tion measurements were used as reference data because of
their global coverage. In forested regions, C-snow tends to be
slightly underestimated in general. The accuracy decreases
with increasing scale, with corr.coe decreasing from 0.53 to
0.37 and ubRMSE increasing from 67.90 to 72.57 cm. In the
permanent ice region, the C-snow product includes several
abnormally overestimated results, especially at the 10 and
25 km scales, with a bias greater than 290 cm. For the other
types, C-snow also displays a decrease in accuracy at 10 and
25 km resolutions compared with that at the 1 km scale.

The presence of permanent ice results in large errors in the
accuracy of C-snow at different scales (Fig. 10). We analyzed
the errors in the C-snow product as the coverage of perma-
nent ice within the grids increased at the 10 and 25 km scales
(Fig. 11). With increasing permanent ice coverage, the bias
gradually increases at both the 10 and 25 km scales, clearly
indicating an overestimation trend (Fig. 11a). Moreover, the
ubRMSE also tends to increase from 70.08 to 232.51 cm, in-
dicating high uncertainty due to the presence of permanent
ice (Fig. 11b).

Figure 12 shows the impact of the SD conditions and
various geographic environments on the accuracy of the C-
snow data at different scales. Here, the samples with perma-
nent ice cover were excluded from the validation data be-
cause of large errors (see Fig. 10b). When the SD at a sta-
tion is less than 100 cm, all three scales are overestimated
(Fig. 12a). The overestimation becomes more pronounced
as the scale increases, with Rbias increasing from 35.16 %
at 1 km to 81.68 % at 25 km. In contrast, when the SD ex-
ceeds 100 cm, it is underestimated at all scales. The underes-
timation is relatively small at the 10 km scale, where Rbias
reaches −47.79 % when the SD is greater than 200 cm. With
respect to tree cover, the results at the three scales tend to
be underestimated (Fig. 12b). For the other land cover types,
Rbias at the 10 km scale reaches as high as 47.64 %, indi-
cating significant overestimation. When the forest fraction is
between 0 and 0.2, significant overestimation occurs at both
the 10 and 25 km scales, with Rbias values of 77.33 % and
113.74 %, respectively (Fig. 12c).
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Figure 5. Average weekly SD time series of stations and corresponding C-snow grids at (a) 1 km, (b) 10 km, and (c) 25 km resolution across
the mountainous regions of the Northern Hemisphere.

Figure 6. Comparisons (left column) and distributions (right col-
umn) between C-snow SD products and ASO SD at different scales,
where panels (a), (b), and (c) represent scales of 1, 10, and 25 km,
respectively. The dashed lines in the right column indicate the 25th,
50th, and 75th percentiles.

At elevations below 1000 m, the C-snow product is overes-
timated at the 1 km scale, with an Rbias of 25.75 %, whereas
it is underestimated at all other elevation intervals (Fig. 12d).
For elevations between 2000 and 3000 m, the values at both
the 10 and 25 km scales are underestimated, with Rbias val-
ues of −8.14 % and −8.95 %, respectively. When the stan-
dard deviation of elevation is between 50 and 100 m, C-snow
is underestimated at the 1 km scale, with an Rbias value of
−19.41 % (Fig. 12e). When the standard deviation of the el-
evation is greater than 100 m, the C-snow values at both the
10 and 25 km scales are overestimated, with Rbias values
reaching 29.60 %. We also find that C-snow performs best
in areas with moderate standard deviations of elevation (50–
100) and moderately to highly forested (0.4–0.8) areas. As
the difference in elevation between the station and the grid
increases, an underestimation trend is observed at all scales,
with Rbias ranging from 18.83 % to −59.35 % at the 25 km
scale (Fig. 12f). When the station elevation is lower than the
grid elevation (elevation difference < 0), underestimation is
observed only at the 1 km scale, with an Rbias of −22.88 %.

Figure 13 shows the spatial distributions of Rbias at dif-
ferent scales. A total of 35.77 % of the grids with Rbias
values lower than 0 are underestimated at the 1 km scale,
and 35.87 % of the grids with Rbias values greater than
100 % are significantly overestimated, especially in the west-
ern mountain ranges of the US, the Appalachian Mountains,
the southern part of the Scandinavian Mountains, the Euro-
pean Alps, and the Hindu–Kush Himalayas. Moreover, this
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Figure 7. Time series comparison of C-snow products with ASO observations averaged across multiple basins in California and Colorado at
(a) 1 km, (b) 10 km, and (c) 25 km scales. The red points represent the average daily C-snow SD in all the selected basins, and the different
blue symbols indicate the daily average ASO data in various basins.

Figure 8. (a) Accuracy performance of the C-snow product at dif-
ferent scales when station observations and ASO SD data are used
as reference data and (b) a comparison of station data and ASO ob-
servations (3 m ASO data are used to match the station data).

trend becomes more pronounced with increasing scale, with
Rbias values greater than 100 % accounting for 40.89 % and
40.20 % of all the values at the 10 and 25 km scales, respec-
tively.

To explore the influence of complex geography on C-snow
retrieval, we selected three nested grids of C-snow retrieval
results at different scales (1, 10, and 25 km) and the corre-

sponding station observation data. Figure 14 displays the dis-
crepancies in geographic environments among these nested
grids. Within the first and third nested grids, there is only
one station, which corresponds to the three-scale grids. In the
second nested grid, there are four stations, which correspond
to the four 1 km C-snow grids and three 10 km C-snow grids.
The average values are calculated for the C-snow product and
the station observations.

In the first nested grid, the station observations generally
match the C-snow retrieval results at three scales (Fig. 15a).
In the second nested grid, the station-observed snow cover
is quite shallow, whereas the C-snow values at three scales
are overestimated relative to the station observations, espe-
cially during the period from December 2016 to March 2017
(Fig. 15b). In the third nested grid, the time series changes at
the 1 km scale for C-snow closely match those of the station
observations, whereas the C-snow retrieval results are over-
estimated relative to the station observations at both the 10
and 25 km scales (Fig. 15c). Moreover, we find a large dis-
crepancy between the C-snow at the 10 and 25 km scales.
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Figure 9. Impact of the number of stations within grids at the (a) 10 km and (b) 25 km scales on the accuracy of the C-snow product. The
left column presents the C-snow evaluation result when there is only one station within the grid, and the right column presents the evaluation
result when there is more than one station within the grid.

Figure 10. Impact of various land cover types on the accuracy of C-snow products at different scales: (a) tree cover, (b) permanent ice,
and (c) other types. The left column represents the scale of 1 km, the middle column represents the scale of 10 km, and the right column
represents the scale of 25 km.
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Figure 11. Effects of permanent ice on the accuracy of the C-snow
product at different scales, including (a) bias and (b) ubRMSE,
which are statistics based on the station dataset.

To explain the scale effects associated with geographical
heterogeneity, we calculated the differences between the 10
and 25 km grids in terms of land cover type, forest frac-
tion, elevation, and standard deviation of elevation (Fig. 16).
For the first nested grid, the terrain is predominantly low-
elevation (below 1000 m) at both the 10 and 25 km scales,
which shows lower spatial variability than high-elevation re-
gions do. Moreover, when the snowpack is less than 100 cm,
the C-snow retrievals perform well (Figs. 4 and 5). Thus, the
C-snow retrievals at 1, 10 and 25 km are in good agreement
with the station observations. For the second nested grid,
the geographic environments at the 10 and 25 km scales are
very similar; thus, the SD retrievals at both scales are simi-
lar. However, the terrain is very complex, e.g., high elevation
(2000–3000 m) and high topographic relief (0–200). Thus,
the representativeness of the stations may be problematic, re-
sulting in poor agreement with the C-snow retrieval results.
For the third nested grid, we find that the heterogeneity of
the 10 and 25 km grids is high. For example, the coverage of
permanent ice (24.96 %) at the 25 km scale is high relative to
that at the 10 km scale, whereas the tree cover fraction (25 %)
in the 10 km grid is high. Additionally, the terrain is more
complex in the 25 km grid than in the 10 km grid, e.g., at
high altitudes. The overestimation occurs mainly because of
permanent ice, which is consistent with the results in Fig. 10.
The large differences (scale effects) in the SD retrieval results
at the 10 and 25 km scales are related to the heterogeneity
of the geographic environment. Specifically, the greater the
heterogeneity of the geographic environment between the 10
and 25 km scales is, the greater the differences in the SD re-
trievals.

4 Discussion

The differences in C-snow validation results across scales
arise from multiple interacting factors, including the type of
validation dataset (point-scale station data vs. spatially dense
ASO data), the representativeness of observations within
each grid, terrain complexity, land cover composition, spa-

tial aggregation effects, and other environmental influences.
Our findings are consistent with previous research on C-
snow product evaluation. For instance, Alfieri et al. (2022)
reported RMSE values ranging from 20 to 60 cm in the Po
River Basin, which aligns with our results at finer scales (e.g.,
1 km). Sourp et al. (2025) reported RMSE values between 21
and 138 cm in the Sierra Nevada region, with biases reach-
ing −124 cm, which corroborates our ASO-based validation
results. Importantly, our analysis further demonstrates that
these errors exhibit different scale-dependent trends.

Compared with that of the station data, the accuracy of the
C-snow data tends to decrease as the scale increases, whereas
the accuracy of the ASO data tends to increase. This discrep-
ancy can be attributed to the inherent differences in the na-
ture of these validation datasets (Fig. 8). Station measure-
ments are point-scale observations, which makes it difficult
to reflect the distribution of SD over large areas. In contrast,
ASO provides dense sampling data, which can better repre-
sent the spatial distribution of SD. This allows ASO data to
more accurately reflect the overall snow conditions within a
given area, thereby improving the validation accuracy as the
scale increases. Although ASO data have better spatial con-
tinuity, their coverage is relatively limited. The accuracy of
LiDAR-derived SD is also affected by factors such as terrain
and vegetation cover (Enderlin et al., 2022; Neuenschwander
et al., 2020; Klápště et al., 2020). Within the coverage scope
of the ASO data, steep slopes (as high as 80°) and high forest
fractions (mean value of 53 %) likely affect the accuracy of
the observations (Fig. A1).

When station data are used for the validation of satel-
lite products, reasonably converting to spatial scales is a
key issue. The method used to convert point-scale observa-
tions to the spatial scale of satellite pixels also affects the
validation results (Fassnacht and Deems, 2006; Hou et al.,
2022). Beforehand, we tested and compared the mean and
median sampling methods and observed similar validation
outcomes. Therefore, this study employs a simple averag-
ing approach, despite its partial neglect of spatial variabil-
ity (Ge et al., 2019). Although simple averaging methods are
easy to use, they cannot fully consider the impact of com-
plex factors such as topography and vegetation distribution
on the spatial distribution of the SD, which may lead to de-
viations in the validation results. In addition, the number of
stations affects the validation results. Most grids at the 10
and 25 km scales contain only one station. On one hand, a
single station observation may not adequately represent the
snow depth across the entire grid. Our test demonstrated that
the accuracy of the C-snow product improves when multi-
ple stations are present within a grid cell (Fig. 9). On the
other hand, due to the sparsity of station observations, spa-
tial aggregation results are hardly influenced by the choice
of interpolation method. Therefore, it is fundamentally nec-
essary to collect more observational data to enhance spatial
representativeness, e.g., satellite-based lidar and altimeter es-
timates. Then future research can use more advanced spatial
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Figure 12. Impact of different (a) station-observed SD, (b) land cover types, (c) forest fractions, (d) elevations, (e) standard deviations of
elevation, and (f) elevation differences between stations and grids on the accuracy of C-snow SD products across various scales. The bars
indicate the Rbias between the C-snow and station-observed snow SD, while the markers show the average SD from the stations and the
C-snow product. The left axis corresponds to Rbias, and the right axis corresponds to the average SD.

Figure 13. Pie charts (left column) and spatial distributions (right column) of Rbias at (a) 1 km, (b) 10 km, and (c) 25 km scales. Basemap
sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS.
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Figure 14. Spatial locations of the three selected nested grids,
with the first at 67.45° N, −150.31° E; the second at 39.42° N,
−107.00° E; and the third at 56.00° N, 6.85° E. Basemap sources:
Esri, TomTom, Garmin, FAO, NOAA, USGS, Microsoft, Vantor.

Figure 15. Time series of the SD at different scales (1, 10, and
25 km) for three selected nested grids, where panels (a), (b), and
(c) represent the results for the first, second, and third grids, respec-
tively.

interpolation methods, such as interpolation methods based
on geographically weighted regression or machine learning
algorithms, to more accurately reflect the spatial changes in
the SD and thus improve the validation.

The presence of permanent ice significantly affects the ac-
curacy of the C-snow product. As the coverage of perma-
nent ice within the grids increases, the bias and ubRMSE
also increase, indicating an overestimation trend (Fig. 11).
Permanent ice exhibits electromagnetic properties similar to
those of snowpacks, increasing the backscattering of radar
signals (Scott et al., 2006). During the melt season, an in-
crease in the roughness of the ice surface leads to an increase

in the backscattering coefficient (Baumgartner et al., 1999).
The dynamic nature of glaciers, characterized by crevasses
and glacier movement, can lead to temporal variations in the
backscattering coefficient (Sander and Bickel, 2007; Brock,
2010), complicating interactions between radar signals and
snow characterization. Thus, quality control of spatially sam-
pled C-snow products, especially at coarse scales, must be
performed to ensure that the retrieval results in permanent
ice-covered areas are filtered and removed. These limitations
may cause deviations or uncertainties in the retrieval results
of the C-snow product in these specific areas. To overcome
these limitations, future research can explore improved re-
trieval algorithms to better separate snow signals from glacial
backgrounds and conduct multisource data fusion retrieval
using other remote sensing data sources, thereby enhancing
the applicability of the C-snow product in complex environ-
ments. Moreover, combining field observations and model
simulations to study in depth the interaction mechanism be-
tween snow physical processes and radar signals can provide
theoretical support for improving the C-snow product.

5 Conclusion

In this study, we evaluated and compared the accuracies of
the C-snow retrieval results at three spatial scales (1, 10,
and 25 km) through station measurements and ASO observa-
tions. We also analyzed the factors influencing the accuracy
at these scales and explored the inconsistency in scale ef-
fects via station and airborne reference datasets. Our results
indicate that as the spatial scale increases, the correlation be-
tween the C-snow products and station observations signif-
icantly decreases, with a corr.coe of 0.52 at the 1 km scale,
which decreases to 0.44 at the 10 km scale and 0.32 at the
25 km scale. The error increases with scale, from 69.43 cm at
the 1 km scale to 81.87 cm at the 25 km scale. Compared with
the airborne ASO data, the C-snow product became increas-
ingly more accurate as the spatial scale increased, with bias
values decreasing from −91.31 to −52.73 cm and ubRMSE
decreasing from 104.3 to 83.29 cm. These different scale pat-
terns occur mainly because of the different representative-
ness of station and ASO data.

We also determined that the land cover type affects the
accuracy of C-snow classification. In areas covered with
tree cover, the accuracy of C-snow significantly decreases
as the spatial scale increases, with the corr.coe decreasing
from 0.53 to 0.37 and the ubRMSE increasing from 67.90
to 72.57 cm. In areas covered by permanent ice, C-snow
consistently overestimates the SD at all scales, which is re-
lated to the percentage of ice coverage. The impact of ter-
rain on the accuracy of C-snow is complex. The overesti-
mation of C-snow at the 1 km scale is evident for eleva-
tions below 1000 m, whereas the SD tends to be underesti-
mated in other elevation ranges. For elevations between 2000
and 3000 m, the C-snow retrievals at both the 10 and 25 km
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Figure 16. Distributions of (a) land cover types, (b) forest fraction, (c) elevation, and (d) standard deviation of elevation in three selected
nested grids, with the left, middle, and right columns representing the first, middle, and third grids, respectively.

scales displayed an underestimation trend, with Rbias values
of −8.14 % and −8.95 %, respectively. The standard devi-
ation of the elevation also affects the accuracy of C-snow.
When the standard deviation of elevation is between 50 and
100 m, C-snow at the 1 km scale is underestimated (Rbias of
−19.41 %), and when the standard deviation of elevation is
greater than 100 m, C-snow at the 25 km scale is overesti-
mated (Rbias of 29.60 %).

In this study, we assessed the performance of C-snow
products at different spatial scales and analyzed the corre-
sponding influencing factors. According to our study, the C-
snow products at the three scales are characterized by high
uncertainty. In particular, we should be careful when coarse-
scale C-snow products are used as a reference, and at a min-
imum, some outlier data should be filtered and removed. Fu-
ture research should continue to explore the possibility of im-
proving C-snow retrieval by combining SAR backscattering,
polarimetric, interferometric and satellite LiDAR data to in-

crease the reliability and accuracy of Sentinel-1-based prod-
ucts in practical applications.
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Appendix A

Figure A1. (a) Overall geographical conditions within the coverage
area of ASO, with zoomed-in views of (b) the forest fraction and (c)
slope conditions. Basemap source: Earthstar Geographics.

Figure A2. Statistics regarding the number of stations within the
grids at scales of (a) 10 km and (b) 25 km.
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