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Abstract. Snowpack dynamics play a key role in control-
ling hydrological and ecological processes at various scales,
but snow monitoring remains challenging. Data assimilation
techniques are emerging as promising tools to improve un-
certain snowpack simulations by fusing state-of-the-art nu-
merical models with information rich, but noisy observa-
tions. However, the occlusion of the ground below the for-
est canopy limits the retrieval of snowpack information from
remote sensing tools. Remote sensing observations in these
environments are spatially incomplete, impeding the imple-
mentation of fully distributed data assimilation techniques.
Here we propose different experiments to propagate the in-
formation obtained in forest clearings, where it is possi-
ble to retrieve observations, towards the sub-canopy, where
the point of view of remote sensors is occluded. The ex-
periments were conducted in forests within Sagehen Creek
watershed (California, USA), by updating simulations con-
ducted with the Flexible Snow Model (FSM2) using air-
borne lidar snow data using the Multiple Snow data As-
similation system (MuSA). The successful experiments im-
proved the reference simulations significantly both in terms
of validation metrics (correlation coefficient from R = 0.1 to
R = 0.8 on average) and spatial patterns. Data assimilation
configurations using geographical distances and space of to-
pographical dimensions, improved the reference run. How-
ever, those creating a space of synthetic coordinates by com-

bining the spatiotemporal data assimilation with a principal
components analysis did not show any improvement, even
degrading some validation metrics. Future data assimilation
initiatives would benefit from building specific localization
functions that are able to model the spatial snowpack rela-
tionships at different resolutions.

1 Introduction

The seasonal snowpack is a crucial component in various
ecological and hydrological processes in mountain areas and
cold regions (Han et al., 2024; Slatyer et al., 2022), covering
over 47 million square kilometers of the northern hemisphere
(Robinson and Frei, 2000) and 45 % of global mountain areas
(Gascoin et al., 2024),. It has significant implications for both
the economy and ecology of these areas, as well as for down-
stream regions (Barnett et al., 2005; Qin et al., 2020; Sturm
et al., 2017). However, accurately estimating the spatiotem-
poral dynamics of the snowpack, in particular the snow water
equivalent (SWE), remains a challenging and unresolved is-
sue (Tsang et al., 2022). These difficulties are only increased
in forested terrain, due to the complex relationships between
snowpack and canopy cover (Mazzotti et al., 2020a).

The overlapping area between the snowpack and forested
areas is estimated in at least 19 % of the terrain in the north-
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ern hemisphere, only accounting for the boreal forest (Rutter
et al., 2009). This estimation can only be higher consider-
ing the overlapping area in alpine forests. Snow beneath the
canopy behaves differently than in open terrain (Dickerson-
Lange et al., 2023; Safa et al., 2021; Varhola et al., 2010).
The intercepted snow will either sublimate, drip as liquid
water or unload as snow (Lundquist et al., 2021). In addi-
tion, the canopy cover changes the net radiation available to
melt the snowpack, both by shading the snow surface and in-
creasing the incoming longwave radiation (Lundquist et al.,
2013). Generally, this leads to increased ablation under the
canopy in warmer environments from longwave radiation
compared to colder environments where shading from so-
lar radiation causes less ablation under canopy (Lundquist
et al., 2013). This relationship leads to differences between
under canopy and open clearing snowpack in most environ-
ments (Dickerson-Lange et al., 2017) that are challenging to
observe across complex terrain (Safa et al., 2021).

Direct observations of the snowpack under the forest are
rare and challenging to obtain (Kinar and Pomeroy, 2015).
Remote sensing techniques are well established as snow
cover monitoring tools (Gascoin et al., 2024). Due to dif-
ferent remote sensing initiatives, it is possible to monitor
the dynamics of the snowpack even at continental scales at
frequencies approaching real time. Unfortunately, most of
these retrievals are limited to observations in open terrain
or clearings in forested areas, being limited either spatially
or temporally. One partial solution to observing snow un-
der the canopy is with airborne lidar systems that can par-
tially penetrate the canopy and retrieve the snow depth. Re-
cent work has processed lidar point clouds to resolve under
canopy snowpack and validated the results against field ob-
servations (Kostadinov et al., 2019; Safa et al., 2021; Piske
et al., 2025).

Numerical modeling of the snowpack allows simulating
the complete state of the snowpack, including the SWE, at
any spatiotemporal resolutions. Modern snowpack models of
increasing complexity even represent the horizontal transport
of the snow caused by wind and avalanches, and the inter-
actions with forests (Mazzotti et al., 2020b; Vionnet et al.,
2021). However, numerical models often rely on adjustable
parameters to represent different physical processes, whose
transferability between different areas and model resolutions
is usually complex, leading to uncertain simulations (Essery
et al., 2013). In addition, these models rely on high reso-
lution meteorological forcings, that are very challenging to
generate and constrain, in part due to the lack of dense in
situ observations. The computational cost of regional atmo-
spheric models increases significantly with finer resolution,
with the current state of the art at the kilometer scale (Ras-
mussen et al., 2023). A partial, and very widespread, solu-
tion to this problem is to use simplified downscaling models
that rely on different assumptions and/or empirical approxi-
mations to generate high resolution meteorological forcing
fields (Fiddes and Gruber, 2014; Liston and Elder, 2006;
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Reynolds et al., 2023). Despite their simplicity, these more
heuristic approaches may lead to a performance compara-
ble with dynamically downscaled meteorological products
(Alonso-Gonzélez et al., 2023b; Gutmann et al., 2012; Kruyt
et al., 2022). Nonetheless, any (often considerable) remain-
ing uncertainty in the forcing will, together with the uncer-
tainty in the snow model structure and parameters, be propa-
gated to the snowpack simulations, typically leading to sim-
ulations that differ significantly from reality (Krinner et al.,
2018; Raleigh et al., 2015).

Data assimilation (DA) is the exercise of merging noisy
observations with uncertain numerical models to exploit the
strengths of both worlds (Evensen et al., 2022). Thanks to
DA, itis possible to constrain model uncertainty using partial
information from snowpack observations (Largeron et al.,
2020). Using DA, it is possible to infer uncertain parame-
ters to improve the simulations so as to better match the ob-
servations, providing an estimation of the model uncertainty.
However, snow DA is still rarely used in forested areas due to
the lack of reliable remote sensing observations of the snow-
pack under the canopy.

Canopy cover impedes the direct observation of the snow-
pack from space or airborne sensors, which collaterally ham-
pers the use of DA, and may even degrade simulation outputs
if implemented in its simplest form (Yatheendradas et al.,
2012). This is probably the reason that the majority of snow
DA experiments have been limited to arctic or alpine areas
above the treeline, with only some experiments approaching
specifically the topic of snow DA in forested areas. Smyth
et al. (2022) tested the potential of a particle filter DA al-
gorithm to improve snowpack simulations generated by the
Flexible Snow Model (FSM2, Essery et al., 2025) in the pres-
ence of observations beneath the canopy. The results show
that simulations can be improved by assimilating data in
snow models that consider canopy interactions. However, the
question of how to improve simulations of the snowpack in
case of a total occlusion of the snow view in certain regions
of the simulation domain (i.e. lack of local observations) re-
mains unanswered. Pflug et al. (2024) proposed a simplified
three dimensional DA scheme to update the SWE state vari-
able at unobserved locations from remote observations in for-
est gaps and tested their approach with a synthetic observing
system simulation experiment (OSSE). Due to its simplicity,
their heuristic procedure succeeded in performing a promis-
ing synthetic assimilation experiment over a very large area
of North America at an affordable computational cost. Cho
et al. (2023) assimilated spatially coarse airborne gamma ray
based SWE retrievals in forested environments, using a three-
dimensional EnKF. These recent works lay the foundations
of snow data assimilation in forests, with great potential to
(1) improve snowpack simulations in forested watersheds,
(ii) better understand snow-forest processes, and (iii) iden-
tify shortcomings in snow-forest model parameterizations.
However, these previous works are based on necessarily sim-
plified approximations to limit the computational cost, syn-
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thetic experiments or very coarse resolutions unable to cap-
ture the spatial variability present in montane forests (Safa
et al., 2021; Tennant et al., 2017). The emergence of new
technologies that allow the acquisition of snowpack obser-
vations at high and hyper resolutions (Gascoin et al., 2024),
make it necessary to adapt classical DA techniques to maxi-
mize the value of the available information.

The interactions between the canopy and the snowpack be-
havior pose challenges for inferring the snow mass beneath
the canopy directly from nearby observed locations in forest
clearings, preventing simple interpolation techniques (Dhar-
madasa et al., 2024) or DA techniques designed to update
the model states directly from the information obtained in
nearby cells to work efficiently in this context (Pflug et al.,
2024). It is necessary to explore how the available informa-
tion can be transferred from the observations in forest clear-
ings to beneath the canopy, where observations are typically
either missing or highly uncertain. In this work, we test a
recently developed spatio-temporal snow DA methodology
(Alonso-Gonzilez et al., 2023b), specifically designed to up-
date distributed snowpack simulations from spatially incom-
plete observations such as in a forest environment where the
information from remote sensors is mostly available in for-
est clearings. We combine that information with a unique
post-processed lidar dataset that resolves the under-canopy
snowpack explicitly (Kostadinov et al., 2019; Piske et al.,
2025) to validate the model. The objective of this work is (i)
to explore the potential of lidar-derived real observations to
update distributed snowpack simulations at hyperresolution
(10 m) scales in forest environments, and (ii) to test different
spatiotemporal DA configurations for estimating snow under
the canopy when only observations in forest gaps are avail-
able. Here we propose different spatio-temporal DA configu-
rations to propagate information under the canopy where the
observations are often not available.

2 Data and Methods

2.1 Observed snow depth maps, vegetation parameters
and meteorological forcing

The experiments proposed in this work were developed in the
Sagehen Creek forest (California, USA, Fig. 1). The obser-
vations consist of one airborne LiDAR derived snow depth
map collected by the National Center for Airborne Laser
Mapping on 21 March 2022 (Piske, 2022) and a snow-off
flight (Graup, 2021). From all the available areas, we have
selected a domain of 2 x 2km that maximizes canopy het-
erogeneity and the observed snowpack data that are incom-
plete due to dense canopy cover. The Sagehen Creek site was
used to develop and test a new method of under canopy snow
depth detection from airborne lidar (Kostadinov et al., 2019)
that resolves a considerable amount of snow information be-
neath the canopy (Fig. 1). We use an improved method, as
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compared to Kostadinov et al. (2019), to extract vegetation
from the snow surface described in Piske et al. (2025) that
better resolves low vegetation from the snow surface using
the lidar point cloud. Based on nearby SNOTEL at a similar
elevation (SNOTEL Site: 539, Independence Camp, https:
/Iwcc.sc.egov.usda.gov/nwec/site ?sitenum=539, last access:
11 November 2024), the SWE was 43 cm on 21 March when
lidar was collected compared to a maximum annual SWE of
48 cm on 9 March, 2022. The native spatial resolution of the
lidar dataset was 1 m which was resampled to 10 m for use
in the DA analysis. The error variance of the observations
was assumed to be 0> =0.01 m? at 10 m resolution based
on previous airborne LiDAR snow experiences that reported
similar error metrics (Currier et al., 2019; Harpold et al.,
2014; Mazzotti et al., 2019; Painter et al., 2016). Future ini-
tiatives may benefit from more sophisticated error models.
In addition to the snow depth observations, different vegeta-
tion parameters were computed from the three-dimensional
lidar data, including vegetation height, the Vegetation area
index and the in forest sky view factor based on methods de-
scribed in Broxton et al. (2015) and Broxton et al. (2021).
This dataset was segmented into grid cells in forest clearings
(to be assimilated) and canopy-covered cells (to be used as
independent validation) based on this vegetation information.
The meteorological forcing was generated using MicroMet
(Liston and Elder, 2006) forced by the ERA5 atmospheric
reanalysis (Hersbach, 2000). The meteorological fields were
downscaled to the same geometry of the observations using
a LiDAR based digital elevation model (Sourp et al., 2025).
The precipitation partitioning was estimated using the psy-
chrometric parameterization scheme proposed by Harder and
Pomeroy (2013).

2.1.1 Data assimilation and computational setup

All DA experiments presented in this work were developed
using the Multiple Snow data Assimilation (MuSA) system
(Alonso-Gonzilez et al., 2022). MuSA is an open-source
DA toolbox designed primarily as a python wrapper around
FSM2, but now providing support for other numerical mod-
els as well while not necessarily being limited to snowpack
models. MuSA provides support to different DA algorithms,
and simplifies the implementation of new ones thanks to its
modular design. In this work, the FSM2 model was chosen
due to its already coupled canopy module that required only
minimal modifications of the original MuSA code to be ac-
tivated. MuSA, and therefore FSM2, was forced by the Mi-
croMet outputs, and provided with the lidar-derived vegeta-
tion parameter maps. The most complex FSM?2 parameterisa-
tion was selected, based on previous experience. In the case
of canopy parameterisation, this includes a two layer canopy
model with nonlinear snow interception, snow unloading de-
pendent on wind or temperature and two-stream approxima-
tion canopy radiative transfer. In any case, the methods pre-
sented here are independent of the numerical model and forc-
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Figure 1. (a) Localization map, (b) Digital elevation model, (c¢) vegetation height and (d) available observations (with its segmentation
between canopy covered data used for validation or forest gaps to be assimilated). The red transect in the digital elevation map indicates the

location of the profile used later for validation.

ing used, so they are transferable to different snow data as-
similation initiatives. It should be noted that although in this
work we focus on the MuSA snow depth outputs (as this is
what we can validate) posterior simulations include the full
state vector of FSM2, including SWE.

The spatio-temporal DA scheme is described in Alonso-
Gonzidlez et al. (2023b), and therefore we only briefly intro-
duce some key points here, its configuration, and the new
modifications implemented to improve its performance for
the new problem at hand. We only infer meteorological cor-
rection parameters and not model states, leading to physi-
cally consistent (in terms of FSM2) simulations of the mod-
eled snow state across the snow season. As mentioned above,
snowpack in the forest gaps shows a different behavior than
beneath the trees (Varhola et al., 2010), so trying to infer
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canopy-occluded states directly from the information we can
obtain in the gaps could also introduce artifacts in the simu-
lations. Crucially the forcing perturbations will also be mod-
ified by the canopy scheme in FSM2, so even if the above
canopy forcing is constrained to be similar for neighboring
cells the forcing that the below canopy snowpack experiences
will be different due to model physics.

As the first step in our workflow, we generated an en-
semble of 100 FSM2 simulations by randomly drawing
stationary (i.e. constant across the water year) spatially
correlated prior parameters to perturb the meteorological
forcing, particularly the precipitation and 2m air tempera-
ture fields. The choice of perturbing only precipitation and
temperature was motivated by previous successful exper-
iments with a similar setup, albeit in non-forested envi-
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ronments (Alonso-Gonzilez et al., 2023a; Alonso-Gonzailez
et al., 2022). Herein, the prior probability distributions that
we sampled using a random number generator were: a nor-
mal (additive parameter) for the temperature bias and lognor-
mal (multiplicative parameter) for the precipitation scaling.
These prior distributions were defined by: its mean (u = 0)
and standard deviation (o = 1) in the case of the tempera-
ture and by the mean and standard deviation (u =0, 0 = 0.4)
of the underlying normal distribution in the case of the pre-
cipitation. The latter results in log-normally distributed prior
multiplicative precipitation scaling parameters in the physi-
cal space whose median is 1. The objective of the algorithm
is to update these parameters by assimilating observations to
directly correct the temperature and precipitation fields and
indirectly update the corresponding snowpack states.

For this purpose we have used a deterministic en-
semble Kalman filter (DEnKF)-based algorithm in itera-
tive smoother mode, namely the Deterministic Ensemble
Smoother (DES, Sakov and Oke, 2008) with multiple data
assimilation (DES-MDA, Emerick, 2018). In this DES-MDA
scheme, the update proceeds in two steps for each grid cell
i=1,...,Ngand £ =0,..., (N, — 1) MDA iteration. Firstly,
the N, x 1 updated ensemble mean parameter column vec-

tor 07;11 is obtained using a Kalman analysis equation of the
form

5211 =§él) +K§3i) [y(i) _iéi):l 1)

where Efj) is the N, x 1 ensemble mean parameter col-
umn vector from the current (prior for £ = 0) iteration, the
Np x N matrix Ké’) is a localized and inflated ensemble
Kalman gain computed using ensemble covariances and the
observation error covariance, y‘) is the Néi) x 1 local ob-
servation vector containing available local observations that
are within a yet to be defined distance-based neighborhood
d > 2c¢ (see the GC function below) of grid cell i, and the
Né’) x 1 vector i;’) contains the corresponding local en-
semble mean predicted (i.e. modeled) observations from the
last iteration obtained at neighboring grid cells. We refer to
Alonso-Gonzilez et al. (2023a) for the full form of the en-
semble Kalman gain matrix in particular and a more detailed
overview of the implementation of spatio-temporal DA using
the DES-MDA in MuSA in general. Secondly, the N, x N,

N/
matrix QE’J)H containing the updated ensemble of parameter
vector anomalies (from the mean) is obtained using a modi-
fied Kalman analysis equation of the form

o), =0 — 05k [y"1T, - Y] @)

where G)g) is the N, x N, matrix containing the ensemble of
parameter vector anomalies from the current iteration, 11Tv(“
o

isalx N(()i) row vector of ones, and ’Y\g) is the Néi) X N,
matrix of predicted observations from the current iteration.

https://doi.org/10.5194/tc-20-209-2026

213

Once the mean and anomaly update steps have been carried
out, the N, x N, matrix Gﬁl (without the prime) contain-
ing the updated ensemble of parameter vectors is obtained
through the matrix sum

0, = 0$J)rllvap +0}], S)
where lvap is a 1 x N, row vector of ones. Unlike the
classic stochastic (perturbed observation) ensemble Kalman
scheme, this deterministic ensemble Kalman scheme is less
overconfident thanks to built-in model covariance inflation
and also avoids the need to factorize the observation error
covariance that can be costly in spatio-temporal problems
(Emerick, 2018). In the loop over iterations above we im-
plicitly rerun the forward model, FSM2 in this case, with the
updated parameter values to generate an updated ensemble of
hidden snowpack states including the predicted snow depth
observations to be assimilated.

The Gaussian assumptions inherent in this ensemble
Kalman method make it more robust against ensemble col-
lapse (where a single member carries all the posterior proba-
bility) than particle methods which are more widely used for
snow DA (Alonso-Gonzélez et al., 2022). In particular, we
have used an iterative version of DES, that performs the up-
date of the parameters in multiple data assimilation (MDA)
steps, creating the DES-MDA used here (Emerick, 2018).
The MDA is a form of likelihood tempering (Murphy, 2023)
that helps relax the undesirable effects of the linear assump-
tion inherent to EnKF based algorithms. In nonlinear DA
problems such as the one tackled here, previous work has
shown that these MDA iterations lead to significant improve-
ment of the results compared with non-iterative versions of
the algorithm (Aalstad et al., 2018; Alonso-Gonzilez et al.,
2022). In this work, based on previous studies (see Alonso-
Gonzilez et al., 2022 and references therein), the number of
iterations was fixed to 4. To accommodate the Gaussian as-
sumption, we employed analytical Gaussian anamorphosis
(Bertino et al., 2003) to log transform the precipitation pa-
rameter distribution to a normal distribution and perform the
update in Gaussian space. After the update, the parameters
are mapped back to the model space using the exponential
function before generating the new ensembles.

The spatial propagation of information may happen
through two main mechanisms in the DES-MDA: observa-
tion error correlations or prior correlations (van Leeuwen,
2019). Since observation error correlations are more chal-
lenging to specify and arguably less general than prior cor-
relations, we will focus only on the latter. A key component
of the scheme is to draw random prior parameters for each
cell that are correlated with other cells in the domain, reflect-
ing similarities among different regions of the simulation do-
main. In the general DA literature, this is typically done by
computing the pairwise geographic (Euclidean) distance to
map the proximity of the cells. The pairwise distance ma-
trix is then used to generate a covariance matrix. In this work
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we have used the Sth-order piecewise rational function pro-
posed by Gaspari and Cohn (GC) (Gaspari and Cohn, 1999),
as is often done in DA to generate and localize the covariance
matrix. The GC localization function depends on an impor-
tant hyperparameter, the correlation length scale, that in prac-
tice controls how far information can be transferred spatially.
Crucially, this length scale will affect both the posterior re-
sults and the computational cost since a larger length scale
results in a greater number of neighbors with non-zero corre-
lation. The GC function defines a distance-based correlation
as follows

4 3 2
—3(%) +§(%) +3(8) =309+ 1.,
for0<(%)<1,
d,c)= 1(;5_(1621_4 5(d\3 | 5(d)\2 d 4)
pld.c)= 1 1(%) —5(;)]+§(z) +3(9)"=5(%)
+4-2(4)7, forl<4 <2,
0, for%>2.

where, d is the pairwise distance between cells and c is
the correlation length scale. This function is used for local-
ization, with two important roles: first, it reduces spurious
long range correlations that arise due to the limited size of
the ensemble (Morzfeld and Hodyss, 2023), and second, to
save considerable computational costs since relatively dis-
tant locations can be ignored when updating a particular cell.
Note that without localization, the spatio-temporal DA prob-
lem would essentially be intractable, especially in this con-
text with a relatively large domain and a high spatial den-
sity of observations. In addition to ensemble collapse, this is
another motivation for using the ensemble Kalman method
over particle techniques here, since more developed localiza-
tion methods exist for the former (Evensen et al., 2022). De-
spite being the typical spatial snow DA configuration (e.g.
De Lannoy et al., 2012; Magnusson et al., 2014 and ref-
erences herein), there is no reason to restrict the distance
mapping to the geographic (northing and easting dimensions)
space, since an arbitrary number of dimensions can be used
to define a feature space and generate the distance matrix.
It is widely acknowledged that snowpack redistribution is
strongly dominated by the topographic characteristics of the
terrain, such as concavity, slope, and elevation as well as veg-
etation parameters (e.g. Dharmadasa et al., 2023; Essery and
Pomeroy, 2004; Revuelto et al., 2014; Zheng et al., 2019).
In the context of snow DA, it is possible to map the similar-
ities between cells using a multidimensional feature space
of topographical (or any other) dimensions. The only two
considerations to be taken into account are that these fea-
ture dimensions may have different units, and that they can
be potentially correlated. This may generate a space of non-
orthogonal dimensions where using the Euclidean distance
directly may lead to a spurious similarity mapping (Cur-
riero, 20006). It is possible to overcome these issues by using
the Mahalanobis distance, a generalization of the Euclidean
distance that includes a covariance-based normalization at-
tempting to address these two problems in a single step. Al-
ternatively, it may be possible to generate other spaces using
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synthetic transformed orthogonal dimensions in a potentially
lower dimensional space from the previously scaled topo-
graphical dimensions using a principal components analysis
or multidimensional scaling approaches (e.g. Aversano et al.,
2019; Murphy et al., 2015), and compute the pairwise Eu-
clidean distance matrix in the new synthetic space.

Whichever approach is used to define the space that en-
ables information to be spread, it is necessary to generate a
pairwise distance matrix to compute a prior covariance ma-
trix. The previous version of MuSA generated the complete
distance matrix, which is highly memory and time intensive
with poor scalability. The reason for this is that the size of the
matrix scales quadratically with the number of cells, further
complicating subsequent linear algebra operations. However,
it is not necessary to compute the full distance matrix since
localization ensures that long distances will be ignored in the
analysis. This makes the distance and the subsequent covari-
ance matrix very sparse, opening new possibilities to make
prior sampling more tractable. As such, in MuSA we have
now implemented the capability of mapping the distances
using a k-dimensional tree (k-d tree) space-partitioning data
structure, as implemented in the SciPy python module (Vir-
tanen et al., 2020). This allows MuSA to ignore all dis-
tances beyond the GC hyperparameter value, generating a
sparse distance matrix. Unfortunately only Minkowski met-
rics (which includes the Euclidean distance) are available so
far with the k-d tree implementation. As such, this method
is not compatible with Mahalanobis spaces in the current
MuSA version, and therefore it was not used for all the ex-
periments proposed here. In addition, we have implemented
the capability of computing the distance matrix cell by cell,
which has proven to be very memory efficient with a very
manageable loss of efficiency that is compatible with Ma-
halanobis, or any other, distance metric. Since the distance
matrix, and the generated prior covariance matrix, are very
sparse, we have now migrated most MuSA linear algebra
routines to the SciPy.sparse module. This allows us to sample
even in very large domains while maintaining an affordable
computational cost.

The last step of the prior sampling requires approximating
the square root of the covariance matrix via Cholesky factor-
ization. As noticed by previous research (Alonso-Gonzélez
et al., 2023a; Curriero, 2006), the use of non-Euclidean dis-
tances (e.g. using the Mahalanobis distance) leads easily to
non-positive definite covariance matrices, making it impos-
sible to compute the Cholesky factor. We have increased the
numerical stability of the prior sampling in MuSA by regu-
larizing the prior covariance matrix, adding small values to
the elements of its diagonal. These diagonal elements are in-
creased iteratively up to a limit defined by the user (from
107¢ to a maximum of 0.1 in this study), following a tech-
nique known as jitter as is commonly done in the Gaus-
sian Process machine learning community (Neal, 1999; Ras-
mussen and Williams, 2005). The remaining steps, including
the DES-MDA update itself, remain the same as in the pre-

https://doi.org/10.5194/tc-20-209-2026



E. Alonso-Gonzalez et al.: Snow data assimilation in forests

vious version of MuSA, despite a few minor updates with
the intention of improving the I/O performance by optimiz-
ing the compression routines. All these modifications are
included in a new MuSA version (Alonso-Gonzalez et al.,
2024), compatible with the use of arbitrary masks, even non-
contiguous ones within the same simulation domain, indicat-
ing over which cells to perform the analysis. This allows sim-
ulations to be performed only in the areas of interest such as
above a certain elevation or within a certain complex basin
geometry), while still performing spatio-temporal assimila-
tion by propagating the information between the selected
cells.

2.1.2 Experimental design

We propose different experiments to evaluate the potential of
ensemble-based data assimilation techniques to update hy-
perresolution simulations in forest environments. First, as a
reference, we generated a deterministic reference run with-
out any DA for comparison with the updated simulations.
Then, different experiments were developed in an effort to
find a MuSA configuration that is able to exploit dispersed
hyperresolution information in forested terrain. Here we are
not aiming to find a generalistic optimal configuration, since
each specific case will require a different configuration, de-
pending on the resolution of the simulations, the spatial den-
sity of the observations, the domain, and the availability of
computational resources. We propose 3 different information
propagation schemes, and two different GC hyperparameters
for each, leading to 6 different simulations:

— Using Euclidean distances in the geographical space:
We developed two different simulations where the Eu-
clidean distance over the northing and easting dimen-
sions is used to map the similarities among cells, using
the values of 50 (Eu50) and 100 (Eul00) m for the GC
hyperparameter.

— Using the Mahalanobis distance in a topographical
space: Here, we propose two experiments where in ad-
dition to northing and easting, we included elevation,
the Topographic Position index, the Diurnal Anisotropic
Heat index and the slope to define a topographical
space. Since we have separated the data beneath the
canopy and in the forest gaps, using them for assim-
ilation and validation data, it is not instructive to in-
clude dimensions based on vegetation parameters. In
fact, due to the GC function, it might even prevent the
information transfer towards the canopy covered cells.
The open cells that are geographically (or topographi-
cally) distant, and nearby geographically (or topograph-
ically) cells under the canopy, would be equally far
away in Mahalanobis distance from a given open ob-
served cell in that hypothetical space including vegeta-
tion parameters. The distances were computed using the
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Mahalanobis distance (Ma), and the GC hyperparame-
ters tested were 0.5 (Ma0.5) and 1 (Mal).

— Using Euclidean distances in a synthetic topographical
space Here we included a principal component analysis
PCA (after z-score standardization) analysis over the to-
pographical space to generate an orthogonal space that
ensures a positive definite covariance matrix by sorting
the cells prior to computing the covariance matrix. This
saves significant computational cost since it allows for
distance mapping using the new k-d tree implementa-
tion. The number of principal components was selected
automatically using the algorithm proposed by Minka
(2000), which in practice resulted in 5 components. The
GC hyperparameters tested were 0.5 (PCAO0.5) and 1
(PCA1).

For each of the experiments, we have computed the cell
wise Continuous Ranked Probability Score (CRPS, Hers-
bach, 2000), a generalization of the mean absolute error for
probabilistic simulations:

CRPS(F, x*) = /[F(x) — H(x—x*)]dx 5)
R

Where F(x) is the predicted cumulative distribution func-
tion of the snowpack state variable x to be evaluated, x* is
the reference (ground truth) value for the state obtained from
observations, and H (x —x*) is the Heaviside function result-
ing in 1 if x > x* and 0 otherwise. We have used a normal
approximation of the posterior snow depth distribution de-
fined from the posterior mean and standard deviation derived
from the ensemble together with the observations to compute
the cell by cell mean CRPS and standard deviation (SD). We
have also computed the spatial bias, which is the mean error
of all cells used for validation, where error is the difference
between the posterior mean and the observations. In addition,
we computed the correlation (R) and root mean square error
(RMSE) between the posterior mean and observations across
the domain. To evaluate the spatial patterns of each of the ex-
periments, we calculated the variograms of each simulation.
To quantify how far the variogram curves are from the one
obtained from the observations under the forest canopy, we
used the discrete Frechet distance (FrDist) as an indicator of
similarity between the variogram curves.

3 Results

3.1 Validation metrics of the reference run and DA
experiments

Compared with the deterministic reference simulation, both

the Euclidean (Eu) and Mahalanobis (Ma) experiments im-
proved the quantitative error metrics considerably (Table 1).
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The marked improvement in R (from R = 0.1 to R0.8 on av-
erage for all the Eu and Ma experiments) is especially no-
table, and, combined with the lower Frechet distance val-
ues (FrDist = 0.29 for the reference, while FrDist =0.005
on average for the Eu and Ma experiments), indicates a sig-
nificant improvement of the spatial patterns of the simula-
tion. RMSE values also improved significantly (RMSE im-
provement 30 %). The bias remained lower and close to zero
(bias mean=—0.07 m) for the reference simulation com-
pared with the Eu and Ma experiments (bias mean 0.13 m),
suggesting a slight overestimation of the snow mass in the
updated simulations. However, the RMSE in the reference
run (RMSE =0.32) compared with the Ma and Eu experi-
ments (RMSE = 0.2) suggest many cells in the reference run
exhibit higher errors than the ones of the Eu and Ma experi-
ments. The CRPS, which is the only uncertainty-aware met-
ric considered that accounts for both the precision and ac-
curacy of the ensemble, showed lower values for the EuS0
(CRPS =0.12), but followed closely by the other experi-
ments, except the PCAQ.5 and PCAL.

Unfortunately, despite the convenience of using a PCA
preprocessing step, the experiments using PCA exhibited
only a slight improvement in some metrics while degrad-
ing other indicators. In particular, they exhibited a slight im-
provement in the correlation values (R = 0.20 and 0.46 for
PCAO0.5 and PCA1 respectively), while all other metrics were
similar to the reference (e.g. bias), with a FrDist being equiv-
alent or significantly degraded relative to the reference for
the PCAOQ.5 (FrDist =0.021) and PCA1 (FrDist = 0.046), re-
spectively. This suggests not only that absolute error metrics
were not improved, but even that spatial patterns were not
adequately simulated with the PCA approach.

Among the Eu experiments, Eu50 exhibited slightly better
or similar error metrics than the Eul00. However, the differ-
ences were minimal, suggesting there is flexibility in choos-
ing the GC hyperparameters, in this case at least, in terms
of validation metrics. A similar conclusion can be drawn
from the validation metrics of the Ma experiments, where
there was not a clearly superior simulation. Similarly, Eu
and Ma yielded comparable performance according to these
error metrics. However, the FrDist metric was consistently
lower in the Ma experiments compared with the Eu experi-
ments, suggesting a better representation of the spatial pat-
terns, while the remaining error metrics were slightly better
or similar for the Eu experiments. This superior performance
in representing the spatial patterns was evident in the snow
depth semivariograms of the experiments (Fig. 2), where Ma
experiments exhibited a semivariance much closer to the ob-
servations, even reproducing accurately the nugget effect ex-
hibited by the observations, suggesting a better representa-
tion of the small scale patterns. In any case, the variograms
of the Eu and Ma experiments exhibit a closer shape to the
one obtained from the observations, compared with the one
obtained in the reference run, which is nearly flat.
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When examining the distributed posterior mean simula-
tions, these considerations about the spatial patterns become
evident (Fig. 3). First, there was a very limited spatial vari-
ability in the deterministic reference run, as reflected quanti-
tatively by the Frechet distance and qualitatively by the var-
iograms. Among the Eu50 and Ma0.5 posterior maps, there
is a clear difference in its snow depth spatial patterns. While
the large scale patterns were similar in both simulations, and
close to the observations, the small scale patterns were differ-
ent. In Eu50 small scale patterns of the posterior mean were
clearly affected by the shape of the GC function, since the
blurrier horizontal patterns are reminiscent of the Gaussian-
like shape of this function. On the other hand, Ma0.5 small
scale patterns, which do not depend solely on geographic dis-
tance, are considerably more intricate, which also explains
the lower FrDist error metric.

While both in Ma0.5 and Eu50 point scale comparison
with observations show a similar overall R metric and dis-
tribution, it is worth noting the differences shown in Fig.4. In
Ma0.5, the cells with local observations (i.e. the cells in the
forest gaps, which include assimilated information) exhibit
slightly larger residuals (R =0.99 and R = 0.97 for Eu50
and Ma0.5 respectively). These differences suggest that the
influence of the GC hyperparameter makes both schemes not
fully comparable. This is a consequence of the varying num-
ber of observations used to update the parameters of each
cell that differ for each experiment, depending on how much
space falls within the correlation length scale of the GC func-
tion in each case.

However, these error metrics should be taken with care.
Most of them (except CRPS) used the posterior mean as an
optimal point estimate of the updated simulation. This as-
sumption was adopted for simplicity but may compromise
the interpretation of the results. Posterior simulations are not
deterministic simulations and come with an uncertainty esti-
mate inherent in the posterior ensemble. To investigate this
issue, we extracted a longitudinal profile along the easting
dimension, including both the deterministic reference sim-
ulation and the posterior mean, but for the latter we now
included the associated uncertainty represented by +1 pos-
terior standard deviation (which accounts for approximately
68 % of the posterior probability, Fig. 5). In addition, we in-
cluded a representation of the observations obtained both be-
neath the canopy and in forest gaps. The profile highlights the
differences of using the GC function in the Euclidean or to-
pographic space, with Eu exhibiting a much smoother surface
compared with the sharper Ma profile. Both profiles exhib-
ited a similar performance if we account for the uncertainty.
In terms of the posterior mean, Ma0.5 was able to accurately
capture snow depth in large areas beneath the canopy (e.g.
Fig. 5 from 1000 to 1250), while maintaining most of the
observations in at least the range of its standard deviation.
Both Eu50 and Ma0.5 improved the reference run, which ex-
hibited an evident underestimation and lack of heterogeneity
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Table 1. Validation metrics comparing the under canopy (withheld) and forest gaps (assimilated) observations. The bold type highlights the

best values for each statistic.

Exp. RMSE R Bias CRPS [mean (£SD)] FrDist
Ref. 032 0.10 -0.07 - 0.029
Eu50 0.20 0.84 0.12 0.12 (£0.09)  0.006
Eul00 0.22  0.85 0.15 0.13 (£0.12)  0.009
Ma0.5 022 0.76 0.10 0.14 (£0.10)  0.003
Mal 0.24 0.81 0.16 0.15 (£0.12)  0.003
PCAO0.5 0.33 020 —0.03 0.19 (£0.13)  0.021
PCA1 0.33 046 0.08 0.21 (£0.18)  0.046
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Figure 2. Snow depth spatial semivariance derived from the lidar-derived observations, the reference run and different experiments.
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Figure 3. Distributed snow depth observations, reference simula-
tion and posterior mean simulations of the Eu50 and Ma0.5 experi-
ments.
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along this profile, with only a few observations approaching
the simulated reference values.

3.2 Posterior parameters

Although the aim of the present work is to explore how to
propagate the information spatially, it is tempting to analyze
the posterior distribution of the parameters (Fig. 6). On aver-
age for all cells, using the experiment Ma0.5 as a reference,
the multiplicative precipitation parameter was 1.06 (0.30)
and the additive temperature parameters was —0.04 (£0.73).
Figure 6 should be interpreted with caution. It is designed to
provide a rough estimate of the posterior parameter values.
However, drawing conclusions beyond that is risky, since
there is likely to be equifinality in the parameter posteriors
of the simulations, something that is merely suggested by the
obvious correlation between the posterior mean parameters.

4 Discussion

The results shown here demonstrate the potential of
ensemble-based DA experiments to improve hyper resolu-
tion snowpack simulations in forested terrain, by updating
the canopy covered cells from information retrieved in clear-
ings. Recall that the DA schemes proposed herein are the-
oretically independent of the underlying numerical model,

The Cryosphere, 20, 209-225, 2026



218

E. Alonso-Gonzalez et al.: Snow data assimilation in forests

7 00 Reference 00 No spatial propagation
« Under canopy ./ + Under canopy' ./
1.754 -+ Forest gaps 7 1.754 + Forest gaps 7/
_ 1501 ! 4 150+ / 4
E J 7 E
< 1.25 4 < 1.25 4
g i 7 g
3 /7 3
z 1.00 A = 1.00 A
o [=]
f=4 c
©0.75 2 0.75
£ £
(2] (2]
0.50 0.50
0.25 Bl 0.25
0.00 .I T T 0.00 + T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Obs. snow depth [m] Obs. snow depth [m]
Eu50 Ma0.5
2.00 = 2.00 7
+ Under canopy / '/ » Under canopy /° ./
1.754 =+ Forest gaps /' /7 1.754 « Forest gaps /- /7
/‘ b 4 R F 4
_ 1501 Va / 1501 v
E : E
£ 1.25 1 £ 1.25
Q Q
3 )
= 1.00 A 2 1.00 A
o o
c C
©0.75 4 £ 0.75 -
£ £
(2] (2]
0.50 4 0.50 4
0.25 0.25
0.00 T T T 0.00 +- T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Obs. snow depth [m]

Obs. snow depth [m]
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Figure 6. Posterior distributions of perturbation parameters in the model space for the Ma0.5 experiment, each point represents a grid cell.

meteorological forcing or site. As such, in practice any other
snow or land surface model forced by meteorological data
generated by any downscaling tool at any geographical loca-
tion may benefit from the proposed techniques. The aim of
this work is not to perform the best possible simulation, but
to explore whether it is possible to improve snowpack sim-
ulations in forested areas by means of DA. Future initiatives
may choose to explore the added value of including addi-
tional forcing corrections or internal model parameters in the
parameter vector since there is, in theory, not any particular
limitation on this provided that a large enough ensemble is
computationally feasible.

All experiments were performed using the Centre National
D’Etudes Spatiales (CNES) supercomputing infrastructure.
For reference, the Ma0.5 experiment took one day and eight
hours to complete, using 6 nodes with 10 CPUs each to solve
the 40401 cells (201 cells in each geographical direction) that
compose the domain using the aforementioned DA scheme.
This estimate of computational cost, which could be con-
sidered very affordable, especially given the iterative nature
of the assimilation algorithm and the relatively low number
of processors involved, should be treated with some caution.
The computational time varied significantly between exper-
iments, as in practice the I/O increases with the GC hyper-
parameter, which effectively defines a search radius. In addi-
tion, MuSA benefits from distributed systems that share I/O
bottlenecks among their nodes, so the computational scheme
can also be very relevant. On the other hand, other DA ex-
periments with a lower density of observations will see their
computational cost dramatically reduced, independent of the
GC hyperparameter.

Most of the DA configurations managed to improve the
posterior simulations compared with the deterministic refer-
ence simulation, with different configurations showing simi-
lar error metrics. However, the PCA based experiments, de-
spite their desirability given the orthogonal properties of the
synthetic coordinate system, did not perform as expected.
We hypothesize that the limitations found may come from
the fact that the new set of coordinates do not explicitly pre-
serve the Cartesian northing and easting information by mix-
ing them with other dimensions, relaxing the relations be-
tween nearby cells in the Euclidean space (Davis and Cur-
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riero, 2019). However, the same could be said when using
the Mahalanobis distance, but the performance of the Ma ex-
periments was clearly superior compared to the PCA ones.
A potential reason may be the fact that, to ease the positive-
definiteness of the PCA-based covariance matrix by sorting
the cells in a lower dimensional space, we used the Minka
algorithm to reduce the dimensionality of the synthetic co-
ordinate system. This dimension reduction comes in practice
with a loss of information. However, this is very unlikely,
since in practice it resulted in only one dimension being re-
moved, which represented a very low percentage of the to-
tal variance of the system. This requires further research to
fully understand how the information can be effectively prop-
agated in different spaces. A potential future approach may
be the use of multidimensional scaling techniques, instead
of PCA, that have shown previous success in geostatistics
(Murphy et al., 2015). The challenges previously encoun-
tered in generating non-positive definite covariance matrices
have been substantially mitigated. Previous research has pro-
posed to enforce positive definiteness in covariance matrices
by using (potentially iterative) methods based on eigende-
composition, to make any negative eigenvalues of the covari-
ance matrix become nonnegative (e.g. Davis and Curriero,
2019 and references herein), which imposed a considerable
computational burden, particularly for large matrices. How-
ever, regularizing the covariance matrix with the introduc-
tion of the jitter technique (where small values are iteratively
added to the diagonal) has proven to be both highly effective
and computationally efficient. Whether the results of prior
sampling differ significantly between these two approaches
to regularize the covariance matrix remains an open question
for future investigation.

In these experiments we update meteorological correction
parameters only, and not snowpack states, allowing the nu-
merical model to resolve the snow-canopy interactions. This
prevents the posterior simulations to be degraded by the fact
that in reality the snowpack beneath the canopy behaves dif-
ferently than in open terrain (Pflug et al., 2024; Varhola et al.,
2010), by updating only parts of the simulation that we as-
sume to be similar independently of the canopy cover (such
as the precipitation or temperature), and letting the model
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to resolve the parts that can’t be constrained (such as snow
states), due to the lack of information.

Since the main objective of this experiment was to ex-
plore how the information can be propagated effectively from
clearings towards the canopy covered cells, we split the ob-
servation dataset in two, keeping the cells beneath the canopy
for validation. This has not allowed us to include vegetation
parameters in the distance mapping of the Ma experiments,
as the cells inside and outside the forest would have been too
far away in Mahalanobis space, and therefore due to the lo-
calization, the information would not have been transmitted
from the clearings towards the sub-canopy. Some vegetation
model parameters could have been included in the inference,
but because the information is located in the forest gaps, they
could not have been constrained. However, given the success
of the experiments, future research would benefit from as-
similating data also in canopy-covered cells, if a proper er-
ror model is developed. State of the art remote sensing tech-
niques are able to retrieve at least a partial information of the
snowpack in forested terrain (Mazzotti et al., 2019), or even
snow cover information from satellites (Xiao et al., 2022).
This may be used not just to further improve the posterior
simulations but as a tool to infer internal model parameters
spotting weakness in canopy/snow models or their parame-
ters.

It should be noted that these spatio-temporal techniques
are compatible with joint DA initiatives, where more than
one type of observation is assimilated into the same simula-
tion, potentially only spatially spreading some of them (Maz-
zolini et al., 2025). This may include the ingestion of under
canopy in situ observations jointly with remotely sensed re-
trievals of any kind. It is worth noting that, due to the assimi-
lation of only a single incomplete snow distribution map, the
posterior simulations exhibit equifinality (Beven and Freer,
2001), which prevents us from exploring in detail which
of the parameters (precipitation or temperature correction)
is more dominant over the other since they are correlated
(Fig. 6). Adding other data sources and using more varied
information could help address this issue in future studies.
In any case, the mean posterior values obtained were close
to unity for precipitation (in the physical space) and close to
zero for temperature, suggesting that it is not the total amount
of precipitation that is biased, but rather the small-scale re-
distribution of the meteorological forcing.

Among the experiments that improved the simulations
compared with the deterministic reference run, there was
not a clearly superior experiment depending on the GC cor-
relation length scale hyperparameter. Similar conclusions
could be drawn from the findings in Cho et al. (2023), who
tested different correlation length scales for their Gaussian
decay-based localization function, showing that the differ-
ences were always lower than the improvement compared
with their reference simulation. This suggests some flexibil-
ity in the choice of this hyperparameter, which may be com-
plex especially when using non-Euclidean distances, and of-
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ten limited by the availability of considerable computing re-
sources.

When comparing the Eu and Ma experiments, it was also
difficult to spot differences if considering only quantitative
error metrics. However, the spatial patterns at smaller scales
seem more realistic when using the Ma configuration, as also
found in Alonso-Gonzalez et al. (2023a). This is based on
the fact that the snow spatial patterns are correlated with the
characteristics of the terrain, since it controls its distribution
by modulating accumulation and melt processes in both open
and forested terrain (Geissler et al., 2025; Revuelto et al.,
2014). The proposed domain is relatively small exhibiting
a limited topographical complexity. Other experiments over
larger areas of increasing topographical complexity may ben-
efit from the increasing topographical variability. A potential
limitation of this method will be found in non-complex ter-
rain, as is typical in high latitude areas, where the topograph-
ical control of the snowpack dynamics may be less clear, al-
though still very relevant (Bennett et al., 2022). In any case,
snowpack in these areas exhibits less spatial variability, so
we hypothesize that the use of Euclidean distance to map
cell similarity is likely to be sufficient in these environments
and/or at coarser resolutions.

Alternatively, it is possible to use snow climatologies or
observations to perform a more direct cell similarity mapping
based on the persistence of the spatial patterns of the snow
(Alonso-Gonzalez et al., 2023a; Mazzolini et al., 2025). De-
spite developing snow cover climatologies in forest environ-
ments is significantly more challenging than in open terrain
due to the aforementioned limitations of satellites to retrieve
information beneath the canopy, it is possible to generate
maps of the snow distribution in forested terrain by combin-
ing different techniques such as ground observations, lidar
and field campaigns (Geissler et al., 2023). The generation
of such products requires a significant effort in logistics that
prevent its operational exploitation as a real time monitoring
tool. In addition, such field methods will not be able to re-
trieve information at other times that the observation time it-
self. A promising application of the assimilation scheme pre-
sented here is to exploit such products to map the similarity
between cells in forested terrain, allowing the significant ef-
fort needed for these initiatives to be exploited to generate
gap-free re-analyses or near real time updated simulations.

In this work, we have explored the effect of using the
GC function to create a prior covariance matrix in different
spaces. However, what remains to be investigated is the po-
tential benefit of using different covariance (or kernel) func-
tions. It is possible that other functions may offer a more ac-
curate representation of snowpack correlograms across vari-
ous spatial scales and resolutions, especially in topographical
Mahalanobis spaces. One obvious source of inspiration is to
take advantage of the extensive literature on kernels devel-
oped by the Gaussian process community (Rasmussen and
Williams, 2005). In particular, kernels with compact support
— those that become zero beyond a certain boundary — (Bar-
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ber, 2020) could be of special interest since they will behave
similarly to the GC function, helping in limiting the compu-
tational cost and preventing spurious correlations among the
ensembles. Given the increasing availability of snow depth
information over large domains (Magnusson et al., 2025;
Painter et al., 2016), it will be beneficial for the snow DA
community to explore which kernel functions better approx-
imate the empirical snowpack spatial variability in different
spaces and resolutions. Given that snowpack exhibits persis-
tent spatial patterns in both forest and open terrain (Geissler
et al., 2025; Helfricht et al., 2014), there is potential to find
a single flexible kernel configuration, ideally depending on a
very limited number of parameters, to be widely used in both
spatiotemporal DA and observation interpolation initiatives.

5 Conclusions

In this work, we have explored the potential of the observa-
tions obtained in forest clearings to be used to update spa-
tially complete snow simulations in forest environments by
means of spatio-temporal ensemble-based data assimilation.
Six different experiments were conducted in the Sagehen
Creek (California, USA) using different data assimilation
configurations, demonstrating the potential obvious benefits
of spatiotemporal DA in forest environments. While most of
the experiments greatly improved the reference snow simu-
lations, those relying on a set of synthetic dimensions gen-
erated by a PCA were clearly inferior. Future research may
benefit from exploring other dimension reduction techniques
such as multidimensional scaling. Among the remaining suc-
cessful experiments, there was not a clearly superior con-
figuration, in that the differences among them were signifi-
cantly lower than the improvement compared with the refer-
ence run. This suggests some flexibility on the selection of
the critical hyperparameters of the DA. However, we found
that in terms of both qualitative and quantitative error met-
rics, those experiments built on a cell similarity mapping
based on the Euclidean distance were slightly more accurate
in terms of absolute validation metrics, but with a more re-
alistic representation of the spatial variance when using the
Mahalanobis distance in a topographical space. This suggests
that this latter technique is better suited for preserving spa-
tial relationships in complex terrain. The differences found
in the implementation of the prior covariance function in the
Mahalanobis and Euclidean spaces, suggests the importance
of future research investing effort in exploring of specific
covariance function that better capture the snowpack spatial
patterns

Code availability. MuSA (v2.2) is open source and can be found at
https://doi.org/10.5281/zenodo.14065646 (Alonso-Gonzdilez et al.,
2024). Future versions of MuSA will be submitted to https://
github.com/ealonsogzl/MuSA (last access: 8 January 2026). The
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assimilated airborne lidar snow depth data can be found at
https://doi.org/10.5069/G9ZG6QF7 (Piske, 2022).

Data availability. The assimilated airborne lidar snow depth data
can be found at https://doi.org/10.5069/G9ZG6QF7 (Piske, 2022).
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