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Abstract. The EU and ESA plan to launch a dual-frequency
Ku- and Ka-band polar-orbiting synthetic aperture radar
(SAR) altimeter, the Copernicus Polar Ice and Snow To-
pography Altimeter (CRISTAL), by 2027 to monitor polar
sea ice thickness (SIT) and its overlying snow depth, among
other applications. However, the interactions of Ku- and Ka-
band radar waves with snow and sea ice are not fully un-
derstood, demanding further research effort before we can
take full advantage of the CRISTAL observations. Here, we
use three ongoing altimetry missions to mimic the sens-
ing configuration of CRISTAL over Arctic sea ice and in-
vestigate the derived snow depth estimates obtained from
dual-frequency altimetry. We apply a physical model for the
backscattered radar altimeter echo over sea ice to CryoSat-
2’s (CS2’s) Ku-band altimeter in SAR mode and to the
SARAL mission’s AltiKa (AK) Ka-band altimeter in low-
resolution mode (LRM), and then we compare it to reference
laser altimetry observations from ICESat-2 (IS2). ICESat-2
snow freeboards (snow + sea ice) are representative of the

air–snow interface, whereas the radar freeboards of AltiKa
are expected to represent a height at or close to the air–
snow interface, and CryoSat-2 radar freeboards are expected
to represent a height at or close to the snow–ice interface.
The freeboards from AltiKa and ICESat-2 show similar pat-
terns and distributions; however, the AltiKa freeboards do
not thicken at the same rate over winter, implying that Ka-
band height estimates can be biased low by 10 cm relative to
the snow surface due to uncertain penetration over first-year
ice in spring. Previously observed mismatches between radar
freeboards and independent airborne reference data have fre-
quently been attributed to radar penetration biases, but they
can be significantly reduced by accounting for surface to-
pography when retracking the radar waveforms. Waveform
simulations of CRISTAL in its expected sea ice mode reveal
that the heights of the detected snow and ice interfaces are
more sensitive to multi-scale surface roughness than to snow
properties. For late-winter conditions, the simulations sug-
gest that the CRISTAL Ku-band radar retrievals will track
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a median elevation 3 % of the snow depth above the snow–
ice interface because the radar return is dominated by sur-
face scattering from the snow–ice interface which has a con-
sistently smoother footprint-scale slope distribution than the
air–snow interface. Significantly more backscatter is simu-
lated to return from the air–snow interface and snow volume
at Ka band, with the radar retrievals tracking a median ele-
vation 10 % of the snow depth below the air–snow interface.
These model results generally agree with the derived satel-
lite radar freeboards, which are consistently thicker for Al-
tiKa than CryoSat-2, across all measured snow and sea ice
conditions.

1 Introduction

The Arctic marine system is one of the fastest-changing envi-
ronments on Earth. Since the 1980s, the area of Arctic sea ice
at the end of the summer melting season has approximately
halved (Stroeve and Notz, 2018), while around three-quarters
of the ice volume has disappeared (Kwok, 2018). The latest
synthesis of climate model projections in the IPCC’s Sixth
Assessment Report suggests at least one practically ice-free
summer in the Arctic is likely before 2050, regardless of the
CO2 emission scenario (Fox-Kemper et al., 2021). However,
the spread in the projected timing of a regularly ice-free Arc-
tic spans more than 30 years (Notz and Community, 2020).
Much of this uncertainty comes from the structure of the sea
ice component of the climate model (Bonan et al., 2021), and
the Coupled Model Intercomparison Project (CMIP) Phase 6
ensemble does not reproduce the observed patterns of pan-
Arctic sea ice thickness (SIT) accurately (Watts et al., 2021).
According to Massonnet et al. (2018), the “current main ob-
stacle to reducing uncertainties in projected sea ice volume
or area trends is not the complexity of the models used, but
rather the lack of long-term and reliable estimates of sea
ice volume that can be used to constrain their projections.”
Upgrading the observational SIT record will benefit climate
model projections, improve the initialization of seasonal sea
ice forecasts (e.g., Bushuk et al., 2017), and provide en-
hanced understanding of the Arctic’s fast-changing sea ice
mass and energy budgets.

The EU and ESA plan to launch a new Sentinel Expan-
sion Mission, the Copernicus Polar Ice and Snow Topog-
raphy Altimeter (CRISTAL), by 2027 to continue and en-
hance the record of spaceborne sea ice thickness observa-
tions in the Arctic (Kern et al., 2020). The observations from
CRISTAL will build on a legacy of pan-Arctic SIT generated
from the polar-orbiting ESA CryoSat-2 (CS2) mission since
2010 (e.g., Landy et al., 2022) and from historic radar altime-
ters (ERS-1/-2 and ENVISAT RA-2) with sub-Arctic cov-
erage since 1995 (e.g., Bocquet et al., 2023). Complemen-
tary observations of pan-Arctic sea ice thickness have also
been produced from the polar-orbiting NASA ICESat (2003–

2009) and ICESat-2 (IS2; 2018 onwards) spaceborne laser al-
timetry missions (Kwok and Cunningham, 2008; Petty et al.,
2023a). CRISTAL will carry a dual-frequency interferomet-
ric Ku- and Ka-band synthetic aperture radar (SAR) altime-
ter, with the goal to produce profiles of SIT at ∼ 250 m
intervals along the track of the satellite with conventional
delay-Doppler processing and < 80 m with fully focused
processing (Kern et al., 2020). The dual-frequency sensor is
motivated by the assumption that Ku-band pulses penetrate
through the snow layer on sea ice (e.g., Beaven et al., 1995),
whereas Ka-band pulses scatter at the upper snow surface
or layer (Guerreiro et al., 2016). This allows snow depth to
be estimated from the height difference of the backscattered
echoes. One of the largest sources of uncertainty in state-
of-the-art SIT datasets comes from the snow load, which
is conventionally obtained from a climatology (e.g., War-
ren et al., 1999) or estimated from an external source (such
as fused climatology and passive-microwave-derived esti-
mates or reanalysis-based accumulation models) to convert
the altimeter’s freeboard measurement to an estimate of SIT
(Tilling et al., 2018; Mallett et al., 2021; Glissenaar et al.,
2021). If the snow depth can be accurately measured by
CRISTAL, concurrently with the measured sea ice freeboard,
then uncertainty in the derived SIT may start approaching the
0.15 m on a 25 km length scale targeted by the mission (Kern
et al., 2020; compared to the typical > 0.5 m uncertainty on
CryoSat-2 SIT estimates).

The basic assumptions of radar backscatter that have mo-
tivated the configuration of the dual-frequency CRISTAL
payload are significantly more complex in reality. A vari-
ety of studies based on theoretical methods (Nandan et al.,
2017, 2020; Tonboe et al., 2021; Meloche et al., 2024), in situ
(or surface-based) radar (Willatt et al., 2009, 2023; Stroeve
et al., 2020; Nandan et al., 2023), airborne radar (Willatt
et al., 2011; King et al., 2018; de Rijke-Thomas et al., 2023),
and satellite radar observations (Ricker et al., 2015; King
et al., 2015; Nab et al., 2023) have challenged the assump-
tion that spaceborne Ku-band radar altimetry (e.g., CryoSat-
2) can accurately detect the height of the snow–ice interface
over snow-covered sea ice floes. It has been suggested that
CryoSat-2 may be sensitive to a radar scattering distribution
with mean height within the snowpack, 60 %–90 % deep in
the snow relative to the air–snow interface (Armitage and
Ridout, 2015; Lawrence et al., 2018; Nab et al., 2023; Landy
et al., 2022), implying that CryoSat-2 radar freeboards are
consistently biased thick if there are not strong competing bi-
ases. Moreover, studies investigating coincident satellite ob-
servations from CryoSat-2 and the CNES/ISRO Ka-band al-
timeter mission SARAL AltiKa (AK) have challenged the as-
sumption that Ka-band radar freeboards accurately represent
the height of the air–snow interface over sea ice (Armitage
and Ridout, 2015; Lawrence et al., 2018). AltiKa may also,
therefore, be sensitive to a radar scattering distribution with
a mean height within the snowpack of 0 %–40 % of the snow
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depth (Guerreiro et al., 2016; Armitage and Ridout, 2015;
Nab et al., 2023).

Radar pulse propagation at the Ku and Ka band depends
on the electromagnetic characteristics of the snow and sea
ice cover. The radar wave can be scattered at the air–snow
and snow–ice interfaces, depending on the dielectric contrast
between layers and the “radar-scale” millimeter–centimeter
roughness of the interface, i.e., similar to the wavelengths of
∼ 2 cm at the Ku band and ∼ 8 mm at the Ka band (Kurtz
et al., 2014; Kwok, 2014; Landy et al., 2019; de Rijke-
Thomas et al., 2023; Meloche et al., 2024). The wave can
also be scattered and absorbed within the snow volume, de-
pending on the snow density, grain size, dielectric proper-
ties (moisture, related to brine content), and structure (wind
crusts, ice lenses) (Nandan et al., 2017, 2023; Willatt et al.,
2023). These surface and volume scatterers are then dis-
tributed over a range of heights, with respect to the spherical
wavefront of the propagating pulse, by the large-scale (me-
ters to thousands of meters) topography of the sea ice cover.
A rougher surface topography produces a broader backscat-
tered radar echo (Kurtz et al., 2014; Landy et al., 2020). This
complex set of scattering mechanisms can produce a mean
height of the backscattered radar intensity that does not ex-
actly match the absolute mean height of the snow surface (at
the Ka band) or the sea ice surface (at the Ku band), even
in the case where the waves negligibly or totally penetrate
the snowpack. Ka-band waves are theoretically 1–2 orders
of magnitude more sensitive to snow volume scattering than
Ku-band waves (Mätzler, 1998; Rémy et al., 2015), and Al-
tiKa freeboards are generally thicker than CryoSat-2 free-
boards (Armitage and Ridout, 2015); however, the relative
radar penetration depth into snow may not always be 0 % at
the Ka band and 100 % at the Ku band.

It is not only the geophysical properties of the target that
affect the returning altimeter waveform. The sensor design
and measurement geometry can affect the relative impor-
tance of each scattering mechanism, and different methods
for interpreting the radar signal can impact derived geophysi-
cal parameters such as the sea ice surface height or freeboard.
For instance, de Rijke-Thomas et al. (2023) recently showed
that the portion of the Ku-band radar signal that is reflected at
the snow–ice interface depends closely on the altitude of the
altimeter, and on the roughness and slope distribution of the
target sea ice. The coherent radar reflection from the snow–
ice interface (rather than incoherent surface or volume scat-
tering) becomes increasingly dominant as the observation al-
titude increases, up to a range of ∼ 0.1–1 km sufficient for
the far-field condition to apply, or the surface slope distribu-
tion narrows. Furthermore, a “retracking” algorithm must be
applied to estimate the average elevation of the target sur-
face from the leading edge of the waveform (Quartly et al.,
2019). For sea ice altimetry, the so-called radar freeboard is
then determined from the difference in retracked heights be-
tween sea ice floes and local sea surface reference samples
at leads (Ricker et al., 2014). The retracking algorithm ap-

plied to floes and leads is based on a set of assumptions for
their characteristic scattering properties. A bias in the derived
sea ice freeboard vs. some reference validation dataset may
therefore come from a geophysical source (e.g., pulse atten-
uation in the snow volume) or from the interpretation of the
measurement (e.g., invalid assumptions of the retracking al-
gorithm) (Landy et al., 2020). It can be impossible to separate
these sources of error without auxiliary information.

In spite of these challenges, there have been several at-
tempts to produce pan-Arctic snow depth estimates from
dual-frequency altimetry. Guerreiro et al. (2016) developed
a methodology with CryoSat-2 observations processed in
pseudo-low-resolution mode (LRM) to match the LRM Al-
tiKa observations and calculated snow depth at satellite
crossovers < 3 d apart assuming 0 % and 100 % snow pen-
etration at the Ka and Ku band, respectively. This altimetric
snow depth (ASD) “KuKa” processing chain was later up-
dated to compute snow depth composites from monthly grid-
ded CryoSat-2 and AltiKa freeboards (Garnier et al., 2021),
with a comparison to snow depth estimates from Operation
Ice Bridge (OIB) taken between 2014–2018 indicating an R2

score of 0.44. Alternatively, Lawrence et al. (2018) calibrated
CryoSat-2 SAR and SARIn mode and AltiKa LRM obser-
vations with coincident observations of derived radar free-
board and laser freeboard from combined airborne lidar and
snow-radar spring OIB data to align the satellite freeboards
from each altimeter down and up to the snow–ice and air–
snow interfaces, respectively (Lawrence et al., 2018). A sim-
ilar comparison to OIB data produced an R2 score of 0.38.
The offsets to OIB were attributed to variable radar pene-
tration rates into snow (Armitage and Ridout, 2015), sur-
face roughness, and sampling differences between sensors.
Calibrated freeboards averaged to monthly grids are differ-
enced to produce KuKa snow depth estimates, after account-
ing for the delayed Ku-band wave propagation speed in snow.
The dual-altimeter snow thickness (DuST) methodology has
more recently been applied to produce pan-Arctic “KuLa”
snow depth estimates from the difference between CryoSat-
2 observations, with the same calibration to airborne free-
boards applied, and ICESat-2 ATL10 observations as part
of the ESA Polar+ Snow on Sea Ice Project. Kwok et al.
(2020) and Kacimi and Kwok (2022) also estimated pan-
Arctic KuLa snow depths from the difference between uncal-
ibrated CryoSat-2 and ICESat-2 observations, showing thin-
ner depth estimates than the long-term snow depth clima-
tology described in Kwok and Cunningham (2015). KuLa
snow depth products have shown evidence for snow accu-
mulation of 10 cm or more over winter and spring, match-
ing expectations from reanalysis precipitation (Kwok et al.,
2020), whereas KuKa products exhibit a much lower rate of
seasonal accumulation (Lawrence et al., 2018; Garnier et al.,
2021).

Here, we exploit the overlap in Arctic observations by the
CryoSat-2, AltiKa, and ICESat-2 missions, at latitudes up to
81.5° N after October 2018, to examine how each sensor de-
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tects the freeboard of the snow, sea ice, or something in be-
tween. We use a waveform modeling method to simulate the
theoretical radar return from rough snow and ice surfaces at
the Ku and Ka bands, then we use these simulations to in-
form the retracking of surface height from CryoSat-2 and Al-
tiKa, respectively. Monthly winter freeboards from CryoSat-
2, AltiKa, and ICESat-2 are intercompared and used to de-
rive two different estimates of the snow depth, which are
then evaluated against independent snow depth data. Satellite
laser/radar surface roughness estimates and radar backscat-
tering coefficients, together with airborne estimates for the
sea ice and snow freeboard, are used to investigate the wave-
scattering mechanisms behind differences in sensors. Finally,
we consider lessons learned from these multi-frequency ob-
servations in advance of the CRISTAL mission launch.

2 Data

2.1 CryoSat-2 SIRAL observations

The SAR Interferometric Radar Altimeter (SIRAL) on board
CryoSat-2 combines a pulse-limited Ku-band radar altimeter
with synthetic aperture and interferometric signal processing.
The footprint of the sensor is therefore pulse-Doppler-limited
∼ 300 m along the track and pulse-limited to ∼ 1700 m
across the track of the beam, with observations at ∼ 300 m
intervals (Wingham et al., 2006) available up to a latitudi-
nal limit of 88° N. Here, we use the Level-1B (L1B) SAR-
and SARIn-mode Baseline E observations, obtained from the
open ESA dissemination server at ftp://science-pds.cryosat.
esa.int/ (last access: 9 August 2023), from October 2018 to
April 2023, limited by the time period of ICESat-2 data (see
Sect. 2.3) and covering the region north of 50° N. The L1B
waveform observations from the larger 240 m range win-
dow in SARIn mode are truncated to match the 60 m range
window of the SAR mode, and observations from the two
modes are then treated identically. It is important to note that
the range resolution of the altimeter is 0.47 m; however, the
waveforms in the ESA L1B product are sampled at 0.23 m
after zero padding is applied prior to the range FFT (Smith
and Scharroo, 2014) to prevent aliased sampling of specular
radar returns. This should lead to improved waveform fitting
of lead echoes (see Sect. 3.3).

2.2 SARAL AltiKa observations

The AltiKa on board the Satellite with ARgos and AL-
tika (SARAL) is a Ka-band radar altimeter, with a pulse-
limited footprint of ∼ 1400 m and a beam-limited footprint
of ∼ 8 km, producing observations at 170 m intervals (Ver-
ron et al., 2015). It is primarily a sea-level monitoring mis-
sion, with a latitudinal limit of 81.5° N. Here, we use the L1B
LRM mode Geophysical Data Record (sgdr_f) observations
available from the AVISO Altimetry dissemination server
at ftp://ftp-access.aviso.altimetry.fr (last access: 27 March

2024), from October 2018 to April 2023, and covering the
Arctic region north of 50° N. The range resolution of the al-
timeter is 0.30 m.

2.3 ICESat-2 ATLAS observations

The Advanced Topographic Laser Altimeter System (AT-
LAS) on board ICESat-2 operates with a split-beam config-
uration of three 532 nm laser beam pairs, each including a
strong and a weak beam. The beam pairs are spaced ∼ 3 km
across the track of the sensor, with 90 m across-track and
2.5 km along-track separation between each strong and weak
beam (Markus et al., 2017). The high pulse-repetition fre-
quency produces laser pulses every∼ 70 cm along track with
a footprint diameter of ∼ 11 m. Here, we use the Level-3B
ATL20 Version 4 Daily and Monthly Gridded Sea Ice Free-
board product available from NSIDC at Petty et al. (2023b),
from October 2018 to April 2023. The laser freeboard is
produced by aggregating 150 photons along a beam, deter-
mining the sea ice height from the photon distribution of
this segment, and finding the height difference to a refer-
ence sea surface height determined from the photon distri-
bution at local lead points (within 10 km along-track sections
for each beam) (Kwok et al., 2019b). For ATL20, the along-
track freeboards are aggregated at daily and then monthly
timescales onto a 25km× 25km Polar Stereographic North
projection grid across the Arctic, which we resample onto an
EASE2 grid using nearest-neighbor interpolation. Only the
three strong beams are used to produce ATL20. To obtain
an estimate for the surface roughness that is compatible with
ATL20 and on a similar scale to the CryoSat-2 observations,
we use the Level-3A ATL07 Version 6 Sea Ice Height prod-
uct available from NSIDC at Kwok et al. (2023). Roughness
is estimated from the standard deviation of surface heights
from the central strong beam within 25 km along-track sec-
tions. Samples are removed if the section contains < 100
heights and are then binned onto the same 25 km EASE2
grid.

Furthermore, we use the ICESat-2 Arctic Sea Ice Sur-
face Topography data Version 2.1 from the University of
Maryland–Ridge Detection Algorithm (Duncan and Farrell,
2022), available at https://zenodo.org/records/7129192 (last
access: 3 December 2023). We use the snow surface rough-
ness parameter, obtained from a ridge detection scheme ap-
plied to ATL03 photon heights, for April 2019, to support the
simulation of CRISTAL waveforms (Sect. 5.4).

2.4 Reference observations

To validate our satellite snow depth estimates and in-
vestigate the radar backscatter mechanisms potentially
introducing biases into freeboard observations, we com-
pare the satellite measurements to several airborne and
in situ datasets. This includes a set of reference observa-
tions prepared and gridded by AWI for the ESA Polar+
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Snow on Sea Ice Project: (i) snow depth information
from airborne radar data is available in the AWI Ice-
Bird Winter 2019 campaign dataset (Jutila et al., 2022a),
available at https://doi.org/10.1594/PANGAEA.966057
(Jutila et al., 2024), for April 2019. These data
were processed with the PySnowRadar package
(https://doi.org/10.5281/zenodo.4071947; King et al.,
2020) based on the “peakiness” method described in Ju-
tila et al. (2022b). (ii) Snow depth information collected
manually with a magnaprobe along the two loops of
the MOSAiC campaign Central Observatory transects,
approximately weekly (Itkin et al., 2023), is available at
https://doi.org/10.1594/PANGAEA.937781 (Itkin et al.,
2021) for October 2019 to April 2020. (iii) Snow depth
information processed from airborne radar data collected
by the Center for Remote Sensing and Integrated Systems
(CReSIS) at the University of Kansas, with the peakiness
method and same PySnowRadar parameters as the IceBird
data, is available at http://data.cresis.ku.edu/#SR (last access:
25 July 2024) for the five OIB flight campaigns on 6, 12,
19, 20, and 22 April 2019. A snow density of 300 kgm−3

was applied to derive the snow depths, consistent with the
IceBird processing for reference dataset (1) but not with the
application of time-dependent snow density for the satellite
estimates (see below). This mismatch in snow density adds
a small uncertainty to the validation results. The reference
observations are gridded onto a monthly 25 km EASE2
(Brodzik et al., 2012) projection to match the satellite data.

Furthermore, we use the laser-scanner-derived snow (or
total) freeboard observations from the April 2019 OIB and
AWI airborne campaigns, along with the airborne snow depth
estimates, to estimate the expected Ku-band freeboard – un-
der the assumption of total radar penetration – following the
approach of Lawrence et al. (2018). The sea ice freeboard
is calculated by subtracting the airborne radar snow depths
from the laser scanner snow freeboards and then converted
to the expected Ku-band radar freeboard by accounting for
the delayed radar wave propagation through snow (assum-
ing a snow density of 300 kgm−3). The laser scanner snow
freeboard observations represent the expected Ka-band radar
freeboard, under the assumption of zero radar penetration.

3 Methods

3.1 Basis of the approach

The basis for the waveform modeling approach (the Lognor-
mal Altimeter Retracker Model, LARM) is to fit a physi-
cal model for the backscattered radar altimeter echo to ob-
served altimeter waveforms and obtain, through the model
inversion (Landy et al., 2020), estimates for the retracked
snow–ice interface elevation (CryoSat-2), air–snow interface
elevation (AltiKa), or sea surface height at leads (both sen-
sors). A mean sea surface (MSS) model, here the DTU21

solution (Baltazar Andersen et al., 2023), is subtracted from
the retracked heights to calculate sea ice height and sea sur-
face height anomalies (SSHAs). The radar freeboard is calcu-
lated from the height difference between the ice floe elevation
anomalies and an estimate for the SSHA interpolated (see be-
low) between tie points from nearby leads along the orbital
track of the satellite. Radar freeboards from a given month
are then binned and averaged on a 25km×25km EASE2 grid
that covers the entire Arctic and are finally corrected for the
delayed travel speed of the CryoSat-2 Ku-band radar wave
through snow (Mallett et al., 2020) to produce estimates for
the pan-Arctic snow depth, following, e.g., Lawrence et al.
(2018). These steps are explained in more detail below.

The fundamental assumption of the method is that forward
model solutions for the CryoSat-2 Ku-band SAR echo or Al-
tiKa Ka-band LRM echo adequately represent the height of
the snow–ice or air–snow interface, respectively, based on the
physical mechanisms scattering or reflecting the radar waves
at each frequency. Here we take the simple but necessary
approach to model both Ku-band and Ka-band radar wave-
forms as if the backscatter is returned from a single backscat-
tering surface, assumed to represent the snow–ice and air–
snow interfaces, respectively. Several studies have called this
assumption into question, as described in the Introduction.
For instance, snow volume scattering, attenuation by brine-
wetted snow, new snowfall, and variations in radar-scale sur-
face roughness may impact the height of the maximum radar
backscattering intensity at each frequency. In cases where our
fundamental assumption of a single scattering surface is in-
validated and/or the model inadequately reproduces the true
scattering response of the radar wave, we will obtain a bias
in the retracked elevation.

The alternative option would be to forward model the full
combination of possible surface and snow volume scatter-
ing mechanisms; e.g., see Sect. 5.4. However, any influen-
tial model parameter that cannot be constrained by additional
data (e.g., snow depth, density, grain size, dielectric prop-
erties) would need to be a free parameter in the model in-
version. In this scenario, the inversion of a larger number of
free parameters based on a single waveform would conse-
quently be very uncertain with high degeneracy between cer-
tain model parameters, for example, the surface roughness
and snow depth (de Rijke-Thomas, 2019), so this is currently
not considered a viable option.

3.2 Radar waveform modeling

In the case of a single backscattering surface, the radar al-
timeter echo model is parameterized by four terms: A, the
scaled waveform amplitude; t0, the tracking point of the
mean radar scattering surface (or “epoch”); σ , the surface to-
pography root-mean-square height; and srms, the millimeter–
centimeter “radar-scale” roughness. This is assuming that
variations in the radar antenna parameters (e.g., satellite al-
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titude, off-nadir pointing angle) have a negligible impact on
the shape of the sea ice waveform return and can be ignored.

We use the Facet-Based Echo Model (FBEM) which sim-
ulates the radar altimeter echo as the integral of the power
backscattered from a tetrahedral mesh representing the sea
ice surface topography (Landy et al., 2019). The FBEM is
available as an open-source MATLAB code at https://github.
com/jclandy/FBEM (last access: 3 March 2023). The scat-
tering mechanisms are characterized for each facet of the
mesh. Backscatter from the air–snow or snow–ice interface
is obtained from the sum of the scattered and reflected com-
ponents, simulated with the Integral Equation Model (IEM;
Fung and Chen, 2004) and Kirchoff physical optics ap-
proximation (Fung and Eom, 1983), respectively. The bal-
ance between scattering and reflection depends on the radar
frequency and radar-scale roughness of the surface (Landy
et al., 2020). A waveform simulation uses a single radar-scale
roughness for every facet; however, the backscatter from
each facet still varies nonlinearly as a function of the facet’s
local slope angle – being larger for smaller slope angles that
face the radar (Landy et al., 2020; Nandan et al., 2023).
This means level ice facets contribute disproportionately to
the total backscattered echo, compared to sloped facets (i.e.,
ridges), and reduce the height of maximum backscattered
radar intensity compared to the true mean floe surface height
(de Rijke-Thomas et al., 2023). This is analogous to the radar
altimetry sea state bias over the ocean (Tran et al., 2010).

The large-scale topographies of the air–snow or snow–
ice interfaces are characterized by a lognormal probability
density function of the height distribution, following Landy
et al. (2020). A single lookup table of Ku-band SAR altimeter
echoes is simulated from FBEM for sea ice and lead surfaces
with lognormal height PDF, σ ranging from 0 to 1 m, and srms
ranging from 0 to 6 mm, as described in Landy et al. (2020).
Radar antenna parameters are characterized for the CryoSat-
2 SIRAL instrument (Landy et al., 2019). Examples for the
modeled SAR echoes with fixed srms of 2 mm but varying σ
are shown in Fig. 1a. The parameter srms controls the mag-
nitude of the radar backscatter from the surface and the in-
cidence angle dependence of the backscattering coefficient,
with a smaller value producing a higher power and a peakier
waveform return. The parameter σ controls the roughness of
the large-scale sea ice topography and principally affects the
width of the waveform leading edge. When srms = 2 mm and
σ = 0 (orange waveform), the echo represents the approxi-
mate reflection of the transmitted pulse. Such peaky wave-
forms are characteristically produced when the radar signal
is reflected from leads in sea ice. The radar tracking point
t0 defines the mean elevation of the surface height distribu-
tion within the radar footprint. Zero time in Fig. 1 represents
t0 and is crossed at a different amplitude of the waveform
leading edge power depending principally on σ . This im-
plies that the relative retracking amplitude should decrease as
the large-scale roughness of the snow–ice interface increases,

from around 98 % for σ = 0% to 67 % for σ = 0.5 m (i.e.,
tracing down the t = 0 line in Fig. 1a).

A single lookup table of Ka-band LRM altimeter echoes
is also simulated from FBEM for sea ice and lead sur-
faces with lognormal height PDF, σ ranging from 0 to
1 m, and srms ranging from 0 to 6 mm. Radar antenna pa-
rameters are characterized for the AltiKa SARAL instru-
ment, based on https://directory.eoportal.org/web/eoportal/
satellite-missions/s/saral (last access: 26 September 2020).
Examples for the modeled LRM echoes with fixed srms of
2 mm but varying σ are shown in Fig. 1b. The roughness
of the large-scale sea ice topography σ appears to impact
the width of the leading edge more in Ka-band LRM mode
than in Ku-band SAR mode (e.g., Guerreiro et al., 2016; Fre-
densborg Hansen et al., 2021). The radar tracking point t0 is
also again crossed at a different amplitude of the waveform
leading edge power depending on σ (i.e., tracing down the
t = 0 line in Fig. 1b). This implies that the relative retrack-
ing amplitude for LRM waveforms should also decrease as
the large-scale roughness of the air–snow interface increases,
from around 50 % for σ = 0 % to 28 % for σ = 0.5 m.

3.3 Waveform fitting and freeboard derivation

We use a least-squares fitting procedure to optimize the func-
tional form of the modeled sea ice echo to observed CryoSat-
2 or AltiKa waveforms. The fitting routine is based on
the bounded trust region reflective algorithm (implemented
through the MATLAB function lsqnonlin) to minimize the
difference between the model fit and each observed power
waveform, as described in Landy et al. (2020). A filtering
routine is applied to exclude samples at major secondary
peaks, on the waveform trailing edge from the model fit
(Fig. 2). This routine identifies all waveform peaks between
the primary peak and noise floor (on the waveform trailing
edge) and then removes samples if the area of the peak is
above a threshold value. The routine is identical between
CryoSat-2 and AltiKa, but the thresholds are different. Ini-
tial values for the four free parameters are determined as t0
at 70 % of the waveform leading edge power, A at the wave-
form maximum, and σ and srms corresponding to the mod-
eled echo from the lookup table with a peakiness value clos-
est to the peakiness of the observed waveform (Landy et al.,
2020). At the end of the fitting procedure, we obtain opti-
mal estimates for all four parameters. Examples for the best-
fitting modeled echoes to sea ice floe surfaces and leads, for
both CryoSat-2 and AltiKa waveforms, are shown in Fig. 2
along with their associated parameters. It is evident that the
large-scale topography σ and small-scale roughness srms are
both larger for the floe surfaces than for leads. It is also no-
table that the zero padding applied to CryoSat-2 SAR wave-
forms doubles the range sampling, without adding any new
information (Smith and Scharroo, 2014), but provides an im-
proved constraint on the elevation of specular leads than can
be obtained from the specular AltiKa LRM waveforms at
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Figure 1. Radar echo simulations for a single backscattering interface (snow or sea ice) with a lognormal roughness height distribution and
different roughness standard deviations σ in (a) Ku-band SAR-mode with radar sensing parameters from CryoSat-2 SIRAL and in (b) Ka-
band LRM-mode with radar sensing parameters from AltiKa SARAL. For these examples, srms is held at a fixed 2 mm. Zero time represents
the radar tracking point t0.

their native bandwidth-limited range resolution (Fig. 2b and
d).

The satellite range is obtained from half the retracked two-
way travel time to the surface multiplied by the speed of
light. The surface height relative to the WGS84 ellipsoid is
then obtained from the satellite altitude minus the range and
is subsequently corrected for atmospheric effects (dry and
wet troposphere, ionospheric delay, inverse barometer cor-
rection) and geophysical effects of the ocean (ocean tide,
loading tide, pole tide) using corrections provided in the data
products. The corrections can therefore be different between
sensors, with negligible impact on the results (Ricker et al.,
2016). A conservative low-pass filter is applied to the along-
track height profile to remove residual sea surface topogra-
phy (with a horizontal wavelength greater than 200 km) that
is not removed by the geophysical corrections.

Waveforms are separated into three classes (sea ice floes,
leads, and ocean) with a simple thresholding technique
based on several waveform shape parameters. No class is
used for “ambiguous” waveforms. For CryoSat-2, the pa-
rameter thresholds are based on results from Müller et al.
(2023) who showed that previous classification schemes
for CryoSat-2 generally assigned observations over thin
sea ice to the ambiguous class, potentially biasing the de-
rived sea ice freeboard high by omitting them. Observations
are classed as leads where the radar backscattering coeffi-
cient (σ 0) is > 23 dB in SAR mode and > 24 dB in SARIn
mode, the pulse peakiness (PP) is > 0.258 in SAR mode
and > 0.254 in SARIn mode, and the leading edge width
(LEW) is < 4.69 ns in SAR mode and < 6.56 ns in SARIn
mode (Hendricks et al., 2021). Observations are classed as
ocean where σ 0< 2.5 dB, the stack standard deviation (SSD)
> 55, or the sea ice concentration (from the OSISAF prod-
uct OSI-401-d)< 15 %. All remaining valid observations are
classified as sea ice. For AltiKa, the parameter thresholds
are based on Armitage and Ridout (2015) and Zakharova

et al. (2015). Observations are classified as leads where
σ 0> 15 dB, the PP> 0.156, and the LEW< 4.58 ns. Obser-
vations are classed as ocean where σ 0< 2.5 dB or the sea ice
concentration < 15 %. All remaining valid observations are
classified as sea ice.

The SSHA is obtained at ice-covered locations from a
linear interpolation between lead elevations, along the or-
bit of the satellite and smoothed on a 25 km length scale,
as described in Landy et al. (2020). All sea ice observa-
tions > 300 km from their nearest lead are discarded. Along-
track radar freeboards are calculated from the elevation dif-
ference between sea ice floes and the interpolated SSHA. An
estimate for the SSHA uncertainty at a lead location is made
from the standard deviation of lead elevations within a 50 km
along-track window around the lead. At ice floe locations,
the SSHA uncertainty is estimated from the uncertainty at
proximal leads, scaled by the inverse of the squared distance
to the nearest lead, up to a maximum of 10 cm at 300 km.

3.4 Snow depth estimation and intercomparison

The radar freeboards for both CryoSat-2 and AltiKa are
gridded, at monthly intervals, onto the same 25km× 25km
EASE2 projection Arctic grid using a binned weighted mean
algorithm, with each freeboard observation weighted in-
versely by its absolute uncertainty. The SSHA uncertainty
is gridded with the same method. The range error on a sin-
gle 20 Hz CryoSat-2 observation is estimated to be 10 cm
for SAR mode and 14 cm for SARIn mode (Wingham et al.,
2006), and the range error on a single 40 Hz AltiKa LRM
mode observation is estimated to be 5 cm (Dettmering et al.,
2015). This range error is considered to be fully random, in-
corporating speckle and retracking error from the waveform
fitting process; however, there may be other systematic er-
rors, such as retracker bias, that are not known and are thus
not included. For a conservative estimate of the total radar
freeboard uncertainty, we therefore sum the range error (mul-
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Figure 2. Best-fitting model echoes to observed radar waveforms from (a, b) CryoSat-2 SAR mode and (c, d) AltiKa LRM mode. Panels
(a) and (c) show model fits to characteristic diffuse-type waveforms returned from a rough sea ice and/or snow surface. Panels (b) and
(d) show model fits to characteristic specular-type waveforms returned from smooth ocean lead surfaces. The dashed lines mark the “epoch”
or radar retracking point, i.e., the mean level of the scattering surface, with respect to the echo maxima. Hollow samples at major secondary
peaks are discarded from the waveforms during fitting.

tiplied by 1/
√
N observations in a grid cell) and the mean

gridded SSHA uncertainty in quadrature. After averaging to
a 25 km scale, the precision on the gridded radar freeboards
is around 2–3 cm (Fredensborg Hansen et al., 2024).

The ICESat-2 ATL20 monthly snow freeboard data are re-
projected onto our EASE2 grid. We then estimate the snow
depth in two ways: (i) from the height difference between
CryoSat-2 and AltiKa, “KuKa”, and (ii) from the height dif-
ference between CryoSat-2 and ICESat-2, “KuLa”. We as-
sume that the CryoSat-2 radar freeboards represent the eleva-
tion of the snow–ice interface (see Sect. 5.4 below), but this is
not yet corrected for the delayed Ku-band wave propagation
velocity through the snowpack. To derive estimates for the
snow depth from the height difference in gridded freeboards,
we therefore multiply by the height difference corresponding
to the ratio of radar wave velocities in snow and free space
(Lawrence et al., 2018) using Eq. (81) in Ulaby et al. (1986)
Volume 3. The snow density is estimated to vary seasonally,
between 266–329 kgm−3, from October to April, based on
Mallett (2025). Snow depth uncertainty is derived from the
radar freeboard uncertainties and their covariance for KuKa
and from the radar and laser freeboard uncertainties and their
covariance for KuLa following the method of Lawrence et al.
(2018). Note that we do not calibrate the radar freeboards, as

in Lawrence et al. (2018), so uncertainties on the calibrations
are also omitted from the uncertainty calculation.

4 Results

We firstly analyze the basin-wide patterns and distributions
of the CryoSat-2 (CS2) and AltiKa (AK) radar freeboards
and ICESat-2 (IS2) laser freeboards in 2 selected months:
December 2018, in the early stages of the snow accumula-
tion season but with sea ice close to its maximum extent,
and April 2019, towards the end of the same snow accumu-
lation season. We then analyze the differences between the
KuKa and KuLa versions of the snow depth, including the
seasonal differences in estimated snow accumulation rate.
Finally, we intercompare the derived snow depths with air-
borne and in situ snow depth measurements collected be-
tween 2019–2020.

4.1 Radar and laser freeboard intercomparison

The CryoSat-2 radar freeboard observations in December
and April are thinner than both the AltiKa radar and ICESat-
2 snow freeboards. All three datasets show relatively thicker
freeboards over the MYI than over the FYI zone (Figs. 3a–c
and 5a–c). The mean of the CS2 freeboard distribution is 3.7
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and 5.3 cm in December and April, respectively, compared to
21 and 26 cm for AK and 18 and 30 cm for IS2 (Figs. 4a and
6a). Around half of the December CS2 freeboards south of
81.5° N are thinner than 3 cm, representing new ice forming
recently in the marginal ice zone (MIZ). This threshold is ap-
proximately the lower freeboard detection limit of CryoSat-2
when using a physically based retracker (see Fig. 7 in Landy
et al., 2020 and Fredensborg Hansen et al., 2024). Thicker
AK and IS2 freeboards in the MIZ represent snow accumu-
lating on newly forming sea ice (see Sect. 5.3).

The AK and IS2 freeboards display many similarities in
their regional variability, for example, thicker freeboards
in the northern region of the Canadian Arctic Archipelago
(CAA), in the Beaufort Sea, and in the Fram Strait. The tran-
sition in freeboard across the MYI tongue circulating into
the Beaufort Sea, in particular, is captured by both AK and
IS2 in December and April. It is evident, however, that the
AK radar freeboards show more local spatial variability than
the smoother patterns of the CS2 and IS2 freeboards, which
may be attributable to higher uncertainty in the AltiKa LRM
freeboard observations. All three sensors exhibit freeboard
patterns in December that closely match the ice type zones
mapped in the OSI-403-d product, with sharp gradients in
freeboard across the MYI edge (Fig. 3a–c). It is notable that,
by April, the clear separation by ice type is not preserved in
the CS2 freeboards, and, while it is more obvious in the AK
and IS2 freeboards, it is not in the Atlantic Sector, where the
ice is more dynamic and seasonal ice thickening/snow accu-
mulation might depend less on the ice type (Fig. 5a–c; see
Sect. 5.3).

The CS2 radar freeboard distributions are narrower than
the others, with ∼ 15 % of grid cells having near-zero or
slightly negative freeboards, reflecting thinner sea ice floes
loaded by surface snow (Figs. 4a and 6a). MYI freeboards
are evident in the tails of the CS2 distributions thicker than
∼ 10 cm. The AK and IS2 freeboard distributions are both
unimodal in December, but the IS2 distribution alone be-
comes bimodal by April, reflecting thickened IS2 freeboards
in the Chukchi and East Siberian seas that are not observed
in the AK data and only weakly observed in the CS2 data.
Generally, the freeboard patterns from CS2 and IS2 are quite
similar, albeit with different magnitudes. The thinnest CS2
freeboards (< 5 cm) in the MIZ typically coincide with the
thinnest IS2 freeboards (< 10 cm) (Figs. 3a and c and 5a
and c), where snow depth is expected to be thinnest over
newly formed sea ice (see Sect. 5.3). Clear exceptions are
in the Chukchi Sea, where IS2 freeboards thicken more than
any other region between December 2018–April 2019 (Kwok
et al., 2020), and in Baffin Bay, where the east–west gradi-
ent in IS2 freeboards is not so evident in the CS2 freeboards
(Glissenaar et al., 2021). The IS2 freeboards also show a
broader distribution of thickness (std dev 15.3 cm) across
the entire Arctic in April than the CS2 freeboards (std dev
6.7 cm).

4.2 Snow depth intercomparison

The KuKa and KuLa snow depths are shown in Fig. 3d and
e and 5d and e. There are some clear similarities between
the two products, including thicker derived snow depths over
MYI north of Canada and in the Fram Strait than over FYI
in the surrounding Arctic seas. The locations of thicker snow
depths in the northern CAA and in the Beaufort Sea are very
similar. However, the KuLa maps show more regional vari-
ability in snow depth than the KuKa maps, including within
the first-year ice/MIZ regions, where snow depth is sensitive
to freeze-up timing, strong snowfall events, and wind com-
paction/snow loss events (Webster et al., 2018). For instance,
there is no clear gradient in snow depth at the Barents Sea or
Baffin Bay ice edge in the December KuKa product (Fig. 3d).
The KuKa snow depths exhibit more local variability on the
scale of tens of kilometers, reflecting the variability in the
AK radar freeboards, whereas the KuLa snow depths exhibit
smooth regional gradients in snow depth over scales of thou-
sands of kilometers. The pan-Arctic (up to 81.5° N) snow
depth distributions are relatively narrow and similar in De-
cember (Fig. 4) but diverge in April, with KuKa snow depths
showing a mode at 15 cm and KuLa snow depths showing a
broader peak with mode at 19 cm but a small secondary peak
of thinner depths at ∼ 10 cm.

The height differences between AK and IS2 freeboards
show some regional patterns. In December, IS2 is ∼ 3–4 cm
thicker than AK over the MYI region north of Canada but
generally similar to AK over FYI, albeit with local grid-cell
scale differences (Fig. 3f). In April, AK freeboards generally
underestimate those from IS2, by 3–15 cm, except around the
ice edge (Fig. 5f). Figures 4c and 6c show that the distri-
butions of the grid-cell freeboard ratio between AK and IS2
have a mode around 1 in December and around 0.85 in April.
The shift in freeboard ratio for April is particularly caused
by IS2 observing much thicker freeboards than AK in the
Chukchi and East Siberian seas (Fig. 5f). The distributions
are approximately Gaussian around these modal values, ex-
cept from a tail of grid cells with higher ratio that gives the
distributions a positive skew (skewness∼ 1), where AK free-
boards are 50 %–100 % thicker than those measured by IS2.

4.3 Seasonal snow accumulation

The time series of KuKa and KuLa mean snow depth and
variability, across the five accumulation seasons, exhibit
some clear differences (Fig. 7). Both time series show in-
creasing snow depths through winter, with the exception of
October to November, when large areas of newly forming
sea ice with lower accumulated snow reduce the basin-wide
mean. The mean and standard deviation of the snow depth are
also both higher over MYI than FYI, for both products. How-
ever, the basin-wide standard deviation in the snow depth is
around 8–13 cm for KuKa compared to 6–10 cm for KuLa.
The rates of estimated snow accumulation are also quite dif-

https://doi.org/10.5194/tc-20-183-2026 The Cryosphere, 20, 183–208, 2026



192 J. C. Landy et al.: Anticipating CRISTAL

Figure 3. Example of the CryoSat-2 (a) and AltiKa (b) radar freeboards obtained from physical model waveform fitting in December 2018,
with comparison to ICESat-2 (c) laser freeboards. Two estimates for the snow depth are obtained from a simple difference between KuKa
(CryoSat-2 and AltiKa) freeboards (d) and KuLa (CryoSat-2 and ICESat-2) freeboards (e) corrected for the delayed Ku-band wave speed
through the snow volume. A map of the difference between ICESat-2 and AltiKa freeboards is shown in panel (f). The gray lines in panels
(a)–(c) show the boundary of the MYI zone based on the monthly mean sea ice type from OSI SAF (OSI-403-d).

Figure 4. Comparison of the gridded radar freeboards (rfb) obtained from physical model waveform fitting applied to CryoSat-2 and AltiKa
to laser freeboards (lfb) obtained from ICESat-2 in December 2018. (a) Freeboard distributions. (b) Derived snow depth (sd) distributions and
the distribution of gridded differences between AltiKa and ICESat-2. (c) The AltiKa freeboards plotted as a ratio of the ICESat-2 freeboards.
Note that distributions only cover the coinciding region of observations between the three sensors south of 81.5° N.

ferent between the products, with a mean seasonal increase
of 0.5 cm month−1 for KuKa compared to 1.7 cm month−1

for KuLa. The rate of snow accumulation for the KuKa
product is implausibly low. For the KuLa product, the pan-
Arctic mean rate of accumulation, including observations
up to 88° N, is 1.6 cm month−1 (Fig. A1). Relatively low
rates of snow accumulation have been observed previously
for CryoSat-2-AltiKa snow depth products (Lawrence et al.,
2018; Garnier et al., 2021).

The KuLa snow depths, which offer near-basin-wide cov-
erage, grow from around 8–18 cm over first-year ice and
17–26 cm over multi-year ice across the snow accumula-
tion season (Fig. 7b). The accumulation of snow on MYI is
slower than on FYI, however, at a mean accumulation rate of
around 1.6 cm month−1 on MYI vs. around 1.9 cm month−1

on FYI. The interannual variability in KuLa snow depth
is 0.4 and 0.6 cm, respectively, at the start and end of the
snow accumulation season across these 5 years. This is sig-
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Figure 5. Same as Fig. 3 but for April 2019.

Figure 6. Same as Fig. 4 but for April 2019.

nificantly lower than the 3–7 cm interannual variability in
snow depth obtained from a Lagrangian snow accumulation
scheme (SnowModel-LG) and would make only a small con-
tribution to the estimated interannual variability in sea ice
thickness (20–30 cm) (Mallett et al., 2021).

4.4 Evaluation against independent observations

The satellite snow depths are compared with in situ observa-
tions and airborne snow depth estimates (see Sect. 2.4) in
Fig. 8. It is important to note that KuKa observations are
compared to reference data covering only N = 50 of our
25km× 25km grid cells in April 2019, with a low density
of leads for some grid cells in the northern channels of the
Canadian Arctic Archipelago. Our KuLa snow depths are
compared to the same data plus additional reference data at

higher latitudes covering a total of N = 188 grid cells across
8 months. Each satellite product overestimates the reference
snow depth by 2 cm, on average, and tends to overestimate
the thinner snow depths over FYI, in particular. The KuKa
product has a slope of 0.58 with respect to the reference data,
meaning that it underestimates the spread of snow depths at
a 25 km scale. The thinnest reference snow depths are over-
estimated and the thickest reference snow depths are under-
estimated by ∼ 5 cm. For KuLa also, reference snow depths
from the thinnest category of 5–10 cm, collected during Ice-
Bird over FYI in the Beaufort Sea and from the MOSAiC
Central Observatory in situ transects in fall, are consistently
overestimated (Fig. 8). However, the slope of the KuLa prod-
uct is 0.86 with respect to the reference data, meaning that it
generally represents the spread of the snow depths at 25 km
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Figure 7. Time series for the seasonal change in snow depth obtained from (a) KuKa radar and (b) KuLa radar and laser freeboards over
the 2018–2023 sea ice growth/snow accumulation seasons, for coincident data up to 81.5° N. The envelopes represent± 1 standard deviation
around the mean snow depth. The points and whiskers also show snow depths of ± 1 standard deviation around the mean at the start and end
of each observation season. A second version of this figure, including KuLa observations up to 88° N, is shown in Appendix Fig. A1.

very closely. The KuLa product reasonably matches the mag-
nitude and variability in the reference snow depths, with a
correlation of 0.79 and an RMSE of 7 cm (Fig. 8). For fewer
grid cells, south of 81.5° N, the KuKa product has a correla-
tion of 0.70 and RMSE of 9 cm vs. the reference snow depths.
When grid cells north of 81.5° N are excluded from the KuLa
comparison, the correlation is 0.80 and RMSE is still 7 cm;
however, the bias increases to 3 cm, and the slope reduces to
0.72.

5 Discussion

It is challenging to identify the source or sources of bias be-
tween the KuKa and KuLa snow depths in any given mont,
and between each product and the reference snow depth data.
Biases could be caused by (i) the height of maximum in-
tensity of the Ku- or Ka-band radar backscatter not align-
ing with the snow–ice or air–snow interface, respectively,
owing to radar penetration or surface-roughness-related ef-
fects; (ii) the ICESat-2 laser penetrating into the snowpack
(Studinger et al., 2024) or possible lead height retrieval er-
rors leading to uncertainties in the laser freeboards (Kwok
et al., 2019a); (iii) our model for the radar altimeter not ad-
equately simulating the true backscattered radar response in
SAR or LRM mode; (iv) our model assumption of a single
backscattering surface not being valid, owing to strong con-
tributions from snow volume scattering or reflections from
other interfaces than the one modeled; (v) inaccurate sample
classification erroneously removing sea ice floe or includ-
ing lead elevation measurements in the freeboard products
(e.g., Petty et al., 2021; Fredensborg Hansen et al., 2021;

Müller et al., 2023); or (vi) different orbital sampling be-
tween sensors and interpolation errors mapping observations
to monthly pan-Arctic grids (Lawrence et al., 2019). The ref-
erence data themselves are also uncertain, especially measur-
ing the thinnest and thickest snow depths (Kwok et al., 2017).
Any one or a combination of these effects could produce
a mismatch between the AltiKa and ICESat-2 freeboards,
which we are assuming both measure the height of the air–
snow interface, or an error in derived KuKa or KuLa snow
depth. Here we investigate some of these possible causes.

5.1 Radar waveform retracking

The radar waveform retracking algorithm can have a signifi-
cant impact on the obtained CryoSat-2 or AltiKa radar free-
board (Landy et al., 2020), even though its application can be
quite subjective, for instance, the choice of threshold for an
empirical algorithm or assumed sea ice scattering properties
for a physical-model-based algorithm. Here, we assume that
retracked heights from AltiKa correspond to the height of
the air–snow interface, but they may in fact measure a depth
well into the snowpack. We therefore estimate the AK floe
retracking threshold that would be required to exactly match
the AK radar freeboard to either the IS2 laser or the CS2
radar freeboard and compare it to the solution derived here
from LARM. This should indicate whether the retracking
thresholds generated by the model echoes in LARM (Fig. 1b)
produce freeboards closer to the air–snow or snow–ice inter-
face height of the sea ice, based on IS2 and CS2 freeboards,
respectively. For this experiment, the AK lead waveforms in
December 2018 are retracked with LARM (i.e., Fig. 2d), then
each floe waveform is retracked with an empirical threshold
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Figure 8. Intercomparison between snow depth estimates from (a) KuKa radar freeboards, (b) KuLa radar and laser freeboards, and inde-
pendent snow depth observations. Box and whiskers are binned at 5 cm intervals. The map in panel (c) shows sea ice type from OSI-403-d,
with MYI in dark gray and FYI in light gray, for April 2019, with the locations of data from OIB April 2019 (circles), IceBird April 2019
(triangles), and the MOSAiC Transect October 2019–April 2020 (crosses). Red samples are compared to KuKa and KuLa satellite snow
depths, whereas black samples are compared only to KuLa snow depths.

method at 2.5 % intervals from 5 % to 95 % of the first pri-
mary peak. For each 25 km grid cell in Fig. 9, we find the re-
tracking threshold that best matches the grid-cell-mean AK
radar freeboard to the grid-cell-mean (a) IS2 laser freeboard
and (c) CS2 radar freeboard.

Previous studies have used a fixed 50 % threshold for re-
tracking sea ice floe waveforms from AltiKa (Armitage and
Ridout, 2015; Garnier et al., 2021). The grid-cell-mean AK
retracking threshold that is optimized from the physical echo
model with LARM is shown in Fig. 9b. There is a clear pat-
tern with thresholds around 30 % in the MYI zone north of
the Canadian Arctic, then a gradient towards thresholds of
45 % over younger FYI areas, reflecting variations in rough-
ness (Fig. 1b). Surface-based radar studies have discovered
that a significant portion of the Ka-band signal at nadir re-
turns from the snow–ice interface, compared to the typi-
cal assumptions of satellite-based Ka-band sea ice altime-
try (Stroeve et al., 2020; Nandan et al., 2023; Willatt et al.,
2023). If backscatter from the snow–ice interface dominated
the satellite nadir Ka-band return too, such that the AltiKa
echo leading edge mainly represented the illumination of the
snow–ice interface, then the floe waveforms from December
2018 would need to be retracked at the thresholds shown in
Fig. 9c, i.e., at 60 %–90 %. The thresholds from LARM are
much closer to those best matching IS2 than CS2, indicat-
ing that the dominant backscattering elevation is well above
the snow–ice interface. However, for a perfect match to IS2
(and what we can assume is a more reliable measurement of
the air–snow interface elevation Kwok et al., 2019a), the AK
thresholds should look like Fig. 9a, i.e., around 20 % over the
roughest sea ice areas and > 50 % in areas of new ice for-
mation where floes are smooth and specular. The spread of
thresholds in Fig. 9a is wider than estimated from the LARM
algorithm.

Figure 10 shows a comparison between estimates for the
Ku-band radar freeboard and Ka-band radar or laser free-
board obtained from OIB and IceBird airborne reference
data, and coincident freeboard observations from CryoSat-
2 (light purple), AltiKa (light green), and ICESat-2 (blue),
at a scale of 25 km, in April 2019. These are the same
reference datasets used for the snow depth comparison in
Sect. 4.4. Each satellite–airborne comparison shows some
scatter, with the CryoSat-2 observations only having a cor-
relation of 0.59 with the reference data. The correlation with
the ICESat-2 observations is higher at 0.85, and the laser al-
timeter accurately captures grid cells with thicker freeboard
from 70–90 cm in the reference data. There are fewer grid
cells with reference data at latitudes < 81.5° N to evaluate
AltiKa, but the satellite radar altimeter also captures thin-
ner freeboards ∼ 20–30 cm and thicker freeboards > 70 cm,
with a relatively higher correlation of 0.86 with the OIB
laser freeboards. The distributions of the satellite freeboards
match closely to the reference data but are typically nar-
rower (Fig. 10b). This reflects the truncation of the true free-
board distribution in the satellite measurements, where, for
instance, the kilometer scale of the radar footprint or interpo-
lation of the SSHA over tens of kilometers makes the mea-
surement tend more towards the modal than the mean free-
board at these scales (Ricker et al., 2014; Landy et al., 2020;
Belter et al., 2020). This is also one of the main reasons why
the slopes of the freeboard (Fig. 10a) and snow depth com-
parisons (Fig. 8) are < 1.

The major impact of the radar waveform retracking algo-
rithm on the ice freeboard retrieval is illustrated in Fig. 10a.
In dark green and dark purple, respectively, are the same
satellite–airborne comparisons but with AltiKa ice floe ob-
servations retracked with the threshold first-maximum re-
tracking algorithm (TFMRA) at 50 % amplitude on the wave-
form leading edge and with CryoSat-2 floe observations re-
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Figure 9. Fractional retracking thresholds of the first primary peak of the AltiKa waveform leading edge (a) required to match the AltiKa
radar freeboard to the ICESat-2 laser freeboard, (b) obtained from the physical retracking method LARM, and (c) required to match the
AltiKa radar freeboard to the CryoSat-2 radar freeboard, averaged within EASE2 25 km grid cells, in December 2018.

Figure 10. Comparison between satellite Ku-band, Ka-band, and laser freeboards and Ku-band and laser freeboards estimated from airborne
data collected by OIB (circles) and IceBird (triangles) in April 2019. (a) Scatterplot of satellite and airborne observations resampled to the
same EASE2 grid, with the median of each cluster shown by a hexagram and the 66 % confidence interval on the best-fit line through samples
shown by the filled envelopes. (b) Distributions of the differences between OIB- and IceBird-estimated Ku-band radar and measured laser
freeboards with corresponding paired satellite freeboards from IS2 (blue), AK LARM (green), and CS2 LARM (purple). Note that the AK
distribution has been offset by −0.2 m and that the CS2 distribution has been offset by +0.2 m, highlighted by the gray lines, for visual
clarity. (c) Map of the sea ice type from OSI-403-d, with FYI represented by lighter gray and MYI represented by darker gray, overlaid with
the locations of corresponding airborne and satellite observations above (black) and below (red) the maximum latitude of AltiKa at 81.5° N.

tracked with TFMRA at 70 % amplitude, as described in Ar-
mitage and Ridout (2015). The radar freeboards shown for
each sensor are derived with the methods described in Ar-
mitage and Ridout (2015) and Lawrence et al. (2018). With
TFMRA retracking, the CryoSat-2 radar freeboards overesti-
mate the reference data by ∼ 10 cm, especially over thinner
ice with freeboards< 25 cm. A similar positive bias, summa-
rized by the dark-purple hexagram, was found by Lawrence
et al. (2018). This freeboard bias could be a geophysical ef-
fect, as previously suggested, i.e., attenuation of the Ku-band

signal in brine-wetted snow (King et al., 2015; Nandan et al.,
2017; Rösel et al., 2021) or volume and internal interface
scattering over snow on MYI (Ricker et al., 2015). Our anal-
ysis here shows it could alternatively be a processing effect,
i.e., through the choice of retracker or another processing
step in the freeboard calculation. The correlation between
CryoSat-2 TFMRA and reference freeboards is 0.52, and the
slopes of the CryoSat-2 fits with different retrackers are sim-
ilar, so the bias is the key difference. With TFMRA, the Al-
tiKa radar freeboards have a correlation of 0.77 with the ref-
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erence freeboards and underestimate the reference data, with
the bias also increasing for thicker ice (dark green in Fig. 8a).
A significant negative bias, summarized by the dark-green
hexagram, was found by Lawrence et al. (2018), who cor-
rected AltiKa (and CryoSat-2) freeboards for the detected
biases with calibration functions based on radar waveform
pulse peakiness. A retracking threshold of 50 % produces a
relatively similar result to ICESat-2 over thinner FYI floes
(Fig. 9a), but the threshold needs to be < 30 % to accurately
measure the air–snow interface elevation over thicker MYI
floes (Fig. 9a and b). This variable bias could be a geophysi-
cal effect, as previously suggested, caused by significant pen-
etration of the Ka-band signal into snow (Armitage and Rid-
out, 2015; Stroeve et al., 2020), or it could, at least partly,
be a processing effect of the choice of retracking algorithm
and influence of surface roughness on the optimal retracking
threshold (Figs. 1b and 9a) (Lawrence et al., 2018).

5.2 Physical mechanisms behind observed radar
scattering biases

It is clear from Figs. 5 and 9b that biases remain in the AltiKa
radar freeboards, despite improvements that can be made by
retracking with a physical model for the radar scattering sur-
face. The assumptions of the physical model, for instance,
of a single dominant scattering interface, may oversimplify
the interactions of the radar with snow and sea ice (Kurtz
et al., 2014; Landy et al., 2019). Another possibility is that
the large-scale sea ice surface topography (σ ) is not accu-
rately accounted for in the AltiKa scattering model. To ex-
plore this, we calculate the mean height differences between
AltiKa and ICESat-2 freeboards as a function of the binned
AK σ (Fig. 11a), obtained from the model inversion (as de-
scribed in Sect. 3.3), and backscatter coefficient (Fig. 11b),
as well as the binned IS2 σ (Fig. 11c), across the full data
record October–April 2018–2023. This is done separately
for 0.1 m intervals of the AK radar or IS2 laser freeboard
from 0–0.1 up to 0.6–0.7 m. For AK freeboards up to 0.4 m
(covering 91 % of grid cells across the record), the AK-IS2
freeboard bias is approximately independent of the AK sur-
face topography, although AK freeboards < 20 cm consis-
tently underestimate those from IS2 (Fig. 11a). For AK free-
board > 0.4 m, the AK-IS2 freeboard bias depends on sur-
face topography, with AK overestimating IS2 by as much
as 40 cm when the AK surface topography is very smooth
but only showing a small bias when the AK topography is
rougher. These findings are consistent when the bias is ana-
lyzed as a function of IS2 freeboard and surface topography
(Fig. 11c), suggesting that the impact of snow surface rough-
ness on the AK retracking point (i.e., Fig. 1b) is modeled
reasonably well, except in the 3 % of cases when AK free-
board is > 0.4 m but σ is < 0.2 m. The high variability in
the bias for the roughest IS2 surface topography (Fig. 11c) is
caused by limited data: only 2 % of IS2 σ in the full record
is > 0.35 m.

The bias between AltiKa and ICESat-2 is always posi-
tively sloped for increasing AK backscatter, with a relatively
similar gradient between AK freeboard increments. If our as-
sumption of a single dominant scattering surface, i.e., the
air–snow interface, was incorrect, and the snow–ice inter-
face and/or snow volume scattering were regularly acting to
broaden the leading edge of the AK waveform producing an
overestimated AK σ , we would expect the AK-IS2 freeboard
bias to increase for higher AK σ . In this case, overestimated
AK σ would be a strong proxy for over-penetration of the
Ka-band radar. Instead, we observe that the bias is largest
when there is a strong AK reflection, i.e., high sigma nought
(Fig. 11b), and smoother AK or IS2 σ (Fig. 11a). In this
scenario (blue lines, representing only ∼ 5 % of grid cells
across the full record), AK and IS2 σ are totally uncorrelated
(r = 0.07), so the two sensors are likely to be measuring dif-
ferent backscattering surfaces. For the contrasting scenario,
where AK underestimates IS2 (red lines, representing 63 %
of valid grid cells), the curves are flat, so AK σ is unlikely
to be a proxy for radar penetration (Fig. 11a). However, AK
freeboard increasingly underestimates IS2 freeboard as the
AK backscatter coefficient declines (Fig. 11b). This suggests
that snow volume scattering (lower sigma nought) may in-
creasingly dominate the returning Ka-band echoes vs. sur-
face scattering/reflection (higher sigma nought), as AK in-
creasingly underestimates IS2 freeboard.

Figure 12 shows the derived snow depth difference for
KuLa (a) and KuKa (b) between January–April 2019. On av-
erage, 8.9 cm of new snow is estimated to have accumulated
within the marked area over this period in the KuLa prod-
uct, whereas only 3.2 cm is estimated to have accumulated in
the KuKa product. Over the same period, the CS2 large-scale
sea ice surface roughness (σ , derived from LARM) shows a
marked increase of 5.9 cm in the same area (Fig. 12c). This
is typical of the seasonal roughening of FYI in response to
ice deformation (Babb et al., 2020). However, it may also
partly be caused by the new snowfall from unusually intense
winter storms (Kwok et al., 2020) changing the scattering re-
sponse of the Ku-band signal so that significant backscatter
is sourced from both the air–snow interface and the snow–
ice interface (e.g., Nab et al., 2023), producing an echo with
a leading edge including significant contributions from both
interfaces (de Rijke-Thomas et al., 2023). Sea ice deforma-
tion and increased air–snow scattering can each cause the
radar backscattering response to “spread” over a wider height
distribution within the footprint (Landy et al., 2019) and re-
duce the total backscatter, which indeed drops by 2.6 dB on
average (Fig. 12d).

In contrast, the AK backscatter barely changes, with an
average decrease of only 0.1 dB between January–April
(Fig. 12e). Although the AK radar freeboard increases by
7.3 cm between January–April, this is around half the IS2
laser freeboard increase (14.8 cm), and there is no obvious
response in the Ka-band backscatter. This suggests that the
AK Ka-band signal may only respond weakly to the rapid
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Figure 11. Height differences between coincident gridded radar freeboards from AltiKa and laser freeboards from ICESat-2 as a function
of (a) the AltiKa radar scattering surface topography (σAK), (b) the AltiKa backscatter coefficient (sigma nought), and (c) the ICESat-2
surface topography (σIS2) over the period 2018–2023. In panels (a) and (b), separate lines are shown for 10 cm intervals of the AltiKa radar
freeboard, and, in panel (c), separate lines are shown for 10 cm intervals of the ICESat-2 laser freeboard up to the value given in the legend.
Note the percentages of the data making up each curve in the legends.

Figure 12. (a) KuLa and (b) KuKa snow depth differences (m) between January–April 2019, when a significant amount of new snow is likely
to have accumulated on sea ice in the Beaufort, Chukchi, and East Siberian seas. Also shown are the concurrent changes in CryoSat-2 (c) sea
ice surface roughness σ (m) (derived from LARM), (d) radar backscatter (dB), and (e) AltiKa radar backscatter (dB). The gray circles show
the limit in coverage for AltiKa, and the dotted black ones mark the approximate area of rapid snow accumulation between January–April.
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accumulation of new snow. The Mie scattering coefficient
of dry snow at the Ka band approximately halves when the
snow density reduces from 350 to 175 kgm−3 (Long and
Ulaby, 2015) (the Mie scattering coefficient quantifies the
scattering of incident EM radiation by particles of similar
diameter to the wavelength). The impact of AK backscatter
change on the retracked height has also been recorded as only
5 cmdB−1 over the Antarctic Ice Sheet (Rémy et al., 2015).
Therefore, a lack of backscatter change in Fig. 12e suggests
the radar remains most sensitive to surface and volume scat-
tering from snow accumulated earlier in the season, which
is deeper in the snowpack by April, and the increase in AK
freeboard is mainly due to the ice freeboard thickening rather
than new snow accumulation too.

5.3 Snow accumulation over newly formed sea ice

The basin-wide patterns, seasonal evolution, and validation
results of the KuLa snow depths (Fig. 8) support the routine
operational use of snow depth estimates from CryoSat-2 and
ICESat-2. A further useful check on the consistency between
these two sensors is to intercompare the radar and laser free-
boards over areas of newly formed sea ice, where we would
expect the freeboards – in the absence of significant snow
– to be very similar. To explore this idea, we defined grid
cells with new sea ice where new FYI appeared, on any given
day between October–December 2018–2022, from the 10 km
resolution OSISAF OSI-403-d Global Sea Ice Type product
(Aaboe et al., 2021). In some cases, these grid cells will rep-
resent FYI advected from an adjacent grid cell, but, during
the early ice growth period from October to December, this
normally represents new FYI formation exceeding the prod-
uct’s minimum 30 % sea ice concentration (SIC) threshold.
We then identified any of these “new ice” grid cells that
were crossed by CS2 and IS2, within a 5 d period centered
on the date of new ice formation and 12.5 km search radius
(we decided to exclude AltiKa observations, given the lim-
ited number of occasions where all three sensors coincide
within a short time window). We used L2 along-track CS2
radar freeboards from LARM and the daily gridded IS2 laser
freeboards from ATL20.

The spread of valid “new ice” grid cells is shown in
Fig. 13c. As expected, they are confined to typical areas of
new sea ice formation in the Arctic fall, for instance, in the
Beaufort, Chukchi, and Siberian Shelf seas (which we call
the “Pacific Sector” here, marked in blue) and in the Green-
land, Barents, and Kara seas and Baffin Bay (which we call
the “Atlantic Sector” here, marked in red). There are clear
differences in the derived freeboard and snow depth distri-
butions, between these two sectors, across the 5-year study
period. The CS2 radar freeboard distribution has a primary
peak at 1.2 cm and a secondary peak at 6.9 cm in the Pa-
cific Sector (Fig. 13a). The IS2 laser freeboard distribution
has a similar shape, with a primary peak at 7.5 cm and a
secondary peak at 11 cm. The limited number of IS2 free-

boards in ATL20 thinner than 3 cm may be caused by the
application of a 50 % SIC filter and negative freeboards be-
ing set to zero in ATL10, rather than a true absence of the
thinnest ice. Filtering out dark leads now also reduces the
prevalence of very thin IS2 freeboards (Kwok et al., 2021).
The small offset in freeboards in the Pacific Sector produces
derived snow depths with a mean of only 3.5 cm (Fig. 13d),
showing that CS2 and IS2 are measuring approximately the
same backscattering surface over sea ice in the absence of
significant snow. In contrast, the radar and laser freeboard
distributions are well separated in the Atlantic Sector, with
means of 6.6 and 25.9 cm, respectively (Fig. 13b). There is a
general pattern with thicker derived snow depths in the Bar-
ents Sea, around Svalbard, transitioning eastwards to thinner
snow depths in the Kara Sea (Fig. 13c). The mean snow depth
for new sea ice, within 5 d of formation, is 14.9 cm in the At-
lantic Sector. These results support previous studies that sug-
gest frequent intense cyclones (polar vortices) deposit con-
siderable snow onto sea ice forming in the Barents Sea, soon
after the date of formation (Merkouriadi et al., 2017; Graham
et al., 2019). The large spread (10.2 cm standard deviation)
in snow depths on new ice in the Atlantic Sector (Fig. 13d)
also suggests that these heavy fall snowfall conditions are
variable between years. On the other hand, the cyclone in-
tensity is much lower in the Pacific Sector (Webster et al.,
2019), leading to consistently lower rates of snow deposition
on newly forming ice.

5.4 Implications for CRISTAL

Although there are similarities between the radar and laser
freeboards obtained by coincident Arctic observations from
CryoSat-2, AltiKa, and ICESat-2, it is not straightforward
how these findings will translate to the measurements ex-
pected from CRISTAL. For instance, the LRM observations
from AltiKa are strongly sensitive to surface roughness, at
scales up to the beam-limited footprint of the radar (∼ 8 km)
(Guerreiro et al., 2017), whereas the delay-Doppler SAR-
mode Ka-band observations from CRISTAL should be much
less sensitive to roughness (Wingham et al., 2006). To in-
vestigate the potential effects of different snow properties
and surface roughness on CRISTAL observations, here we
use the results obtained in Sect. 4.1 and 4.2 as the basis for
physically constrained simulations of the CRISTAL dual-
frequency altimeter in delay-Doppler SAR mode (see sen-
sor parameters in Table A1). In contrast to the approach de-
scribed in Sect. 3.2, here we model the full backscattering
response of the snow cover and sea ice, for the chosen month
of April 2019, using (i) the KuLa product for the snow depth,
(ii) the CS2 σ estimate as the large-scale roughness of the
snow–ice interface topography, (iii) the IS2 σ estimate ob-
tained by Duncan and Farrell (2022) as the large-scale rough-
ness of the air–snow interface topography, and (iv) the CS2
srms estimate as the radar-scale roughness of both snow–ice
and air–snow interfaces. Volume scattering and extinction in
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Figure 13. Estimated fresh snow depth on newly formed sea ice between 2018–2022, including CryoSat-2 and ICESat-2 freeboards in
locations of newly formed ice, within the Pacific (a) and Atlantic (b) sectors of the Arctic, snow depth in locations of newly formed ice with
coinciding observations from the two sensors (c), and derived snow depth distributions in the two sectors (blue = Pacific; red = Atlantic) (d).
The distributions are fit with Gaussian mixture models.

the snowpack are modeled with a Mie scattering scheme de-
pending on snow density, grain radius, and temperature, as
described in Landy et al. (2019). To account for variability in
snow density and grain radius, we use all MicroCT observa-
tions (N = 2846) collected in the month of April during the
MOSAiC field campaign (Macfarlane et al., 2023).

Example Ku- and Ka-band waveforms are modeled for
each 25 km grid cell of the April 2019 data (i.e., Fig. 5) as the
average of 10 echoes simulated with different random real-
izations of the sea ice topography σ and random draws from
the MOSAiC snow density and grain radius distributions.
FBEM is currently only set up to simulate a single snow layer
with a simplified volume scattering scheme that neglects the
dense media effects (Tsang et al., 2007), underestimates the
complexity of the typical multi-layered snowpack on Arc-
tic sea ice (Macfarlane et al., 2023), and potentially reduces
the impact of, for example, volume scattering from relatively
large brine-wetted snow grains in the basal depth hoar layer
(e.g., Nandan et al., 2017). Using the same srms value for
both interfaces also underestimates the potential for one in-
terface with smoother radar-scale roughness to dominate the
total backscatter over the other. However, these simulation
results are presented as a first approximation of snow and
sea ice echoes that might be expected from CRISTAL. Each
simulation includes separate component echoes for the snow

surface, snow volume, and sea ice surface scattering contri-
butions (Fig. 14a and b). For the Ku-band echo, we retrack
the total waveform using the threshold determined from only
the sea ice surface echo, i.e., following the necessary assump-
tion taken in Sect. 3.1 as if we did not have snow information
available for the simulation. This allows us to estimate the
bias in the retracked height of the snow–ice interface, as a
fraction of the snow depth, taking into account snow effects
on Ku-band scattering (Fig. 14a and d). Similarly, for the Ka-
band echo, we retrack the total waveform using the threshold
determined from only the snow surface echo, allowing us to
estimate the bias in the retracked height of the air–snow in-
terface, as a fraction of the snow depth, taking into account
Ka-band scattering effects from deeper in the snowpack and
potentially from the sea ice surface too (e.g., Willatt et al.,
2023) (Fig. 14b and d).

For the Ku-band returns, the total echoes are typically
dominated by the ice surface scattering component (e.g.,
Fig. 14a). This produces a relatively low bias in the retrack-
ing point owing to snow surface and volume scattering ef-
fects on the waveform leading edge. The retracked “snow–
ice interface” height is located at a median 3 % of the rela-
tive depth of the snowpack above the true snow–ice interface;
however, for 1/10 of the simulations, the retracked interface
is biased> 20 % of the snow depth above the true ice surface
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Figure 14. Simulated Ku- and Ka-band waveform returns from snow-covered sea ice, based on snow and sea ice geophysical properties
estimated in April 2019, for CRISTAL in delay-Doppler SAR mode. Panels (a) and (b) show Ku- and Ka-band component echoes simulated
for the grid cell to the northeast of Novaya Zemlya, highlighted with a blue star in panel (e). The five key parameters listed in panels (a)
and (b) are applicable to both the Ku- and Ka-band simulations. The air–snow interface is identified by the dotted black line, the snow–ice
interface is identified by zero time, and the retracking points of the waveforms are identified in blue and red, as described in the text. Panel
(c) shows the pan-Arctic distributions of gridded snow–ice (σice) and air–snow interface topography (σsnow) for the month, as obtained from
CS2 and IS2, respectively. Panel (d) shows distributions of the retracking points of Ku- and Ka-band waveforms, as fractions of the snow
depth, for all grid cells in the month. Panels (e) and (f) show geographic variations in the “penetration” fraction of the snow depth, where 0
is the retracking point at the air–snow interface and 1 is the retracking point at the snow–ice interface.

(Fig. 14d). Simulations exhibiting a larger bias are typically
found in areas of rough MYI (Fig. 14e), where the CS2 σ and
srms are larger, producing a relatively weaker radar reflection
from the snow–ice interface. This enables volume scattering
from snow grains to attenuate the signal and the snow sur-
face reflection to have a larger influence on the waveform
leading edge as shown by Kwok (2014) and de Rijke-Thomas
et al. (2023) for airborne Ku-band radar data. At a pan-Arctic
scale, the ice surface echo tends to dominate the Ku-band
waveform because the slope distribution of the snow–ice in-
terface is significantly smoother than the air–snow interface
(Fig. 14c). This is backed up by airborne observations, which
consistently measured a smoother snow–ice than air–snow
interface topography (8 cm mean difference) for the same
sea ice (Landy et al., 2020). Over FYI, the relatively smooth
sea ice surface generally produces a strong radar reflection
(de Rijke-Thomas et al., 2023) and therefore low bias in the
retracking point (Fig. 14e).

For the Ka-band returns, the total echoes typically in-
clude a strong contribution from snow volume scattering

(e.g., Fig. 14b). This has been suggested previously for Ka-
band returns from snow (Rémy et al., 2015; Guerreiro et al.,
2017; Larue et al., 2021); for instance, Adodo et al. (2018)
found that the seasonal cycle of Ka-band backscatter over
the Antarctic Ice Sheet is governed by the volume echo.
However, in the Ka-band waveform simulations of Meloche
et al. (2024), the volume backscatter was only found to dom-
inate the total echo when the interface roughness exceeded
3–4 mm. Here, the bias on the retracking point for the air–
snow interface is larger than for the snow–ice interface with
Ku-band echoes because a weak reflection from the air–
snow interface and volume scattering from deeper within the
snowpack, or a strong reflection from the snow–ice interface,
shifts the waveform leading edge to later range bins. The re-
tracked “air–snow interface” height is located at a median
10 % of the relative depth of the snowpack below the true
air–snow interface; however, for 17 % of the simulations, the
retracked interface is biased> 20 % of the snow depth below
the true snow surface (Fig. 14d). The bias is larger when the
snow surface scattering contribution is smaller and the vol-
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ume scattering coefficient is lower (e.g., Rémy et al., 2015),
such that backscatter increases less rapidly as the pulse prop-
agates into the snow pack. When the CS2 σ is low relative to
the IS2 σ (Fig. 14c), and the snow density and grain size are
relatively low, the specular radar reflection from the snow–
ice interface can be the strongest contributor to the wave-
form leading edge, and the height of the air–snow interface
is underestimated by > 50 % of the snow depth. In this sce-
nario, the snow–ice interface can occasionally be seen as a
secondary peak in the echo, mirroring results from surface-
based radar studies at the Ka-band (Stroeve et al., 2020; Nan-
dan et al., 2023; Willatt et al., 2023).

6 Conclusions

Our study supports the theoretical basis for along-track snow
depth on sea ice retrieval from the dual-frequency observa-
tions of the CRISTAL mission. The magnitudes of the radar
freeboards obtained from the Ku-band SAR mode CryoSat-
2 data are significantly thinner than those obtained from
the Ka-band LRM mode AltiKa data. However, the free-
boards derived from CryoSat-2 and AltiKa observations can
vary significantly depending on the techniques used to pro-
cess them, particularly in the waveform retracking step. The
roughness of the radar scattering surface has a major im-
pact on the threshold that should be used to retrack altime-
ter waveforms, potentially introducing biases of tens of cen-
timeters into the relative height measured over sea ice floes.
Care must therefore be taken in the interpretation of radar
freeboards to disentangle the sources of bias coming from
geophysical factors, such as complex radar scattering over
layered snow and sea ice vs. those from processing choices,
with respect to some reference “truth”. Retracking thresholds
of 20 %–30 % over MYI and> 50 % over new sea ice are re-
quired to match AltiKa radar freeboards to ICESat-2 snow
freeboards, covering a wider spread of thresholds than our
physical retracker LARM uses to account for surface rough-
ness. This implies that the roughness of the radar scattering
surface is not the only factor affecting Ka-band radar free-
boards in LRM altimetry.

There are strong similarities in the Arctic Basin-wide pat-
terns of freeboard obtained from CryoSat-2, AltiKa, and
ICESat-2, albeit with different magnitudes. Ka-band LRM
freeboards can diverge from laser altimeter freeboards when
the radar is not sensitive to scattering from newly deposited
snow or when the impacts of surface roughness are not prop-
erly accounted for in the freeboard processing. Snow depths
estimated from the difference between Ku-band and laser
freeboards show accumulation rates of 1.9 cm month−1 over
FYI and 1.5 cm month−1 over MYI; however, the accumula-
tion rates for snow depths estimated from Ka- and Ku-band
freeboards were only one-third of the KuLa accumulation
rates at 0.5 cm month−1. The interannual variability in the
KuLa snow depths measured over the 5-year record is 1 order

of magnitude lower than estimated from the reanalysis-based
snow model accumulation scheme SnowModel-LG. Filter-
ing only the cases for which CryoSat-2 and ICESat-2 free-
boards observe the same area of newly forming sea ice, in
the MIZ, shows that Pacific Sector snow depths are 3.5 cm
within the first 5 d of ice formation, whereas Atlantic Sector
depths are 3 times thicker over the same time span. Despite
this rapid initial accumulation, Atlantic Sector snow depths
are not considerably thicker than Pacific Sector depths by the
end of the accumulation season in spring.

Model simulations of CRISTAL, in its anticipated sea ice
sensing mode, suggest that, in spring, the altimeter will track
a median Ka-band elevation 10 % below the air–snow inter-
face and a median Ku-band elevation 3 % above the snow–ice
interface. However, in 17 % and 10 % of cases, respectively,
the retracked elevation is off by more than 20 %. Our derived
KuKa snow depths have an RMSE of 8.9 cm vs. OIB and
IceBird airborne observations and an RMSE of 10.4 cm vs.
the KuLa snow depths (across all 35 measured winter months
from 2018–2023). The CRISTAL mission is required to mea-
sure sea ice freeboard, snow depth, and ice thickness with
uncertainties lower than or equal to 3, 5, and 15 cm, respec-
tively, at a 25 km length scale equivalent to our gridded and
airborne and satellite comparisons (Kern et al., 2020). An 8–
10 cm snow depth uncertainty introduces 17–29 cm sea ice
thickness uncertainty (Ricker et al., 2014), even if the Ku-
band radar freeboard is measured with absolute certainty.
Consequently, the uncertainties of KuKa snow depths ob-
tained from CryoSat-2 and AltiKa are currently too high to
meet the mission requirements for snow depth and ice thick-
ness uncertainties. However, the novelty of approximately
coincident along-track, Doppler-sharpened Ku- and Ka-band
footprints may enable the snow depth uncertainties estimated
from CRISTAL to be reduced by the 5–6 cm required to meet
the mission goals.

Analyzing coincident freeboards and surface roughness
observations from three different altimeters, and using these
results to constrain simulations of Ku-/Ka-band SAR-mode
radar echoes over snow-covered sea ice, offers some lessons
in advance of the CRISTAL launch. For instance, it would
be valuable to study, in more depth, (i) the covariance of the
snow and sea ice surface topography at scales of 1–1000 m
and its impact on near-nadir radar reflection, (ii) bounds on
millimeter–centimeter radar-scale roughness of snow and ice
interfaces and the external factors controlling these rough-
ness variations in time and space, (iii) the evolution of the
satellite Ku- and Ka-band radar return from the same snow
and sea ice (e.g., landfast ice) over time to observe the ef-
fects of changing snow properties (depth, grain size, layer-
ing, dielectrics) on the backscatter and waveform shape, and
(iv) auxiliary remote sensing observations or model output
to support the interpretation of CRISTAL multi-frequency
waveforms; for example, having the anticipated snowpack
properties or an estimate for the multi-scale roughness of
a radar observation would enable the application of smart
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freeboard bias corrections. All these recommendations apply
equally to the Southern Ocean and the Arctic Ocean, where
the snow and surface roughness properties can be quite dif-
ferent.

In any case, the CRISTAL observations promise to revolu-
tionize our understanding of the topography and thickness of
Arctic snow and sea ice as it continues to evolve in response
to climate warming, extending the record of sea ice volume
required to understand Arctic mass and energy budgets, im-
prove seasonal ice edge forecasts, and benchmark future cli-
mate model projections.

Appendix A:

Figure A1. Copy of Fig. A1 but including KuLa snow depth estimates up to 88° N. Time series for the seasonal change in snow depth
obtained from (a) KuKa radar and (b) KuLa radar and laser freeboards over the 2018–2023 sea ice growth/snow accumulation seasons. The
envelopes represent ± 1 standard deviation around the mean snow depth. The points and whiskers show snow depths around the mean of 1
standard deviation at the start and end of each observation season.

Table A1. Parameters used for simulations of the Interferometric Radar altimeter for Ice and Snow (IRIS) in delay-Doppler SAR mode at
Ku-band and Ka-band frequencies. Hamming weighting is applied prior to the beam-wise azimuth FFT. Other relevant sensor and target
parameters not specified here are as listed in Landy et al. (2019).

Parameter Unit Ku-band DD-SAR Ka-band DD-SAR

Frequency GHz 13.5 35.75
Bandwidth MHz 500 500
Satellite altitude m 698 900 698 900
Satellite velocity ms−1 7508 7508
Pulse-repetition frequency Hz 15 119 15 119
Number of synthetic beams 64 64
Antenna gain dB 42.3 50.2
Synthetic beam gain dB 36.12 36.12
Along-track antenna parameter ° 0.98 0.37
Across-track antenna parameter ° 1.22 0.51
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Code and data availability. The MATLAB code for simulating
CryoSat-2, AltiKa, and CRISTAL waveforms is available pub-
licly at https://github.com/jclandy/FBEM (Landy, 2022). The
full 25 km gridded record of CryoSat-2, AltiKa, and ICESat-
2 freeboards and derived KuKa and KuLa snow depths cov-
ering the period October–April 2018–2023 is available at
https://doi.org/10.5281/zenodo.13774843 (Landy, 2024).
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