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Abstract. Passive microwave satellite observations are com-
monly used to detect liquid water in the snowpack on the
ice sheet. Typically, algorithms yield a binary dry-wet in-
dicator limiting the information. Theoretical analyses have
been demonstrated that these dry-wet indicators correspond
to different levels in the snowpack depending on the fre-
quency: from surface to ∼ 0.2 m at 37 GHz, from surface to
∼ 1 m at 19 GHz and from surface to depths exceeding 1 m
at 1.4 GHz. In this study, our objective is to enhance under-
standing of melting and refreezing processes in Antarctica.
For this, we proposed an empirical method that combines
several binary dry-wet indicators computed at three frequen-
cies (1.4, 19, and 37 GHz) and for two acquisition times (af-
ternoon/night). We also introduced another indicator to es-
timate if most of the pixel (> 80 %) is subject to melt. By
combining these six binary indicators, we obtained 64 possi-
ble daily “dry-wet signatures”, which were interpreted to in-
fer whether the snowpack was dry, actively melting, or only
wet below the surface, if night refreezing was occurring, and
if a large proportion of the pixel was impacted. 99.6 % of
the examined pixels show a consistent and physically mean-
ingful daily dry-wet signature across Antarctica during the
2012–2023 considered period. To synthesise the 64 dry-wet
signatures, we grouped the signatures conveying similar in-
formation into 10 qualitative classes of “snowpack status”.
This new classification reveals a clear relationship between
the various snowpack status and average surface tempera-
ture from ERA5 reanalysis, demonstrating the reliability of
the empirical definition of the 10 classes. Furthermore, the
classification captures the expected seasonal melt evolution:
night refreezing is frequent at the beginning of the melt sea-
son, while sustained melting is observed in the middle of the

summer, and remnant liquid water at depth features the end
of the melt season. In the Antarctic Peninsula, over 11 years,
we found an increasing trend in melting, significantly related
to an increase in remnant liquid water at depth and a decrease
in nighttime refreezing. This new classification offers deeper
insights in melt processes for investigating extreme events
and climate variations compared to previous binary indica-
tors.

1 Introduction

The detection of surface melting on the ice sheets by space-
borne microwave radiometry has a long history (Zwally
and Gloersen, 1977). Numerous melt datasets have been
built from these observations and have been used in climate
studies of the polar regions, for example to reveal interan-
nual trends or the relationship with other climatic indicators
(e.g. Liu et al., 2006; Picard et al., 2007; Tedesco, 2007;
Kuipers Munneke et al., 2012; Nicolas et al., 2017; Wille
et al., 2019; Datta et al., 2019; Banwell et al., 2021; Johnson
et al., 2022; Kittel et al., 2022; Saunderson et al., 2022; Ban-
well et al., 2023; Gorodetskaya et al., 2023; Dethinne et al.,
2023; de Roda Husman et al., 2024). The detection of sur-
face melting is relatively straightforward because the snow-
pack thermal emission in the microwave domain radically
changes when meltwater appears in the snow matrix (Chang
and Gloersen, 1975). It is also noteworthy that microwave
frequencies are sensitive to the presence of liquid water, in-
dependently of the fact that snow is actually melting or not.
Thus, the detection methods usually provide a binary indica-
tor of the presence or absence of liquid water, i.e., the dry-wet
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snow status, a variable defined by the World Meteorological
Organization (cf. https://space.oscar.wmo.int/variables/view/
snow_status_wet_dry, last access: 28 January 2025). Most
often, observations at 19 GHz in horizontal polarisation are
used because the amplitude of the brightness temperature
variation is maximized between wet and dry states (Zwally
and Fiegles, 1994; Torinesi et al., 2003). A few combinations
of frequencies, polarisations, day/night overpasses time were
also tested (Abdalati and Steffen, 1997; Zheng et al., 2018).

The inception of L-band radiometry in space through the
Soil Moisture and Ocean Salinity (SMOS) satellite in 2009
(Kerr et al., 2001) and the Soil Moisture Active Passive
(SMAP) satellite in 2014 (Entekhabi et al., 2010) has opened
up a new opportunity to detect melt. The algorithms previ-
ously developed for higher frequencies have proven effective
at L-band as well (Leduc-Leballeur et al., 2020; Mousavi
et al., 2022). However, the information content of the re-
sulting dry-wet status differs significantly (Leduc-Leballeur
et al., 2020). L-band is indeed characterised by a very low
absorption in dry snow (Mätzler, 2006; Passalacqua et al.,
2018), allowing microwaves to emerge from depths up to
hundreds of meters when water is completely absent. In prin-
ciple, it enables the detection of buried meltwater even when
the surface is refrozen. This unique characteristic has been
exploited in Greenland to detect perennial firn aquifers with
SMAP (Miller et al., 2020) and to estimate the total liquid
water amount with SMOS (Naderpour et al., 2020; Houtz
et al., 2021; Hossan et al., 2025; Moon et al., 2025). This new
perspective highlights the different information retrieved de-
pending on the frequency.

Recent studies specifically investigated the sensitivity to
the presence of meltwater as a function of frequency, espe-
cially with respect to the depth of detection. In Colliander
et al. (2022), liquid water content observations at different
depths up to 4 m at the DYE-2 experimental site in Greenland
were correlated to the microwave signal at multiple frequen-
cies. The data show how the melt season unfold, from initial
surface melting to the percolation and refreezing of meltwa-
ter at depth, and how the microwave signals at the differ-
ent frequencies follow these different stages. In Picard et al.
(2022), a modeling approach is taken to compute the theoret-
ical maximum depth of detection for a given frequency in a
typical Antarctic snowpack. Whilst both studies yield differ-
ent values for these depths, they both showed that frequen-
cies lower than 19 GHz are sensitive to water at gradually
greater depths. Conversely, at 37 GHz, the sensitivity is lim-
ited to a shallower zone under the surface, definitely invali-
dating the term “surface melting” loosely used in the past to
refer to outputs of the 19 GHz-based algorithms (e.g. Zwally
and Fiegles, 1994; Torinesi et al., 2003; Tedesco et al., 2007;
Picard and Fily, 2006; de Roda Husman et al., 2023). The-
ses two studies illustrate the potential to provide more in-
sight on melt processes from the large frequency range avail-
able by contemporary radiometric missions, and expected
from future missions (e.g., Copernicus Imaging Microwave

Radiometer (CIMR; Donlon, 2023); Advanced Microwave
Scanning Radiometer 3 (AMSR3; Kachi et al., 2023)). Based
on these recent findings, Colliander et al. (2023) used passive
microwave observations between 1.4 and 36.5 GHz available
from SMAP and Advanced Microwave Scanning Radiome-
ter 2 (AMSR2) to monitor surface and subsurface meltwater
vertical distribution over Greenland. Nevertheless, these re-
cent studies highlight how difficult and uncertain are current
estimations of liquid water content and wet layer depth.

In this study, we adopt an intermediate approach between
the binary dry-wet detections, which have proven their use-
fulness in numerous polar climate studies, and the recent at-
tempts aiming to estimate the quantity or the depth of melt.
We propose an empirical classification of the dry-wet snow
status, exploiting the combination of multi-frequency obser-
vations from AMRS2 and SMOS (1.4–37 GHz) to provide
enhanced information on melt processes. Our algorithm pro-
vides for each pixel and each day the snowpack status in
10 classes from “dry” to “all day full melting” via “wet at
depth without melting” and other intermediate stages. The
algorithm also gives some qualitative information on the un-
certainties and when the combined wet-dry indicators pro-
vide inconsistent information. We ran this algorithm on the
Antarctic ice sheet from 2012 to 2023 at 12.5 km resolution.
Noting that a strict validation of our classification is impos-
sible due to the lack of adequate in situ measurements, and
following the approach of other studies (e.g. Torinesi et al.,
2003; Colliander et al., 2023), we performed some com-
parisons with air surface temperature and assessment of the
seasonal variations to check their physical consistency. At
last, we investigated the climatic information content of this
new dataset by exploring trends and seasonal and interannual
variations.

2 Data sets

2.1 Brightness temperature observations

2.1.1 AMSR2 observations at 19 and 37 GHz

Brightness temperature at 19 and 37 GHz were obtained from
the Advanced Microwave Scanning Radiometer 2 (AMSR2)
on-board the Japan Space Agency (JAXA)’s Global Change
Observation Mission 1 – Water “SHIZUKU” (GCOM-W1)
satellite. The AMSR-E/AMSR2 Unified Level 3 daily prod-
uct version 2 processed by the National Snow and Ice Data
Center (NSIDC; Meier et al., 2018; https://nsidc.org/data/
au_si12/versions/1, last access: 25 March 2024) is used
here. This product provides the daily mean brightness tem-
peratures acquired during all the ascending and descend-
ing passes respectively, projected onto the southern polar
stereographic projection (ESPG: 3976) with a resolution of
12.5 km at vertical and horizontal polarisations for an inci-
dence angle of 55°. In Antarctica, the ascending passes occur
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from 13:00 to 17:00 (afternoon) and the descending passes
from 21:00 to 01:00 (night), local time, which enables cap-
turing the diurnal variability (Zheng et al., 2018). However,
there is a technical difficulty due to how the daily mean is cal-
culated by the data provider. The passes are grouped by “day”
according to UTC time, that is from 00:00 to 23:59 UTC, ir-
respective of the local time. This has negative consequences
for the interpretation of our dataset, with two levels of sever-
ity. In the most favourable cases, all ascending passes in a
UTC day are acquired from successive orbits, within a few
hours, and are all grouped either before or after the group
of descending passes. In this favourable situation, the lo-
cal afternoon observations are before the following night or
before the preceding night. In the worst situations, the av-
erage descending passes encompass acquisitions from two
distinct nights. This situation occurs within the Atlantic sec-
tor around longitudes ∼ 0° (UTC+00 zone). Symmetrically,
the ascending pass average may contain acquisitions from
two different days in the pacific sector around 180° longi-
tudes (UTC+12 zone). These worse cases represent 10 % of
the pixels according to our evaluation using the acquisition
time recorded in the Level 3 product provided by the JAXA’s
Globe Portal System (G-Portal; https://gportal.jaxa.jp, last
access: 25 March 2024). This problem can not be solved
without reprocessing all low level data. Meanwhile, it implies
a cautious and flexible interpretation of “day” and “night” in
the following. In practice the issue is certainly minor for cli-
mate investigations (e.g., climatological occurrence of day
versus night melt), but becomes critical when investigating a
precise sequence of meteorological events, such as the im-
pact of an atmospheric land-fall, which evolves at hourly
time scales (e.g. Wille et al., 2021).

2.1.2 SMOS observations at 1.4 GHz

Brightness temperature at 1.4 GHz is obtained from the Euro-
pean Space Agency (ESA)’s Soil Moisture and Ocean Salin-
ity (SMOS) satellite collaboratively developed with the Cen-
tre National d’Études Spatiales (CNES, France) and the Cen-
tro para el Desarrollo Tecnológico Industrial (CDTI, Spain).
We used the SMOS enhanced resolution product of bright-
ness temperature built by Zeiger et al. (2024) (Zeiger and
Picard, 2024) on the southern polar stereographic projection
(ESPG: 3976) with a 12.5 km resolution. This product pro-
vides the brightness temperature at vertical and horizontal
polarisations and 40° incidence angle with an effective spa-
tial resolution of about 30 km. This number is twice better
than the native SMOS observations (∼ 40–70 km). It is closer
to the spatial resolution of AMSR2 products (about 20 km at
19 GHz and 10 km at 36.5 GHz), which makes it suitable for
input in a multi-frequency algorithm. The SMOS daily time-
series are obtained by averaging the mean morning and after-
noon brightness temperatures corresponding approximately
to the ascending and descending SMOS passes, respectively.

2.2 Skin temperature

Skin temperature was used to assess the coherency of the
classification. It is taken from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5
(ERA5) downloaded from the Copernicus Climate Change
Service (C3S) (Hersbach et al., 2018). ERA5 provides data
in hourly temporal resolution and covers Antarctica in a reg-
ular latitude-longitude grid of 0.25°× 0.25° (Hersbach et al.,
2020). This dataset was projected on the southern polar stere-
ographic grid and interpolated at a resolution of 12.5 km us-
ing nearest neighbours.

3 Method

The classification algorithm developed in this study proceeds
in three main steps: (1) compute binary dry-wet snow status,
called dry-wet snow indicator, at three frequencies (1.4, 19
and 37 GHz) quasi independently; (2) combine them to ob-
tain a more elaborated description of the dry-wet snow sta-
tus, called dry-wet signature, each one elucidated in physical
terms; (3) group together in the same class the dry-wet sig-
natures sharing physical interpretations to form 10 distinct
classes, called snowpack status, with corresponding physical
explanations, for every given UTC day and in every pixel in-
dependently. A land/sea mask is applied to eliminate sea and
mixed pixels. The algorithm steps are depicted in Fig. 1 and
described below.

3.1 Single frequency dry-wet snow indicators

3.1.1 19 GHz-based dry-wet snow indicator

The 19 GHz-based dry-wet snow indicator follows the Tori-
nesi et al. (2003) algorithm inspired by Zwally and Fiegles
(1994). The algorithm determines an optimal brightness tem-
perature threshold in every grid cell and time period from 1
April year N to 31 March year N + 1. It considers that any
acquisition of brightness temperature higher than this thresh-
old indicates wet snow. The main challenge is to find an ad-
equate threshold. Torinesi et al. (2003) proposed a simple
adaptive method in which the brightness temperature thresh-
old is: TBT =Mdry+αSdry where α = 3, and Mdry and Sdry
are the mean and standard deviation of the brightness tem-
perature timeseries when snow is detected as dry (called “dry
days” hereinafter, and symmetrically for the wet status). To
solve the circular problem of computing Mdry and Sdry for
dry days in order to detect wet days, the initial step calcu-
lates the all-day mean brightness temperature M(0)

dry for every

melt year, and for each grid cell independently and set αS(0)dry
to a fixed value (10 K). Using this rough threshold, the al-
gorithm computes a first timeseries of snow status, which is
then refined by multiple iterations of the same process. The
convergence is reached after three iterations (Torinesi et al.,
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Figure 1. Process diagram of the dry-wet snow classification. Dashed arrows are pre-processing steps to compute the brightness temperature
thresholds.

2003). After observing that the brightness temperatures ac-
quired from ascending or descending passes are always very
close to each other during the dry season (< 1.3 K on average
over 2012–2023), the threshold is determined only with the
ascending passes (more subject to melt), and is then applied
to both the ascending and descending passes timeseries.

We implemented the Torinesi et al. (2003) method with
two improvements. First, we used the vertical polarisation as
suggested by Picard et al. (2022) and used in Colliander et al.
(2023). The vertical polarisation offers a more stable signal
during dry conditions with respect to the horizontal polarisa-
tion, which is more sensitive to surface density and stratifi-
cation of the snowpack, and thus more subject to snow meta-
morphism variations and local peculiarities. Second, noting
that a too low threshold was generating false alarms (es-
pecially obvious in the winter) and a too high one reduces
the sensitivity of the algorithm, we added upper and lower
bounds to the threshold by limiting αSdry inside the 20–35 K
range. The upper (and lower) bounds are used for 0.3 % (and
78 %) of pixels that experienced wet snow for at least one
day during the 2012–2023 period. The upper bound was used
very rarely, only in some marginal ice shelf areas. Sensitiv-
ity analysis showed that using a lower bound of 20 K instead
of 15 K reduces the detection of wet snow by 6 % in winter
(the July–September period) and by 18 % at surface elevation
higher than 1700 m. This choice of a lower bound of 20 K re-
sults in a conservative dry-wet snow detection that tends to
reduce false alarm relative to undetected events.

The choice of α= 3 is typical for outlier detection (e.g.
von Storch and Zwiers, 2001) and has been confirmed to per-
form well for melt detection after throughout investigation of
the brightness temperature timeseries (Torinesi et al., 2003).
Here, in addition, two other values (2.5 and 3.5) have been

considered to assess the impact of this parameter and quan-
tify an uncertainty range.

3.1.2 1.4 GHz-based dry-wet snow indicator

The detection of melt using 1.4 GHz observations is based
on the 19 GHz algorithm with some adaptation proposed by
Leduc-Leballeur et al. (2020), to take into account the lower
sensitivity to liquid water at L-band (Picard et al., 2022). The
threshold TBT is computed from the daily brightness temper-
ature at 1.4 GHz in horizontal polarisation with a first-guess
equal to 15 K. Furthermore, αSdry is limited inside the 10–
25 K range. The upper (and lower) bounds are used for 1.1 %
(and 96.5 %) of pixels that experienced wet snow for at least
one day during the 2012–2023 period. The upper bound was
used very rarely. Sensitivity analysis showed that using a
lower bound of 10 K instead of 5 K reduces the detection of
wet snow by 85 % in winter (the July–September period) and
by 89 % at surface elevation higher than 1700 m. The 10 K
lower bound enables a significant reduction in false alarms.

Moreover, pixels with a standard deviation of brightness
temperature in vertical polarisation lower than 2.8 K from 1
April year N to 31 March year N + 1 are marked as dry for
this period (Leduc-Leballeur et al., 2020). This filter removes
numerous false alarms in the interior of the ice sheet where
melt is obviously absent.

3.1.3 37 GHz-based dry-wet snow indicator

Picard et al. (2022) highlighted the potential to distinguish
different stages of surface melt from 37 GHz. Brightness
temperature simulations showed that a dry 10 cm thick snow
layer with coarse grains (refrozen crust) over a wet snow-
pack is detected as dry at 37 GHz and as wet at 19 GHz.
This characteristic makes 37 GHz suitable for the detection
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of near surface melt and night refreezing that is usually lim-
ited to the topmost centimeters of the snowpack. From this
analysis, an indicator was developed to provide information
on the dry-wet surface status. Nonetheless, the Torinesi et al.
(2003) method previously used for melt detection at 19 GHz
and 1.4 GHz is inadequate. Firstly, 37 GHz is strongly af-
fected by snow metamorphism in the first centimeters and
some large and rapid brightness temperature variations may
be related to change in snow grain size and density rather
than melt (Brucker et al., 2011; Champollion et al., 2019).
Even at Dome C where no melt occurs some rapid varia-
tions of 5–10 K can be observed during winter at 37 GHz
(Brucker et al., 2011). Moreover, the large brightness tem-
perature seasonal cycle at 37 GHz makes it difficult to use the
Torinesi et al. (2003) method, which is based on the hypoth-
esis of moderate variations of dry brightness temperature.
Secondly, the seasonal melt, refreezing cycles and precipi-
tations change the ice properties at the surface and can gen-
erate strong variations in brightness temperature at 37 GHz.
A constant threshold over the April year N to March year
N + 1 period, as used at lower frequencies (Torinesi et al.,
2003), is unadapted.

As we need to distinguish the brightness temperature vari-
ations related to rapid changes in the ice surface properties,
such as grain size or density, from those related to the liquid
water presence, we propose to use a running mean instead
of a fixed annual threshold as in Torinesi et al. (2003). A
new threshold definition was adopted: T37 =M37+σ37 where
M37 is the 5 d moving mean timeseries of the brightness tem-
peratures when the 19 GHz indicator is dry and σ37 is its
standard deviation between 1 April year N to 31 March year
N+1. TheM37 timeseries is then linearly interpolated to fill
the gaps when the 19 GHz indicator is wet. T37 is computed
from the brightness temperature in vertical polarisation ac-
quired at ascending passes and subsequently applied to both
ascending and descending passes.

Figure 2 shows an example of the new threshold defini-
tion for one grid cell from September 2015 to June 2016,
with which 30 wet snow days were identified. For compar-
ison, the Torinesi et al. (2003) threshold applied to 37 GHz
timeseries detects 20 wet days, and the main differences are
observed from mid-January to early February. During this pe-
riod, 37 GHz brightness temperature has strong variations of
more than 40 K in one day, which could be attributed to liq-
uid water. Moreover, the ERA5 daily maximum skin temper-
ature around 270 K also suggest the possibility of wet snow.
In general, over the 2012–2023 period, the 37 GHz dry-wet
indicator computed from Torinesi et al. (2003) and this study
are in agreement in 99.1 % of the cases when at least one wet
snow day is detected by one of the two methods. The Tori-
nesi et al. (2003) indicator detected wet (dry) snow whereas
the indicator of this study detected dry (wet) in 0.5 % (0.4 %)
of cases.

Finally, note that this new threshold still exhibits a strong
sensitivity to brightness temperature variations, leading to

Figure 2. Brightness temperature at 37 GHz (purple) at 67.15° S,
84.13° E on the West ice shelf in 2015/16 and the thresholds from
Torinesi et al. (2003) (dashed) and from this study (dotted). ERA5
daily maximum skin temperature (grey).

occasional unexpected melt detection during winter (e.g. 296
pixels in July–August on average, i.e. 0.13 % of the total wet
days detected with 37 GHz). These false alarms underscore
that melt detection at this frequency remains difficult and
subject to uncertainties.

3.1.4 Full-partial melting pixel indicator

Finally, we established an indicator to qualify if most of the
pixel is wet. For that, we designed a threshold based on the
19 GHz brightness temperature acquired in ascending passes
to match to approximately 80 % of the pixel with wet snow,
as follows: T80 % = 0.8×Tbb+(1−0.8)×Mdry. Tbb = 273K
is the theoretical maximum brightness temperature during
melting (black body) at vertical polarisation near the Brew-
ster angle (Picard et al., 2022). Mdry is the mean brightness
temperature of the dry snow computed between 1 April year
N to 31 March year N + 1, as described in Sect. 3.1.1 from
Torinesi et al. (2003). The indicator is set to one when the
19 GHz brightness temperature acquired in ascending passes
exceeds it, otherwise it is set to zero. In the following, we
call “partial melting” pixels with less than 80 % of melt and
“full melting” otherwise.

3.2 Dry-wet signatures

To compute the dry-wet signature, we combined the dry-wet
snow indicators at three frequencies (1.4, 19 and 37 GHz),
with the separation of the ascending/descending passes for
AMSR2 (the two highest frequencies), and the sixth indica-
tor of “partial/full melting”. This resulted in 26

= 64 possible
daily dry-wet signatures that we interpreted in physical terms
and for which a digit is attributed for identification (cf. Ap-
pendix A). Based on the theoretical analysis by Picard et al.
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(2022), we interpreted the 37, 19 and 1.4 GHz observations
as the dry-wet snow status in the topmost 0.2, 1, and > 1 m
of the snowpack respectively. Note that when liquid water
is present in a sufficient amount to be detected at a given
level (e.g. at the surface when active melting is occurring),
radiation emanating from below is blocked, and no informa-
tion on the dry-wet status can be detected under the highest
level. This blocking effect depends on the amount of liquid
water, the thickness of the wet layer, and of the frequency.
However, in practice, if liquid water is detected at a given
high frequency, it is unreliable to exploit lower frequencies
to determine the status below the upper wet level (Picard
et al., 2022). Thus, the dry-wet signatures are qualitatively
described by using “surface” or “deep” without attempt to
quantify the liquid water profile (cf. Appendix A). The de-
scending passes provide information on the occurrence of
night refreezing at the surface (37 GHz) or at depth (19 GHz).
The “partial/full melting” indicator reinforces the reliability
of the melt detection by assessing when more than 80 % of
the pixel is affected by melt.

In addition, the consistency level of each signature was
qualified with a quality flag: 2 (good) is assigned when all
indicators depict a physically meaningful snowpack status,
1 (fair) when one or two indicators are inconsistent, and 0
(poor) when one or more indicators are severely inconsistent
(cf. Appendix A). For instance, the signature 47 corresponds
to all the dry-wet indicators equal to one except the ascending
19 GHz indicator equal to zero. It means that the majority
but not all the indicators are in agreement and the signature
is therefore flagged as fair. In contrast, the dry-wet signature
with a “partial/full melting” indicator equal to one but all the
other indicators equal to zero (signature 32) is considered
inconsistent and flagged as poor. The situations leading to
fair and poor qualities may be due to the erroneous detection
in one indicator, the difference of sensor spatial resolutions,
or uncommon timing of the wet snow occurrence.

Figure 3 illustrates the percentage of each dry-wet signa-
ture among days detected as wet (hence excluding the “dry”
signature, signature 0) from August 2012 to July 2023. Over
this period, the 10 most frequent signatures (occurring more
than 4 % individually) contribute to 84.4 % of the time all
together. Conversely, the 34 less frequent signatures (occur-
ring less than 0.1 % individually) contribute to 0.5 % of the
time. Over the whole period, the obtained wet signatures
are mostly qualified as physically consistent (80.3 %), or fair
(19.3 %) and only 0.4 % are poor.

3.3 Empirical snowpack status classification

Each signature was further assessed and grouped into one
of 10 physical descriptions of the snowpack state (Table 1).
This classification is defined empirically and, although the
descriptions are arguably subjective, it helps reduce the com-
plexity of the 64 dry-wet signatures into only 10 classes. One
color was assigned to each class by selecting similar shades

Figure 3. Percentage of each dry-wet signature, excluding the dry
days (signature 0), between August 2012 and July 2023 in Antarc-
tica. Their respective quality flags are indicated as grey scale.

for classes with a close interpretation. This enables us to offer
a quick overview while maintaining the distinctions between
the detailed classes through color variations. The 10 classes
are defined as follows.

The class “all day dry” (class 0) includes the signature
where all indicators are zero, and also signatures where only
the 37 GHz indicator (ascending or descending) is one. Al-
though the latter may suggest superficial melting, we prior-
itize the agreement between the 19 and 1.4 GHz indicators
over the 37 GHz indicator due to the limited reliability of the
37 GHz detection algorithm during winter. The class “wet at
depth without melting” (class 1) is led by signatures with the
1.4 GHz indicator at one and the 19 GHz indicator at zero,
meaning that surface is dry, but liquid water is present below
in the snowpack. Note that the depth of detection for each
frequency is uncertain and is sensitive to the particular snow-
pack conditions in each location and year (Colliander et al.,
2022; Picard et al., 2022).

Five classes are assigned to partial melting with differ-
ences related to their night refreezing status. The classes
“daytime partial melting with night refreezing” (class 2)
and “daytime partial melting with night surface refreezing”
(class 3) are determined by the 19 GHz indicator equal to
1 in the ascending pass (i.e. daytime) and, respectively, the
19 and 37 GHz indicator equal to 0 in the descending pass
(i.e. nighttime). The class “wet snow with uncertain surface”
(class 4) includes signatures indicating the presence of liquid
water based on the 19 GHz indicators, but with discrepan-
cies in the 37 GHz indicators, bringing uncertainty regarding
active melting at the surface. The class “all day partial melt-
ing” (class 5) refers to signatures with the 37 GHz indicator
in both passes equal to 1 and at least one 19 GHz indicator
equal to 1. The class “nighttime partial melting” (class 6) in-
cludes signatures with the 19 GHz indicator equal to 0 in the
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Table 1. The 10 daily snowpack classes and their matching signatures (cf. Fig. A1) and colors. Italic face indicates the rare signatures, defined
as with less than 250 occurrences (< 0.01 %) from August 2012 to July 2023 over Antarctica.

ascending pass but one in the descending one, regardless of
the 37 and 1.4 GHz indicators.

Three classes are defined as full melting referring to the
indicator based on the brightness temperature at 19 GHz ac-
quired at ascending passes, for which over 80 % of the sur-
face pixel is affected by melt. The differences are linked
to their refreezing status. The classes “daytime full melting
with night refreezing” (class 7) and “daytime full melting
with night surface refreezing” (class 8) are determined by the
19 GHz indicator at one in the ascending pass (i.e. daytime)
and, respectively, the 19 and 37 GHz indicator at zero in the
descending pass (i.e. nighttime). The class “all day full melt-
ing” includes signatures with the 37 GHz indicator in both
passes at one and at least one 19 GHz indicator at one.

Finally, the class “invalid” (class −1) includes the signa-
tures with a lack of physical coherency, for which the par-
tial/full melting indicator is one, but the 19 GHz indicator
acquired at ascending passes is zero. This may be due to
a high threshold detection where brightness temperature re-
mains relatively high during some winter (about > 230 K).
de Roda Husman et al. (2023) already identified that the
threshold method tends to underestimate melt over persistent
melting regions.

Two classes have a more ambiguous interpretation. First,
the class “wet with uncertain surface status” (class 4) has
uncertainty mainly coming from the 37 GHz melt indicator,
which stems from the difficulty of using 37 GHz to detect
melt. Second, the class “nighttime partial melting” (class 6)
has uncertainty due to the time reference issue of the AMSR2
product raised in Sect. 2.1.1, but it may also correspond to
real situations, such as when warm air is advected by at-
mospheric synoptic events with land-falling during the night
rather than the day before. We advise future users of the
classification to consider these possibilities in their statisti-

cal analysis and explore other meteorological indicators (e.g.
synoptic charts) to consolidate the interpretation of this class.

3.4 Sensitivity of the classification to the detection
threshold

To assess the stability of the classification algorithm, the im-
pact of variations in the α parameter of the 19 GHz detection
algorithm is estimated. Two confusion matrices comparing
the standard detection (α = 3) with the cases α = 2.5 and
α = 3.5 respectively are presented in Fig. 4. In the case of
a lower threshold detection (α = 2.5), an agreement higher
than 92 % is observed for 7 classes, suggesting only little
sensitivity to decreasing α. In contrast, the highest sensi-
tivity is observed for the class “nighttime partial melting”
(class 6) with 22 % conversion into the class “wet with un-
certain surface status” (class 4). Similarly, about 13 % of the
class “daytime full melting with night refreezing” (class 7)
is converted into the class having night refreezing limited to
the surface (class 8). Finally, about 32 % (and 21 %) of dry-
wet signatures identified as lacking in physical explanation
(class −1) are converted into class 7 (and class 4) by using a
lower threshold detection due to the class −1 definition.

In the case of a higher threshold detection (α= 3.5), 7
classes are also fairly insensitive, with agreements higher
than 93 %. The class “nighttime partial melting” is again the
most sensitive, with 36 % conversion into no active melting
presence (classes 0 and 1). 17 % of the class “daytime partial
melting with night refreezing” (class 2) is also converted into
“all day dry” (class 0). Due to this higher threshold, night re-
freezing is more frequently detected (from classes 3 and 4
into class 2 for 18 % and 13 % respectively, and from class 8
into class 7 for 6 %). Lastly, the class “wet with uncertain
surface status” (class 4) is converted mainly into nighttime
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Figure 4. Confusion matrix computed between the classification with α= 3 (true condition) and predicted with (a) α= 2.5 and (b) α= 3.5.
Results are normalized over the true condition.

partial melting (4 %), partial melting with night refreezing
(13 %) and dry (4 %).

In summary, variations in α at 19 GHz has an overall
small impact on the classification, and the main impact is
on the night refreezing status. The most affected classes are
“nighttime melting” (class 6) and “wet with uncertain sur-
face status” (class 4). Future users of the dataset interested
in these most affected classes should consider using the three
α = 2.5, 3, 3.5 to assess the robustness of their investigation.

4 Results and discussion

4.1 Comparison to ERA5 temperature

We compare the classification dataset to the ERA5 skin tem-
perature. While a direct validation of microwave melt de-
tection with in situ observations is inherently impossible
(van den Broeke et al., 2023), a few comparisons to air tem-
perature measurements from the Automatic Weather Station
(AWS) have usually highlighted good consistency (e.g. Tori-
nesi et al., 2003; Colliander et al., 2023; de Roda Husman
et al., 2023) despite a large difference in spatial representa-
tion between AWS and satellite pixel. Here, we use the ERA5
reanalysis to benefit from its coverage over the whole conti-
nent.

Figure 5 depicts the distribution of daily minimum and
maximum temperature occurrence for each class. This distri-

bution is obtained for all pixels over Antarctica and all days
from 2012 to 2023. The dry status (class 0) presents a mean
maximum temperature of −32.8± 15.0 °C and minimum of
−38.3± 14.3 °C. On average, the presence of wet snow at
depth without melting (class 1) is associated with the low-
est minimum and maximum temperatures (−12 and −5 °C
respectively), which supports the absence of liquid water de-
tection at the surface. The mean maximum temperature in
classes 2, 3, 4 and 5 increases from −3 to −1 °C while the
mean minimum temperature increases from −11 to −6 °C,
supporting the gradual disappearance of nighttime refreez-
ing when temperature are tending to the freezing point. The
nighttime partial melting status (class 6) has a mean mini-
mum temperature (−8 °C) higher than the classes with night
refreezing (classes 2, 3, 4, 7, 8) and also lower diurnal tem-
perature variations, which is expected. Similarly to classes
2–5, the three “full melting” classes (7–9) present a gradual
disappearance of nighttime refreezing that is related to a 3 °C
increase in mean minimum temperature and a 1 °C increase
in mean maximum temperature. Moreover, when full melt-
ing is detected, the mean maximum temperature increases
by 1.0–1.6 °C and its standard deviation is reduced by 0.4–
0.7 °C with respect when the partial melting occurs. Higher
temperatures with less variability explain the expansion of
melting to more than 80 % of the pixel.

Overall, ERA5 skin temperature supports well the physical
meaning of snowpack status and highlight the consistency of
the classification. Note that because of the large dispersion
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Figure 5. Occurrence of the minimum (grey) and maximum (black)
daily ERA5 skin temperature for each class from August 2012 to
July 2023 over Antarctica. The vertical lines show the mean of the
distribution.

in each class and the overlap between different histograms,
skin temperature data could not be used directly to derive in-
formation on the melting status. The classification presented
here is therefore essential to monitor gradual surface refreez-
ing, remanent liquid water, and to distinguish partial and full
melting status.

4.2 Seasonal variability

Figure 6 presents the timeseries of brightness temperature
(color plain curves) at the three frequencies (1.4, 19 and
37 GHz) for three examples. The single frequency dry-wet
snow indicators are reported as colored dots for each fre-
quency and the associated daily class is depicted by bar
graphs.

The first example is from the Antarctic Peninsula for
the 2015/16 melt season (Fig. 6a). From October to mid-
December, a few short occurrences (3–6 d) of wet snow are
observed, mainly classified in classes 2 and 5, before the
main continuous melt period, which lasts more than two
months between December and February. Two melt events
are also observed at all frequencies in May highlighting the
possibility of late autumn melting, which indeed impacts the
snowpack at depth according to 1.4 GHz observations. These
two events in May 2016 have been already identified in the
literature with modeled liquid water up to 2 m in depth (Datta
et al., 2019).

The second example is located on the Shackleton ice shelf
in 2017/18 (Fig. 6b). It illustrates a much shorter melt season
(less than two months) with continuous surface night refreez-
ing. 10 d after the season begins, the melt is intense enough to
be detected at 1.4 GHz, indicating that liquid water progres-
sively penetrates the snowpack at depth. Remnant meltwater
at depth (class 1, gray bars) is observed in February at the
end of the wet snow season before a last brief but full melt
event.

The last example is on the Ross ice shelf where only brief
and sporadic melt events occur between December 2012 and
January 2013 (Fig. 6c). No wet status is detected at 1.4 GHz,
suggesting that the amount of liquid water is low and does
not affect the snowpack at depth.

In the three examples, the daily maximum surface temper-
ature in ERA5 (Fig. 6 grey lines) is higher than −7 °C when
melt is detected, and melt is always detected when the sur-
face temperature is higher than the freezing point.

To generalize these examples, Fig. 7 illustrates the surface
area of each class in Antarctica throughout the 2012–2023
average melt season. It shows that the melt season typically
begins with brief melt events, marked with night refreez-
ing (class 2). From December, the melt quickly spreads over
Antarctica (up to 0.6× 106 km2) and some periods of melt-
ing without refreezing (classes 5 and 9) appear and stretch.
Nevertheless, throughout the year, the daytime melting with
night refreezing is predominant (classes 2, 3, 7, 8 account for
61 %) compared to melt without refreezing (classes 5 and
9 account for 22 %). From the end of January, the extent
of melting sharply decreases, and from March, melt occurs
only in a few places. The class “wet at depth without melt-
ing” (class 1) is rare at the beginning of the melt season, but
its occurrence increases from January onwards, representing
the highest proportion from mid-February to mid-April. This
is in agreement with the seasonal warming of the snowpack,
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Figure 6. Brightness temperature at 19 GHz (orange), 37 GHz (purple), 1.4 GHz (green) with wet snow depicted by square markers. Bars and
colors show the resulting classification (cf. Table 1 for the color legend). On (a) the Antarctic Peninsula in 2015/16, (b) the Shackleton ice
shelf in 2017/18, and (c) the Ross ice shelf in 2012/13. ERA5 daily maximum skin temperature (grey) with temperatures above 0 °C marked
in red.
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Figure 7. Daily extent of each snowpack status over Antarctica from September to June on average over 2012–2023. The percentage of
occurrences of each class over this period is shown in the upper left inset plot.

producing meltwater that then percolates and remains present
without refreezing (Humphrey et al., 2012). From April, iso-
lated melt events still happen, but wet snow without melt-
ing is not detected at depth anymore. This suggests that the
seasonal cooling at this stage was sufficient to refreeze the
snowpack and the last melt events are too weak to produce
and inject a significant amount of liquid water at depth.

In summary, Fig. 7 demonstrates that the classification de-
picts a consistent unfolding of the typical melt season over
the continent.

4.3 Spatial and interannual variability

The 2012–2023 averaged number of days per year for each
class is depicted in Fig. 8 over Antarctica. Wet snow is
confined to the coastal areas and ice shelves, a well-know
fact (Zwally and Fiegles, 1994). However, the mean occur-
rence of each class varies depending on the location. On
average, the highest number of days with wet snow occurs
in the Antarctic Peninsula, the Dronning Maud Land and
the Amery-Shackleton coast. In the Antarctic Peninsula, the
most frequent class is “all day full melting” (class 9) with
an average of 18 d yr−1 (maximum is 69 d yr−1 on average).
It is also where the highest number of days per year with
wet snow at depth without melting (class 1, maximum is
50 d yr−1 on average) occurs. Along the Amery-Shackleton
coast, the classes of daytime partial melting with night re-
freezing (classes 2 and 3) and full melting (classes 8 and 9)
are the most observed ones, and others classes are rare, with
less than 1 d yr−1 on average. The Ross ice shelf area ex-
periences very little melt. On average, the class “wet snow
at depth without melt” is rare, and the classes of daytime
partial melting with or without night refreezing occasionally
happens (0.7 d yr−1 for class 2, and about 0.3 d for classes 3,

4, 5). Few days with full melting are observed (0.8 d yr−1 for
class 9).

In the Antarctic Peninsula, the annual occurrence of the
full melting classes (7–9) always represents more than 40 %
of the total occurrence of the wet classes. In the three other
areas, the melt season mainly features daytime partial melt-
ing with night refreezing for about 50 %–60 % (total for
the classes 2–3). The Dronning Maud Land and Amery-
Shackleton areas are more subject to night refreezing than the
Antarctic Peninsula (classes 2–3 and 7–8), relative to their
respective mean annual number of wet days.

Figure 9 highlights the interannual variability for the four
main melting areas presented in Fig. 8. The annual occur-
rence varies by up to 60 % around the mean over all classes.
In particular, over the Ross ice shelf where melt is rare
(Fig. 9d), the variability is the highest (100 % on average)
with an extreme variation in 2015/16 related to a strong
El Niño event (Nicolas et al., 2017).

In the Antarctic Peninsula, we find that the annual oc-
currence of full melting (class 9) and wet snow at depth
without melting (class 1) both increase by about 10 % over
2012–2023 and have synchronized interannual variations
(significant Pearson correlation r = 0.82, p-value= 0.0018,
Fig. 9a, bottom). At the same time, melting with night re-
freezing (classes 2–3) decreases by about 10 % and the vari-
ations are significantly anti-correlated with the presence of
wet snow at depth without melting (class 1) (r =−0.89, p-
value= 0.0002). We explain this remarkable results by the
fact that when the night refreezing decreases and full melt-
ing increases, meltwater is able to percolate and the snow-
pack remains wet at depth after the period with active melt-
ing. A clear significant anti-correlation between class 1 and
classes 2–3 is also observed over the Amery-Shakcleton
coast (r =−0.79, p-value= 0.0035, Fig. 9c, bottom), but not
with class 9. This could be related to the clear decreasing in-
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Figure 8. Annual number of days per year for each class on average over 2012–2023 in Antarctica, the Antarctic Peninsula, Droning Maud
Land, along Amery-Shackleton coast and Ross ice shelf. The blue areas are masked out.

terannual trend of the full melting, and to the fact that the
classes with night refreezing contribute for more than 60 %
of the total wet occurrence. The physical consistency of the
interannual variations between some classes underscores the
reliability of the proposed melt classification.

4.4 Discussion and Limitations

The multi-frequency approach to better investigate melt pro-
cesses has been already proposed by Colliander et al. (2022),

Picard et al. (2022), and Colliander et al. (2023). These stud-
ies highlight the difficulty of quantifying liquid water vol-
ume and the depth and thickness of wet snow layers due
to the saturation of brightness temperature. As an alterna-
tive, we chose here to develop a qualitative classification.
The limitation of this approach is that the definition of the
terms “partial/full”, “surface” or “depth” used to describe the
snowpack status classes are subjective and cannot be quanti-
fied precisely and uniformly over the content. Nevertheless,
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Figure 9. Top: annual cumulative surface for each class from 2012 to 2023 over (a) the Antarctic Peninsula, (b) Droning Maud Land, (c)
Amery-Shackleton coast and (d) Ross ice shelf. See Table 1 for the color legend of each class. Bottom: relative percentage of the class
occurrence in each area.

we provide a physical meaning of these terms, back upon
recent detailed theoretical analyses from Colliander et al.
(2022) and Picard et al. (2022): “partial/full” distinguishes
when less/more than 80 % of the pixel has meltwater, “sur-
face” indicates wet snow in the first 20 cm approximately and
“depth” applies when the surface is dry and wet snow is be-
low about 20 cm. The advantage of this qualitative classifi-
cation is to gather the current knowledge of the sensitivity of
each frequency beyond the separated single frequency binary
indicators.

A critical issue is related to the validation. A strict val-
idation of the classification is not possible because of the
scarcity of in situ measurements in Antarctica, and also be-
cause measuring the surface and subsurface wetness using
field techniques at large scale is extremely difficult. The
same limitation applies to the binary melt products widely
used by the polar community. Following the strategy adopted
by previous studies (e.g., Torinesi et al., 2003; Colliander
et al., 2023), we addressed this issue by comparing our clas-
sification with surface air temperature from ERA5 and we
showed that its variations support our physical interpretation
(Sect. 4.1). This allows us to establish the temporal (Fig. 7)
and spatial (Fig. 8) consistency of the classification to repro-
duce the most significant snowpack status variations.

The combination of observations acquired by differ-
ent sensors and at different resolution is challenging
(de Roda Husman et al., 2023) and introduces uncertainties
into our classification. Combining observations at different
frequencies inevitably results in mixing different spatial res-
olutions (the ground resolution is proportional to the wave-

length for a given antenna size). Here, the most stringent dif-
ference is between AMSR2 (∼ 10 km at 37 GHz) and SMOS
(∼ 40–70 km). The use of the enhanced-resolution SMOS
brightness temperature product from Zeiger et al. (2024) pro-
vides an effective spatial resolution of ∼ 30 km for SMOS,
which helps reduce the sensor differences. Moreover, the def-
inition of a quality flag allows us to mitigate this issue, by
identifying non-physical signatures that may result from the
different spatial representativeness of the observations. For
instance, the signatures for which 19 and 37 GHz indicate
full melt whereas 1.4 GHz indicates dry snow (signatures 60
and 62) are flagged as fair and may be related to this resolu-
tion issue.

Some uncertainties are also related to the variability in
penetration depth of each frequency. Defining the precise
thickness for detecting meltwater is challenging due to its
dependency on several snow properties (snow temperature,
density, and grain size) and on their vertical profile, which
change over time. These properties indeed evolve through-
out the melt season: the grain size increases due to wet
metamorphism (Colbeck, 1982), and the density increases
during the melt-refreeze cycles. As a consequence, the mi-
crowave penetration depth is likely to be greater at the be-
ginning of the season than at the end. Despite this difficulty,
rough estimates of this thickness were given for each fre-
quency through theoretical analysis (e.g. Picard et al., 2022)
and empirical correlation (e.g. Colliander et al., 2022). Fol-
lowing them, we consider as an acceptable assumption to
associate 37 GHz with the first centimetres of the snow-
pack (0–20 cm), 19 GHz with the first meters of the snow-
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pack (1–2 m), and 1.4 GHz with depths exceeding 1 m and
up to 10 m or more depending on the wet snow thickness
(Picard et al., 2022; Leduc-Leballeur et al., 2020). However,
more advanced modeling coupled with in situ measurements
through the firn will be needed to refine the sensitivity knowl-
edge of each frequency to depth-dependent liquid water.

Overall, despite these limitations mostly associated with
the lack of in situ observations, the synthetic 10 snowpack
classes are more user-friendly than the raw 64 dry-wet sig-
natures derives from single-frequency binary indicators and
permit further physical interpretation compared to existing
binary melt products.

5 Conclusions

Dry-wet snow status in Antarctica has been explored over the
period 2012–2023 using SMOS and AMRS2 observations.
By combining several frequencies (1.4, 19 and 37 GHz), day
and night observations, and a binary indicator on melt cov-
erage of each pixel, we are able to deliver qualitative infor-
mation on the melt processes and liquid water distribution
in the snowpack. Despite some subjectivity in this process
and the lack of in situ measurements for validation, the or-
dering of the classes from “dry” (class 0) to “full melting”
(class 9) is in agreement with ERA5 skin temperature vari-
ations at large scale and over multiple years. The resulting
dataset shows the expected physical behaviours of the melt
evolution throughout a season, with brief events at the start
and end of the season, full melting in December-January co-
inciding with the peak of melt extent, and persistent liquid
water at depth without surface melting during the decreasing
period of melt occurrences. In addition, the interannual vari-
ability in the Antarctic Peninsula indicates that years with
more intense melting at the peak of the melt season exhibit
persistent water at depth at the end. This new dataset pro-
vides, in a concise manner, the benefit of the current multi-
frequency knowledge and opens perspectives to further ex-
plore the climate of Antarctic coastal areas.

In the future, we suggest further work to improve the ro-
bustness of the detection at the highest frequency used here
(37 GHz) and potentially try to exploit higher and other in-
termediate frequencies commonly available (e.g., 89, 6 and
10 GHz) to refine the retrieved information on the verti-
cal profile of the liquid water. Extending the 11-year time-
series with the upcoming JAXA AMSR3 and the future ESA
Copernicus Imaging Microwave Radiometer (CIMR) will of-
fer a continuous and multi-decade climate perspective.
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Appendix A: Dry-wet signature descriptions

Figure A1. The 64 dry-wet signatures with their physical meaning, their associated quality flag (QF) and assigned class.
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