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Abstract. New analytical solutions describing the effects of
small-amplitude perturbations in boundary data on flow in
the shallow-ice-stream approximation are presented. These
solutions are valid for a non-linear Weertman-type sliding
law and for Newtonian ice rheology. Comparison is made
with corresponding solutions of the shallow-ice-sheet ap-
proximation, and with solutions of the full Stokes equations.
The shallow-ice-stream approximation is commonly used to
describe large-scale ice stream flow over a weak bed, while
the shallow-ice-sheet approximation forms the basis of most
current large-scale ice sheet models. It is found that the
shallow-ice-stream approximation overestimates the effects
of bed topography perturbations on surface profile for wave-
lengths less than about 5 to 10 ice thicknesses, the exact
number depending on values of surface slope and slip ra-
tio. For high slip ratios, the shallow-ice-stream approxima-
tion gives a very simple description of the relationship be-
tween bed and surface topography, with the corresponding
transfer amplitudes being close to unity for any given wave-
length. The shallow-ice-stream estimates for the timescales
that govern the transient response of ice streams to exter-
nal perturbations are considerably more accurate than those
based on the shallow-ice-sheet approximation. In particu-
lar, in contrast to the shallow-ice-sheet approximation, the
shallow-ice-stream approximation correctly reproduces the
short-wavelength limit of the kinematic phase speed given
by solving a linearised version of the full Stokes system. In
accordance with the full Stokes solutions, the shallow-ice-
sheet approximation predicts surface fields to react weakly
to spatial variations in basal slipperiness with wavelengths
less than about 10 to 20 ice thicknesses.
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1 Introduction

Large-scale ice sheet models commonly employ approxi-
mations to the momentum equations for increased compu-
tational efficiency. These approximations are derived from
the full-set of momentum equations through scaling analy-
sis motivated by the size of some geometrical aspect ratios,
such as ice thickness and ice-sheet span, and some expecta-
tions about relative sizes of various stress terms. Currently,
most large-scale ice sheet models are based on two different
types of approximations, which in this paper will be referred
to as the shallow-ice-sheet (SSHEET) and the shallow-ice-
stream (SSTREAM) approximations. The shallow-ice-sheet
approximation corresponds to the situation where surface-
parallel shear stress in a shallow ice sheet are large com-
pared to horizontal deviatoric stress. The shallow-ice-stream
approximation, on the other hand, assumes that the vertical
shear stress is small compared to all other stress components.
Both of these approximations use the shallow-ice approxi-
mation, i.e. they describe flow over horizontal scales large
compared to the mean ice thickness. Derivations of the re-
sulting theories, often using slightly different scaling argu-
ments, can be found, for example, inHutter(1983), Morland
(1984), Muszynski and Birchfield(1987), MacAyeal(1989),
andBaral and Hutter(2001).

It is clearly of considerable importance to be able to quan-
tify the errors introduced by these different approximations.
The derivations of the SSHEET and the SSTREAM approx-
imations give some indications about their applicability to
different flow regimes. It follows, for example, from the scal-
ings used in the SSTREAM approximation that the slip ratio,
the ratio between mean basal motion and mean forward de-
formational velocity, must beO(δ−2), whereδ is the ratio
between typical thickness and horizontal span (see Appendix
A). The errors are also expected to be of some order of the
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78 G. H. Gudmundsson: Surface response in the shallow-ice-stream approximation

ratio between typical ice-thickness and horizontal scales of
the problem. For example, for the SSTREAM approxima-
tion the errors areO(δ2). For a given problem of interest to
a modeller it is, however, generally difficult if not impossible
to come up with firm quantitative estimates of those errors.

A straightforward possibility of assessing the applicability
of these approximations to situations commonly encountered
in glaciology is to compare solutions to those obtained by
using the full-system momentum-balance equations (FS so-
lutions). However, although possible in principle, the com-
putational cost of a FS solution makes this approach, in most
cases, impractical. A promising solution to this problem
has been suggested byHindmarsh(2004) who performed
a computational analysis of various approximations used in
glaciology by comparing flow disturbances set up by small
perturbations in the ice surface. Focusing on small-amplitude
perturbations reduces computational times making direct es-
timates of absolute errors feasible. Another advantage that
comes from analysing small-amplitude solutions is the added
insight they can give into the nature of the approximations.
From the scaling analysis of the SSTREAM approximation
it is, for example, far from obvious how the relationship be-
tween bed and surface differs from that given by the SSHEET
approximation, and how those descriptions in turn differ
from the one given by the FS theory. One of the key ad-
vantages to come from analysing effects of small-amplitude
perturbations on flow is that by doing so fairly general an-
swers to these questions can be given.

Here I present new analytical solutions to the shallow
SSTREAM equations based on small-amplitude perturbation
analysis and compare them with corresponding FS analyti-
cal solutions given inGudmundsson(2003) andJóhannesson
(1992). Comparisons with analytical solutions based on the
SSHEET approximation are also made. The solutions are
valid for linear medium and small-amplitude perturbations in
surface topography, bed topography, and basal slipperiness.

2 Linear perturbation analysis of the shallow-ice-
stream approximation

The method of comparing these solutions followed here is
to cast them in the form of transfer functions. These trans-
fer functions describe the transient response of the medium
to perturbations in bed topography, surface geometry, and
basal slipperiness. The starting point is the well-known
shallow-ice-stream equations (MacAyeal, 1989). The deriva-
tion of these equations is outlined in Appendix A. Further
examples of their derivations, using slightly different scaling
arguments, can be found elsewhere (e.g.MacAyeal, 1989;
Schoof, 2006).

The analysis is done in a coordinate system tilted forward
in thex direction by the angleα, the mean surface slope. As

shown in Appendix A the shallow-ice-stream scalings results
in

∂x(4hη∂xu+2hη∂yv)+∂y(hη(∂xv+∂yu))−(u/c)
1/m

=ρgh∂xs cosα−ρgh sinα, (1)

∂y(4hη∂yv+2hη∂xu)+∂x(hη(∂yu+∂xv))−(v/c)
1/m

=ρgh∂ys cosα, (2)

which are two coupled partial differential equations for the
depth-independent horizontal velocity componentsu andv.
In these equations is the surface,h is the ice thickness,η
is the effective ice viscosity,ρ the ice density, andc is the
basal slipperiness. The parameterm and the basal slipperi-
nessc are parameters in the sliding law defined by Eq. (A5)
in Appendix A.

For a linear viscous medium (n=1) and a non-linear slid-
ing law (m arbitrary but positive) these equations can be lin-
earised and solved analytically using standard methods. We
write f=f̄+1f , wheref stands for some relevant variable
entering the problem, and look for a zeroth-order solution
wheref̄ is independent ofx andy and timet , while the first-
order field1f is small but can be a function of space and
time.

The perturbations in bed topography (1b) and basal slip-
periness (1c) are step functions of time. They are applied at
t=0, i.e. for t<0 we have1b=0 and1c=0. For t≥0 both
1b and1c are some nonzero functions ofx andy. Using
this history definition, the solutions for the velocity field and
the surface geometry become functions of time. The pur-
pose of introducing time varying basal perturbations is to be
able to study the transient response of the surface to temporal
changes in basal conditions. As shown below the transient
response is determined by two timescales: the phase time
scale (tp), and the relaxation time scale (tr ). Both of these
timescales are independent of the particular time history used
for the basal perturbations. They are also independent of the
nature of the basal perturbation, i.e. exactly the same expres-
sions are obtained fortp and tr for a perturbation in basal
topography as for a perturbation in basal slipperiness. Using
the superposition principle, solutions for more complicated
time histories can easily be constructed.

2.1 Bed topography perturbations

We start by considering the response to small perturbation
in basal topography (1b). Writing h=h̄+1h, s=s̄+1s,
b=b̄+1b, whereh is ice thickness,s surface topography,
andb bed topography, andu=ū+1u, v=1v,w=1w, where
u, v, andw are thex, y, andz components of the velocity
vector, respectively, andc=c̄ wherec is the basal slipperi-
ness (see Eq.A5), inserting into (1) and (2) and solving the
resulting equations gives the zeroth-order solution

ū = c̄ρgh̄ sinα. (3)
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The zeroth-order solution represents a plug flow down an
uniformly inclined plane.

The first-order field equations are

4ηh̄∂2
xx1u+ 3ηh̄∂2

xy1V + ηh̄∂2
yy1u− γ1u

= ρgh̄ cosα∂x1s − ρg sinα1h, (4)

and

4ηh̄∂2
yy1v + 3ηh̄∂2

xy1u+ ηh̄∂2
xx1v − γ1v

= ρgh̄ cosα∂y1s, (5)

where

γ =
τ1−m
d

mc̄
, (6)

and

τd = ρgh̄ sinα, (7)

is the driving stress.
The domain of the first-order solution is transformed to

that of the zeroth-order problem. This is done by writing
f=f̄+1f+∂zf̄ 1z wheref is any given term that enters
the boundary conditions, and1z is either1s or1b.

To first order, the upper and lower boundary kinematic
conditions are

∂t1s + ū ∂x1s −1w = 0, (8)

and

ū ∂x1b −1w = 0, (9)

respectively. In (8) the surface mass-balance perturbation has
been set to zero. The jump conditions for the stress tensor
have already been used in the derivation of (1) and (2) and
do not need to be considered further.

This system of equations is solved using standard Fourier
and Laplace transform methods. All variables are Fourier
transformed with respect to the spatial variablesx andy and
Laplace transformed with respect to the time variablet . In
the forward Fourier transform the two space variables both
carry a positive sign, and the wavenumbers inx andy di-
rection are denoted byk and l, respectively. In the forward
Laplace transform the time variable carries a negative sign,
and the complex Laplace argument is denoted by the variable
r.

The Fourier and Laplace transforms of the first order field
Eqs. (4) and (5) are

4ηh̄k21u+ 3ηh̄kl 1v + ηh̄l21u+ γ1u

= ρg sinα(1s −1b)+ ikρgh̄1s cosα, (10)

and

4ηh̄l21v + 3ηh̄kl 1u+ ηh̄k21v + γ1v

= ilρgh̄1s cosα, (11)

respectively. The Fourier transformed mass-conservation
equation is

− ik 1u− il 1v + ∂z1w = 0. (12)

Equations (10) to (12) can now be solved for1u, 1v and
∂z1w. Vertical integration of∂z1w and insertion into the
kinematic boundary condition at the surface

1w(s̄) = (r − ikū)1s, (13)

gives the surface response, and after some simple algebraic
manipulations, one finds that the (complex) ratio between
surface and bed amplitudesTsb=1s/1b is given by

Tsb(k, l, r) = −
ik(ū+ τd/ξ)

r(r − p)
, (14)

where

p = i/tp − 1/tr , (15)

and the two timescalestp andtr are given by

t−1
p = k(ū+ τd/ξ), (16)

and

t−1
r = ξ−1j2τd h̄ cotα, (17)

and where furthermore the two abbreviations

ξ = γ + 4h̄j2η, (18)

and

j2
= k2

+ l2, (19)

have been used.
An inverse Laplace transform of Eq. (14) using contour

integration leads to

Tsb(k, l, t) =
ik(ūξ + τd)

pξ
(ept − 1). (20)

This transfer function describes the relation between surface
and bed topography, where

1s(k, l, t)=Tsb(k, l, t)1b(k, l). (21)

Other transfer functions are defined in an analogous manner.
In Gudmundsson(2003) the relaxation time scale is re-

ferred to as the decay time scale and denoted bytd . As
pointed out byHindmarsh(2004), depending on the situa-
tion, the term “growth rate” is presumably more descriptive.
Here the term “relaxation time scale” will be used as the time
scaletr determines how long it takes for the transient solution
to “relax” toward the steady-state limit.

The relationship between surface velocity and bed topog-
raphy is found to be given by

Twb = k(kū− ept (ip + kū))(ūξ + τd)(pξ)
−1, (22)
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for the vertical velocity component (w), and

Tub = −
p(γ + h̄(k2

+ 4l2))ept

h̄pνξ

+
τd h̄ cotα(l2τd − k2ūν)(1 − ept )

h̄pνξ
, (23)

and

Tvb =
klτd(3pηept + (ept − 1)(ūν + τd) cotα)

pνξ
, (24)

where

ν = γ + h̄j2η, (25)

for the longitudinal (u) and the transverse (v) components,
respectively.

2.2 Perturbations in basal slipperiness

Transfer functions describing the effects of spatial variations
in basal slipperiness on surface geometry and surface veloc-
ities can be derived in a similar fashion. In Appendix B the
solution procedure is outlined and expressions for the corre-
sponding transfer functions listed.

2.3 Surface perturbations

We now determine the transient evolution of a surface un-
dulation prescribed att=0. By writing h=h̄+1s, s=s̄+1s,
b=b̄, u=ū+1u, v=1v,w=1w, andc=c̄, inserting into (1)
and (2) and solving the resulting equations together with (12)
and the kinematic boundary condition at the surface

w = r1s − ikū1s − s(t = 0),

it is found that the surface evolution as a function of time is
given by

s(k, l, t) = Tss0s(k, l, t = 0), (26)

where

Tss0 = ep t . (27)

The velocity components are given by

Tws0 = (ik − j2h̄ cotα)τdξ
−1 ep t , (28)

Tus0 =
τd(γ (1 + ψ)+ h̄η(j2ψ + k2

+ 4l2))

h̄νξ
ept , (29)

where

ψ = ikh̄ cotα, (30)

and

Tvs0 =
il(3ikη + ν cotα)τd

νξ
ep t . (31)

2.4 Non-dimensional forms of the transfer functions

The transfer functions listed above are all in dimensional
form. It is often much more convenient to work with the
transfer functions in a non-dimensional form. For this pur-
pose the same scalings as used inGudmundsson(2003) will
be employed. The velocity is given in units of mean de-
formational velocity of the full-system solution. All spa-
tial scales are in units of mean ice thickness (h̄), and stress
components in units of driving stress (τd ). It follows from
these scalings that the non-dimensional viscosity,E, is given
byE=ūdη/(h̄τd)=1/2, and the mean non-dimensional basal
slipperinessC̄ is

C̄ = c̄ τmd /ūd = ūb/ūd .

The mean non-dimensional slipperiness is therefore equal
to the slip ratio, i.e. the ratio between mean basal sliding
velocity (ūb) and the mean forward deformational velocity
(ūd ). One obtains the non-dimensional form of the transfer
functions from the dimensional one using the substitutions
c̄ 7→ C̄, η 7→ 1/2, h̄ 7→ 1, ū 7→ C̄, k 7→ k, l 7→ l,
γ 7→ (mC̄)−1, andρgh̄ sinα 7→ 1.

Note that since in the shallow-ice-stream approximation
ūd=O(δ

2) and we are ignoring all fields to this order, we
haveū 7→ C and notū 7→ C+1 as is the case for the full-
system solutions and the solutions of the shallow-ice-sheet
approximation. Furthermore, from̄C = ūb/ūd it follows
that C̄ = O(δ−2). In these non-dimensional units, the re-
quirement that the slip ratio isO(δ−2) for the shallow-ice-
stream approximation to be valid implies̄C+1≈C̄ or C̄�1
for small surface slopes.

In non-dimensional form the solutions often take a con-
siderably simpler shape. For example the non-dimensional
forms of the timescalestp and tr , and the transfer function
Tsb are, respectively,

tr = (2 + (j2mC̄)−1) tanα,

t−1
p = kC̄(1 +

m

1 + 2j2mC̄
),

and

Tsb =
k(1 + (1 + 2j2C̄)m)

k +m(k + 2kj2C̄ + ij2 cotα)
(1 − eit/tpe−t/tr ).

Note that in all of these three expressions, the short wave-
length limit (k andl→+∞) is independent of the sliding law
exponentm.

3 Discussion

The main subject of the following discussion is a compari-
son of various SSHEET, SSTREAM and FS small-amplitude
solutions. The SSHEET solutions are known for non-linear
medium and a non-linear sliding law (Nye, 1960; Fowler,
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Fig. 1a. The phase speed (|vp|) as a function of wavelength for
θ=0. The dashed-dotted curve is based on the shallow-ice-sheet
(SSHEET) approximation, the dashed one is based on the shallow-
ice-stream (SSTREAM) approximation, and the solid one is a full-
system (FS) solution. The surface slope isα=0.005 and slip ratio
C̄=30 andn=m=1. The unit on the y axis is the mean surface
velocity of the full-system solution (ū=C̄+1=31).

1982; Jóhannesson, 1992). Small-amplitude FS solutions
have so far only been derived for linear medium and a lin-
ear sliding law (Reeh, 1987; Jóhannesson, 1992; Gudmunds-
son, 2003). The SSTREAM solutions, derived here for the
first time, are valid for linear medium and a non-linear slid-
ing law. It follows that direct comparision betweeen the
SSTREAM and the FS solutions can only be done forn=1
andm=1, and for this reason most of the discussion is lim-
ited to this case. The only exception is a brief description
given below of the relationship between bed and surface ge-
ometry in the SSTREAM approximation for non-linear slid-
ing law. A full discussion of the non-linear aspects of the
solutions will be done elsewhere.

3.1 Time scales

As seen from the solutions listed above and in Appendix B
the transient behaviour is completely determined by two time
scales: the phase time scaletp, and the relaxation time scale
tr . The term “phase time scale” is used fortp because it de-
termines how quickly the phase of the surface fields changes
with time (see for example Eqs.26 and27). As mentioned
above thetr time scale determines how quickly the solutions
“relax” toward the steady-state limit.

The properties of the phase time scale can most easily be
understood by looking at the phase velocityvp which is, by
definition, given byvp=((ktp)−1, (ltp)

−1). The SSTREAM
phase speed is
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Fig. 1b. Thex component of the group velocity (ug) as a function
of wavelength forθ=0. Values of mean surface slope and slip ratio
are 0.005 and 30, respectively, andm=n=1.

|vp| = (j tp)
−1

= cosθ

(
ū+

τd

γ + 4j2h̄η

)
, (32)

in dimensional units. The angleθ is the angle between the
wave vectork=(k, l) and the x axis. This is also the angle
between thex axis and a vector lying in thexy plane and
normal to the crests of the sinusoidal perturbations. We have
cosθ=k/j andλ=2π/j whereλ is the wavelength.

It is instructive to compare phase speeds for different ap-
proximations. Figure1a shows the phase speed forθ=0 as
a function of wavelength for the shallow-ice-stream approx-
imation (dashed line), the shallow-ice-sheet approximation
(dashed-dotted line), and for the full-system solution (solid
line) for m=1 andn=1. Note that in the figure the phase
speeds have been normalised by the surface velocity as given
by the full-system solution (equal tōC+1 in non dimensional
units).

In the shallow-ice-sheet (SSHEET) approximation the
phase speed (dashed-dotted curve in Fig.1a) is, for θ fixed,
independent of the wavelength. Forθ=0 the SSHEET phase
speed is(n+1)ud+(m+1)ub, whereud is the deformational
velocity andub the basal sliding velocity. This is a well
known (Nye, 1960) and often used expression for the speed
of surface waves of on glaciers. The long-wavelength limit of
the SSHEET phase speed is correct, but the short wavelength
SSHEET limit is incorrect. The FS limit forθ=0 asλ→0 is
|vp|=ud + ub, i.e. for short wavelengths the kinematic wave
speed equals the surface velocity.

As can be seen from direct inspection of Eqs. (32) and
Eq. (90) in Gudmundsson(2003) – giving |vp| for the
SSTREAM and the FS theories, respectively – and as illus-
trated by Fig.1a, the SSTREAM phase speed (dashed curve)
is quite similar to the FS phase speed forC̄�1. In particu-
lar, in contrast to the SSHEET phase speed, the SSTREAM
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Fig. 2a. The phase speed (|vp|) of the full-system solution as a
function of wavelengthλ and orientationθ of the sinusoidal per-
turbations with respect to mean flow direction. The mean surface
slope isα=0.002 and the slip ratio is̄C=100, andn=m=1. The
plot has been normalised with the non-dimensional surface velocity
ū=C̄+1=101 of the full-system solution.

phase speed given by Eq. (32), valid for any positivem and
n=1, is not independent ofλ. Theλ→+∞ SSTREAM limit
is |vp|=ū(1+m) cosθ , which agrees with the FS limit for
ud=0. Forλ → 0 the SSTREAM phase speed is equal to
the mean surface speed, again in an agreement with the FS
theory. Hence, in both theλ→0 and theλ → +∞ limits, the
SSHEET phase speed is equal to the FS phase speed.

The differences between the FS and the SSTREAM phase
speeds are small for parameter values typical of an active ice
stream. This can be seen most easily from direct inspection
of the differences betweentp given by Eq. (16) and Eq. (73)
in Gudmundsson(2003). Figures2aand b show the FS and
the SSTREAM phase speeds (|vp|), respectively, as a func-
tions of both wavelengthλ and the angleθ for C̄=100 and
α=0.002. Forλ held constant the phase speed decreases
monotonically as function ofθ and, as expected, goes to zero
asθ → π/2. Comparison of Fig.2aand b reveals only minor
differences.

The wavelength dependency of the phase velocity gives
rise to dispersion in the FS and the SSTREAM solutions.
In these theories it is therefore somewhat misleading to in-
terpret the phase velocity as the velocity by which surface
disturbances propagate. The group velocity is a better mea-
sure of this velocity, and as shown inGudmundsson(2003)
the FS group velocity can be significantly different from the
phase velocity and for some wavelengths even smaller than
the material surface velocity.
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Fig. 2b. The shallow-ice-stream phase speed as a function of
wavelengthλ and orientationθ . As in Fig. 2a the mean surface
slope isα=0.002 and the slip ratio is̄C=100, n=m=1, and the
plot has been normalised with the non-dimensional surface velocity
ū=C̄+1=101 of the full-system solution.

One finds that in the SSTREAM approximation thex and
the y components of the group velocity,(ug, vg), are given
by

ug = ū+
γ + 4(l2 − k2)h̄ητd

(γ + 4j2h̄η)2
, (33)

and

vg = −
8klh̄ητd

(γ + 4j2h̄η)2
. (34)

Thex component of the group velocity is shown in Fig.1b
for m=1 as a function of wavelength for the same surface
slope and slip ratio values as used in Fig.1a. The figure
shows that the SSTREAM expression forug is a much better
approximation to the FS solution than the one given by the
SSHEET approximation. In fact the SSHEET group veloc-
ity does not look anything like the FS solution, whereas the
SSTREAM solution traces the FS solution quite accurately
(see Fig.1b). Note also that, for the particular values of sur-
face slope and slipperiness used in the Fig.1b, the group ve-
locity is smaller than the mean surface speed for wavelength
between 8 to 50 mean ice thicknesses.

In Fig. 3 the relaxation time scale (tr ) is plotted in dimen-
sional units (years) as a function of wavelength forC̄=100
andα=0.002 andm=1. (Note that the relaxation time does
not depend on the angleθ .) As indicated by the figure, and
direct inspection of the corresponding equations shows, the
SSTREAM relaxation time scale closely approximates the
FS relaxation time scale down to wavelengths of about 10
ice thicknesses. Of particular interest is the fact that in ac-
cordance with the full-system solution, but in contrast to the
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Fig. 3. The relaxation time scale (tr ) as a function of wavelength
λ. The wavelength is given in units of mean ice thickness (h̄) and
tr is given in years. The mean surface slope isα=0.002, the slip
ratio is C̄=999, andn=m=1. For these valuestr is on the order
of 10 years for a fairly wide range of wavelengths. Lowering the
slip ratio will reduce the value oftr . It follows that ice streams will
react to sudden changes in basal properties or surface profile by a
characteristic time scale of a few years.

SSHEET approximation, there is a range of wavelengths over
which the SSTREAM relaxation time scale is independent of
λ (see Fig.3). The only qualitative aspect oftr not captured
by the SSTREAM approximation is the increases intr with
λ decreasing forλ less than about ten ice thicknesses. For
C̄�1 the expression fortr given by the SSTREAM solution
is a much better approximation totr than the one given by the
SSHEET solution. For the particular set of parameters used
in Fig. 3 both the SSTREAM and the FS solutions give, for
the range 10̄h<λ<100h̄, a constant value fortr on the order
of ten years. The SSHEET solution gives, for the same range
values, estimates oftr ranging from hours to days.

Of the two time scalestr andtp it can be argued thattr is
the more important one. A surface wave will travel a distance
equal to its wavelength in the time 2πtp. In the same time its
amplitude will decrease by the factore2πtp/tr (See Eq.27).
The ratio 2πtp/tr , thus, can be thought of as giving the rela-
tive importance of relaxation/diffusion to wave propagation.
As pointed out byJóhannesson(1992) this ratio is, for typ-
ical situations encountered in glaciology, usually larger than
one. It follows that the time scale for local mass redistribu-
tion on glaciers and ice sheets is essentially given bytr , and
takes place much faster than the time scaletp would suggest.
The close agreement betweentr as given by the FS and thetr
as calculated on basis of the SSTREAM approximation gives
added confidence in the applicability of the SSTREAM ap-
proximation to situations typical of active ice streams.
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Fig. 4. Steady-state response of surface topography (1s) to a per-
turbation in bed topography (1b). The surface slope is 0.002, the
mean slip ratioC̄=100, andn=m=1. Transfer functions based
on the shallow-ice-stream approximation (dashed line, Eq.20), the
shallow-ice-sheet approximation (dotted line, Eq. 19 inGudmunds-
son, 2003) and a full system solution (solid line, Eq. 75 inGud-
mundsson, 2003) are shown.

3.2 Bed topography perturbations

Figure4 shows the steady-state bedrock-to-surface transfer
amplitude (|Tsb|) as a function of wavelength. The figure
shows the FS, the SSHEET, and the SSTREAM transfer
amplitudes, respectively (based on Eqs. 82 and 26 in Gud-
mundsson, 2003, and Eq.20). Surface slope (α=0.002) and
slip ratio (C̄=100) values are typical for active ice streams.
The three curves differ in a number of important ways.

The steady-state SSHEET transfer amplitude (dotted line
in Fig. 4) is a strictly increasing function of wavelength and
does not show the pronounced peak in bed-to-surface transfer
for wavelengths from about 1 to 10 ice thicknesses seen in FS
solution (solid line).

The SSTREAM solution (dashed line) overestimates the
transfer at short wavelengths and gives a physically wrong
limit of |Tsb| → 1 for λ→0. Despite the incorrect limit
for λ → 0, the SSTREAM solution forTsb is, and this is
generally the case for high slip ratios, a considerably bet-
ter approximation to the FS solution than the corresponding
SSHEET solution. For the particular set of values used in
Fig. 4 the SSTREAM solution agrees within a few percent to
the FS solution down to wavelengths of about eight ice thick-
nesses, while the SSHEET solution is only similarly accurate
for wavelengths larger than about 100 ice thicknesses.

From Eq. (20) it follows that the steady-state SSTREAM
transfer function forl=0 is

Tsb =
1

1 +
ikm cotα

1+m(1+2C̄k2)

, (35)
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Fig. 5. Transient surface topography response to a sinusoidal pertur-
bation in bed topography applied att=0. Shown are the amplitude
ratios between surface and bed topography (|Tsb|) as a function of
wavelength forα=0.002,θ=0, C̄=100, andn=m=1 for t=0.001
(red),t=0.01 (blue), andt=10 (green).

where dimensionless units have been used. Hence forθ=0,
Tsb → 1 asC̄ → ∞ irrespective of the values for surface
slopeα, wavelengthλ, and sliding law exponentm. The
value ofC̄=100 used in Fig.4 can hardly be considered very
large for typical active ice streams, and if a value ofC̄=1000
is used together with typical surface slopes of about 0.002
to 0.004, it follows that|Tsb| is fairly close to unity for all
wavelengths.

The minimum in the SSTREAM transfer amplitude given
by Eq. (35) is reached for the wavelength

λx = 2π

√
2C̄m

1 +m
, (36)

wherekλx=2π , and the minimum is given by

min
k

|Tsb| =
1√

1 +
m cot2 α

8C̄(1+m)

. (37)

For bed topography variations aligned transversely to the
main flow direction, the steady-state ratio between surface
and bed topography amplitudes is in the SSTREAM approx-
imation always larger than that given by Eq. (37). The wave-
length given by Eq. (36) does not depend on surface slope
α. As Fig.4 suggests, the (global) minimum in SSTREAM
transfer amplitude (|Tsb|) closely approximates the corre-
sponding (local) minimum of the FS transfer amplitude for
C̄�1.

Examples for non-steadyTsb amplitudes are shown in
Fig. 5. The dashed lines in the figure are calculated us-
ing Eq. (20) and are based on the shallow-ice-stream ap-
proximation, using the additional small-amplitude assump-
tion 1b/h̄�1. The solid lines are FS solutions calculated

using Eq. (82) inGudmundsson(2003). The times are given
in non-dimensional units. These can be translated to di-
mensional units through multiplication with̄h/ūd , where
ūd is the mean deformational velocity. As an example,
for a 1000 m thick ice stream where the surface velocity is
1 m d−1, t=0.001 corresponds to about 3.3 months.

The figure shows the relatively slow increase in|Tsb| with
time for long wavelengths (larger than about 100 mean ice
thicknesses) toward the steady-state long-wavelength limit of
|Tsb|=1. The rate of increase toward the steady-state limit
is determined bytr which, for long wavelengths, increases
quadratically as a function of wavelength (see Eq.17 and
Fig. 3), hence the slow increases in|Tsb| for long wave-
lengths. Over wavelengths less than about 5 mean ice thick-
nesses the SSTREAM relaxation time is smaller than the FS
relaxation time (see Fig.3). Consequently, over this range
of wavelengths the SSTREAM amplitudes grow faster with
time than the FS amplitudes. Another noticeable aspect of
Fig. 5 is the oscillating behaviour of the transfer amplitudes
with wavelength. These are caused by temporal fluctua-
tions (kinematic oscillations) in|Tsb| that are governed by
the phase time scaletp. As the figure shows, transient am-
plitudes can be larger than unity, and when this happens sur-
face topography amplitudes are larger than the bed topogra-
phy amplitudes. As follows from inspection of Eq. (20) and
Eq. (82) inGudmundsson(2003), kinematic oscillation are
particularly pronounced for 0<t<tr whenevertp<tr . The
consequence can be an up to twofold increase in transfer
amplitudes as compared to the corresponding steady-state
limit. As mentioned above, the steady-stateλ→0 limit of
the SSTREAMTsb amplitude is unity, and for short wave-
lengths (λ/h̄<1) the transient value can be as large as two,
whereas the correct value for these wavelengths (as given by
the FS solution) is always close to zero.

The Tsb transfer amplitudes in Figs.4 and 5 are plot-
ted as functions of longitudinal wavelength, that is for si-
nusoidal variations in bed topography aligned transversely
to the main flow direction. This corresponds to the situa-
tion θ=0. Figure6a and b show the SSTREAM and the
FS transfer amplitudes, respectively, as functions of bothθ

andλ. As Fig. 4 showed forθ=0, the main difference be-
tween the SSTREAM and the FSTsb amplitudes is the short-
wavelength limit. Irrespectively ofθ the SSTREAM short-
wavelength limit is always equal to unity, whereas the correct
limit is zero. The only exception is for theθ = π/2 where
both transfer functions are identically zero.

In Fig. 7a and b theTub transfer amplitudes of, respec-
tively, the SSTREAM and FS solutions are shown in a non-
dimensionalised form. A simple way of interpreting the nu-
merical contour values is to think of them as ratios between
mean deformational velocity and mean ice thickness (ūd/h̄).
In the figures, a slip ratio of 99 is used and the mean sur-
face FS velocity is equal to 100̄ud . For example, a transfer
amplitude equal to 50 implies that a sinusoidal bed topog-
raphy perturbation with an amplitude corresponding to 10%
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Fig. 6a. The SSTREAM amplitude ratio (|Tsb|) between surface
and bed topography (Eq.20). Surface slope is 0.002, the slip ratio
C̄=99, andn=m=1. λ is the wavelength of the sinusoidal bed to-
pography perturbation andθ is the angle with respect to the x axis,
with θ=0 andθ=90 corresponding to transverse and longitudinal
undulations in bed topography, respectively.
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Fig. 6b. The FS amplitude ratio between surface and bed topogra-
phy (|Tsb|) from Eq. (75) inGudmundsson(2003). The shape of
the same transfer function for the same set of parameters based on
the SSTREAM approximation is shown in Fig.6a.

of the mean ice thickness produces a perturbation equal to
0.1×50=5ūd , or a 5 % perturbation in surface velocity.

As the Fig.7aand b suggest, and inspection of the corre-
sponding analytical solutions confirms, the short wavelength
limits of the SSTREAM and the FSTub transfer amplitudes
are both equal to zero. This is physically the correct limit
and there is therefore no problem similar to that of theTsb
transfer amplitude forλ → 0. Quantitatively theTub ampli-
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Fig. 7a.The steady-state amplitude ratio (|Tub|) between longitudi-
nal surface velocity (1u) and bed topography (1b) in the shallow-
ice-stream approximation as given by Eq. (23). Surface slope is
0.002, the slip ratio is 99, andn=m=1.
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Fig. 7b. The steady-state amplitude ratio (|Tub|) between longi-
tudinal surface velocity (1u) and bed topography (1b) (Eq. 75 in
Gudmundsson, 2003). The shape of the same transfer function for
the same set of parameters, but based on the shallow-ice-stream ap-
proximation, is shown in Fig.7a.

tudes tend to be somewhat underestimated by the SSTREAM
approximation when the shallow-ice conditionλ/h̄�1 is not
fulfilled.

For bed topography disturbances running along the flow
(k=0) the resulting perturbation in surface velocity is, irre-
spectively oft , given by

Tub = −
2mC̄

2 + l2mC̄
, (38)
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Fig. 8a.The steady-state amplitude ratio (|Tvb|) between transverse
velocity (1v) and bed topography (1b) in the shallow-ice-stream
approximation (Eq.24). Surface slope is 0.002, the slip ratio is 99
andn=m=1.
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Fig. 8b. The steady-state amplitude ratio (|Tvb| between transverse
velocity (1v) and bed topography (1b) ) from Eq. (75) inGud-
mundsson(2003). The shape of the same transfer function for the
same set of parameters, but based on the shallow-ice-stream approx-
imation, is shown in Fig.8a.

as can readily be derived from Eq. (23). The maximum value
of |Tub| is reached fork=0 in the limit λ → ∞. In the FS
theory this limit isC̄+1 which is the physically correct limit.
In the SSTREAM theory this limit is, form=1 where these
results can be compared, equal toC̄, the difference being due
to the simple fact that the SSTREAM approximation ignores
the internal ice deformation.
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Fig. 9. Steady-state response of surface topography to a perturba-
tion in bed topography for linear and non-linear sliding. All curves
are for linear medium (n=1). The solid lines are calculated for
linear sliding (m=1) and the dashed lines for non-linear sliding
(m=3). The red lines are SSHEET solutions, the blue ones are
SSTREAM solutions, and the black line is a FS solution which is
only available form=1. Mean surface slope is 0.002 and slip ratio
is equal to 100.

For the transverse velocity amplitudes (|Tvb|), shown in
Fig. 8a and b, a qualitative difference between the FS and
the SSTREAM solutions is found forθ close toπ/4. For
θ=π/4 the SSTREAM transfer amplitude|Tvb| has one lo-
cal maximum as function ofλ but the FS solution two. Again
the SSTREAMTvb amplitudes are somewhat underestimated
when the shallow-ice conditionλ/h̄�1 is not fulfilled. For
the particular set of parameters using in Fig.7a and b, and
Fig. 8aand b the SSTREAM approximation underestimates
the effects of bed perturbations on surface velocities for
wavelengths less than about 10 ice thicknesses.

3.2.1 Surface topography and non-linear sliding

The discussion given above has mostly dealt with then=1
andm=1 case. In Fig.9 the SSHEET and the SSTREAM
ratios between surface and bed topography amplitude (|Tsb|)
are plotted form=1 andm=3 for n=1. In addition the FS
ratio is shown form=1. There are no analytical FS solutions
known form 6= 1. The SSTREAM ratios shown (blue lines
in Fig. 9) follow from Eq. (20), the FS ratio (black line) from
Eq. (82) inGudmundsson(2003), and the SSHEET ratios
(red lines) from Eq. (4.4.7) inJóhannesson(1992).

As theJóhannesson(1992) thesis is presumably not widely
available I list here his SSHEET expression for theTsb trans-
fer function. It is particularly simple and valid for any value
of n andm. It can be written in the form
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Tsb =
i

i − λ?/λ
, (39)

where

λ? =

(
n(n+1)
n+2 +mC̄

)
n+ 1 + C̄(m+ 1)

cotα, (40)

is in units of mean ice thickness. The long and the short
wavelength limits of SSHEET transfer amplitude as given by
Eq. (39) are independent ofn andm, and the range of wave-
lengths where the transfer is, in absolute terms, significantly
dependent onn andm is determined by the value ofλ?. For
moderate values ofn and high slip ratios (̄C � 1) we have

λ? ≈
m

m+ 1
cotα.

Hence, the surface slope is the most important parameter af-
fecting the SSHEET bed-to-surface transfer characteristics
for high slip ratios and the transfer is only moderately af-
fected by the value ofm.

One of the most interesting aspects of Fig.9 is that the
differences between them=1 and them=3 cases are only of
any significance for wavelengths longer than about 100 ice
thicknesses. This is the case for both the SSHEET and the
SSTREAM solutions. By analysing the SSTREAM trans-
fer function given by Eq. (20) it is found that the sensitivity
of |Tsb| to m is small at both large and small wavelengths
and decreases with decreasing slope. In particular, for wave-
lengths smaller than the wavelength for which the minimum
in SSTREAM amplitude is reached (see Eq.36), the transfer
amplitudes are not significantly affected by the value of the
sliding law exponentm.

No analytical FM solutions form>1 are known, but
a numerical study byRaymond and Gudmundsson(2005)
showed that changingm from 1 to 3 has almost no effect on
FS transfer amplitudes for wavelengths smaller thanλ given
by Eq.36. The insensitivity ofTsb to the value of the sliding
law exponentm for wavelengths smaller than the one given
by Eq. (36) may, thus, well be a general feature of glacier
flow. Schoof(2005) gives arguments suggesting that at high
slip ratios the surface response becomes independent of the
form of the sliding law. The results presented here, and those
of Raymond and Gudmundsson(2005), show this only to be
a good approximation for a limited set of wavelengths. The
source of the discrepancy is not entirely clear, but possibly
due to the implicit assumption inSchoof(2005) that shear
stress is independent of short-scale perturbations in basal ve-
locities (Eq. 3 inSchoof, 2005). On length scales on the
order of one ice thickness or smallerSchoof(2005) results
agree favourably with those presented here.
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Fig. 10.Steady-state response of surface topography to a basal slip-
periness perturbation. Shown are FS (solid line), SSTREAM (cir-
cles), and SSHEET (crosses) transfer amplitudes for bothC̄=1 and
C̄=10. In the plot the SSTREAM curves for̄C=1 andC̄=10 are
too similar to be distinguished. The surface slope is 0.002.

3.3 Basal slipperiness perturbations

We now consider the effects of spatial variations in basal slip-
periness on surface fields. Basal slipperiness is here defined
as the functionc(x, y) in the basal sliding law (see Eq.A5).
The non-dimensional slipperiness is written using an upper
case letter (i.e.C(x, y)). We haveC(x, y)=c(x, y)τd/ūd ,
and writeC(x, y)=C̄(1+1C(x, y)) where C̄ is the spa-
tially averaged slipperiness and1C(x, y) the (fractional)
slipperiness perturbation introduced att=0. The transfer
functions listed in Appendix B give the relationships be-
tween surface fields and the basal slipperiness perturba-
tion 1C(x, y) in frequency space. We have, for example,
s(k, l, t)=Tsc1C(k, l). Again our main focus here is on the
differences between the corresponding SSHEET, SSTREAM
and the FS solutions and therefore the discussion is mostly
limited to them=1 andn=1 case where small-amplitude an-
alytical solutions to all of FS, SSHEET, and the SSTREAM
problems are available.

Figure 10 shows basal-slipperiness to surface geometry
transfer amplitudes (Tsc) based on Eq. (B3) (circles) for the
SSTREAM theory. For comparison the predictions of the
FS (solid lines ) and the SSHEET (crosses) theories (Eqs. 83
and 27 inGudmundsson, 2003) for the same parameter set
are shown as well. Because the SSTREAM solution does
not include the contribution of internal ice deformation to
the forward surface velocity, the SSTREAM and the FS long
wavelength limits for|Tsc| are not equal. Both the FS and the
SSHEET long wavelength limits (λ→∞ for θ=0) are equal
to C̄/(2(1+C̄)). For the SSTREAM solution this limit is, on
the other hand, equal to 1/2 independently ofC̄ (see Eq.B7).
For C̄�1 these two different expressions, of course, give nu-
merically quite similar answers.
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Fig. 11. Steady-state response of surface longitudinal (u), trans-
verse (v), and vertical (w) velocity components to a basal slipper-
iness perturbation. The surface slope is 0.002 and the slip ratio
C̄=10. TheTuc andTwc amplitudes are calculated for slipperiness
perturbations aligned transversely to the flow direction (θ=0). For
Tvc, θ=45 degrees. Of the two y axis the scale to the left is for the
horizontal velocity components (Tuc andTwc), and the one to the
right is the scale forTuc.

Figure 11 shows the velocity transfer amplitudes|Tuc|,
|Tvc|, and|Twc|. Shown are both the FS solutions (solid lines)
and those based on the SSTREAM approximation (dashed
lines). The SSTREAM solutions are given by Eqs. (B4), (B5)
and (B6). The FS solutions can be found, or easily derived,
from Gudmundsson(2003). The transfer functions are plot-
ted in non-dimensional form. The scale for the transfer func-
tions follows from the definitions1u=Tuc1C,1v=Tvc1C,
where1C is the (fractional) slipperiness perturbation. Since
the velocity is scaled with the mean deformational velocity
ūd and1C has no dimensions,̄ud is the scale for these trans-
fer functions.

Generally speaking there is a good agreement between the
velocity transfer functions of the FS and the SSTREAM solu-
tions (see Fig.11). However, there are also a number of sig-
nificant differences. The SSTREAM long-wavelength limit
of Tuc is, for example, not the same as that of the FS theory.
For n=1 andm=1, andθ=0 we find that the SSTREAM
solution gives

lim
λ→∞

Tuc =
1

2
C̄,

while the FS solution gives

lim
λ→∞

Tuc =
C̄2

2(1 + C̄)
.

The effects of basal slipperiness perturbations are therefore
somewhat overestimated for long-wavelengths, although for
high slip ratios typical of active ice streams this error is small.
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Fig. 12. Steady-state response of the surface longitudinal (1u) ve-
locity component to a basal slipperiness perturbation in the shallow-
ice-stream approximation (Eq.B4). The surface slope is 0.002 and
the slip ratioC̄=99.

Over wavelengths less than about 100 ice thicknesses the
horizontal forward velocity component (u) reacts weakly
to basal slipperiness perturbations. In Fig.11, for exam-
ple, the FSTuc transfer amplitudes (solid line) are less than
5% of mean surface speed for this wavelength range. The
SSTREAM approximation further underestimates this weak
response (see Fig.11). In comparison to the FS amplitude
the SSTREAMTwc amplitudes are, on the other hand, too
large (see Fig.11). This difference is in most situations of no
real concern, however.

The most conspicuous aspect of both the FS and the
SSTREAM Twc transfer amplitudes is how small they are
both in absolute terms and in comparison to|Tuc| and|Tvc|.
In fact the|Twc| amplitudes are so small that for active ice
streams the vertical velocity component can be considered
to be effectively insensitive to any spatial variations in basal
slipperiness. As an example, forC̄=10 andα=0.002, which
are the values used in Fig.11, the maximum of the FSTwc
amplitude is about 0.025. The corresponding perturbation in
the vertical surface velocity component is therefore 0.025ūd
which for most active ice streams, where the surface veloc-
ity is a few hundred to a few thousand times larger thanūd ,
is negligible in comparison to the mean horizontal velocity.
In contrast, the maximum perturbation in longitudinal veloc-
ity (u) is C̄/2 for C̄�1 or about 50 % of the mean surface
velocity, and as can be seen from Fig.11 or direct inspec-
tion of Eq. (B5). Equally large perturbations in transverse
velocity are possible for perturbations in basal slipperiness
that are sufficiently misaligned with respect to the mean flow
direction.
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The transfer amplitudeTuc describing the response of the
horizontal forward velocity component (u) to a basal slipper-
iness perturbation is shown as a function of wavelength (λ)
and orientation (θ ) in Fig. 12. This Figure should be com-
pared to Fig.7a giving theu response to a bed topography
perturbation for the same set of parameters. A noticeable
difference betweenTub andTuc amplitudes is the compara-
tively weak response ofu to perturbation in basal slipperi-
ness that are aligned approximately transversely to the mean
flow (θ<40 degrees) for wavelengths less than about 100
ice thicknesses. However, for a given wavelength, the mag-
nitude of the perturbation inu caused by a perturbation in
basal slipperiness increases sharply withθ (see Fig.12). For
a sinusoidal slipperiness perturbation closely aligned with
the mean flow direction (θ>70 degrees) the resulting per-
turbation in forward velocity can become a sizable fraction
of the total perturbation in slipperiness (C̄1C). For exam-
ple, Fig.12shows that a sinusoidal basal slipperiness pertur-
bation with wavelengthλ=100 has almost negligible effect
on u if it is aligned transversely to the mean flow direction
(θ=0), while the perturbation inu is almost equal to the total
perturbation in slipperiness forθ=90 degrees.

In Appendix B the SSTREAM version of theTuc transfer
function is derived. From Eq. (B4) we find that for pertur-
bations in basal slipperiness that vary across the flow, i.e.
θ=π/2 andk=0, the transfer function is

Tuc =
2C̄

2 +ml2C̄
, (41)

for any t . Interestingly, as Eq. (41) shows, the response of
the velocity to temporal changes in basal slipperiness per-
turbations aligned with the mean flow direction is instanta-
neous. Note furthermore that sinceTuc=1u/1C by defini-
tion, Tuc=C̄ corresponds to a situation where the perturba-
tion in surface velocity is equal, in non-dimensional units, to
the (total) perturbation in basal slipperiness. This can be con-
sidered to represent a full transmission of basal slipperiness
to the surface velocity field. As Eq. (41) shows, longitudi-
nal basal slipperiness perturbations (θ = π/2) have, in this
sense, full effect on the forward surface velocity component
(u) in the limit λ→∞. Note also that fork=0 the limit of
Tuc whenλ→∞ is independent of the sliding law exponent
m.

For θ=0, i.e. where basal slipperiness varies in direction
parallel to the flow direction but not across the flow, the situ-
ation is very different from that forθ=π/2. FromB4 given
in Appendix B we find that in dimensionless units

Tuc =
C̄

1 +m(1 + 2k2C̄ + ikm cotα)
, (42)

for l=0. In particular

lim
k→0

Tuc =
C̄

1 +m
, (43)

showing that the long wavelength limit forθ=0 is always
smaller than that forθ=π/2 and, furthermore, goes to zero
with increasingm.

Raymond(1996) calculated the effects of longitudinal per-
turbations in slipperiness on surface velocity on ice streams
(θ=π/2). In the dimensionless notation used here his result
(Eq. 25a inRaymond, 1996) is

Tuc(k = 0, l) =
2C̄

2 + C̄l tanhl
. (44)

FromGudmundsson(2003) one finds after some calculations
that the FS expression is

Tuc(k = 0, l) =
2C̄

2 coshl + C̄l sinhl
. (45)

Raymond(1996) considered the casēC�1 and consequently
the form of the basal boundary conditions used by him is
slightly different from the one used inGudmundsson(2003).
This explains the difference between Eqs. (44) and (45).

In contrast to Eqs. (44) and (45), Eq. (41) is not limited
to linear sliding law but valid for any positive value ofm.
Where Eqs. (41), (44), and (45) can be compared, i.e. for
m=1 the difference between these three expressions is in
most cases small. In particular, all expressions give the same
limits for l → 0, l→+∞ for C̄ fixed, andC̄→0 for l fixed.
For C̄→+∞ the limits are not identical but forl�1 the dif-
ference is small.

3.4 Flow over Gaussian peak: the ISMIP-HOM Experi-
ment F

As an illustration of differences between the full-system
and the shallow-ice-stream solutions Fig.13a and b show
an example of the surface response to a Gaussian-shaped
bedrock protuberance calculated using both the FS and the
SSTREAM transfer functions. The parameters of the exam-
ple are motivated by the definition of the Benchmark Ex-
periment F for higher-order ice sheet models of the ongo-
ing model intercomparision project ISMIP-HOM (seehttp:
//homepages.ulb.ac.be/∼fpattyn/ismip/). Of the mean sur-
face velocity, half is due to internal ice deformation and the
other half to basal sliding (̄C=1). The flow is down an uni-
formly inclined plane with a mean slope of 3 degrees. The
bedrock perturbation is a Gaussian shaped peak situated at
(x, y)=(0,0). The peak has a width of 10̄h and amplitude
of 0.1 h̄. Periodic boundary conditions are used with a peri-
odicity of 400h̄ in bothx andy directions.

If either the slip ratio is not large compared to unity, or
the horizontal scale of interest is not large compared to mean
ice thickness, significant deviations between the SSTREAM
and the FS solutions can be expected. In the experiment the
slip ratio does not fulfil the condition̄C�1 and it comes as
no surprise that there are some differences between the upper
(SSTREAM solution) and the lower (FS solution) halves of
Fig. 13aand b. However, if anything, the performance of the
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Fig. 13a. Surface topography response to a flow over a Gaussian-
shaped bedrock disturbance as given by a FS (lower half of figure)
and a SSTREAM solution (upper half of figure). The mean flow
direction is from left to right. Surface slope is 3 degrees and mean
basal velocity equal to mean deformational velocity (C̄=1). The
spatial unit is one mean ice thickness (h̄). The Gaussian-shaped
bedrock disturbance has a width of 10h̄ and it’s amplitude is 0.1̄h.
The problem definition is symmetrical about the x axis (y=0) and
any deviations in the figure from this symmetry are due to differ-
ences in the FS and the SSTREAM solutions.

SSTREAM solutions seems surprisingly good. There are, for
example, only fairly small differences seen in the perturbed
surface topography (Fig.13a). The amplitude of the FS sur-
face topography perturbation (lower half of Fig.13a) is a bit
larger than that of the SSTREAM one (upper half of Fig.13a)
but otherwise the surface shapes are in qualitatively terms the
same.

The FS velocity perturbations are generally larger than the
those of the SSTREAM approximation (see Fig.13b). This is
partly due to the simple fact that the mean SSTREAM veloc-
ity is equal to 1 while the mean FS velocity is twice as large.
One could argue that the mean slip ratio in the SSTREAM
theory should be redefined to give the same mean surface
velocity as the FS solution. In the experiment this would im-
ply using C̄=2 when calculating the SSTREAM solutions.
When this is done, the differences between the upper and the
lower halves in Fig.13b become considerably smaller and
the overall magnitude more similar. Irrespectively of which
value ofC̄ is used, the FS velocity solution has a more de-
tailed short-scale structure. This aspect of the solution can be
understood by considering the corresponding transfer func-
tions directly. Comparison of Fig.7a with b, and Fig.8a
with b (despite the parameters used in these figures being
different from Experiment F) also illustrates the fact that the
FS velocity transfer amplitudes are, for short to intermediate
wavelengths, generally larger than those of the SSTREAM
theory.
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Fig. 13b. Response in surface velocity to a Gaussian-shaped
bedrock perturbation. All parameters are equal to those in Fig.13a.
The contour lines give horizontal speed and the vectors the hori-
zontal velocities. The velocity unit is mean-deformational velocity
(ūd ). The slip ratio is equal to one, and the mean surface velocity is
2ūd . The upper half of the figure is the SSTREAM solution and the
lower half the corresponding FS solution.

If the width of the Gaussian peak is decreased from 10h̄

to, 1h̄ and the slip ratio increased to 100 the differences in the
calculated FS and the SSTREAM surface response become
more pronounced. The amplitude of the SSTREAM topogra-
phy perturbation is then much larger than that of the FS solu-
tion, and in fact quite similar to the shape of the bedrock per-
turbation itself. This aspect of the SSTREAM solution was
discussed above and is caused by the fact that the SSTREAM
Tsb amplitude is close to unity for small wavelengths (see
also Fig.6aand b).

4 Summary and conclusions

As expected the comparison between the analytical FS and
SSTREAM solutions shows that the SSTREAM approxima-
tion is highly accurate for long wavelengths (λ/h̄�1) and
high slip ratios (̄C�1). The SSTREAM approximation is
in these circumstances a much better approximation to the
FS solutions than the SSHEET approximation. However,
somewhat disappointingly, when these conditions are not ful-
filled the SSTREAM approximation is not just inaccurate but
gives rise to some physically unrealistic results. In particu-
lar, the ratio between surface and bed topography is overes-
timated. Whereas the correct ratio is close to zero forλ�h̄

the SSTREAM gives a ratio close to unity. The SSHEET
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theory, which also is inaccurate forλ�h̄, fails in this respect
in a more physically realistic manner by underestimating the
ratio and giving the correct limit of zero asλ→0. A related
somewhat less than satisfying aspect of the|Tsb| SSTREAM
transfer amplitudes is the absence of the local maxima in the
Tsb amplitudes as function of wavelengths seen in the FS so-
lution.

The physically wrong limit of the SSTREAMTsb ampli-
tude forλ→0 is of some concern. It has, among other things,
implications for surface-to-bed inversion. Because thisTsb
transfer amplitude limit is equal to unity, small scale surface
undulations (λ<h̄) do not get amplified through a direct in-
version and the effects of surface data errors might be under-
estimated. There is also some danger of the spatial resolving
power of an SSTREAM surface-to-bed inversion to be over-
estimated. Further research into these issues is needed before
firm quantitative statements can be made.

The only previous work dealing with the effects of small-
amplitude perturbations in boundary data on solutions of
the SSTREAM theory is the numerical study ofHindmarsh
(2004). He calculatesTsb transfer amplitudes and both the
tr and thetp timescales for linear and non-linear medium.
The L1L1 approximation used byHindmarsh(2004) is an
improved version of the SSTREAM theory discussed here
which includes the contribution of internal ice deformation
to the velocity. For high slip ratios the L1L1 approxima-
tion is effectively equal to the SSTREAM approximation.
Fig. 5 in Hindmarsh(2004) calculated forn=3 shows the
same general features of transfer the amplitudeTsb and the
times scalestp andtr for non-linear rheology as found in the
analytical solutions given here valid forn=1 andm>0. In
particular the|Tsb|→1 limit for λ→0 is also found byHind-
marsh(2004) for non-linear medium (Fig. 5c). The relative
insensitivity of thetr time scale to wavelengths for high slip
ratios, and the chance in phase speed fromūb to (m+1)ūb
with increasing wavelength is also seen (Fig. 5a and b in
Hindmarsh, 2004).

The SSTREAM solutions are much better approximations
to the FS solutions than the SSHEET solutions whenever
C̄�1 and λ/h̄�1. For slip ratios typical of active ice
streams the SSHEET solution underestimates the relaxation
time scale by several order of magnitude. The SSTREAM
solution fortr is, on the other hand, almost equal to the cor-
responding FS solution down to wavelengths of about 10h̄.
The SSTREAM solution gives a finite number fortr in the
limit λ→0 (in dimensional units the limit is 4cη tanα/u)
whereas the same limit for SSHEET theory is zero. It follows
that once short wavelengths are present in an SSTREAM
model they do not automatically decay away as they do in
an SSHEET model.

Comparing the analytical solutions of the SSTREAM and
the SSHEET approximations with the FS solutions presented
here and inGudmundsson(2003) provides a quick and an
easy way of assessing the applicability of these two com-
monly used approximations to a particular situation. Results

presented byRaymond and Gudmundsson(2005) on small-
amplitude response for non-linear medium in the FS theory,
and byHindmarsh(2004) on numerical approximations to
the Stokes equation for both linear and non-linear medium,
suggest that this approach remains useful even when the rhe-
ology of the medium is non-linear. In particular, in cases
where the analytical solutions reveal significant differences
between the SSTREAM or the SSHEET approximations as
compared to the FS solutions, it is improbable that inclusion
of non-linear rheology will reduce these differences.

Appendix A

Shallow-ice-stream scalings

We consider the case of an ice stream with horizontal length
scale[x] and vertical length scale[z] where the shallow-ice
approximation[z]/[x]=δ�1 holds, and write

(x, y, z) = [x](x∗, y∗, δz∗).

where the asterisks denote scaled dimensionless variables.
For the mass conservation equation (vi,i=0) to be invariant
we scale the velocity as

(u, v,w) = [u](u∗, v∗, δw).

If we furthermore require the kinematic boundary condition
at the surface

∂t s + u ∂xs + v ∂ys − w = a,

wheres is the surface to be invariant under the scalings we
must have

a = δ[u]a∗,

wherea is the accumulation rate. Thus the scale fora is
[a]=δ[u]=[w], which seems reasonable as we can expect
the vertical velocity to scale with accumulation rate for small
surface slopes. We also find using the same invariant require-
ment of the kinematic boundary condition of the surface that
the time must be scaled as

t = [x][u]−1t∗.

As a scale for the stress we use

[σ ] = A−1/n([a]/[z])1/n,

which is motivated by the expectationε̇xx ∼ a/H and Glen’s
flow law

τij = A−1/nε̇(1−n)/n ε̇ij ,

where ε̇ is the effective strain rate defined throughε̇ :

=(ε̇ij ε̇ij/2)1/2 andτij are the deviatoric stress components.
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We are considering a situation where the vertical shear com-
ponents are small compared to all other stress components.
A set of scalings which reflects this situation is

(σxx, σyy, σzz, σxy, σxz, σyz)

= [σ ](σ ∗
xx, σ

∗
yy, σ

∗
zz, σ

∗
xy, δσ

∗
xz, δσ

∗
yz). (A1)

Same scale is used for the pressure, that isp=[σ ]p∗,
The analysis is done in a coordinate system which is tilted

forward inx direction by the angleα. The scaled momentum
equations are

∂x∗σ ∗
xx + ∂y∗σ ∗

xy + ∂z∗σ
∗
xz = −δ−1τ̄ [σ ]

−1, (A2)

∂x∗σ ∗
xy + ∂y∗σ ∗

yy + ∂z∗σ
∗
yz = 0, (A3)

δ2∂x∗σ ∗
xz + δ2∂y∗σ ∗

yz + ∂z∗σ
∗
zz = τ̄ [σ ]

−1 cotα, (A4)

whereτ̄ : =[z]ρg sinα. We obtain a consistent set of equa-
tions forα=O(δ). The slopeα is then no longer just an arbi-
trary tilt angel and̄τ can be interpreted as a scale for the basal
shear stress. From the scalings (A1) we then have[τ̄ ]=δ[σ ],
and it follows that the two non-zero terms on the right hand
side of the system of Eqs. (A2) to (A4) are of order unity.
Note that only terms of orderδ2 are being dropped from the
momentum equations.

We write the basal sliding law on the form

ub = c(x, y)|Tb|m−1Tb, (A5)

whereTb is the basal stress vector given byTb=σ n̂−(n̂T ·

σ n̂)n̂, with n̂ being a unit normal vector to the bed pointing
into the ice, andub is the basal sliding velocity given byub =

v − (n̂T · v)n̂. The functionc(x, y) is referred to as the basal
slipperiness. We find that components of the scaled basal
stress vector (T∗

b) are given by

T ∗

bx = δ∂∗
xb

∗(σ ∗
zz−σ

∗
xx)−δ∂

∗
yb

∗σ ∗
xy+δσ

∗
xz+O(δ

3), (A6)

T ∗

by = δ∂∗
yb

∗(σ ∗
zz−σ

∗
yy)−δ∂

∗
xb

∗σ ∗
xy+δσ

∗
yz+O(δ

3), (A7)

T ∗

bz = δ2((σ ∗
zz−σ

∗
xx)(∂

∗
xb

∗)2+(σ ∗
zz−σ

∗
yy)(∂

∗
yb

∗)2 (A8)

−2σ ∗
xy∂

∗
xb

∗ ∂∗
yb

∗
+σ ∗

xz∂
∗
xb

∗
+σ ∗

yz∂
∗
yb

∗)+O(δ4).

ThusT ∗

bx andT ∗

by areO(δ) while u∗

b andv∗

b areO(1), hence

c[σ ]
m
[u]−1

= O(δ−m). (A9)

Note that since[τ̄ ] = δ[σ ], we can also write Eq. (A9)
as c[τ̄ ]m[u]−1δ−m = O(δ−m) from which it follows that
c[τ̄ ]m[u]−1

= O(1), as expected.
Using ε̇xz=Aτ

n−1σxz one finds that∂zu=O(δ2), or
smaller. Thus, to second order the horizontal velocity com-
ponentsu andv are independent ofz. Differentiating the in-
compressibility equationvi,i = 0 with respect toz it then fol-
lows thatε̇zz is independent of depth as well and thatw varies
linearly with depth. A further consequence is that since the
sliding velocity is of order unity and the deformational ve-
locity ud=O(δ2) the slip ratioūb/ūd=O(δ−2). Note that in
both the field equations and all boundary conditions all first

order terms are identically equal to zero. The theory is con-
sequently correct to second order inδ.

Only collecting zeroth-order terms followed by vertical in-
tegration over depth and some simple manipulation leads to
the following two coupled differential equations for the hor-
izontal velocity componentsu andv

∂x(4hη∂xu+2hη∂yv)+∂y(hη(∂xv+∂yu))−(u/c)
1/m

=ρgh∂xs cosα−ρgh sinα, (A10)

∂y(4hη∂yv+2hη∂xu)+∂x(hη(∂yu+∂xv))−(v/c)
1/m

=ρgh∂yS cosα. (A11)

Note that we have now gone back to the dimensional vari-
ables. The quantityη is the effective viscosity defined
throughτij=2ηε̇ij . For Glen’s flow law the effective strain
rate is given by

ε̇ =

√
(∂xu)2 + (∂yv)2 + (∂yu+ ∂xv)2/4 + ∂xu ∂yv,

an expression that is correct to second order.

Appendix B

Response of flow to basal slipperiness perturbations

We consider the response to small perturbation in basal slip-
periness. Writingh=h̄ + 1s, s=s̄+1s, b=b̄, u=ū+1u,
v=1v, w=1w, andc=c̄(1+1c) where1c is the fractional
slipperiness, and inserting into (1) and (2) gives again the
zeroth-order solution (3). The first-order field equations are

4ηh̄∂2
xx1u+ 3ηh̄∂2

xy1v + ηh̄∂2
yy1u− γ1u

= ρgh̄ cosα∂x 1s − ρg sinα 1s − γ ū1c, (B1)

and

4ηh̄∂2
yy1v + 3ηh̄∂2

xy1u+ ηh̄∂2
xx1v − γ1v

= ρgh̄ cosα ∂y1s. (B2)

Fourier and Laplace transforming these equations and solv-
ing together with Eqs. (12) and (13), followed by an inverse
Laplace transform gives

Tsc =
ikh̄ūγ

p ξ
(ept − 1), (B3)

Tuc =
γ ū((ept − 1)(l2τd h̄ cotα − ikū)+ eptp φ)

p ξ(γ + ν)
, (B4)

Tvc=
klγ ūh̄((1−ept )(τd cotα−3ikūη)−3eptpη)

p ξ(γ+ν)
, (B5)

and

Twc =
kh̄ūγ (ept (ip + kū)− kū)

p ξ
, (B6)
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wherep is given by Eq. (15) and as before the abbreviations

γ =
τ1−m
d

mc̄
,

τd = ρgh̄ sinα,

ν = γ + h̄j2η,

ξ = γ + 4h̄j2η,

φ = γ + h̄(k2
+ 4l2)η,

have been used.
In some limiting cases these expressions obtain much sim-

pler forms. In dimensionless units the steady-state form of
theTsc transfer function is, for example

Tsc = −
k

k +m(k(1 + 2j2C̄)+ ij2 cotα)
. (B7)

Tsc is a monotonically decreasing function of bothk andm.
We find that

lim
k→0

Tsc =
1

1 +m
,

for l=0 showing that in the long wavelength limit the
SSTREAM surface topography response to basal perturba-
tions is independent of mean slipperinessC̄ but not of the
sliding law exponent.
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