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Abstract. The process of laser light reflecting from surfaces
made of scattering materials that do not strongly absorb at
the wavelength of the laser can involve reflections from hun-
dreds or thousands of individual grains, which can introduce
delays in the time between light entering and leaving the sur-
face. These time-of-flight biases depend on the grain size
and density of the medium, and thus they can result in spa-
tially and temporally varying surface height biases estimated
from laser altimeters, such as NASA’s ICESat-2 (Ice Cloud,
and land Elevation Satellite-2) mission. Modeling suggests
that ICESat-2 might experience a bias difference as large
as 0.1–0.2 m between coarse-grained melting snow and fine-
grained wintertime snow (Smith et al., 2018), which exceeds
the mission’s requirement to measure seasonal height dif-
ferences to an accuracy better than 0.1 m (Markus et al.,
2017). In this study, we investigate these biases using a model
of subsurface scattering, laser altimetry measurements from
NASA’s ATM (Airborne Topographic Mapper) system, and
grain size estimates based on optical imagery of the ice sheet.
We demonstrate that distortions in the shapes of waveforms
measured using ATM are related to the optical grain size of
the surface estimated using optical reflectance measurements
and show that they can be used to estimate an effective grain
radius for the surface. Using this effective grain radius as a
proxy for the severity of subsurface scattering, we use our
model with grain size estimates from optical imagery to sim-
ulate corrections for biases in ICESat-2 data due to subsur-
face scattering and demonstrate that, on the basis of large-
scale averages, the corrections calculated based on the satel-
lite optical imagery match the biases in the data. This work
demonstrates that waveform-based altimetry data can mea-
sure the optical properties of granular surfaces and that cor-

rections based on optical grain size estimates can correct for
subsurface-scattering biases in ICESat-2 data.

1 Introduction

Laser altimetry techniques allow efficient measurement of
precise surface elevations for ice sheets and glaciers from
both satellites (Abdalati et al., 2010) and aircraft (MacGregor
et al., 2021). Repeated measurements over glaciers and ice
sheets allow the detection of surface elevation changes that
show the effects of surface mass balance and ice-dynamic
processes (Smith et al., 2020), while measurements over
floating ice are used to estimate sea ice thickness (Petty
et al., 2023) and to infer melt rates beneath ice shelves (Sut-
terley et al., 2019). These techniques rely on the altime-
ter’s ability to measure the range to the ice or snow surface
with high precision. Since its launch in late 2018, ICESat-
2 (Ice Cloud, and land Elevation Satellite-2) has been mak-
ing high-precision measurements of ice sheet and glacier el-
evation. Unlike the near-infrared (1064 nm) laser used by
its predecessor, ICESat, ICESat-2’s laser transmits and re-
ceives green light, with a wavelength of 532 nm. The shorter
wavelength allows ICESat-2 to use highly sensitive detec-
tors to measure the arrival time of individual return pho-
tons, improving its overall precision and resolution relative
to that of ICESat (Brunt et al., 2021; Markus et al., 2017).
At the same time, the choice of a green laser introduces po-
tential biases in its altimetry measurements because ice ab-
sorbs green light weakly (Warren and Brandt, 2008), allow-
ing photons to scatter over relatively long distances within
the snow before returning to the surface and, potentially, the
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satellite. These biases can interfere with ICESat-2’s primary
mission goals of precisely measuring elevation changes over
glaciers, ice sheets, and sea ice (Markus et al., 2017) because
time-varying biases in ICESat-2 measurements could pro-
duce spurious signals that might be interpreted as ice sheet
elevation changes (Smith et al., 2018). Likewise, spatially
varying biases in ICESat-2 measurements over sea ice might
falsely be interpreted as variability in freeboard and thus ice
thickness (Harding et al., 2011; Smith et al., 2018).

The problem of biases in altimetry data that result from
subsurface multiple scattering in snow and ice has been de-
scribed in previous studies (Harding et al., 2011; Smith et al.,
2018). Light is reflected from snow surfaces primarily by
multiple scattering, where each photon scatters off many
snow grains before escaping the snowpack (Wiscombe and
Warren, 1980; Warren, 1982). When light scatters from gran-
ular materials that absorb light strongly, only those photons
that have scattered a small number of times escape the sur-
face. By contrast, light scattering from weakly absorbing
granular materials may enter the surface and scatter from tens
or hundreds of grains before escaping again. The extra dis-
tance traveled during these subsurface-scattering events de-
lays the return of the photons to the surface, meaning that
light escaping the surface includes photons that have trav-
eled a distribution of long and short paths. A lidar system
measuring the range to a weakly absorbing surface will mea-
sure returning photons that have a longer mean travel time
and a broader distribution of return times than it would from
a non-scattering or strongly absorbing surface. The mean de-
lay of the photons and the shape of the returning pulse (i.e.,
the measured waveform in an analog lidar or the distribu-
tion of photon timing in a photon-counting lidar) depend on
the scattering properties of the material, with lower densities
and coarser grain sizes corresponding to deeper penetration
of photons into the snow, broader returns, and longer delay
times (Fair et al., 2024). Light absorption within the scatter-
ing medium can also influence time distribution of returning
photons, with stronger absorption producing narrower dis-
tributions and smaller net delays because photons are more
often absorbed by the medium before they can accumulate
long delays. The distribution in time of reflected energy can
thus provide information about the optical properties of snow
and ice surfaces.

The dependence of return photon timing distribution on
ice optical properties has also been explored in recent stud-
ies (Smith et al., 2018; Allgaier and Smith, 2021; Hu et al.,
2022), including one study where researchers have used pre-
dictions from a scattering model to interpret measurements
from a hand-carried system to estimate snow and ice optical
properties using a pulsed laser and a detector pressed against
the ice surface and separated by a few centimeters (Allgaier
et al., 2022). Although other researchers have noted the po-
tential for these theories to be applied to laser remote-sensing
measurements, only a few studies have attempted to infer
snow and firn properties based on remotely sensed lidar scat-

tering measurements (Hu et al., 2022; Lu et al., 2022; Hard-
ing et al., 2011). More recently, a study demonstrated that in
ATM (Airborne Topographic Mapper) data from northeast-
ern Greenland, apparent elevation differences between green
and near-infrared laser altimetry measurements were asso-
ciated with grain size variations (Fair et al., 2024). A sec-
ond study demonstrated that subsurface scattering of green
laser light is associated with negative biases in estimated
sea ice surface elevations, in some cases leading to floating-
ice elevations that are apparently below the water surface
(Studinger et al., 2024).

In this study, we investigate the scattering properties of
Greenland snow and ice surfaces using waveform shapes
from an airborne laser altimeter, with the goal of developing
a correction for the biases that subsurface scattering can in-
troduce into ICESat-2 data. Although this study is motivated
by the need to understand biases in ICESat-2 measurements
related to subsurface scattering of green light, data from
ICESat-2 are rarely suitable for investigation of subsurface-
scattering biases because ICESat-2’s 11 m footprint leads to a
significant random component in the timing of returned pho-
tons over rough and sloping surfaces, which tends to obscure
small changes in the timing distribution associated with sub-
surface scattering. Slope and roughness tend to be largest in
low-elevation regions of Greenland (Nolin and Payne, 2007),
which are the same regions where we expect to see the
largest subsurface-scattering biases. Instead, we use wave-
form measurements from the ATM airborne laser altimetry
system to test a previously developed model of subsurface
scattering (Smith et al., 2018) based on a comparison be-
tween the shapes of the returned pulses and pulse shapes ex-
pected based on the model. We demonstrate that we can re-
cover an estimate of the near-surface optical grain size when
we adjust the grain size and surface roughness in the model to
match modeled waveforms to measured waveforms. We test
the grain size estimates from waveform matching by compar-
ing them against grain size estimates derived from airborne
and satellite reflectance measurements. Although this com-
parison does not suggest a 1 : 1 linear relationship between
waveform-derived grain sizes and reflectance-derived grain
sizes, we use ICESat-2 biases calculated for the ATM grain
size estimates as a proxy for direct measurements of ICESat-
2 biases to calibrate a correction based on reflectance-derived
grain sizes and demonstrate that the calibrated correction can
produce elevation estimates that are unbiased when averaged
over a range of Greenland terrain and surface conditions. Al-
though the results of this study fall short of a correction that
could eliminate grain-size-driven biases in ICESat-2 data, we
provide a description of some of the advances in satellite re-
mote sensing that would be needed to more adequately ad-
dress this problem.
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2 Data

This study is based on waveform data from the ATM lidar
systems, grain size estimates based on the airborne AVIRIS-
NG (Airborne Visible/Infrared Imaging Spectrometer, Next-
Generation) data, and grain size estimates based on space-
borne OLCI (Ocean and Land Colour Instrument) data. A
summary of measurement locations for the airborne data is
presented in Sect. 3.

2.1 Altimetric waveforms from the Airborne
Topographic Mapping lidar systems

ATM (the Airborne Topographic Mapping system) makes
laser altimetry measurements using a conically scanning
laser that maps elevations beneath an airplane over a 40–
500 m wide swath. ATM has made measurements over the
Greenland and Antarctic ice sheets since 1993, with an
evolving configuration of lasers and measurement strategies
that have gradually improved measurement precision and re-
liability (MacGregor et al., 2021; Krabill et al., 2002). Since
2017, the system has used green (532 nm) lasers with a 1.3 ns
pulse duration (full width at half maximum) and a receiver
with a bandwidth of around 1 GHz. At a nominal flight el-
evation of 500 m above ground level, the size of the lidar
footprint on the surface is ∼ 0.70 m in diameter. ATM’s con-
figurations include a narrow-swath scanner with 5° full-scan
angle that makes measurements over a ∼ 40 m swath on the
ground at a flight elevation of 500 m and a wide-swath scan-
ner with a 30° scan angle that produces a ∼ 460 m swath.

Many lidars, including both photon-counting instruments
such as that used by ICESat-2 and analog instruments such as
ATM, can measure the time distribution of light that has re-
flected off their targets. Photon-counting altimeters measure
the distribution of photon return times directly, while ana-
log lidars measure a time series of voltages that are approxi-
mately proportional to the rate at which photons are incident
on the detector. Ideally, each of these types of measurement
would give a good approximation of the time distribution of
photons reflected from the ice, while a waveform measured
by an analog lidar would be equivalent to a histogram in
time of photons detected by a photon-counting lidar. In prac-
tice, the characteristics of the altimeter and the characteris-
tics of the surface measured both play a role in the degree
to which subsurface-scattering effects can be distinguished
in the recorded waveform. In our model (see Sect. 3), the
waveform for a laser altimeter corresponds to the temporal
convolution of the distribution of photon delays, the impulse
response function (IRF) of the recording system, the range
to the surface, and the shape of the transmitted pulse, mean-
ing that the effects of subsurface scattering become easier to
measure for narrower transmitted pulses, higher-bandwidth
recording systems, flatter surfaces, and smaller beam diver-
gence values. The recent (post-2017) versions of the ATM
transceiver offer good potential to measure scattering effects

Table 1. Dates and instruments for ATM measurements.

Campaign Instrument Dates processed

Summer 2017 narrow swath 7 Jul–24 Jul
Spring 2018 narrow swath 3 Mar–1 May
Spring 2019 narrow swath 3 Apr–14 May
Summer 2019 narrow swath, wide swath 4 Sep–11 Sep

because the temporal resolution of the system (corresponding
to the receiver sampling interval and the pulse duration) is not
large compared with the path delays predicted for green light
reflecting from snow surfaces (Smith et al., 2018). Similar
measurements have been made using the Land, Vegetation,
and Ice Sensor (LVIS) (Hofton et al., 2008), but because of
that sensor’s longer pulse duration and infrared wavelength,
we expect its waveform shapes to have only limited sensitiv-
ity to snow conditions. Photon-counting lidar measurements
by the Slope Imaging Multi-polarization Photon-counting
Lidar (SIMPL) (Yu et al., 2016; Harding et al., 2011) of-
fer some of the advantages of ATM data but used a photon-
counting detection strategy that is not compatible with the
processing methodology used in this study.

ATM waveform measurements in this study come from
data collected in Greenland in the 2017 summer campaign,
the 2018 spring campaign, and the 2019 spring and summer
campaigns. Most of the data that we processed (summarized
in Table 1) were collected using the ATM narrow-swath scan-
ner, but we also processed wide-swath data from the 2019
summer campaign. For both scanners, the laser’s incidence
angle on a flat surface is approximately half the full scan an-
gle, i.e., 15° for the wide swath and 2.5° for the narrow swath.
Waveform data from these campaigns are distributed in the
ILNSAW1B and ILATMW1B products (Studinger, 2018a,
b), which provide digitized transmitted and received wave-
forms associated with each transmitted pulse. The wave-
forms have a temporal sampling of 0.25 ns and are quantized
at 8 bits to produce digital values between 0 and 255. A vari-
able neutral density filter in front of the receiver determined
the optical throughput of the system and was set to avoid
digitizer saturation over snow surfaces. We considered using
the near-infrared waveform data collected during the 2019
Greenland campaign, but we found that the signal-to-noise
ratio of these data was much lower than that of the green
data and that the infrared return was often absent over coarse-
grained surfaces even when the green waveform showed a
clear return. Therefore, to obtain a consistent set of measure-
ments, we focus our study on the green waveforms.

At the start of each ATM measurement campaign, wave-
forms were recorded with the laser aimed at a fixed, flat panel
of fine-grained white material (Spectralon®) (Studinger
et al., 2022a). We take these measurements to represent the
system IRF I (t) for the whole campaign. Although ATM
instruments record both the received and transmitted wave-
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forms, we found that the recorded transmitted waveforms
were not a good representation of the system impulse re-
sponse (see Sect. S1 in the Supplement). Because of this, we
disregard the measured transmitted pulse shapes and instead
assume that the system IRF is consistent with the most re-
cent calibration measurement available. The wide-swath and
narrow-swath ATM instruments produce very similar mea-
surements but use separate transmitters, optics, and receivers.
For this reason, we use separate calibrations for the two sys-
tems for each campaign (Studinger et al., 2022b).

2.2 Grain size estimates from the AVIRIS-NG airborne
spectrometer

To help evaluate whether the ATM-derived waveforms were
consistent with the returns we would expect from known sur-
face conditions, we used data collected using AVIRIS-NG
on a separate aircraft that followed the aircraft carrying ATM
on 5 subsequent days in the autumn of 2019. AVIRIS-NG
measures radiances at 425 different wavelengths between
380 and 2510 nm on a detector array that produces images
with 598 across-track samples (Thompson et al., 2018). Its
∼ 7.5 km altitude during the 2019 survey produced images on
a ∼ 4–5 km wide swath, with ∼ 6–7 m pixel sizes (Nolin and
Dozier, 2000). These measurements were processed to esti-
mate grain sizes using a technique that uses the strength of
an absorption feature in the reflectance spectrum of snow at
1.03 µm as an indicator of snow grain size (Nolin and Dozier,
2000). We rejected one of the data files (the single file col-
lected on 9 September 2019, which is the only file with ex-
tensive coverage of sea ice) because while the image appears
to resolve a melting surface including a variety of sea ice fea-
tures, including melt ponds and leads, the range of retrieved
grain sizes span a small range (90 % of values between 164
and 287 µm). The reason why this file should contain anoma-
lous values is not clear, although we note that the sun was
lower in the sky than it was for any other file (79° solar zenith
angle, as compared to ∼ 70–72° for other files in the cam-
paign), which we hypothesize might result in lower-quality
grain size retrievals. The remaining 26 data files cover two
coast-parallel lines and a few coast-perpendicular lines in
northwestern Greenland, spanning a range of grain size con-
ditions from large-grained melting surfaces near the coast to
fine-grained surfaces inland, and 17 of these overlapped with
available ATM waveform files. Most (∼ 80 %) overlapping
measurements within a 5 d window were collected within 3 h
of one another, and to limit how much the surface might
have changed between two sets of measurements, we com-
pare measurements between the two systems only if the dif-
ferences between timestamps for the data files are less than
200 min.

2.3 Grain size estimates from OLCI reflectance
measurements

To demonstrate potential corrections for ICESat-2 height bi-
ases, we use a set of satellite measurements (Vandecrux et al.,
2022b) derived from the OLCI instrument onboard the Euro-
pean Space Agency’s Sentinel-3A satellite. OLCI provides
surface reflectance information for 21 spectral bands over a
1270 km wide swath with sub-kilometer resolution, giving
sub-daily revisit times for Greenland during summer months.
Images that were determined to be cloud free were converted
to grain size estimates by comparing estimated surface re-
flectances at 685 nm (far red, band 17) and 1020 nm (near in-
frared, band 21) with the output of a radiative transfer model
(Kokhanovsky et al., 2019). The result is a set of daily maps
of Greenland, posted at 1 km, giving an estimate of the sur-
face optical grain size for cloud-free areas of the ice sheet
(Vandecrux et al., 2022a). Validation of these maps (Vande-
crux et al., 2022b) against ground-based grain size estimates
derived from the infrared (1310 nm) reflectance of surface
snow samples collected at EastGRIP in northeastern Green-
land found that the OLCI-based estimates were systemati-
cally larger than ground-based estimates, but these estimates
also showed the expected decreases during snowfall events
and increases during melt events. We compare ATM and
AVIRIS-NG grain size estimates with the OLCI-based es-
timates using bilinear interpolation into each daily grid. If
measurements are marked as invalid in an OLCI map because
of the presence of clouds, we derive an estimate based on the
previous day’s map under the assumption that the grain size
had not changed substantially between the 2 d, and if the pre-
vious day’s estimate is invalid, we reject the data point.

3 Methods

Work in this study is based on a model of how the measured
time distribution of light reflected from a scattering surface
depends on the properties of the surface and on the properties
of the transmitted waveform (Smith et al., 2018). We partially
validate this model by comparing its results with measured
waveforms, estimate surface grain sizes in Greenland by tun-
ing the parameters in the model, and use these grain size val-
ues as a proxy for the degree of subsurface scattering to help
predict subsurface-scattering delays in ICESat-2 data.

3.1 Modeling return time distributions

We model light scattering in snow and firn based on a Monte
Carlo radiative transfer model for near-surface scattering
combined with an analytical extrapolation of the shape of the
return for photons with long scattering delays (Smith et al.,
2018). This model is similar to that used in other studies (All-
gaier and Smith, 2021), except that we use a Monte Carlo
model to predict the return photon distribution at short de-
lay times and diffusion theory at longer delay times, whereas
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the other studies use diffusion theory at all times. The choice
to use diffusion theory is appropriate when the detector and
the laser source are not coincident (i.e., when all photons
measured have traveled an appreciable horizontal distance
through the scattering medium) but less so for the backscat-
ter geometry used here. This is because diffusion theory can
produce unphysical results for very short time delays (Flock
et al., 1989). For measurements in which there is a horizontal
offset of more than a few times the scattering length between
the source and the detector, these short delays are not ob-
served, whereas in the backscatter geometry of an altimetry
measurement, many photons are likely to return after only a
few scattering events. By directly modeling the time of flight
for the incident beam and the first few scattering events, our
Monte Carlo model avoids this problem.

Returns from our model can be described as follows:

SRFm(t)= S

(
t

τ ∗(reff,ρ)

)
exp(−kabs(reff,ρ)veff(ρ)t), (1)

where

τ ∗ = (veff(ρ)kscat(reff,ρ)(1− g(reff)))
−1.

Here veff is the effective velocity of light traveling through
the scattering medium, which depends on the density; kscat
and kabs are the bulk scattering and absorption coefficients
of the medium; g is the asymmetry parameter of scattering
in the medium; reff is the optical effective grain size, cor-
responding to the radius of a collection of ice spheres that
would have the same surface-to-volume ratio as the scatter-
ing medium (Grenfell and Warren, 1999); and S is a scatter-
ing function that gives the distribution of return times from
a non-absorbing scattering half space in units of the aver-
age time between scattering events in the half space. The
quantity τ ∗ describes the time required for light to travel be-
tween two scattering events, where we have approximated
the anisotropic scattering characteristics of light interacting
with large particles by multiplying the scattering coefficient
by a factor (1− g) (Smith et al., 2018). We estimate the op-
tical bulk scattering properties based on a Mie theory calcu-
lation treating ice grains as independent spheres of ice sur-
rounded by air (Gardner and Sharp, 2010), which gives es-
timates of kscat and kabs, and g as a function of wavelength,
grain size, and density. We approximate the velocity of light
in firn for density ρ as follows:

veff = c

(
ρ

ρice
nice+

ρice− ρ

ρice
nair

)−1

, (2)

where c is the speed of light in a vacuum, ρice is the density
of ice, nice is the real part of the refractive index of ice cal-
culated from a published compilation (Warren and Brandt,
2008), and nair = 1.

To reduce our description of scattering to a single param-
eter, we use a nominal density value of 400 kgm−3 and a
corresponding velocity value of 0.27 mns−1, which lets us

express Eq. (1) solely in terms of kabs and reff. Although the
choice of 400 kgm−3 is somewhat arbitrary, it strikes a bal-
ance between the smaller (270–350 kgm−3) densities typical
of Greenland snow (Fausto et al., 2018) and the larger (410–
910 kgm−3) densities observed in melting snow and glacier
ice surfaces (Cooper et al., 2018). Figure 1a shows t∗ as a
function of density for a grain size of 200 µm that is plot-
ted once using the relationship between velocity and density
from Eq. (2) and once using a constant velocity value ap-
propriate for solid ice. Over this range of densities, t∗ varies
by about a factor of 4, while the difference in t∗ associated
with the velocity model is at most about 20 %. This shows
that most of the variability in scattering time is associated
with the distance between scattering events (determined by
the density and the grain size) and not with the velocity of
light in the medium (determined by the density alone). Fig-
ure 1b shows grain size that would be inferred for a given
t∗ value; for our nominal density value (400 kgm−3); and
for densities corresponding to light, fresh snow (200 kgm−3)
and nearly solid ice (800 kgm−3). Over the range of reff con-
sidered here, spanning 3 orders of magnitude, the range of
reff at any given value of t∗ between the nominal and the ex-
treme values of density is just less than a factor of 2, which
demonstrates that while there is some uncertainty in the rela-
tionship between t∗ and reff when the density is unknown, a
measured value of t∗ can constrain the surface grain size to
around a factor of 2.

3.2 Modeling expected waveform shapes

The return waveform measured by an altimeter depends on
the scattering properties of the surface, the shape of the sur-
face, and the IRF of the system making the measurements.
We calculate model surface-return shapes as follows:

Wmodel(t− tsurf, ro,σ )= Iest(t)⊗SRFm(t;ro)⊗G(t,σ ), (3)

Here W(t − tsurf) is the received waveform, where t is
time, tsurf is the round-trip travel time to the surface, and
⊗ represents a temporal convolution. The modeled surface
response function, SRFm(t;ro), is calculated from Eq. (1),
while Iest(t) is an estimate of the system IRF. We approxi-
mate the distribution of photon delays due to slope and sur-
face roughness weighted by the illumination pattern of the
laser as a Gaussian function, i.e., G(t,σ ).

Our approximation of the effects of slope and roughness
follows studies that modeled satellite laser altimetry wave-
form shapes (Yi et al., 2005; Smith et al., 2019a). If we as-
sume that the illumination pattern is represented by a two-
dimensional Gaussian function with standard deviation σb,
that the illuminated surface is represented well by a rough
plane with a normal that makes an angle φ with the beam
direction, and that the roughness produces a Gaussian distri-
bution of elevations relative to the plane with standard devia-
tion σr, then the standard deviation of the Gaussian function
( σ ) should be equal to 2

c
(σ 2

r +σ
2
b tan2(φ))1/2 (Yi et al., 2005;
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Figure 1. Relation between scattering time, density, and effective grain size. Panel (a) shows the relation between scattering time and density
for a constant grain size of 200 µm using a mixing law to calculate the velocity and a constant velocity appropriate to solid ice. Panel (b)
shows the relationship between scattering time and grain size for three different densities. The dashed black lines show double and half the
effective radius for ρ= 400 kgm−3.

Smith et al., 2019b). This means that more strongly slop-
ing surfaces should produce broader returns and that returns
from the wide-swath ATM instrument should be broader than
those from the narrow-swath instrument. ATM’s 0.7 m foot-
print implies that the return is σ ≈ 1 ns for the wide (15° in-
cidence angle) swath and 0.2 ns for the narrow (2.5° inci-
dence angle) swath over a flat smooth surface. Note that be-
cause ATM uses a conical scanning mechanism, each scan-
ner’s beam will intersect a flat surface with an incidence an-
gle equal to the scanner’s off-nadir angle.

Figure 2 shows the components of Eq. (3) and resulting
waveforms based on the system IRF measured using a cal-
ibration target with no significant subsurface scattering on
9 March 2018 for a surface roughness equivalent to 0.5 ns
(i.e., 7.5 cm) and for three snow grain sizes: 50, 500, and
2000 µm. The modeled waveforms show that for increasingly
large grain sizes, the peak amplitude of the waveform be-
comes smaller and the waveform becomes broader, with the
trailing edge of the waveform being blurred much more than
the leading edge. The measured I (t) has a distinctive droop
(negative excursion) just after the end of the main pulse,
which is reflected in the predicted waveforms, although for
larger grain sizes it no longer extends below zero. We were
initially uncertain that the droop in the I (t) was due to a
process that would be modeled correctly by Eq. (3), but the
consistency between modeled and recovered waveforms (see
Sect. 4.1) suggests that the process that leads to the droop is
a linear effect (likely in the receiver electronics). We specu-
late that this is due to bandwidth limitations in the receiver,

perhaps due to an impedance mismatch at the input of the
digitizer, but we do not have strong evidence about its origin.

3.3 Matching modeled waveform shapes to measured
waveforms

For each measured waveform, we identify the first sample
at which the waveform exceeded 50 % of its maximum am-
plitude and assume that all samples more than 3 ns before
this sample contain only a uniform background offset and
noise, whose values we calculate as the mean and standard
deviation (Nest) of the sample values in this region. We then
correct each waveform by subtracting this background offset.

To match waveforms with model results, we minimize the
misfit between the DC-corrected and modeled waveforms:

R2(reff,σ, t0)=
∑[

Pm(ti)−AW(ti− t0, reff,σ )

N

]2

. (4)

Here Pm(ti) is the waveform sampled at times ti corrected
for the background offset,W is the modeled waveform,A is a
scaling term relating the amplitude of the modeled waveform
to that of the measured waveform, and N is the number of
samples in the waveform.

We find optimal values for our adjustable parameters us-
ing a three-stage golden-section search (Press et al., 2007)
in σ , reff, and t0. The search algorithm consists of an outer
search over a range of reff values, an inner search over σ val-
ues, and a second inner search over t0 values. Within the
search over t0, the amplitude values are found with a least-
squares regression between each model waveform and the
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Figure 2. Components of the waveform model. The ATM IRF (a) is convolved with a Gaussian function representing surface roughness (b)
and the surface response function (c) to produce the model waveform (d). Three SRFs and corresponding waveforms are shown in (c) and (d)
for reff= 50, 500, and 2000 µm. Curves in (a)–(c) are normalized to unit amplitude, while curves in (d) are based on an IRF with unit
amplitude.

measured waveform. The searches use a tolerance in σ of
0.25 ns and a logarithmic tolerance in reff of 10 %. After each
golden-section search has converged, a final parabolic-search
step is used to further refine the estimated σ and reff values.
The convolutions in Eq. (3) are computationally costly, and
thus we keep track of all waveforms we have calculated and
(whenever possible) use pre-computed waveforms in the mis-
fit calculations. Using the golden-section search rather than
a derivative-based searching strategy (e.g., a steepest-descent
or conjugate-gradient search) lets the fitting algorithm search
a consistent set of parameters as it encounters waveforms
that are similar to waveforms that it has previously matched,
which greatly reduces the time required to fit a collection of
waveforms, many of which are similar to one another. We
further reduce our computational times by fitting only ev-
ery fourth waveform for data from the narrow-swath scanner
and every second waveform from the wide-swath scanner.
For most purposes in this study, we further reduce the spatial
resolution of the recovered grain size estimates using a 10 m
block median filter, in which we identify the pulse containing
the median grain size value within each 10 m× 10 m block
sampled by each survey and report its location and grain size.

To evaluate the resolution and accuracy of this fitting pro-
cedure, we generated a set of test waveforms based on Iest(t)

for a range of grain sizes, pulse amplitudes, and broaden-
ing values. We assessed the sampling distribution of the
recovered grain size estimates by generating 256 different
waveforms for each combination of parameters, normalizing
each to a specified peak amplitude (Pmax), adding random
(normal-distribution) values with a standard deviation of two
digitizer counts to each sample, and applying our fitting algo-
rithm to each. Our fitting algorithm selects grain sizes based
on a set of pre-computed waveforms generated for grain size
values separated by 10 %, and thus to demonstrate the worst-
case performance of our algorithm, we generated the test data
based on grain sizes that were halfway between the grain size

values used by the algorithm. Figure 3 shows the relationship
between the specified and recovered grain size for small am-
plitudes and a range of broadening values (Pmax= 90, σ = 0,
1, and 2 ns) and for large amplitudes and small broadening
values (Pmax= 225, σ = 0 ns). For the high-amplitude wave-
forms with little broadening (Pmax= 255, σ = 0 ns), the fit-
ting procedure consistently recovers grain sizes as small as
20 µm, converging to either the next largest or the next small-
est grain size value among the searched values (separated by
10 %) with a moderate preference for the next smallest value,
giving recovered values whose distribution width (5th to
95th percentile) is on the order of 10 %. At smaller ampli-
tudes (Pmax= 90) and larger pulse broadening values (σ = 1,
2 ns), the width of the recovered distribution increases with
decreasing grain size, with the 5th and 95th percentiles of the
distributions spanning around a factor of 5 for reff= 50 µm
and σ = 2 ns. For input grain sizes up to about 75 µm (a factor
of 3 times the minimum grain size tested), the waveform that
best fit the simulated waveform was often the one with no
scattering for the low-amplitude and broadened waveforms
(A= 90, σ = 2 ns.) In these cases, the bottom of the distribu-
tion is not constrained on a log scale.

Our numerical experiments show that the ratio between the
amplitude of the pulse and the rms of the noise added to the
synthetic waveform plays a large role in the accuracy of the
recovered grain size for synthetic data, with larger signal-to-
noise ratios corresponding to higher precision. For measured
field data, the total gain of the system was set in advance us-
ing a neutral density filter to avoid detector saturation over
snow surfaces, while the noise values were nearly constant,
likely determined by the digitizer and receiver electronics.
This should result in data with maximum signal-to-noise ra-
tios over flat fine-grained snow surfaces and lower signal-to-
noise ratios over rough, sloping, and/or coarse-grained sur-
faces. Fortunately, the model results suggest that we should
be able to recover grain sizes with small fractional errors
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Figure 3. Fitting test data. Vertical bars show the range of recov-
ered grain sizes for each input grain size value, three low-amplitude
rough-surface cases with Pmax= 90 and variable pulse broadening
(σ = 2, 1, and 0 ns), and a high-amplitude case with Pmax= 255 and
no pulse broadening (σ = 0 ns). Bars indicate the 5th and 95th per-
centiles of the recovered grain sizes. Bars extending off the bottom
of the plot for the smallest grain sizes and the low-amplitude case
indicate that the best fit was with the non-scattering model wave-
form for more than 5 % of the waveforms. The solid line indicates
a 1 : 1 relationship between the input and recovered grain sizes, and
the dashed lines indicate the 0.5 : 1 and 2 : 1 relationships.

when the grain sizes are large, even when the signal-to-noise
ratios are relatively low.

3.4 Predicting biases in ICESat-2 measurements

We predict expected biases in ICESat-2 data based on mea-
sured ATM waveform shapes by using our model to inter-
pret the measured ATM waveforms using the effective grain
size as a proxy for the degree of subsurface scattering and
then using the model again to estimate the range delay that
would result from an ICESat-2 measurement over the same
surface. To explain why this is necessary, we present a gen-
eral statement of the magnitude of the bias (B) in an altimetry
measurement estimated from a waveform Ws(t) due to sub-
surface scattering:

B(M,Ws(t))=M(Ws(t))−M(W(t)). (5)

Here Ws(t) is the waveform including the effects of scat-
tering,W(t) is the waveform excluding the effects of scatter-
ing, and M() is a metric used to derive height measurements
from waveforms (referred to here as a “retracker”). The
ICESat-2 ATL06 algorithm (Smith et al., 2019b) provides a
standard land–ice height parameter (hli) that is based on the

median photon elevation within a small (typically± 1.5 m)
window around the surface. Ideally, to evaluate the expected
biases in this parameter, we would use measured ATM wave-
forms to approximateWs(t) and use the ATM IRF to approx-
imate W(t), which would let us directly use Eq. (5) to cal-
culate expected biases with the windowed waveform median
as M(). This is not practical, however, because most ATM
waveforms include digitizer output that is less than zero (see
Fig. 2). ICESat-2 uses a photon-counting lidar, meaning that
the median elevation can be calculated directly from the dis-
tribution of photon heights within the window. For a wave-
form lidar, the waveform median can be approximated under
the assumption that waveform’s digitizer counts (W(t)) are
proportional to the flux of photons into the detector:

Tmed(W(t))= t |

∫ t
t0
W(t ′)dt ′∫ t1

t0
W(t ′)dt ′

= 0.5, (6)

but if the relationship between the two is more complex (i.e.,
if I (t) in Eq. 3 is significantly different from a delta func-
tion), the waveform median may not be equal to the median
time for the energy incident on the detector. This appears to
be the case for ATM, where the recorded waveforms include
negative values, implying a more complicated relationship
between the photon flux and the recorded values.

Since we cannot apply the median retracker directly to
the ATM waveforms, we model the effects of subsurface
scattering on ATL06 biases by using Eq. (3) to generate
synthetic-scattering-affected waveforms for a range of grain
sizes based on an estimate of the ICESat-2 system IRF
derived from pre-launch calibration measurements (Smith
et al., 2018). We then use Eq. (5) to predict the bias in the
ATL06 measurements from each modeled waveform. Fig-
ure 4 shows the expected range bias for three retrackers as
a function of grain size: for the median retracker applied to
the ICESat-2 IRF (the ATL06 hli parameter), for a windowed
mean on the same IRF (the ATL06 hmean), and for a 15 %
threshold centroid retracker (the metric used to track ATM
waveforms) using the ATM IRF. The biases are smallest for
the median retracker for the ICESat-2 waveform, increas-
ing from sub-centimeter levels for reff< 10 µm to around
35 cm for reff> 10 000 µm. The mean-based ICESat-2 bias
is around twice as large as the median-based ICESat-2 bias,
and the ATM bias is a few percent larger than the ICESat-
2 median. This plot illustrates one difficulty in measuring
ICESat-2 subsurface-scattering biases using laser altimetry
data as a reference: over coarse-grained surfaces, ATM mea-
surements are expected to have approximately the same bi-
ases as ICESat-2 measurements.
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Figure 4. Predicted range bias for ATM and ICESat-2 waveforms.
ATM biases are calculated using a mean-based retracker with a
15 % amplitude threshold. ICESat-2 biases are calculated using a
windowed median and a windowed mean retracker.

3.5 Subsurface-scattering bias correction based on
ATM and OLCI

To systematically correct ICESat-2 measurements, we need
a spatially and temporally contiguous map of estimated
subsurface-scattering biases. In principle we could do this
in two stages by using maps of grain size based on optical
reflectance measurements (i.e., from OLCI) to interpolate a
grain size value for each ICESat-2 elevation measurement
and then calculating a range bias based on the relationship
between grain size and bias using Eq. (5). The accuracy of
such a correction depends on the accuracy of the interpo-
lated grain sizes and on the accuracy of the range bias pre-
dicted for each grain size. Specifically, the accuracy of the
predicted range biases depends on whether the same scatter-
ing processes that influence the range bias determine the sur-
face reflectance, which may not be true in all cases. For ex-
ample, OLCI and AVIRIS-NG grain size estimates are based
in part on the reflectance of infrared light (Nolin and Dozier,
2000; Vandecrux et al., 2022b), which does not penetrate
as far below the snow surface as green light (Smith et al.,
2018) because of the stronger attenuation of infrared light by
ice (Warren and Brandt, 2008). As a result, the reflectance-
based measurements may be more sensitive to near-surface
layers than ICESat-2 would be. An ICESat-2 bias predicted
based on surface reflectance measurements using our nomi-
nal 400 kgm−3 will also be imprecise by up to a factor of 2
for snow and ice surfaces with smaller or larger densities.

In contrast to reflectance-based grain size estimates, ATM-
waveform-based grain size estimates involve the same phys-
ical processes involved in ICESat-2 subsurface-scattering bi-
ases. This implies that if we use the same model to inter-
pret ATM waveform shapes that we use to predict ICESat-

2 biases, the predicted ICESat-2 bias for a given recovered
grain size should be consistent with the conditions that pro-
duced the ATM waveform, despite errors in the grain size
estimates related to surface-density variations. For this rea-
son, we believe that we can use predicted biases based on
ATM grain size estimates to evaluate bias corrections based
on OLCI grain size estimates, even if the OLCI and ATM
grain size estimates do not agree on a point-for-point basis.

The simplest way to calculate an OLCI-based correction
to the ATL06 hli parameter is as follows:

B(x,y, t)= Bmed(rOLCI(x,y, t)). (7)

Here B(x,y, t) is the estimated bias at position (x,y) and
time t , rOLCI(x,y, t) is the grain size estimated from the
OLCI data at the same location and time, and Bmed is the
median ATL06 bias predicted using Eq. (5) and the ICESat-
2 IRF. Based on our assumption that subsurface scattering
affects ATM waveforms in the same way it affects ICESat-2
photon distributions, we treat biases based on ATM grain size
estimates as representative of the biases that would affect
ICESat-2 if it measured the surface at the place and time
where ATM made its measurements. This lets us evalu-
ate B(x,y, t) by comparing it against Bmed(rATM(x,y, t)),
which is the ATL06 bias estimated for the grain size mea-
sured by ATM at the same location. Thus, the statistics of
Bmed(rATM(x,y, t))−Bmed(rOLCI(x,y, t)) should allow us
to estimate the statistics of ICESat-2 ATL06 data corrected
using based on OLCI grain size estimates.

As we will see in Sect. 4.5, the OLCI measurements ap-
pear to become less sensitive to grain size variations when
the surface grain size is small. This leads us to also evaluate
a threshold-based adjustment to the OLCI correction.

Bthr(x,y, t)={
B0 : rOLCI(x,y, t) < rthr

Bmed(rOLCI(x,y, t)) : rOLCI(x,y, t) < rthr
(8)

Here rOLCI is the OLCI-estimated grain size, Bmed(rOLCI)

is the model-predicted bias, rthr is the threshold grain size
above which the model produces reliable bias estimates,
and B0 is a constant bias value used for OLCI grain sizes
smaller than rthr. We can use the distribution of recov-
ered grain size values to find values of B0 and rthr that
minimize the mean and spread of Bmed(rATM(x,y, t))−

Bthr(rOLCI(x,y, t);B0, rthr).

3.6 Robust measure of spread

Throughout the results of this study, we will measure the
width of distributions using the “robust spread”, which we
define as half the difference between the 16th and 84th per-
centiles of a distribution. This is analogous to the standard
deviation of a normal distribution, in which the central 68 %
of the distribution falls within 1 standard deviation of the
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mean. It allows us to characterize the spread of the central
peaks of distributions that are not necessarily normally dis-
tributed and for which the standard deviation might be dom-
inated by large outlying values.

4 Results

4.1 Recovered snow grain sizes from ATM and
AVIRIS-NG

We obtained grain size estimates from ATM for the summers
of 2017 and 2019 and from the springs of 2018 and 2019.
Figure 5 shows maps of recovered grain size from ATM and
the valid AVIRIS-NG surveys for the late summer of 2019.
These maps show a trend from large grain sizes at low ele-
vation to small grain sizes at higher elevation, with notably
larger grain sizes in the summer than in the spring where sur-
veys overlap. The southern portion of the spring 2018 survey
(Fig. 5b) was carried out earlier in the season than the corre-
sponding portion of the spring 2019 survey (Fig. 5c) and en-
countered finer grain sizes, particularly along the coast, while
grain sizes in the northern parts of both of these surveys were
consistently fine. The summer surveys in 2017 (Fig. 5a) and
2019 (Fig. 5d) both encountered coarse grain sizes, partic-
ularly in the coast-parallel lines in 2019. The AVIRIS-NG
survey from 2019 (Fig. 5e) has most of its overlap with the
contemporaneous ATM survey along two coast-parallel lines,
but a third coast-parallel line where ATM measured some of
the coarsest grain sizes of the campaign was not covered.

To illustrate the spatial patterns of grain size estimates re-
covered over a glacier during the melt season, Fig. 6a shows a
map of recovered grain size from Leidy Glacier, northeastern
Greenland, in the summer of 2019. We also show three wave-
forms, one measured over a rock and soil surface (Fig. 6b),
one over low-elevation coarse-grained melting ice (Fig. 6c),
and a third from finer-grained snow (Fig. 6d). We also show
the corresponding best-fitting waveforms. The rock and soil
waveform shows some broadening relative to the transmit-
ted waveform, likely due to surface roughness, that is sym-
metric in time, with equal distortion of the upper and lower
slopes of the waveform. The best-fitting model waveform has
an reff value of 0 µm and a σ value of 1.46 ns. The coarse-
grained waveform (Fig. 6c) is also broader than the transmit-
ted waveform but has different amounts of distortion for the
leading (upper) and trailing (lower) edges of the waveform.
It has a sharply sloping upper edge but a more gradual slope
on the lower edge, which is consistent with the predicted ef-
fects of subsurface scattering. The best-fitting model wave-
form has an reff value of 2896 µm and a σ value of 0.26 ns.
The higher-elevation waveform (Fig. 6d) has much less dis-
tortion than the low-elevation waveform, with a shape much
more similar to the transmitted pulse, which is reflected in the
best-fitting model parameters of reff= 109 µm, σ = 0.26 ns.
Elevations measured by ATM show that the outlet section

of the glacier (near Fig. 6c) is at 400–500 m, and elevation
increases to around 1200 m near Fig. 6d. The mapped dis-
tribution of grain sizes (Fig. 6a) shows little or no subsur-
face scattering on rock and soil (reff ≈ 0), strong subsurface
scattering for low-elevation ice (reff> 1000 µm), and weaker
subsurface scattering at higher elevations (reff< 200 µm). We
suggest that the lower-elevation part of the glacier in the left-
hand part of Fig. 6a has experienced stronger surface melt
than the higher-elevation part to the right, which is roughly
consistent with the gradient from bluer to whiter tones in the
background Landsat image collected 2 d later.

4.2 Comparisons of recovered snow grain sizes
between two independent ATM instruments

Because the wide- and narrow-swath ATM instruments were
installed on the same aircraft, there are abundant opportuni-
ties to compare measurements of the same surface at essen-
tially the same time between the two. This serves to check
the self consistency of the measurements and whether the re-
covered grain size depends strongly on the incidence angle
of the laser beam. Figure 7a shows a two-dimensional his-
togram of grain size estimates from the wide and the nar-
row ATM sensors from the summer 2019 campaign. The
estimates are clustered close to the 1 : 1 line, with slightly
larger grain size estimates from the wide-swath instrument.
The histogram shows horizontal and vertical streaks that cor-
respond to grain size values that the fitting algorithm se-
lects preferentially as part of the effort to reuse previously
computed model waveforms. These likely reflect small re-
ductions in the accuracy of the recovered grain size esti-
mates, although not obviously to any large extent. For grain
sizes smaller than around 25 µm, the fitting process for both
datasets often selects a model waveform with no scattering
model applied as best fitting the measurements. This results
in a reduced number of recovered values at reff< 25 µm and
spikes in the histogram for values where one or both esti-
mates selected the scattering-free waveform. For display pur-
poses, we have mapped these to the left of and below the
range of possible fit values (labeled “fine” in Fig. 7a). The
two sets of measurements appear to be consistent for grain
sizes as small as 30 µm, and the two datasets report grain
sizes that are effectively zero (< 10 µm) for most of the same
points: for 85 % of points for which the wide swath grain
size was effectively zero, the narrow swath was as well, and
for 70 % of points for which the narrow-swath grain size was
effectively zero, the wide-swath grain size was as well.

The distribution of ratios between the recovered grain
sizes for the two systems is similar to a lognormal distribu-
tion with a central parameter close to unity. Figure 7b shows
histograms of ratios between wide-swath and narrow-swath
estimates for three ranges of grain sizes (as determined from
the narrow-swath values). For large grain sizes (>3000 µm)
the median ratio is 1.1, with a robust spread of 0.27. The
bias and spread increase with decreasing grain size, and for
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Figure 5. Recovered snow grain sizes from ATM and AVIRIS-NG. Colored points indicate recovered grain sizes for four ATM campaigns (a–
d) and for AVIRIS-NG (e). Each color-coded point indicates a 1 km block median of recovered grain sizes, and the points have been plotted
in order of grain size, meaning that coarser grain sizes overprint finer grain sizes. The background is the Mosaic of Greenland from 2015
(Haran et al., 2018).

Figure 6. Grain size and waveforms. (a) True-color (bands 4, 3, and 2) Landsat image of the northeastern Greenland Ice Sheet near Leidy
Glacier from 6 September 2019 that shows estimated the effective grain size (reff) from ATM data collected 4 September 2019. For the ATM
data, we plot the results of a 100 m block median applied to reff and draw the outline of the swath in black. Panels (b–d) show measured
(RX) and best-fit modeled waveforms (fit) for three locations and the input transmitted pulse (TX), which have been scaled to match the
amplitude of the received pulse. Bounding coordinates for panel (a) are presented in Table S1 in the Supplement. The Landsat-8 image is
provided courtesy of the U.S. Geological Survey.

small grain sizes (30 to 300 µm) the median ratio is 1.2,
with a spread of 0.45. One possible reason for the larger
grain size estimates from the wide-swath instrument is that
the wide-swath beam had a larger incidence angle to the sur-
face, meaning that the return waveforms had somewhat larger
Gaussian broadening. Our experiments with simulated data
(Sect. 3.3) suggest that 1 ns of pulse broadening can result

in a small positive bias in recovered grain size for the 30–
100 µm range of input sizes.

4.3 Comparisons between snow grain sizes derived
from ATM and AVIRIS-NG

Grain size estimates from ATM and from AVIRIS-NG show
consistent spatial variations, which are most easily identi-
fied in areas where the grain size varies on short spatial
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Figure 7. Recovered snow grain sizes from two ATM systems from the summer 2019 campaign. Panel (a) shows the density of measure-
ments as a function of recovered reff values from the narrow- and wide-scan ATM systems (lighter colors represent a higher density of
measurements). Points for which one of the systems found a best match with a scattering-free model waveform are reported along the rows
and columns marked “fine”. Panel (b) shows the distribution of wide-to-narrow reff ratios for different ranges of narrow-swath reff. The
legend for panel (b) gives the median and robust spread of the ratios for each range.

scales. Figure 8 shows maps of grain size estimates from
the wide-swath ATM scanner and from AVIRIS-NG for a
short segment of a flight path in northwestern Greenland.
Both datasets show a range of surface grain sizes, with varia-
tions that appear to correspond to spatial variations in surface
weathering, likely over a drained supraglacial lake basin. De-
spite the agreement between the small-scale variations, the
ATM data show consistently larger grain sizes than AVIRIS-
NG, particularly in the upper part of the scene in the roughest
part of the lake basin.

The general agreement between AVIRIS-NG and ATM
grain size estimates is illustrated by a comparison between
10 m block medians of narrow-swath ATM grain size esti-
mates and AVIRIS-NG grain size maps interpolated at the
locations of the ATM data (Fig. 9). This plot was generated
based on all narrow-swath ATM waveform data available for
the ice sheet but excludes a single AVIRIS-NG transect mea-
sured on sea ice, as discussed in Sect. 2.2. For grain sizes
greater than about 50 µm, the two show a generally sim-
ilar trend, although ATM grain sizes are typically around
2–3 times larger than the corresponding AVIRIS-NG grain
sizes. This relationship does not hold towards the small-
grain-sized side of the plot, where the AVIRIS-NG grain
sizes are clustered in a near-vertical feature centered around
50 µm. We believe that this is because the AVIRIS-NG al-
gorithm loses some of its sensitivity to grain size variations
around 40–50 µm, while we expect the ATM retrievals to
be sensitive to grain sizes as small as 25 µm based on our
synthetic-data experiments. The points where the ATM fit
selected zero scattering are not shown in this plot, and they
amount to a small fraction (0.4 %) of observations.

Figure 8. Sample of AVIRIS-NG- and ATM-derived snow
grain size estimates for a coastal location in Greenland. The grain
size based on the complete 4 km AVIRIS-NG swath is shown, with
a 10 m block median of the recovered grain size from the 250 m
wide-scan ATM swath superimposed on top. The scene center is
approximately 75.314° N, 33.464° E, and it contains data from the
AVIRIS-NG granule ang20190906t144855 and the ATM granule
ILATMW1B_20190906_133000.atm6T6.h5.

4.4 Comparison between OLCI, AVIRIS-NG, and
ATM snow grain sizes

Direct comparisons between the AVIRIS-NG and OLCI
grain sizes help illustrate the reliability of each dataset on
its own and in comparison with ATM. Figure 10 shows a
2-D histogram of AVIRIS-NG-derived grain sizes from the
summer-2019 survey and OLCI-derived grain sizes collected
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Figure 9. Two-dimensional histogram comparing AVIRIS-NG-
derived grain size with narrow-swath ATM-derived grain size, with
cells colored by the number of points observed. The solid white line
shows the 1 : 1 relationship between the two datasets. To help illus-
trate the magnitude of the difference between the datasets, we plot
two dashed lines that show the ATM–3×AVIRIS-NG (upper) and
ATM–1/3×AVIRIS-NG (lower) relationships.

within 1 d of the AVIRIS-NG measurements. The largest
concentration of OLCI grain sizes is between 3 and 4 times
larger than the corresponding AVIRIS-NG sizes. As in the
comparison between ATM and AVIRIS-NG, there is a verti-
cal feature in the distribution at AVIRIS-NG grain size= 40–
50 µm, which likely corresponds to the fine-grained limit of
the AVIRIS-NG data. The distribution of measurements for
which the OLCI grain size estimates are substantially finer
than the AVIRIS-NG estimates may reflect contamination
with undetected clouds in the OLCI imagery, which would
tend to bias the OLCI estimates in the fine-grained direction.

Similarly, Fig. 11 shows a comparison between OLCI-
derived grain sizes and those from the narrow-swath ATM in-
strument based on a combination of data from the summer of
2017 (Fig. 11a), the spring of 2018 (Fig. 11a), and the spring
and summer of 2019 (Fig. 11b). In each case, the distribu-
tions of both types of grain size measurements roughly fol-
low the 1 : 1 line, although for both years the ATM measure-
ments show a range of measurements smaller than 100 µm for
which the OLCI measurements are clustered around 100 µm.
This may indicate that there are conditions under which the
OLCI measurements cluster around a moderately small grain
size while ATM maintains sensitivity at smaller grain sizes.
The 2017–2018 panel (Fig. 11a) contains far fewer points
with large grain sizes because the dataset for the summer
of 2017 has very limited spatial coverage compared to the
summer of 2019, and the spring 2019 dataset covered more
melting surfaces than the spring 2018 dataset.

Figure 10. Comparison between AVIRIS-NG-derived grain sizes
and OLCI-derived grain sizes. The solid white line shows the
1 : 1 relationship between the two datasets, while the upper and
lower dashed lines show the OLCI–3 times AVIRIS-NG (upper)
and OLCI–1/3 AVIRIS-NG (lower) relationships, respectively. All
OLCI measurements were collected within 1 d of the AVIRIS-NG
measurement.

4.5 Comparing subsurface-scattering range bias
estimates between OLCI and ATM data

Comparing grain sizes estimated from the different sensors
(Figs. 9–11) demonstrates the consistency (or lack thereof)
between the datasets, but to address the usefulness of OLCI
data in correcting biases in ICESat-2 data, we need to com-
pare biases predicted for ICESat-2 based on OLCI with bi-
ases estimated based on ATM waveforms. In these compar-
isons, the accuracy of the sensor is most important for large
grain sizes because ICESat-2 biases predicted by our model
(Fig. 4) are approximately zero for small grain sizes, mean-
ing that any correction we calculate will be small, with larger
corrections expected for larger grain sizes.

If we assume that the ICESat-2 range biases predicted
from the ATM waveforms are approximately correct, we
can estimate the accuracy of OLCI-derived predictions of
ICESat-2 biases in two ways. We can calculate the distribu-
tion of OLCI-derived predictions of ICESat-2 range biases
for groups of ATM grain size estimates (Fig. 12a), and we
can calculate the distribution of ATM-derived predictions of
ICESat-2 range biases for groups of OLCI-derived grain size
estimates (Fig. 12b). In Fig. 12a, we collect groups of ATM
grain size estimates in logarithmic bins with a spacing of
100.25 µm and calculate the median and robust spread of
the ICESat-2 biases predicted from the corresponding OLCI
grain sizes. In Fig. 12b, we reverse this sampling and calcu-
late the distribution of ICESat-2 biases predicted from ATM
measurements for groups of OLCI-estimated grain sizes. In
each set of axes, we plot the modeled relationship between
grain size and range bias for reference.
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Figure 11. Comparison between narrow-swath-ATM-derived and OLCI-derived grain size estimates. Panel (a) shows the distribution for the
summer (July) of 2017 and the spring (March–May) of 2018. Panel (b) shows the distribution from the spring (April–May) and summer
(September) of 2019. In both plots the ATM grain sizes are derived from a 10 m block median of the data, and only those points for which
the time difference between the OLCI measurement and the ATM measurement was less than 3 d are included. The solid lines indicate the
1 : 1 relationship between the datasets, while the upper and lower dashed lines indicate the 1 : 3 and the 3 : 1 relations, respectively.

Figure 12. Range biases as a function of snow grain size estimates for the complete 2017–19 dataset. Panel (a) shows range biases predicted
from OLCI grain size estimates as a function of ATM grain size. Panel (b) shows range biases estimated from ATM grain sizes as a function
of OLCI grain size estimates. For each panel, the vertical bars show the standard deviation of the range bias estimates for each grain size
value, the solid black curve shows the modeled range bias as a function of grain size, and the dashed lines show the factor-of-2 uncertainties
in the model related to surface density. The dashed red line in (b) indicates the best-fitting threshold model (Eq. 8).
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The two plots in Fig. 12 cover different ranges of grain
sizes because of the different ways that the two sensors sam-
ple the ice sheet. Figure 12a includes large values of grain
size from ATM (up to around 11 000 µm) because single
ATM measurements occasionally sample features on the sur-
face with large grain sizes and does not include any ATM
measurements with grain sizes smaller than 10 µm because
ATM often reports zero scattering for smaller grain sizes.
In Fig. 12b, grain sizes larger than 2000 µm do not appear
because the 1 km OLCI pixels rarely measure the small fea-
tures where coarse grain sizes are observed. For the smallest
OLCI-derived grain sizes, it appears that ATM often returned
estimates with no scattering, meaning the estimated bias is
effectively zero for both datasets.

On a per-ATM-waveform basis (Fig. 12a), OLCI bias es-
timates underestimate the sensitivity of ICESat-2 biases to
grain size, especially for large ATM-derived grain sizes. This
is likely because OLCI does not resolve small-scale coarse-
grained features that are resolved by ATM (e.g., Fig. 8). In
Fig. 12b, where the data are binned based on OLCI-derived
grain size, we see a closer match between the ICESat-2
biases predicted based on the ATM data and those pre-
dicted based on the OLCI measurements, at least for OLCI-
estimated grain sizes larger than around 250 µm. At smaller
grain sizes, the ATM-derived ICESat-2 bias estimates deviate
from the OLCI biases, with a roughly uniform value close to
0.02 m for OLCI-derived grain sizes between 20 and 100 µm,
a small peak for OLCI biases close to 15 µm, and approxi-
mately zero bias for finer grain sizes. This better correspon-
dence shows that when OLCI-derived grain size estimates
can resolve coarse-grained features on the ice sheet, ATM
measurements confirm the implied large bias values.

4.6 Calculating the best feasible correction

Based on Fig. 12b, it appears reasonable to believe that OLCI
grain size estimates provide useful information about subsur-
face delays for coarse-grained snow but not for fine-grained
snow. To better account for this lack of sensitivity in OLCI
at fine grain sizes, we used the ATM and OLCI grain sizes
from 2017–2019 to find optimal parameter values for the
threshold bias model (Eq. 8). For a range of B0 and rthr, we
calculated the median and the robust spread of the distribu-
tion of ATM biases corrected using on the OLCI grain sizes,
Bmed(rATM)−Bthr(rOLCI). To help match the resolution be-
tween the ATM and the OLCI grain size estimates, we car-
ried out these calculations on a 250 m block median of the
ATM measurements. Figure 13a and b show how the median
and the robust spread depend on the parameter values. For
threshold values greater than about 150 µm, there is a fine-
grain bias (B0) value that gives a median residual of zero,
and there is a threshold value that gives the minimum ro-
bust spread for each fine-grain bias. These curves intersect at
B0= 0.012 m and rthr= 270 µm. Figure 13c shows the dis-
tributions of ATM-derived biases, ATM-derived biases cor-

rected based on Bmed(rOLCI), and ATM-derived biases cor-
rected based on the optimized Bthr(rOLCI) model. The un-
corrected distribution of ATM-derived biases has a peak at
around 0.01 m, a median of 0.013 m, and a substantial tail
of values extending in the positive direction that represent
coarse-grained parts of the ice sheet where we would predict
that ICESat-2 would measure elevations that are several cen-
timeters too low. Applying the unmodified correction results
in a more compact distribution of residuals, with a median
of −0.007 m and a spread of 0.006 m, both of which are an
improvement on the raw distribution, but the bias is now in
the opposite direction. The optimized threshold model yields
a distribution of residuals with a zero median and a robust
spread of 0.004 m.

The preceding analysis used robust statistics (i.e., the me-
dian and robust spread), which show how the correction
works for typical locations on the ice sheet (i.e., ignoring the
most extreme scattering conditions), which we would expect
to fall in the middle of our distribution of residuals. However,
many users of altimetry data will explicitly or implicitly per-
form their analysis using non-robust statistics (i.e., by calcu-
lating mean elevation differences or calculating the standard
deviation of elevation differences). To show how the correc-
tions work with statistics that are more sensitive to outlying
values, we repeated the analysis using the mean and the stan-
dard deviation of the corrected datasets. This yields similar
optimum B0 and rthr values (0.014 m and 260 µm, respec-
tively) for the zero-mean-residual model with the smallest
standard deviation but finds that the standard deviation for
this model is approximately the same as that for the non-
optimized correction (0.011 m vs. 0.012 m). This shows that
the correction can produce a near-zero corrected mean with
the right parameters, but it cannot necessarily make a sub-
stantial improvement in the standard deviation of the cor-
rected data.

5 Discussion

The comparison of measurements between the narrow- and
wide-swath instruments (Fig. 7) shows that ATM-based es-
timates of snow grain size are consistent to within a factor
of 2 or better between two independent instruments and are
not strongly influenced by measurement geometry except at
small grain size, where the larger angle between the wide-
swath beam and the surface produces blurring of the returned
waveform. Based on our modeling results (Fig. 3) and the ex-
pected relationship between incidence angle and return pulse
width (Sect. 3.2), we expect this to result in larger scatter and
bias in the wide-swath grain size estimates. As estimates of
grain size, the two sets of measurements have biases and un-
certainties due to our assumptions about the density of the
snow, but they are reasonably consistent as measurements of
photon delays due to subsurface scattering and should be use-
ful in predicting biases in ICESat-2 data.
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Figure 13. Tuning the threshold correction for ATM-based ICESat-2 bias estimates. Panels (a) and (b) show the median and robust spread
of the distribution of ATM-derived ICESat-2 bias estimates corrected with the threshold model (Eq. 8) for different values of the fine-grain
bias (B0) and fine-grain threshold (rthr). The dashed curves show the fine-grain bias corresponding to the minimum absolute value of the
median for each value of the threshold, and the solid lines show the fine-grain threshold corresponding to the minimum value of the spread
for each value of the fine-grain threshold. Panel (c) shows histograms of uncorrected bias estimates, bias estimates corrected based on Bmed
(rOLCI, Eq. (7), and bias estimates corrected based on Bthr (rOLCI, Eq. 8) for the optimum parameters of B0= 0.012 m and rthr= 270 µm.
The median and robust spread of each distribution is given in the legend.

The comparisons between AVIRIS-NG and ATM grain
size (Fig. 9) and those between AVIRIS-NG and OLCI-
derived grain size (Fig. 10) both suggest that the AVIRIS-
NG estimates are biased by a factor of 2–3 towards fine grain
sizes relative to the other dataset. Further, both the ATM and
the OLCI estimates appear to produce usable estimates of
grain size that are smaller than 30 µm, while the AVIRIS-NG
measurements seem to have a fine-grained limit of resolution
around 40 µm. These differences between the AVIRIS-NG
measurements and ATM-based measurements are consistent
with comparisons between this AVIRIS-NG survey and ob-
servations of apparent elevation differences between green
and near-infrared altimetry measurements that also implied
that the AVIRIS-NG data had underestimated grain sizes
(Fair et al., 2024). Despite these limitations, the comparisons
between ATM, OLCI, and AVIRIS-NG measurements show
broad agreement between the three sets of data, with larger
grain sizes in each dataset corresponding to larger grain sizes
in the others. However, this relationship is not as consistent
as we might have hoped, and for a substantial fraction of the
points there is no clear relationship between the grain sizes
from the different sensors. Part of this scatter may result from
differences in resolution between the datasets. ATM resolves
grain size on a sub-meter-sized footprint, which we then de-
grade to 10 m using our block median filter; the AVIRIS-NG
data have a 5 m pixel size; and the OLCI-based measure-
ments are posted at 1 km. Many of the measurements show-
ing the coarsest grain sizes from ATM are from small features
such as crevasses and stream channels, which are likely not

resolved by the larger pixel size of the OLCI measurements.
Similarly, the smallest and coarsest-grained features in the
AVIRIS-NG dataset are not expected to be resolved in the
OLCI data.

There may also be differences between the retrieved grain
sizes related to the measurement techniques. The ATM scat-
tering measurements rely on subsurface multiple scattering
that may sample hundreds or thousands of scattering events
and in which photons may penetrate depths that are hun-
dreds of times the grain diameter below the surface. In con-
trast, the AVIRIS-NG and OLCI estimates both use portions
of the reflectance spectrum extending into the near infrared,
where the attenuation length of ice is as small as a few cen-
timeters (Warren, 1982). This means that the ATM measure-
ments are sensitive to grain size over a much larger range of
depths than the reflectance-based measurements. Particularly
under melting surface conditions, we expect to see a layer of
finer-grained ice on top of coarse-grained or water-saturated
deeper layers (Cooper et al., 2018), which would lead us to
expect that the reflectance-derived grain sizes would be finer
than those derived from ATM. This effect is not expected
to be as important under colder conditions, especially where
fresh snow is present at the surface, because returns from a
snow layer a few centimeters thick will contain only a very
small minority of photons that have experienced long path
delays (Smith et al., 2018)

We believe that it is also likely that there are disagree-
ments between reflectance-derived measurements of grain
size and ATM-based measurements because of the simplified
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relationship we have used between grain size and scattering
properties. Our model of subsurface scattering assumes that
the scattering is from independent spheres of ice suspended
in air and that the density of the medium is 400 kgm−3. In
fact, surface densities in the accumulation zone are often
lower than those assumed by our model (Medley et al., 2022),
while ablation zone densities can approach those of compact
glacier ice (800 kg m−3 and higher), and the presence of liq-
uid water in the snow can result in reduced scattering effi-
ciency per grain compared to that expected for spheres in ice.
Over fresh and low-density snow, we expect our ATM-based
measurements to overestimate grain size because our model
does not fully account for the path length between scatter-
ing events and assumes that the extra path delay comes about
because of time spent traveling through ice grains. Over com-
pact ice surfaces the situation is more complex because the
surface density is likely larger than our reference density,
leading to an underestimate of grain sizes, but close pack-
ing of grains and the presence of water should each lead to
less efficient scattering from each grain, leading to an over-
estimate of grain size. Under most circumstances, we expect
the latter effects to be more significant because the effect of
density alone is unlikely to be larger than a factor of 2 (see
Fig. 1).

The comparison between predicted ICESat-2 biases de-
rived from ATM and those from the OLCI measurements
(Fig. 2) suggests that while OLCI measurements cannot ac-
curately predict the measurement bias for each laser-based
measurement, the mean bias at the kilometer scale is more
likely to be reliable. The difference between the two ways
of plotting the biases as seen in Fig. 12 likely relates to the
spatial resolution of the two sensors. ATM, with sub-meter
resolution, captures small-scale features on the ice sheet, in-
cluding crevasses, water channels, and ponds that all have
large grain sizes. These features do not appear in the OLCI
maps, which reflect the average grain size over 1 km pixels,
which results in underestimates of bias for the ATM measure-
ments with coarse grain sizes. Conversely, the average over
OLCI measurements shows good agreement with the pre-
dicted grain size–bias curve, likely because the median biases
for large spatially distributed collections of ATM measure-
ments are only weakly affected by the minority of ATM mea-
surements collected over large-grain-sized features. Further,
the discrepancies between ATM and OLCI-derived grain
sizes in the fine-grained regime (Fig. 11) should have rela-
tively little impact on the accuracy of an OLCI-based pre-
diction of biases in ICESat-2 data because whatever their
disagreements about grain sizes, the two datasets agree that
the bias correction should be small. We hypothesize that the
peak in the ATM-bias–OLCI-grain size plot around 20 µm in
Fig. 11b reflects undetected clouds in the OLCI dataset. For
these measurements, the ATM bias can have a large range
of values, while the OLCI reports a grain size appropriate
for polar clouds, resulting in an apparent positive shift in
the ATM biases. Errors such as these might be ameliorated

in part by combining reflectance-based grain size estimates
with a model of firn evolution, which might help identify un-
likely values of grain size, but this kind of analysis is beyond
the scope of this study.

Our experiments with a correction for ICESat-2 biases
based on the OLCI-derived grain size estimates (Fig. 13)
show that across the full dataset the mismatch between OLCI
and ATM resolution and the imprecisions of the two datasets
for small grain sizes result in a net overcorrection of the bi-
ases (shown in Fig. 3c, where the median of the corrected
range biases is less than zero) but a reduction in the spread of
the corrected biases. Implementing a threshold-based simpli-
fication of the bias model that assigns a constant value to the
corrections for small grain size removes this bias and further
reduces the spread of the residuals. However, the optimum
parameters of this threshold model are likely determined in
large part by the characteristics of the input data, including
the distribution of grain sizes included in the surveys and the
accuracy of the OLCI grain size estimates on the particular
days during which each survey was conducted. Researchers
interested in applying the same correction to a different set of
satellite-based grain size estimates would need to perform a
similar analysis to calibrate the threshold values. To calibrate
a new dataset of independent grain size estimates against
the ATM-based biases, researchers would need to repeat the
analysis that is summarized in Fig. 13 by performing the fol-
lowing steps:

1. generating grain size estimates for each ATM data point
(rest,sat),

2. generating bias estimates for each grain size estimate
(Best,sat),

3. calculating the median and spread of Bmed(rATM)−

Bthr(rsat) (Eq. 8) for a range of threshold values,

4. selecting the threshold value that gives the minimum
spread for a zero median.

In our case, the threshold values that gave a zero-median
residual included those that gave a nearly optimal spread,
but this would not necessarily be the case for other datasets,
which would require more careful consideration of the trade-
off between bias and spread in the correction. This kind of
analysis is only feasible for satellite data that have temporal
overlap with the existing ATM survey.

6 Conclusions

In this study, we have demonstrated a technique for the re-
trieval of ice sheet surface grain size using the shape of
pulses returned by a green-light laser. We showed that the
shapes of the measured waveforms agree with the results
of a simplified theoretical model of how subsurface scatter-
ing should affect the shape of green laser pulses, and ex-
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periments with synthetic data suggest that matching wave-
forms with the model results should allow accurate estimates
of grain size over a wide range of conditions. We showed
that measurements are consistent between two independent
versions of the same instrument flown on the same aircraft
at the same time with different look angles, showing that
the grain size recovery is repeatable and not strongly sen-
sitive to the geometry of the measurements, except at small
grain sizes for which the larger incidence angles associated
with the wide-swath scanner begin to degrade the sensitiv-
ity of the system. Comparisons with reflectance-based es-
timates of grain size show agreement between the trends
in the data but not especially close point-for-point agree-
ment between the ATM measurements and the reflectance-
based measurements. However, comparisons between differ-
ent reflectance-based measurements also do not show point-
for-point agreement, and we are unsure whether we should
claim to have validated the novel ATM-based measurements
with the better-established reflectance-based techniques or
whether we should claim that our ATM-based measurements
provide relatively precise ground truth for the reflectance-
based measurements.

Returning to the original goal of this study, which was to
predict biases in ICESat-2 data, we feel that the close agree-
ment between ATM waveforms and the shapes predicted by
our model validates our use of the model to predict ICESat-
2 biases due to subsurface scattering. The widespread large
grain sizes we estimate in the low-elevation parts of Green-
land suggest that there are large areas of the ice sheet for
which we can expect decimeter-scale biases in ICESat-2
data. To date, our efforts to identify subsurface-scattering
bias in ICESat-2 data have been stymied by the need to col-
lect data from tens or hundreds of pulses to resolve the shape
of the return waveform, which is difficult over the rough
surfaces typical of low-elevation Greenland in the summer.
This suggests to us that routine correction of ICESat-2 data
based on ICESat-2 return-pulse characteristics will not be
feasible, except perhaps for limited areas with unusually flat
topography. However, the synthesis of the ATM and OLCI-
based predictions of scattering delays (Figs. 12b and 13) sug-
gests that a correction based on satellite-derived estimates
of grain size is feasible for the large grain sizes where bi-
ases are largest and that an empirical adjustment of the rela-
tion between grain size estimates and predicted biases can
be used to find a correction that yields an unbiased esti-
mate with smaller variance than either the raw predicted
biases or the unmodified correction model. Improvements
in satellite-derived and model-derived estimates (Mei et al.,
2021; Painter et al., 2009) of snow grain size are a potential
way to improve the precision of a correction of this kind. One
avenue for improvement might be to derive grain size esti-
mates from satellites with resolution finer than the kilometer-
resolution OLCI data used here. A similar correction us-
ing Landsat and/or Sentinel-2 data could provide data at
30 m resolution, albeit with coarser time resolution and with

a less optimal selection of spectral bands. Another possible
data source for corrections of this type would be grain size
predictions driven by a grain size evolution model driven
by meteorological data, remote-sensing data, or model out-
put. Unlike grain size estimates derived purely from satellite
measurements, these would not be limited by the availabil-
ity of cloud-free observations and might be able to integrate
remote-sensing data from multiple sources to reduce the ef-
fects of measurement errors. Any such comparison would re-
quire careful consideration of the relationship between phys-
ical grain size (calculated in the grain size model) and the ef-
fective grain sizes considered in our scattering model, which
might best be handled by calibrating model output overlap-
ping the Greenland ATM surveys against ATM data.

Data availability. ATM waveform data are avail-
able from the National Snow and Ice Data Center
(https://doi.org/10.5067/ezq5u3r3xwbs, Studinger, 2018a;
https://doi.org/10.5067/v25x7lhdpmzy, Studinger, 2018b). Ground
calibration data used to derive the ATM instrument response are
available at https://doi.org/10.5281/zenodo.7225937 (Studinger
et al, 2022b). OLCI-based grain size estimates are available
through the GEUS dataverse (https://doi.org/10.22008/fk2/oiajvo,
Vandecrux et al., 2022a). AVIRIS-NG grain size estimates are
available via FTP from https://popo.jpl.nasa.gov/avng/y19/2019_
greenland_grainsize_data.zip (Chapman, 2023). ATM-based
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