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Abstract. Lake ice phenology plays a critical role in de-
termining the hydrological and biogeochemical dynamics
of catchments and regional climates. Lakes with complex
shorelines and abundant aquatic vegetation are challenging
for retrieving lake ice phenology via remote sensing data,
primarily because of mixed pixels containing plants, land,
and ice. To address this challenge, a new double-threshold
moving ¢-test (DMTT) algorithm, which uses Scanning Mul-
tichannel Microwave Radiometer (SMMR) and Special Sen-
sor Microwave/Imager—Special Sensor Microwave Imager/-
Sounder (SSM/I-SSMIS) sensor-derived brightness temper-
ature data at a 3.125 km resolution and long-term ERAS data,
was applied to capture the ice phenology of Lake Ulansu
from 1979 to 2023. Compared with the previous moving #-
test algorithm, the new DMTT algorithm employs air temper-
ature time series to assist in determining abrupt change points
and uses two distinct thresholds to calculate the freeze-up
start (FUS) and break-up end (BUE) dates. This method ef-
fectively improved the detection of ice information for mixed
pixels. Furthermore, we extended Lake Ulansu’s ice phenol-
ogy back to 1941 via a random forest (RF) model. The recon-
structed ice phenology from 1941 to 2023 indicated that Lake
Ulansu had average FUS and BUE dates of 15+ 5 Novem-
ber and 25 4 6 March, respectively, with an average ice cover
duration (ICD) of 130 4 8 d. Over the last 4 decades, the ICD
has shortened by an average of 22 d. Air temperature was the
primary impact factor, accounting for 56.5 % and 67.3 % of
the variations in the FUS and BUE dates, respectively. We re-
constructed, for the first time, the longest ice phenology over
a large shallow lake with complex surface cover. We argue
that DMTT can be effectively applied to retrieve ice phenol-

ogy for other similar lakes, which has not been fully explored
worldwide.

1 Introduction

Global lake ice loss, a notable indicator of climate change
(Kang et al., 2012; Li et al., 2022), profoundly affects Earth’s
climate system and the ecological dynamics of lake environ-
ments (Leppéranta et al., 2020; Yang et al., 2023). Lake ice
regulates water temperature, light availability, and nutrient
circulation, which are crucial for the ecological environment
(Latifovic and Pouliot, 2007; Wu et al., 2022). Many stud-
ies have evaluated lake ice phenology trends in the North-
ern Hemisphere (Mishra et al., 2011; Sharma et al., 2019;
Woolway et al., 2020), but shallow and vegetated lakes re-
main largely unexplored owing to their lack of long-term ob-
servational data. These lakes are more sensitive to climate
change than deep lakes are because of their low heat ca-
pacity (Ambrosetti and Barbanti, 1999), which makes them
more responsive to temperature fluctuations. A shortened
ice-covered season leads to a longer period of open water,
enhancing conditions for algal bloom growth and potentially
causing ecological imbalances (Duan et al., 2012). Ice phe-
nology data from such shallow lakes are crucial for under-
standing how temperature fluctuations influence water strat-
ification, nutrient availability, and the biological rhythms of
aquatic organisms (Sharma et al., 2021; Smits et al., 2021).
This knowledge is vital for refining climate models and en-
hancing the accuracy of weather predictions, thereby assist-
ing in the management and conservation of freshwater re-
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sources in a changing climate (Hampton et al., 2017; Yang et
al., 2020b).

In situ observations provide a wealth of information on
ice phenology (Benson et al., 2011; Yang et al., 2020a).
However, due to environmental and logistical constraints,
sustained manual monitoring is challenging (Jewson et al.,
2009). Owing to their broader temporal and spatial monitor-
ing capabilities, remote sensing data have been widely used
in the study of lake ice phenology (Wang et al., 2021; Wu et
al., 2022). For example, the MODIS Terra and Aqua prod-
ucts, specifically MOD10A1 and MYD10A1, were utilized
to determine lake ice phenology across the Tibetan Plateau
from 2001 to 2017 (Cai et al., 2019). Optical satellites offer
data with higher spatiotemporal resolution, but they depend
on solar energy reflected from Earth’s surface, making them
susceptible to cloud cover and lighting conditions (Murfitt
and Duguay, 2021). In contrast to optical remote sensing, mi-
crowave remote sensing allows for monitoring of Earth’s sur-
face under most weather conditions (Nunziata et al., 2021).
Active microwave remote sensing is utilized primarily for ex-
tracting ice phenology data from large waterbodies because
of its relatively low (>10d) temporal resolution (Antonova
et al., 2016; Howell et al., 2009). This is because, in these
lakes, the phase transition between water and ice takes more
time.

Passive microwave remote sensing provides data with long
temporal coverage and frequent revisit times, although it of-
fers coarse spatial resolution. These characteristics make it
particularly suitable for large lake ice phenology detection
(Kang et al., 2012; Su et al., 2021). Additionally, a com-
mon challenge in this method is the use of mixed pixels.
These are pixels that contain multiple surface types, such
as water, vegetation, and land, which are especially com-
mon around complex shorelines (Bellerby et al., 1998). To
mitigate the impact of mixed pixels, buffer zones are typi-
cally implemented within passive microwave remote sensing
technology, effectively shrinking the shoreline when extract-
ing pixel information (Cai et al., 2022). The latest Calibrated
Enhanced-Resolution Passive Microwave Daily EASE-Grid
2.0 Brightness Temperature (CETB) data offer multisource
sensor-derived brightness temperature data from 1979 to the
present, with a spatial resolution as high as 3.125 km. While
this advancement significantly improves the monitoring ca-
pabilities of Earth’s surface (Johnson et al., 2020), it still
poses challenges in accurately capturing data for small lakes
or lakes with complex shorelines due to mixed pixels.

In addition, if long-term lake ice phenology records are
desired, satellite remote sensing can also provide training
datasets for machine learning (Wu et al., 2021; Xu et al.,
2024). For example, Ruan et al. (2020) presented a practical
machine learning application in which a random forest model
was used to forecast the ice phenology of lakes on the Tibetan
Plateau until 2099. The ice phenology history derived from
passive microwave remote sensing and Coupled Model In-
tercomparison Project Phase 6 (CMIP6) meteorological data
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was employed here as inputs. The success of this application
largely depends on the quality of the training data, requiring
not only accuracy but also a long temporal record that cap-
tures the variability in environmental conditions. To ensure
the robustness of the model, it is critical to integrate diverse
meteorological factors, such as air temperature, wind speed,
and precipitation, along with ice phenology data, as these
factors significantly influence lake ice. Furthermore, devel-
oping effective machine learning models that can address the
complexities of lakes with various surface characteristics is
essential.

This study uses Lake Ulansu as an example; this lake is the
largest aquatic-plant-dominated shallow lake in northwestern
China and is characterized by its rich aquatic vegetation and
complex shoreline. The objective of this study was to develop
an automated algorithm that overcomes the mixed-pixel chal-
lenges posed by rich aquatic vegetation and complex shore-
lines, thus enabling accurate classification of ice and water
states and obtaining reliable ice phenology data for long-term
reconstructions. Specifically, our research strategy was com-
posed of the following steps. (1) A new algorithm was de-
veloped to classify the ice and water states on the lake sur-
face in brightness temperature data from the Scanning Mul-
tichannel Microwave Radiometer (SMMR) and Special Sen-
sor Microwave/Imager—Special Sensor Microwave Imager/-
Sounder (SSM/I-SSMIS) sensors for the period 1979-2023.
(2) A random forest model was trained using the results in
step 1 to reconstruct the ice phenology from 1941 to 1978.
(3) The meteorological impact on the ice phenology of Lake
Ulansu from 1941 to 2023 was analyzed to explore the key
drivers of its variations.

2 Study area

Lake Ulansu (40°46'—41°7'N, 108°41'-108°58'E) is situ-
ated on the eastern side of the Hetao Basin in northern China
(Fig. 1a). The lake covers an area of 306 km?. It has an ele-
vation of approximately 1050 m; a shoreline perimeter of ap-
proximately 140 km; and a north—south width ranging from
35 to 45 km, whereas its east—west width is narrower, at ap-
proximately 5 to 10km. The water depth varies from 0.5
to 3 m, with an average depth of 1.6 m, indicating that the
lake is a typical shallow lake. As an important water re-
source in the Hetao Basin, Lake Ulansu profoundly impacts
local agriculture, irrigation, residents’ livelihoods, and the re-
gional climate (Guo et al., 2008; Li et al., 2020). The lake is
rich in aquatic vegetation (Fig. 1c), which accounts for ap-
proximately 60 % of the lake area (i.e., 180km?). The tran-
spiration of reeds and lake evaporation result in consider-
able water loss, with an annual evaporation of approximately
2300 mm (White et al., 2020). Precipitation in the lake area
primarily occurs during the summer, with an annual pre-
cipitation of approximately 220 mm (Sun et al., 2011). The
lake’s water depth and volume are regulated primarily during
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the summer through water diversion from the Yellow River,
with minimal surface water inflow or outflow occurring dur-
ing the winter (Huang et al., 2022). The Hetao Basin has
an annual average air temperature of approximately 7.0 °C,
with average air temperatures in January and July reaching
—10.1 and 23.8 °C, respectively (White et al., 2020). Typ-
ically, the freeze-up start (FUS) date occurs in November,
and the break-up end (BUE) date occurs in March, with an
average ice cover duration (ICD) of 127d from 2013-2022
(Huo et al., 2022). During mid-winter, the ice cover reaches a
maximum thickness of 0.4 to 0.6 m (Huang et al., 2022), pro-
viding a crucial platform for local transportation and recre-
ational activities. In this study, each hydrological year (HY)
is defined as beginning on 1 August and ending on 31 July of
the following year. For example, HY2022 spans from 1 Au-
gust 2021 to 31 July 2022.

3 Data and methods

Three datasets and two algorithms were used in this study, as
shown in the flowchart (Fig. 2). First, the double-threshold
moving f-test algorithm and ERAS air temperature data
(1979 to 2023) were used to detect abrupt change points
in the brightness temperature series from the CETB dataset.
These points help classify brightness temperature pixels as
ice or water states, allowing for the determination of the FUS
and BUE dates for Lake Ulansu from 1979 to 2023. These
dates were also validated by ice phenology data obtained
from optical satellite data (MODIS, Landsat, and Sentinel-2)
from 2000 to 2023. Next, meteorological data from ERAS for
the period from 1979 to 2023, along with ice phenology data
derived from brightness temperature data, were used to train
a random forest model. We subsequently input the ERAS
data from 1941 to 1978 into the trained random forest model
to obtain historical ice phenology data for Lake Ulansu from
1941 to 1978.

3.1 Data
3.1.1 Brightness temperature data

In this study, we used Calibrated Enhanced-Resolution Pas-
sive Microwave Daily EASE-Grid 2.0 Brightness Temper-
ature (CETB) data at 37 GHz horizontally polarized with a
high spatial resolution of 3.125 km provided by the National
Snow and Ice Data Center (NSIDC). The CETB data include
an abundance of microwave radiation brightness tempera-
ture (Ty) data, facilitating the investigation of Earth’s surface
characteristics. The CETB data were obtained from various
satellite sensors with coarse spatial resolutions (~ 25km),
including SMMR on Nimbus 7, SSM/I and SSMIS on the
Defense Meteorological Satellite Program (DMSP) satellite
series, and the Advanced Microwave Scanning Radiome-
ter for EOS (Earth Observing System) (AMSR-E) on Aqua
(Brodzik et al., 2016). For our specific analysis, we used
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only data from SMMR on Nimbus 7; SSM/I on the DMSP
F08, F10, F11, F13, and F14 satellites; and SSMIS on the
DMSP F16 satellite. CETB data boast high spatial resolution
and comprehensive record features. The microwave radiation
Ty, data were collected from various channels and time inter-
vals and were stored with grid spacings ranging from 3.125
to 25km. The CETB grid employs the “drop-in-the-bucket”
average algorithm to map essential location data onto out-
put grid units, resulting in 7} data with a 25 km resolution.
The resolution was subsequently enhanced via the radiome-
ter version of the scatterometer image reconstruction (rSIR)
algorithm, which yielded 7;, data with resolutions ranging
from 3.125 to 12.5km. Owing to the narrow and irregu-
lar shoreline of Lake Ulansu, high-spatial-resolution 7}, data
were essential. Furthermore, the CETB data exhibited a rela-
tively coarse spatial resolution of 6.25 to 12.5 km at frequen-
cies below 30 GHz (Brodzik et al., 2016), with higher fre-
quencies (near 90 GHz) being more susceptible to weather
effects (Ivanova et al., 2015).

3.1.2 Optical satellite data

In this study, we use ice phenology data for Lake Ulansu
from 2000 to 2023 obtained from optical satellites by Huo
et al. (2022) to validate the ice phenology results derived
from Ty data. These optical satellite data include red band
reflectances from the MOD09GQ and MYDO09GQ datasets,
cloud information from the state_lkm_1 parameter of the
MODO09GA and MYDO09GA datasets, and the Landsat and
Sentinel-2 datasets. The single-band threshold method clas-
sifies red band reflectances into water and ice pixels. Com-
pared with higher-spatial-resolution Landsat and Sentinel-2
datasets, the dynamic threshold method aims to determine
the optimal threshold for distinguishing ice and water pixels
(Zhang and Pavelsky, 2019). Additionally, the spatiotempo-
ral continuity of MODIS datasets is used to fill in real pix-
els under clouds, resulting in more accurate pixel classifica-
tion. By employing thresholds of 20 % and 80 % to differen-
tiate the proportions of ice and water pixels in the total pixel
count, it was possible to calculate the FUS and BUE dates.
The ICD was then derived from the difference between these
two dates. Owing to the higher spatiotemporal resolution of
the MODIS products, these three ice phenology data points
agreed with field observations (Huo et al., 2022).

3.1.3 Meteorological data

In this study, the ERAS5 meteorological dataset, which
was provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), was utilized for comprehen-
sive analysis. ERAS is the latest reanalysis dataset that inte-
grates model data with global observational data to produce
a consistent dataset with a spatial resolution of 0.25° x 0.25°
and a temporal resolution of 1 h. In this study, a collection of
ERAS hourly data at single levels from 1940 to the present
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Figure 1. (a) Geographical context and elevation profile of Lake Ulansu within the Hetao Basin, Inner Mongolia. (b) CETB data grids with
shaded areas representing brightness temperature pixels selected for Lake Ulansu surface identification. (¢) Photographic depiction of aquatic
reeds within Lake Ulansu. (d) On-ice instrumentation for field observations (Cao et al., 2021).

was chosen. The selected meteorological variables included
air temperature, wind speed, incident solar radiation, and pre-
cipitation (including rainfall and snowfall), which spanned
from 1941 to 2023. Although meteorological stations are
scarce in the Hetao Basin, a comprehensive evaluation of the
suitability of ERAS data for Lake Ulansu is still necessary.
Detailed comparisons of air temperature, wind speed, and in-
cident solar radiation against field observations from 2016 to
2018 and from 2022 to 2023 are provided in Appendix A,
which underscores the robustness of the ERAS data for cli-
matological studies in this region.

The Cryosphere, 19, 849-868, 2025

3.2 Methods
3.2.1 Identification of lake surface states

In this study, the ice phenology from 1979 to 2023 was deter-
mined by the brightness temperature (7,) of the lake surface
because Ti, changes considerably when a phase change oc-
curs on the lake water surface (Su et al., 2021), providing a
clear reference for determining the onset and end of the ice
period. However, owing to the complex shape of the Lake
Ulansu shoreline, which is characterized by its narrow form,
pixels encompass not only water but also aquatic vegetation
and land. As a result, five Ty, grids with a proportion of lake
water greater than 0.70 were selected to represent the sta-
tus of the lake surface (Fig. 1b). Figure 3a shows the annual
variation in Ty, for each grid of each year as dashed blue lines,
with the solid blue line showing the average for all grids dur-
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Figure 2. Reconstruction of the ice phenology of Lake Ulansu (1941-2023) based on ERAS, CETB, and optical satellite data via the double-

threshold moving 7-test algorithm and random forest model.

ing 1979-2023 and the solid red line depicting the average air
temperature. The annual variation in the T;, of Lake Ulansu
exhibited a typical “W” shape (Fig. 3a). This is different from
what is observed for large lakes with only water surfaces,
where Ty, is typically a pure pixel, resulting in a line with an
“Q” shape (Cai et al., 2022; Su et al., 2021). Compared with
those of pure pixels, the mixed pixels of Lake Ulansu lead
to inconsistent changes in surface temperature and emissiv-
ity, complicating the Ty series. To accurately determine the
ice phenology, it is necessary to precisely establish differ-
ent thresholds for the transition between water and ice. Thus,
previous methods to address the €2-shaped Ty, series are not
available in this study, and a double-threshold moving #-test
(DMTT) algorithm was developed to extract the ice phenol-
ogy from the W-shaped Ty, series.

The DMTT originated from the moving ¢ test (MTT),
which was initially employed to identify abrupt meteorolog-
ical change points in time series (Jiang and You, 1996; Shi
and Zhu, 1996) and was later adapted by Du et al. (2017) to
detect the abrupt change point (ACP) of Ty in passive mi-
crowave time series, enabling the discrimination of lake ice
phenology. In this study, we enhanced the MTT to identify
the ACP of the Ty, series of complex mixed pixels in Lake
Ulansu. Daily air temperature was also introduced to iden-
tify more suitable ACPs, facilitating the computation of the
FUS and BUE dates. For the detailed steps and formulas of
the MTT, refer to Du et al. (2017). Here, we specifically high-
light the improvements of the DMTT:

— Step 1. In addition to adhering to the ACP criteria out-
lined by Du et al. (2017), we tailor the DMTT algo-
rithm to detect ACPs by accounting for seasonal vari-
ations and specific thermal conditions. We conducted
separate ACP detection for T;, from August to Decem-
ber and from January to July. To ensure the accuracy
of the ACP in indicating freezing transitions, ACPs de-
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tected from August to December were validated only
if they were accompanied by air temperatures below the
freezing point. Similarly, for ACPs from January to July,
a prerequisite condition of air temperatures above the
freezing point was applied to confirm melting transi-
tions. The purpose of these two enhancements was to
accommodate the variations in mixed pixels during the
transitions between water and ice.

— Step 2. After multiple ACPs are detected in Step 1, we
calculate Ty and Ty, for each ACP, which represent the
mean Ty, 20 d before and after the ACP, respectively. The
freezing threshold was determined as the mean of the
minimum Ty, and its corresponding T, within the same
group, whereas the melting threshold was defined as the
mean of the minimum Ty and its associated 7p; within
the same group. The DMTT algorithm calculates dis-
tinct thresholds for the FUS and BUE dates (solid gray
lines in Fig. 3b), which makes it possible to handle var-
ious ice—water transition scenarios. This adaptability to
different T, series ensured the robustness of the algo-
rithm (Appendix B).

— Step 3. We classified each Ty series via two thresholds
to determine the ice and water pixel status. As demon-
strated in Fig. 3b for a grid in Lake Ulansu in 2021, the
interface between the red- and blue-shaded regions in-
dicates the transitions between states, with points A and
B marking the dates of these transitions in the T se-
ries. Given that five CETB grids (Fig. 1b) were selected
within Lake Ulansu, the first date in the year when the
status transitioned from water to ice was defined as the
FUS date. Similarly, the first date when the transition
occurred from ice to water was defined as the BUE date,
with the ICD being the difference between these two
dates. Based on this, we applied the DMTT algorithm
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Figure 3. (a) Time series of brightness temperatures (dashed blue lines) for each hydrological year from 1979 to 2023. A hydrological year
(HY) was defined from 1 August to 31 July of the following year for Lake Ulansu. (b) The brightness temperature (solid blue line) and
air temperature (solid red line) for HY2001. The ice and water statuses were determined via the double-threshold moving ¢-test algorithm,
where the red- and blue-shaded regions represent the water and ice states, respectively.

to calculate thresholds and classify the CETB data, ob-
taining the ice phenology of Lake Ulansu from 1979 to
2023.

3.2.2 Estimation of ice phenology with the random
forest model

For the period from 1941 to 1978, when satellite remote sens-
ing data were unavailable, the random forest (RF) algorithm
was employed to estimate the ice phenology of Lake Ulansu.
The RF model is a powerful ensemble learning technique
widely used for data modeling and prediction. Model accu-
racy can be improved by integrating the results of multiple
decision trees (Breiman, 2001). Model robustness is particu-
larly crucial when dealing with complex meteorological data
for predicting ice phenology (Ruan et al., 2020). Previous re-
search has highlighted the influence of short-term meteoro-
logical factors on the freezing and melting of shallow lakes
(Blagrave and Sharma, 2023; Caldwell et al., 2020). Hence,
we opted to employ a 3-month meteorological dataset to train
the RF model, which was aligned with the characteristics of
Lake Ulansu.

To train and validate the RF model, we randomly divided
the dataset, which includes ERA5 meteorological factors and
ice phenology derived from 7; data for the period from
1979 to 2023, into two subsets. A total of 70 % of the data
were designated for training purposes, whereas the remaining
30 % were set aside for validation. Each subset was further
segmented into two parts: the first part comprised the aver-
age air temperature, wind speed, solar radiation, and cumu-
lative precipitation for September, October, and November,
which were utilized in predicting the FUS dates. The second
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part mirrored the first in terms of meteorological variables
but focused on the months of January, February, and March
to predict the BUE dates. This organization resulted in each
segment contributing 12 data points toward the prediction of
each target variable, encapsulating the critical meteorologi-
cal factors over the respective 3-month periods.

We employed the same hyperparameters (number of
trees: 10, 20, 50, 100) as Anilkumar et al. (2023) did for
glacier mass balance studies. Using grid search and evalu-
ation, we considered the coefficient of determination (R?),
mean absolute error (MAE), and root mean square error
(RMSE) to select the hyperparameters. The optimal configu-
ration was identified as 20 trees for both the FUS and BUE
models (Appendix C), and 3-fold cross-validation was con-
ducted on the training set. To further evaluate the efficacy
of the RF model, we employed the R%, MAE, and RMSE to
assess its performance of the validation set. As shown in Ta-
ble 1, the FUS model (R? = 0.92) demonstrated superior per-
formance compared to the BUE model (R? = 0.88) within
the training set. The MAEs for both models were less than
2 d. Furthermore, the results from the validation set deserve
attention, with both models achieving R? values exceeding
0.6, underscoring the precision of the RF model in predict-
ing the ice phenology of Lake Ulansu.

After the RF model was established and validated, we
used ERAS meteorological data from 1941 to 1978 as in-
put features to obtain historical ice phenology. These data in-
cluded average air temperature, wind speed, solar radiation,
and cumulative precipitation for the months of September to
November and January to March each year.
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Table 1. Performance of the random forest model in predicting the freeze-up start date and the break-up end date. (R2, MAE, and RMSE
denote the coefficient of determination, mean absolute error, and root mean square error, respectively).

Training \ Validation
Ice phonology ~ R*> MAE(d) RMSE() | R?> MAE() RMSE (d)
Freeze-up start  0.92 1.35 1.87 | 0.88 3.21 3.85
Break-upend  0.88 1.55 2.02 | 0.64 4.74 5.37

4 Results
4.1 Algorithm evaluation

The results of the DMTT algorithm were validated through
a comparison with ice phenology data obtained from multi-
source optical satellite data from 2000 to 2023 (Sect. 3.1.2).
Figure 4 reveals a remarkably high correlation for the FUS
dates (r =0.92), with a minimal MAE of 2.00d and an
RMSE of 2.56 d. The correlation for the BUE date is slightly
lower (r = 0.87), with a somewhat greater MAE of 2.67d
and an RMSE of 3.25d. However, the MAEs and RMSEs
for the ICDs calculated based on the difference between the
BUE and FUS dates remain within 5 d, indicating no system-
atic bias but random errors.

Figure 5 compares the ice phenology results calculated by
the DMTT algorithm with those from the MTT algorithm
and field observations. The MAEs between DMTT and MTT
for the FUS, BUE, and ICD are less than 3 d. However, Du
et al. (2017) reported that the MTT algorithm had significant
limitations when it was applied to the ice phenology of Lake
Ulansu between 2002 and 2015. Due to complex lake surface
conditions, such as mixed pixels containing aquatic vegeta-
tion or land, approximately 49 % of the pixels were misclas-
sified. As a result, the MTT algorithm could provide valid
data for 5 to 8 years, which greatly reduced the continuity and
accuracy of the ice phenology. In contrast, the new DMTT al-
gorithm has been demonstrated to handle these complexities
successfully, reducing misclassified states and substantially
enhancing the accuracy of the dataset. Despite the scarcity of
field observations, these data play a pivotal role in validating
the precision of the DMTT algorithm (Fig. 5).

4.2 Ice phenology during 1941-2023

The ice phenology, including the FUS and BUE dates and
the ICD of Lake Ulansu from 1941 to 2023, is shown in
Fig. 6. To identify significant changes in the ice phenology
trends, we calculated the 21-year moving averages for the
FUS, BUE, and ICD (Appendix D). The ice phenology trends
after 1982 were somewhat opposite to those before 1982,
with this reversal being particularly pronounced in the ICD.
To provide a detailed depiction of this reversal, we divided
the whole period into two subperiods in the following analy-
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ses, and the corresponding statistical results are presented in
Table 2.

During the period from 1941 to 1982, the average date for
FUS was approximately the 105th day (13 November), with
an advance of 0.02dyr~!. The BUE date trend was more
significant, with a delay of 0.12dyr™!, resulting in an av-
erage increase of 0.14dyr~! in the ICD. Notably, the three
ice phenology trends from 1983 to 2023 are highly signifi-
cant (p<0.01). During this period, the FUS date exhibited a
delay trend, advancing by an average of 0.24 d yr~!, whereas
the BUE date showed an early trend, advancing by an aver-
age of 0.31 dyr—!. However, the ICD decreased by an aver-
age of 0.55d yr—!. These trends contrast with the ice phenol-
ogy trends from 1941 to 1982 and are characterized by more
pronounced trends.

Overall, from 1941 to 2023, the ice phenology in Lake
Ulansu exhibited several notable features. The FUS occurred
between the 93rd and 119th days, with an average date of ap-
proximately the 107th day (15 November), showing a slight
delaying trend of 0.07dyr~'. The BUE ranged from the
223rd to the 253rd day, typically occurring around the 237th
day (25 March), with an advancing trend of 0.01 dyr~!. The
ICD spans from 115 to 154 d, with an average of approxi-
mately 130d, decreasing by 0.08dyr~! over the study pe-
riod.

4.3 Impact of meteorological factors on ice phenology

Ice phenology is determined primarily by local meteorolog-
ical conditions (Bartosiewicz et al., 2021; L’ Abée-Lund et
al., 2021), and Table 3 summarizes the variations in the key
meteorological factors influencing Lake Ulansu’s ice phe-
nology from 1941 to 2023. The changes in air tempera-
ture are clearly consistent with those in ice phenology, as
shown in Fig. 6. From 1941-1982, the average air tempera-
ture decreased by 0.04 °C yr~! from September to November
and accelerated to 0.05 °C yr~! from January to March. This
cooling trend coincided with an advanced FUS date and a
delayed BUE date, extending the ICD (Table 2). Conversely,
from 1983 to 2023, both periods experienced increases in
average air temperature at rates of 0.04 and 0.08 °Cyr~!,
respectively. This warming trend was associated with a de-
layed FUS date and an advanced BUE date, indicating a de-
creased ICD. The observed air temperature fluctuations echo
broader climate changes and show trends similar to those ob-
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served in other lakes (Magee et al., 2016; Newton and Mul-
lan., 2021). Importantly, these shifts, which are particularly
pronounced during the ice season, underscore the tight con-
nection between ice phenology and regional climate dynam-
ics (Marengo and Camargo, 2007).

However, variations in other meteorological factors are not
as pronounced as those in air temperature. The wind speed
remained relatively stable across these years (Table 3). The
incident solar radiation decreased notably from September to
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November in accordance with the autumn—winter transition.
Most of the precipitation occurred during the non-ice sea-
son. The months from September to November accounted for
18 % to 24 % of the annual precipitation, whereas the months
from January to March contributed approximately 6 %, sug-
gesting a minimal impact of snow cover formation on the ice
surface due to its thinness.

To further understand the overarching influence of these
meteorological factors, the previous RF model was also em-
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Table 2. Average (Avg) and linear trend (Lt) of ice phenology in Lake Ulansu for various periods covering the years 1941 to 2023. Signifi-
cance levels for trends are denoted by * (p<0.05) and ** (p<0.01). DOY: day of year.

Freeze-up start ‘

Break-up end ‘ Ice cover duration

Period Avg (DOY) Lt(dyr™!) | Avg(DOY) Ltdyr™)) | Avg(d) Ltdyr™h
1941-1982 10534  —0.02 236.75 0.12* 13141 0.14%
1983-2023 108.00  0.24%* 23737  —0.31** 12937 —0.55%*
1941-2023 106.65  0.07+* 237.05 —0.01 130.40 —0.08*

ployed to rank the importance of each factor and determine
their cumulative contributions to the FUS and BUE dates
over specific periods (9—11 months and 1-3 months). As the
predominant driver of changes in ice phenology, air temper-
ature accounted for 56.5 % and 67.3 % of the variation in
the FUS and BUE dates, respectively (Appendix E). This ap-
proach is straightforward because, among all meteorological
factors, air temperature is the most important factor for con-
trolling the heat balance at lake surfaces (Imrit and Sharma,
2021; Kropacek et al., 2013). In addition to air temperature,
incident solar radiation contributed 20.1 % to the variation in
the FUS dates and 15.0 % to the variation in the BUE dates.
As seasons have transitioned, the decreasing intensity of so-
lar radiation has reduced its heating effect on lake ice. The
influence of precipitation was slightly more pronounced on
the BUE date (14.7 %) than on the FUS date (12.3 %). De-
spite the limited precipitation in winter in Lake Ulansu, the
snow cover significantly altered the heat budget of the lake
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ice. The high albedo of snow cover reflects a considerable
amount of solar radiation, while its low thermal conductivity
impedes the transfer of heat to the underlying ice (Cao et al.,
2021). These combined effects slowed the ice-melting pro-
cess, thereby delaying the onset of the BUE. The wind speed
had a relatively high influence on the FUS (11.0 %), primar-
ily by promoting water mixing and increasing heat exchange
between the atmosphere and the water, thus affecting the for-
mation of lake ice. For the BUE date, while the effect of wind
speed was associated primarily with mechanical cracking of
the ice cover, especially when it was thin, Lake Ulansu’s rel-
atively low wind speeds tempered this influence, resulting in
a modest influence of only 3.1 % on the BUE date.

4.4 Monthly influence of meteorological factors on ice
phenology

Although a holistic view of the contributions of meteoro-
logical factors to ice phenology is available in Appendix E,
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Table 3. Average (Avg) and linear trend (Lt) of meteorological factors in Lake Ulansu for various periods covering the years 1941 to 2023.

Significance levels for trends are denoted by * (p<0.05) and ** (p<0.01).

P. Huo et al.: Reconstructing lake ice phenology

Air temperature Wind speed Incident solar radiation Precipitation
Period Avg Lt Avg Lt Avg Lt Avg Lt
O Cyrh) [ ms™hH  @msTyr™H [ (Wm™) Wm ™y | (mm)  (mmyr!)
1941-1982  Annual 6.80 —0.04™* 2.59 —0.00 22645 —0.03* 350.84 —4.56
Sep—Nov 6.75  —0.04** 239 0.00 183.53  —0.07** 66.75  0.30
Jan-Mar  —6.60 —0.05* 223 0.00 171.90 0.01 20.18 —0.05
1983-2023  Annual 7.41  0.05** 2.55  0.00* 22490 —0.02 269.55 —1.75
Sep—Nov 7.27  0.04** 239 0.00 181.19  —0.04** 63.25 —0.06
Jan-Mar  —5.78 0.08** 224 0.00 171.54  0.02 17.28 —0.32*
1941-2023  Annual 7.10  0.01** 257 —0.00 225.68 —0.03** 310.69 —2.27**
Sep—Nov 7.01 0.01* 2.39  0.00 182.38  —0.06** 65.02 —0.03
Jan-Mar  —6.19 0.02* 224 0.00 171.72  0.00 18.75 —0.10

understanding that their influence is not equally important
throughout the year is crucial. For example, air temperature,
which is considered paramount (Bartosiewicz et al., 2021;
Newton and Mullan, 2021), in particular influences ice cover
formation during its initial weeks to months. Therefore, de-
tailed analyses revealing the impact of monthly variations in
meteorological factors on ice phenology are necessary, and
the results are shown in Fig. 7.

Our analysis, depicted in Fig. 7a, shows that November’s
air temperature correlated most strongly with the FUS dates
(r =0.53). This strong correlation can be attributed to the
lake’s shallow 1.6 m deep water, which allows for rapid re-
sponsiveness to cold air. As air temperatures decrease, the
gradient between the lake and the atmosphere increases,
leading to continuous heat release from the water to the atmo-
sphere (Lazhu et al., 2021). This dynamic causes the surface
water temperature to decrease swiftly, increasing the density
of the upper water layer and triggering vertical convection.
The resulting sinking of the upper water layer expedites the
cooling of the entire waterbody. This effect of air temperature
is not confined to the FUS date; it extends to the BUE date
(Fig. 7b), with the strongest correlation coefficients found for
February (r = —0.49) and March (r = —0.70). The cumula-
tive thickness of the ice cover during its formation period
impacts the timing of the melting period. Therefore, the air
temperature from November to March had some impact on
the BUE date, with r>0.3.

Surprisingly, the correlation coefficient for solar radiation
was notably low (Fig. 7a), and in November, it exhibited
a negative correlation with the FUS date (r = —0.37). This
trend is like the findings of Caldwell et al. (2020). For Lake
Ulansu, the correlation may be due to the high attenuation co-
efficient caused by the presence of numerous suspended par-
ticles and algae, which are common in eutrophic lakes (Yang
et al., 2020b). These particles and algae absorb and scatter
solar radiation, especially blue light (450-495 nm), reducing
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the penetration depth of light in water (Lin et al., 2024). As
a result, the heating effect of solar radiation is confined pri-
marily to the surface layers, leading to a diminished overall
heating effect on the water. Moreover, the incident solar ra-
diation exhibited a decreasing trend, averaging between 119
and 125 W m~2 in November. This not only limited the heat-
ing effect on the water but also suggested that the narrow
range of variation might not capture the intricacies of its ac-
tual impact. Nonetheless, in January, solar radiation became
more influential (r = —0.33). Solar radiation heats the wa-
terbody, increasing the ice—water heat flux and promoting ice
cover melting.

Wind plays a dual role in this process. While it can ac-
celerate water mixing, promoting early FUS, it can also dis-
rupt fragile ice, delaying the formation of stable ice cover
(Fig. 7a). At Lake Ulansu, where the wind speed generally
ranges from 1 to 4 m s~ its influence on the FUS date was
somewhat muted, as indicated by an r of —0.07 in Novem-
ber. Similarly, the effect of wind on the ice-melting phase is
marginal (Fig. 7b). Primarily impacting the ice surface, sub-
dued wind speeds at the lake contributed to a decrease in
turbulent heat exchange and a consequent reduction in ice
sublimation.

The role of precipitation is complex. When it manifested
as rain over the lake in October, it cooled the water, narrow-
ing the temperature gap between the lake and the atmosphere
(r = —0.13). Conversely, when it fell as snow in Novem-
ber, its low thermal conductivity obstructed heat exchange
between the lake and the atmosphere, hampering the forma-
tion of a stable ice cover (r = 0.27). If there is a considerable
amount of snow cover, the influence of air temperature and
solar radiation on the ice cover and the underlying water can
be mitigated, but Lake Ulansu experiences limited snowfall,
resulting in a minimal impact on the BUE date (Fig. 7b).

Since the ICD is the difference between the BUE date and
the FUS date, the meteorological factors highly correlated
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with the ICD were essentially the same for both the FUS date
and the BUE date (Fig. 7c). Air temperature remains the pri-
mary influencing factor, with the correlation coefficient of
solar radiation in January also being relatively high.

5 Discussion

The novel DMTT algorithm developed in this study has
proven essential for accurately discerning ice and water
states in a lake with mixed-pixel challenges. In this section,
we discuss the uncertainties associated with methodologies,
compare our findings with those of other studies, and elabo-
rate on the implications of the results for understanding the
impacts of climate change on lake ice phenology.

5.1 Uncertainty analysis

Owing to the specific characteristics of Lake Ulansu, the
uncertainties in ice phenology reconstruction are attributed
mainly to the spatiotemporal-resolution constraints of the
CETB data and the methodological limitations associated
with the DMTT algorithm used in the study.

First, the CETB T;, data had a high spatial resolution of
3.125km. Owing to the complex geometry of the shoreline
and rich aquatic vegetation of reeds in Lake Ulansu, five
CETB grids with water coverage exceeding 0.70 were se-
lected (Fig. 1b). The criteria for selecting these pixels were
twofold: first, to ensure the inclusion of extensive water sur-
faces, thereby minimizing the influence of land surface Ty,
and, second, to locate the pixels predominantly in the cen-
tral area of the lake where the water depth is more consis-
tent, thus reducing the effects of uneven ice formation due
to depth variation. Considering the overall shallow depth of
the lake, we contend that the potential error caused by our
grid selection is minimal when assessing the ice phenology
of Lake Ulansu. Furthermore, despite the 1d temporal res-
olution of the CETB data, periodic gaps in the Tj, data may
occur due to orbital issues. This problem is particularly pro-
nounced in the SMMR sensor and could lead to a maximum
error of approximately 5 d in the ice phenology results for the
years 1979-1987 (Cai et al., 2022). However, T;, data from
SSM/T and SSMIS are more complete, resulting in more ac-
curate ice phenology data from these sensors (Fig. 4).

Second, the DMTT algorithm applies a smoothing tech-
nique to calculate the daily values of Tj, as the average of
the preceding 10d and the following 10d, following Du et
al. (2017). The purpose of this step was to eliminate the in-
fluence of short-term fluctuations on the 7;, data but at the
cost of losing some Ty, information. Furthermore, the DMTT
algorithm uses CETB data at 37.5 GHz. However, Kang et
al. (2012) reported that 18.7 GHz is more suitable for cal-
culating the BUE date when analyzing phenological data
for Great Bear Lake and Great Slave Lake because of large
changes in Ty, during the transition of ice into water, facili-
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tating the detection of ACPs. This discrepancy may explain
the slightly inferior BUE results in this study (Fig. 4). How-
ever, the coarse spatial resolution of 18.7 GHz in the CETB
data is unsuitable for determining the shape of the shoreline
of Lake Ulansu. Considering this, our study employed two
thresholds to separately calculate FUS and BUE dates, ob-
taining thresholds better suited for the transition between ice
and water states and thereby enhancing the accuracy of ice
phenology results.

5.2 Comparison with other lakes

Lake Ulansu is characterized by its shallow depth and abun-
dant aquatic vegetation, which is much different from most
previous results on large lakes at similar latitudes and boreal
lakes with heavy snowfall. Therefore, a comparison between
these lakes and the general trends across lakes in the North-
ern Hemisphere is interesting.

First, unlike previous studies on lake ice phenology us-
ing passive microwave data that focused primarily on large
lakes due to algorithm limitations, this study develops the
DMTT algorithm, revealing distinct ice phenology for the
shallow, vegetated Lake Ulansu. A direct comparison with
Qinghai Lake is straightforward because they are at simi-
lar latitudes, but the latter is a massive saline lake on the
Tibetan Plateau, covering an area of more than 4000 kmz,
with a much larger water volume than Lake Ulansu. Cai et
al. (2017) used T; data to calculate the ice phenology of
Qinghai Lake from 1979 to 2016. They reported that the FUS
date delay and BUE date advancement were 0.16d yr~! and
0.37 dyr~!, respectively, which are weaker and stronger than
those observed for Lake Ulansu. During the freezing process,
more heat must be released to cool the lake water than in
a shallow lake. This makes it relatively less sensitive to air
temperature fluctuations in Qinghai Lake than shallow lakes
are, hence resulting in a weak trend for the FUS dates. At
altitudes greater than 3000 m, ice melt in Qinghai Lake is
markedly influenced by its exposure to intense solar radia-
tion, leading to a more pronounced BUE trend (Kirillin et al.,
2021). Additionally, factors such as sublimation due to strong
winds also significantly impact BUE dates, with studies such
as Huang et al. (2019) showing that sublimation accounts for
up to 40 % of the maximum ice thickness loss in the region.
Various factors contribute to the pronounced BUE trends in
lakes on the Tibetan Plateau. In contrast, long-term studies of
Lake Ulansu indicate a stronger trend for FUS than for BUE
(Table 2), with air temperature exerting an influence of over
50 % on both the FUS and BUE dates.

Second, the impacts of precipitation, particularly snow,
on ice phenology strongly differ between Lake Ulansu and
northern European lakes. Research on Estonian lakes by
Noges and Noges (2013) illustrates that despite rising air and
lake surface temperatures from 1961 to 2004, the BUE date
displayed only minimal changes. This anomaly is attributed
to the insulating properties of snow, which moderate the ther-
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Figure 7. Correlation coefficients between meteorological factors and ice phenology in different months. Significance levels for correlation

coefficients are denoted by * (p<0.05) and ** (p<0.01).

mal response of lakes to climatic warming (Cheng et al.,
2020). Thus, the insulating effect of heavy snowfall was sub-
stantial enough to offset the rising air temperature’s potential
to advance the BUE date. In contrast, Lake Ulansu’s region
experiences markedly less winter precipitation (Table 3), re-
sulting in minimal snow cover. The sparse snowfall, coupled
with wind activity that disrupts snow accumulation, dimin-
ishes any insulative buffer on the ice surface, allowing for
air temperature to exert a more direct influence on the BUE
date than Estonian lakes do. Furthermore, in northern Euro-
pean lakes, minimal solar radiation during winter is largely
reflected by the high albedo (>0.7) of heavy snow cover
(Gebre et al., 2014), which, together with the high albedo
(>0.5) of snow ice (Leppidranta et al., 2010), significantly
reduces the influence of solar radiation on ice-melting pro-
cesses. Conversely, in Lake Ulansu, where the surface albedo
is much lower (<0.3) (Cao et al., 2021), the influence of so-
lar radiation on the melting process is much greater. This
makes the BUE responsive to solar radiation. In regions such
as Lake Ulansu, where snow cover does not significantly mit-
igate the effects of air temperature and solar radiation, under-
standing the direct impacts on ice phenology provides criti-
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cal insights into how similar ecosystems might respond under
scenarios of diminishing snowfall due to climate change.

Finally, an analysis by Newton and Mullan (2021) on ice
phenology across 678 waterbodies in the Northern Hemi-
sphere from 1931 to 2005 highlighted a modest overall in-
crease in the ICD of O.O6dyr‘1. In contrast, Lake Ulansu
exhibited a more pronounced trend in the ICD, underscoring
its heightened sensitivity to climatic variations due to its shal-
low depth and unique regional climate conditions. This sig-
nificant divergence from broader hemispheric trends demon-
strates the critical need to include diverse lake types, such
as shallow lakes and small and medium-sized lakes, in cli-
matic impact studies. Detailed insights into Lake Ulansu’s
ice phenology reveal how subtle fluctuations in air temper-
ature can have amplified effects on shallow lakes, making
them essential indicators of ecological responses to global
climate change.

6 Conclusion
To our knowledge, we reconstructed the ice phenology of

Lake Ulansu from 1941 to 2023, the longest ice phenol-
ogy data for a large, shallow, and aquatic-plant-dominated
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lake in northwestern China. A new double-threshold moving
t-test (DMTT) algorithm was developed to distinguish wa-
ter and ice from lake surfaces via 37 GHz H-polarization T;,
data with a resolution of 3.125 km from the CETB dataset.
The DMTT has integrated daily air temperature, which al-
lows it to accurately detect abrupt change points (ACPs) and
thus calculate distinct thresholds for transitions between wa-
ter and ice. This enhanced functionality allowed us to effec-
tively differentiate mixed pixels among complex shorelines
and rich aquatic vegetation, resulting in accurate ice phenol-
ogy data from 1979 to 2023. Together with the correspond-
ing meteorological data, these data further served as training
data for the RF model, and the ice phenology of Lake Ulansu
from 1941 to 1978 was successfully reconstructed.

Over the 83 years from 1941 to 2023, Lake Ulansu pre-
sented an average FUS date of 15 4+ 5 November and an av-
erage BUE date of 25 4+ 6 March, with an average ICD of
130 &+ 8 d. The trends in the FUS, BUE, and ICD dates were
0.07, —0.01, and —0.08 dyr‘l, respectively. Notably, we did
not find significant trend changes in the delayed FUS and
advanced BUE dates. This phenomenon can be attributed
primarily to significant air temperature fluctuations in the
1980s, characterized by a cooling trend before the 1980s and
a warming trend thereafter. Over the last 4 decades, consid-
erable contraction in the ice cover span has occurred, with
the ICD shortening by an average of 22 d, markedly contrast-
ing with the more gradual trends observed in the ICD across
other lakes in the Northern Hemisphere (Newton and Mullan,
2021). The predominant role of air temperature in ice phenol-
ogy has been confirmed, showing that it contributes 56.5 %
of the variation in the FUS date and 67.3 % of the variation
in the BUE date. Seasonal transitions further underscore the
role of air temperature, particularly in November, where it
strongly correlates with the FUS date (r = 0.53) and extends
into early spring, influencing the BUE date (r = —0.50). The
high eutrophication level in Lake Ulansu attenuates the ca-
pacity of solar radiation to heat the waters, with the most
substantial influence observed during the ice-melting pro-
cess in January, as evidenced by a correlation coefficient of
r = —0.36. Wind speed, while contributing to water mixing
and early ice formation, has a limited effect on the FUS date
and an even lesser impact on the BUE date due to the lake’s
generally low wind conditions. The role of precipitation is
complex, with rain cooling the water and snow impeding heat
exchange because of its low thermal conductivity, yet both
have a minimal overall impact on the BUE date considering
the lake’s limited snowfall. Overall, wind speed, precipita-
tion, and solar radiation collectively accounted for 43.5 % of
the influence on the FUS date and 32.7 % on the BUE date,
highlighting the multifaceted yet secondary roles of these
factors in shaping the ice phenology of Lake Ulansu com-
pared with the predominant role of air temperature.

This study introduced the new DMTT algorithm, which
significantly enhances the capability for ice phenology re-
search in lakes with complex shorelines and abundant vege-
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tation. Given the presence of W-shaped T, series lakes across
the Northern Hemisphere (Appendix F), plans include ex-
tending this algorithm’s application to a broader range of
small and medium-sized lakes globally. Additionally, the
data gaps in early satellite records, particularly those of Nim-
bus 7, warrant further investigation to achieve a more com-
prehensive historical perspective. Addressing these gaps is
crucial for enhancing the accuracy of long-term ice phenol-
ogy reconstructions. We also expect future research to delve
into the composition, chemical properties, and microstruc-
ture of lake ice through numerical simulations, thereby open-
ing new possibilities for remote sensing applications across
various lake types.

Appendix A: ERAS meteorological data evaluation

The daily average air temperature, wind speed, and incident
solar radiation were calculated and compared with avail-
able field observations from 2016 to 2018 and from 2022
to 2023 (Cao et al., 2021; Lu et al., 2020). As shown in
Fig. Ala, there was significant agreement between the ERAS
air temperature data and the field observations, with an r of
0.99. The MAE was 0.95°C, and the RMSE was 1.17 °C.
Further error reduction was achieved by applying a regres-
sion equation to adjust the air temperature. This high accu-
racy of air temperature ensures the precision of subsequent
ice phenology calculations based on CETB data. Although
the reanalysis gridded data may struggle to capture near-
surface true wind speeds, the ERAS wind speed data exhib-
ited greater consistency in inland areas than other reanalysis
datasets did (Ramon et al., 2019). A correlation coefficient
of r =0.81 was achieved by comparison with field obser-
vations, as shown in Fig. Alb, and the error for the wind
speed data over Lake Ulansu further decreased to an MAE
of 0.48 ms~! and an RMSE of 0.61 ms~! after linear regres-
sion was applied. Overall, the incident solar radiation data
from this dataset were slightly lower than those from the
field observations (Fig. Alc), but the corrected daily averages
were within acceptable limits, with an MAE of 18.04 W m~2
and an RMSE of 22.35 W m™2. Previous studies have indi-
cated that the use of ERAS precipitation data has significant
advantages and that these data are widely used in various
regions (Bandhauer et al., 2021; Yuan et al., 2021). In this
study, cumulative precipitation was calculated for ice phe-
nology trend analyses for Lake Ulansu. Its validity is not
presented here because of the absence of in situ precipita-
tion observations in this region, with only limited snowfall
or thin snow cover (<4 cm) occurring in the winter (Lu et
al., 2020).
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Figure A1l. Comparison between ERAS and observed daily average (a) air temperature (7,5, Tobs), (b) wind speed (Wepas5, Wopg), and
(c) incident solar radiation (Sera5, Sobs) meteorological data for Lake Ulansu. r, MAE, RMSE, and n denote the correlation coefficient, mean
absolute error, root mean square error, and sample size, respectively.

Appendix B: Adaptability of the DMTT algorithm in

the brightness temperature series

The DMTT algorithm shows strong adaptability in identify-
ing the Ty series from mixed pixels. Although these series
maintain a W shape overall, there are differences in the spe-
cific T, during the freezing and melting stages. Figure Bla
shows smaller changes in brightness temperature between
these two stages, and Fig. B1b shows a lower T, valley dur-
ing melting than during freezing. Such sensitivity to nuanced
changes underscores the substantial advantage of the DMTT
algorithm in enhancing the precision and continuity of long-
term ice phenology data, especially in environments with
complex shorelines and extensive aquatic vegetation.
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Figure B1. Brightness temperature (solid blue line) and air temperature (solid red line). The ice—water status was determined via the double-
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(b) HY2015.
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Appendix C: Optimal number of trees for the random
forest model of ice phenology

In the process of hyperparameter optimization for our ran-
dom forest model, we carefully considered the balance be-
tween model complexity and predictive accuracy. A greater
number of trees, such as 100, might yield a lower MAE for
the training set, which is also associated with a greater risk of
overfitting. Overfitting occurs when a model learns the train-
ing data too well, including noise and outliers, which results
in decreased performance for unseen data, as evidenced by a
larger MAE for the validation set (Table C1).

By selecting 20 trees, we strike an optimal balance where
the model complexity is sufficient to capture the underlying
patterns in the data without being overly sensitive to the noise
in the training data. We observed that increasing the num-
ber of trees from 20 to 100 did not significantly improve the
R? for the training set. Moreover, for the FUS model, there
was a notable decrease in R? for the validation set when 50
or 100 trees were used compared with 20 trees. This indi-
cates that the additional complexity introduced by more trees
may lead to overfitting, which harms the model’s predictive
performance for new data. Moreover, the performance of the
validation set for models with 20 trees suggests robust gener-
alization without significant overfitting, as indicated by con-
sistent R? values and acceptable MAE and RMSE values.
Therefore, considering the potential for overfitting, the com-
putational efficiency, and the model’s generalization perfor-
mance, we concluded that a configuration of 20 trees is the
most appropriate for our study.

Table C1. Performance of freeze-up start date and break-up end date predictions for training and validation sets with varying numbers of
trees in a random forest model.

Training \ Validation

Number of trees  Ice phenology R?Z MAE (d) RMSE (d)‘ R?Z MAE (d) RMSE (@)

10 Freeze-up start  0.88 1.62 228 | 0.85 3.40 4.32
Break-up end 0.86 1.56 2.21 | 0.66 4.76 5.37
20 Freeze-up start  0.92 1.35 1.87 | 0.88 3.21 3.85
Break-up end 0.88 1.55 2.02 | 0.64 4.74 5.37
50 Freeze-up start  0.94 1.31 1.99 | 0.86 3.84 4.68
Break-up end 0.92 1.43 1.80 | 0.61 4.93 5.60
100 Freeze-up start  0.96 1.23 1.82 | 0.90 3.63 433
Break-up end 0.92 1.44 1.83 | 0.61 4.84 5.59
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Appendix D: The 21-year moving averages of ice
phenology

@

—_
(=3
~

_/-—-/W\\/\/\

=3
@D

D =
=
<«

®)

[}
=
o

8]
%}
Q

B

—_ N
Bow
=3

(©)
132 ,\WV\/V

1945 1955 1965 1975 1985 1995 2005 2015
Hydrological year

Ice cover duration (day) Break-up end (DOY) Freeze-up start (DOY)

—_
[\
hN

Figure D1. The 21-year moving averages of ice phenology for Lake Ulansu. (a) Freeze-up start. (b) Break-up end. (c) Ice cover duration.
The vertical pink line indicates HY 1983.

Appendix E: Contributions of meteorological factors to
ice phenology
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Figure E1. Contributions of meteorological factors to Lake Ulansu’s freeze-up start and break-up end dates.
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Appendix F: W-shaped brightness temperature series
for diverse lakes across the Northern Hemisphere
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Figure F1. (a—d) Landsat 8 images of Lake A, Lake B, Lake C, and Lake D. Red rectangles indicate where mixed brightness temperature
pixels were analyzed. (e) Brightness temperature time series from 1 August 2019 to 1 August 2020, for each lake.

Data availability. The ice phenology data for Lake Ulansu can
be accessed at https://doi.org/10.5281/zenodo.10848522 (Huo,
2024). The CETB data were downloaded from the NSIDC
Data Search website (https://doi.org/10.5067/ MEASURES/
CRYOSPHERE/NSIDC-0630.001, Brodzik et al., 2016). The
ERAS data were downloaded from the Climate Data Store
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