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Abstract. Arctic sea ice thickness (SIT) remains one of the
most crucial yet challenging parameters to estimate. Satellite
data generally present temporal and spatial discontinuities,
which constrain studies focusing on long-term evolution.
Since 2011, the combined satellite product CryoSat-2 (CS2)
and Soil Moisture and Ocean Salinity (SMOS), CS2SMOS,
enables more accurate SIT retrievals that significantly de-
crease modelled SIT errors during assimilation. Can we ex-
trapolate the benefits of data assimilation to past periods
lacking accurate SIT observations? In this study, we train a
machine learning (ML) algorithm to learn the systematic SIT
errors between two simulations of the model TOPAZ4 over
2011-2022, one with CS2SMOS assimilation and another
without any assimilation, to predict the SIT error and extrap-
olate the SIT prior to 2011. The ML algorithm relies on SIT
coming from the two versions of TOPAZ4, various oceano-
graphic variables, and atmospheric forcing from ERAS. Over
the test period of 2011-2013, the ML method outperforms
TOPAZ4 without CS2SMOS assimilation when compared to
TOPAZ4 assimilating CS2SMOS. The root-mean-square er-
ror (RMSE) in Arctic-averaged SIT decreases from 0.42 to
0.28 m and the bias from — 0.18 to 0.01 m. Also, despite the
lack of observations available for assimilation in summer, our
method still demonstrates a crucial improvement in SIT. Rel-
ative to independent mooring data in the central Arctic be-
tween 2001 and 2010, mean SIT bias reduces from —1.74
to —0.85m when using the ML algorithm. In the Beaufort
Gyre, our method approaches the performance of a basic cor-
rection algorithm. Ultimately, the ML-adjusted SIT recon-
struction reveals an Arctic mean SIT of 1.61 m in 1992 com-
pared to 1.08 m in 2022. This corresponds to a decline in total
sea ice volume from 19690 to 12700 km?>, with an associ-

ated trend of —3153 km? per decade. These changes are ac-
companied by a distinct shift in SIT distribution. Our innova-
tive approach proves its ability to correct a significant part of
the primary biases of the model by combining data assimila-
tion with machine learning. Although this new reconstructed
SIT dataset has not yet been assimilated into TOPAZA4, future
work could enable the correction to be further propagated to
other sea ice and ocean variables.

1 Introduction

In this study, we investigate an original approach combining
data assimilation and machine learning to correct past model
estimations of sea ice thickness using present observations.
While ground truth observations offer unparalleled accuracy,
they lack global coverage, contrasting with remote sensing
observations that, although global, are associated with large
uncertainties due to necessary assumptions for estimation. At
present, the best estimation is commonly obtained by inte-
grating remote sensing observations into models to reduce
their biases. However, this approach relies on the availability
of observations and, as a result, cannot help retrieve historical
sea ice thickness. Studies focusing on long-term evolution,
particularly those oriented toward climate research, demand
extensive and accurate time series of sea ice thickness, given
the essential role that sea ice plays as the interface between
the ocean and the atmosphere.

Arctic sea ice acts as a multifaceted and vital interface be-
tween the ocean and the atmosphere, playing a major role
in regulating energy exchange, reflecting sunlight, and influ-
encing local weather patterns. Sea ice significantly influences
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marine ecosystems, providing habitat and migration routes
for diverse species (Kahru et al., 2011; Frainer et al., 2017).
As sea ice melts, it injects freshwater into the ocean, affect-
ing salinity levels and exposing the ocean to the atmosphere.
Moreover, as Arctic sea ice extent is declining due to warm-
ing (Comiso et al., 2008), the Arctic is becoming more navi-
gable, opening up new opportunities for maritime transporta-
tion and resource exploitation but also raising concerns about
environmental impacts and sustainable management of the
region’s fragile ecosystems (Aksenov et al., 2017). Notably,
the thickness of Arctic sea ice stands as a major unknown
quantity, as thicker ice, usually older and deformed, resists
melting and mechanical stresses better. Its variations are in-
tricately tied to the heat and freshwater budget, the sea ice
dynamics, and the ecosystem.

The current deficiency in a comprehensive and accurate
climate record for sea ice thickness (SIT) is attributed to
the sparse availability of SIT observations and the relatively
recent integration of satellite technology. Although SIT ob-
servations have been taken in situ (Lindsay and Schweiger,
2015) and by no fewer than five satellites, they generally suf-
fer from severe representativity issues and high uncertain-
ties (Zygmuntowska et al., 2014) and lack both the temporal
and spatial continuity that long-term climate studies need.
Consequently, model reanalyses of Arctic SIT diverge sub-
stantially (Uotila et al., 2019) and lack credibility. An ex-
tended reconstruction of Arctic sea ice thickness, along with
its uncertainty estimates, is essential to unlocking investiga-
tions of the Arctic climate, including heat budgets (Trenberth
et al., 2019), freshwater fluxes (Solomon et al., 2021), and its
ecosystem (Arrigo, 2014).

Physical-based sea ice models (e.g. Hunke and Dukow-
icz, 1997) can simulate reasonable sea ice thickness, yet SIT
biases in numerical models remain significant, originating
from various factors including external components like at-
mospheric or ocean fluxes and internal aspects intrinsic to
the model itself. Intercomparisons of SIT between state-of-
the-art models thus exhibit large deviations from one model
to the next in terms of spatial distribution (Johnson et al.,
2012; Uotila et al., 2019; Watts et al., 2021). Similarly, large
deviations are observed when comparing satellite products
(Sallila et al., 2019) or diverse in situ datasets, mostly due
to differences in spatial and temporal coverage (Lindsay and
Schweiger, 2015; Labe et al., 2018) and in data processing
methods, such as retracking algorithms for satellite altime-
ters (e.g. Tilling et al., 2018; Landy et al., 2020).

Since 2010, the merged remote sensing product
CS2SMOS, combining data from Soil Moisture and
Ocean Salinity (SMOS) and CryoSat-2 (CS2) for thin and
thick ice, respectively, provides continuous SIT every winter
(Ricker et al., 2017), yet longer time series are required to
conduct climate studies. Assimilating CS2SMOS data in the
coupled ocean—sea ice model TOPAZ corrects a low SIT
bias of roughly 16 cm, reducing average root-mean-square
errors from 53 to 38cm and further to 20cm in March
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(Xie et al., 2018; Xiu et al., 2021). Can we extrapolate the
benefits of data assimilation to past periods without SIT
observations? Brajard et al. (2020) introduced a method to
combine data assimilation (DA) with machine learning (ML)
to build a hybrid numerical model. The present study applies
this approach to rewind a climate record.

Machine learning has advanced to a point where it can ef-
fectively address the high dimensionality, complexity, and
nonlinearity inherent in dynamical systems (Rolnick et al.,
2022), especially when combined with DA (Cheng et al.,
2023). Recent investigations have demonstrated the potential
of machine learning for sea ice, focusing on various objec-
tives such as parameterizing subgrid-scale dynamics (Finn
et al., 2023), emulating sea ice melt ponds (Driscoll et al.,
2023), or skilfully predicting DA increments of sea ice con-
centration across all seasons (Gregory et al., 2023). In the
present study, our assumption is that a suitable compression
of the variables at play (e.g. via empirical orthogonal func-
tion, EOF) identifies the complex nonlinear relationships be-
tween physical variables without altering them (Liu et al.,
2023).

In the present investigation, we train a machine learn-
ing algorithm to learn the systematic SIT errors between
two versions of the model TOPAZ4 over 2011-2022, with
(TOPAZ4-RA) and without (TOPAZ4-FR) CS2SMOS as-
similation. Then, we use the algorithm to predict the SIT
error and extend the SIT estimates to periods before 2011
(Fig. 1). For this work, the training period (2014-2022) sup-
ports algorithm development and includes a validation period
(20 % of the training period, in chronological order without
randomization) to optimize hyperparameters. The test period
(2011-2013) enables us to verify our algorithm performance
using the data held specifically for this purpose. The evalua-
tion period (1992-2010) allows us to assess the ML-adjusted
SIT, called TOPAZ4-ML, compared to independent datasets.

Section 2 describes various datasets and the model
TOPAZA. Section 3 further explains the method used to com-
bine DA and ML. Section 4 presents the results and evalua-
tion of the ML algorithm, as well as an assessment of the ex-
tended SIT time series with independent datasets, and high-
lights unprecedented outcomes from this brand-new product.
Section 5 discusses the limitations of and uncertainties in this
investigation.

2 Datasets
2.1 CS2SMOS

The CS2SMOS sea ice thickness (SIT) product (Ricker
et al., 2017) combines measurements from two satellite mis-
sions: CryoSat-2 (CS2) and Soil Moisture and Ocean Salinity
(SMOS). CryoSat-2 (Wingham et al., 2006) utilizes radar al-
timetry to measure the height of the ice surface above the wa-
ter level, which is converted into sea ice thickness, assuming
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Figure 1. Chronological conception of our study. Development of the ML algorithm is based on the years 2011-2022. Prediction by the ML
algorithm is done from 2011 backward in time until 1992. CS2SMOS serves as the development of our ML algorithm, while mooring data

and remote sensing observations provide the evaluation of its prediction.

hydrostatic equilibrium. SMOS (Kaleschke et al., 2012) mea-
sures microwave emissions at 1.4 GHz, allowing us to derive
sea ice thickness from thin ice. The combination of CS2 and
SMOS handles their individual deficiencies better by accu-
rately resolving thin (<~ 1 m) and thick (>~ 1m) sea ice
floes, respectively. This advanced merged product provides
the first accurate representation of the true sea ice thickness
distribution, with temporal continuity and spatial coverage.
Due to challenges differentiating between sea ice leads and
surface melt ponds during the melting season, the observa-
tion period is limited to October through April, starting in
2010. The average uncertainty is typically around 0.50 m,
with CS2 uncertainties ranging from 0.1 to 1 m and SMOS
uncertainties less than 1.1 m in thin ice (Ricker et al., 2017).
The novel year-round processing of CS2 by Landy et al.
(2022) was not considered here due to artefacts in the transi-
tions from summer to winter.

2.2 TOPAZA

TOPAZ is a regional coupled ocean—sea ice data assimila-
tion system successfully implemented in the Arctic Ocean
operational forecast, and version 4 is described in Sakov
et al. (2012) and Xie et al. (2017). It is built on the HY-
COM ocean model (Bleck, 2002), coupled with a single-
thickness-category sea ice model based on elastic—viscous—
plastic (EVP) rheology (Hunke and Dukowicz, 1997) and
rudimentary thermodynamics (Drange and Simonsen, 1996).
The data assimilation is based on a deterministic formulation
of the ensemble Kalman filter (DEnKF, detailed in Sakov
and Oke, 2008) using 100 dynamical members to assimi-
late various ocean and sea ice observations (see Xie et al.,
2018, 2023). Historically, the system used the atmospheric
forcing fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF) to drive the model. To gen-
erate real-time forecasts, the system is forced by the oper-
ational weather forecast products. But for a long-time model
run such as the Arctic reanalysis, we use the latest ECMWF
atmosphere reanalysis product version 5 (ERAS; Hersbach
et al., 2020).

Rather than learning from the winter-only satellite obser-
vations, which would not provide any information about the
summer season, two model runs have been produced: with-
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out and with assimilation, covering the years 1992-2022.
Both of them are forced by ERAS and provide daily out-
puts on regular grids with a spatial resolution of 10km. In
this study, the raw version of TOPAZ4, without assimila-
tion, is hereafter called the free run or TOPAZ4-FR. For
TOPAZ4 with assimilation, called TOPAZ4-RA, we assim-
ilated sea level anomalies (SLAs, https://doi.org/10.48670/
moi-00146; E.U. Copernicus Marine Service Information,
2025a), sea surface temperatures (SSTs, https://doi.org/10.
48670/moi-00169; E.U. Copernicus Marine Service Infor-
mation, 2025b), in situ profiles of temperature and salinity
(https://doi.org/10.17882/46219; Szekely et al., 2024), sea
surface salinity (SSS, version 3.1 from the Barcelona Ex-
pert Center), sea ice concentrations (SICs, https://doi.org/10.
48670/moi-00136; E.U. Copernicus Marine Service Infor-
mation, 2025¢) and sea ice drift (SID) from the Ocean and
Sea Ice Satellite Application Facility (OSISAF), and we took
sea ice thickness (SIT, https://doi.org/10.48670/moi-00126;
E.U. Copernicus Marine Service Information, 2025d) from
CS2SMOS (see Ricker et al., 2017). The assimilation is per-
formed weekly, and SIT assimilation is only carried out from
October to April after 2011. All the observations except for
SSS and SID were downloaded from the Copernicus Marine
Environment Monitoring Service (CMEMS). Since 2004,
the ice-tethered profilers (ITPs) can provide more density-
layered profiles under sea ice and provide rare information to
measure polar marine environments. However, their appear-
ance in the TOPAZ4 system within a limited representative
ensemble brings considerable interference to the SIT update,
especially in the summer absence of SIT observations. To
overcome this nonphysical response of sea ice updating from
ITPs, TOPAZ4-RA implements some specific changes that
have been made based on Xie et al. (2017). In each assimila-
tion cycle, the final optimization of the model state consists
of two steps. First, all ocean variables are updated as before.
In the second step, the sea ice variables are updated, but we
switch off the covariance contributions from the in situ pro-
files. As a preprocessing step, if the sea ice concentration in
the TOPAZA4 free run falls below 15 %, we interpret this as
the absence of sea ice (SIC=0 and SIT =0) in TOPAZ4-
RA. This step ensures consistent sea ice extent across the
two TOPAZA4 runs, allowing the ML algorithm to concentrate
solely on adjusting the SIT.
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2.3 ERAS

In this study, the atmospheric fields from the latest ECMWF
reanalysis, ERAS (Hersbach et al., 2020), are used as predic-
tors for our ML algorithm. They bring valuable information
about environmental conditions that improve the bias predic-
tion. The following variables are used at the surface level:
air temperature, mean sea level pressure, total precipitation,
and wind speed in the east—west and north—south directions.
Daily averaged fields at a horizontal resolution of 31 km are
projected onto the TOPAZ4 grid. Finally, they are processed
following the methodology outlined in Sect. 3.

2.4 Seaice age

The observed mean sea ice age (Korosov et al., 2018) is used
as a predictor, which we consider more precise than a mod-
elled one. In this product, the advection scheme predicts the
subsequent creation or loss of new ice by taking into account
the observed divergence or convergence, freezing, or melt-
ing of sea ice. Sea ice concentration and daily gridded drift
products from the OSISAF are used by the algorithm. The
primary benefit of the new technique lies in its capacity to
produce unique ice age fractions for every pixel in the output
result, providing the ice age’s frequency distribution, which
allows us to obtain the mean, median, or weighted average.
This feature should aid the machine learning model, as the
sea ice age is a proxy for thickness; older ice has undergone
more growth, freezing, and compression processes (Liu et al.,
2020).

2.5 Validation data: mooring data

In situ observations have been gathered to evaluate our ML-
adjusted daily SIT at different times and places in the Arc-
tic. Upward-looking sonar (ULS) devices are the most sta-
tistically robust instruments deployed in the Arctic to mea-
sure the sea ice draft from underneath the drifting ice pack
(Krishfield and Proshutinsky, 2006). In contrast, observa-
tions from floe-tethered Lagrangian buoys only measure the
thickness of the specific sea ice floe to which they are at-
tached. The sea ice thickness from ULS can be derived as-
suming hydrostatic equilibrium. In this work, SIT is com-
puted by multiplying the sea ice draft by a factor of 1.12,
which corresponds approximately to the ratio of mean sea-
water density and sea ice density (Sumata et al., 2023; John-
son et al., 2012; Bourke and Paquette, 1989). A more precise
conversion from sea ice draft to thickness is possible using
the appropriate snow and ice densities (Nab et al., 2024).
The datasets listed in Table 1 are used during the valida-
tion period prior to 2011. They have been collected by the
Beaufort Gyre Exploration Project (BGEP; https://www2.
whoi.edu/site/beaufortgyre/, last access: 5 February 2025)
and the North Pole Environmental Observatory (NPEO, http:
/Ipsc.apl.washington.edu/northpole/, last access: 5 Febru-
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ary 2025). Their locations are shown in Supplement Fig. S1.
We apply a 7d running mean to smooth the mooring data,
ensuring a more consistent comparison. Then we choose the
nearest grid point to each mooring site and extract daily SIT
values from the model at those locations.

2.6 Validation data: remote sensing

ICESat-1 (Ice, Cloud, and land Elevation Satellite) emerged
as a pioneering instrument for the assessment of sea ice thick-
ness, specifically in polar regions (Schutz et al., 2005). De-
spite its innovative approach, the Geoscience Laser Altimeter
System (GLAS) encountered a malfunction that forced it to
operate only for 1-month periods out of every 3 to 6 months
to extend the time series of measurements. It operated from
January 2003 to October 2009, resulting in 15 campaigns in
the Arctic. The process of converting the retrieved freeboard
and estimated snow cover climatologies is further explained
in Kwok and Cunningham (2008), which allowed ICESat-1
to provide mean SIT for each campaign at a spatial resolution
of 25km x 25 km. The satellite orbital configuration causes
a data gap at latitudes north of 86° N, which is filled through
interpolation (Yi and Zwally, 2009).

Envisat, the European Space Agency’s (ESA) satellite
launched in 2002, has played a crucial role in advanc-
ing our understanding of Earth’s polar regions. The dataset
(Hendricks et al., 2018) provides sea ice thickness derived
from the Radar Altimeter-2 instrument developed by the
ESA Climate Change Initiative (CCI) project. It provides
monthly gridded sea ice thickness data for the freezing period
(October-March) from 2002 to 2012. The spatial resolution
is 25km x 25 km in the Arctic, with the Pole hole north of
81.5°N.

Previous studies utilizing these satellites drew the follow-
ing conclusions. Envisat, with its sensor’s coarse resolution
(~ 2 km footprint), primarily samples larger and thicker sea
ice (Paul et al., 2018; Tilling et al., 2019), whereas ICESat-
I’s sensor has a much finer footprint (~ 170 m), enabling
more detailed measurements. In comparison to airborne and
ULS data, ICESat-1 SIT was consistently less than that of
CryoSat-2 by ~ 50 cm (Kim et al., 2020).

3 Method of sea ice thickness adjustment

Our adjustment method is applied as a post-processing op-
eration during the TOPAZ4 free run, dependent on the state
of the sea ice but also the external forcing variables. The ap-
proach is based on the empirical orthogonal function (EOF)
decomposition to reduce the dimensionality of our problem.
This data compression enables us to apply a substantial ad-
justment that requires minimal computational resources and
remains unaffected by static geographic features, such as the
coastlines. During the training period (2014-2022), we com-
pute the empirical orthogonal functions (EOFs; spatial com-
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Table 1. Mooring data used in this study. The Beaufort Gyre Exploration Project is abbreviated as BGEP and the North Pole Environmental

Observatory as NPEO. ULS stands for upward-looking sonar.

Name  Sensor Location Number of buoys  Measurement frequency  Years Length Accuracy of ice draft
BGEP ULS Beaufort Gyre 4 2s 2003-2011 3to7years =+5/10cm
NPEO ULS North Pole 1 5to 10min 20012010 9 years =+ 5 cm for level ice

ponent of the statistical patterns) and associated principal
components (PCs; temporal evolution of the statistical pat-
terns) of the SIT biases. Applying the method outside of the
training period assumes that this EOF decomposition is sta-
ble back in time. Consequently, the EOFs of the SIT biases
are assumed to be invariant, while the target variables to pre-
dict are the PCs of SIT biases back in time (Fig. 2). The in-
crements from data assimilation give the best estimates of
SIT biases, and we learn to emulate these increments, simi-
larly to what is done in, for example, Brajard et al. (2020) or
Gregory et al. (2023). Using the increments rather than the
innovations means that the algorithm can be used with irreg-
ular observations, while the data assimilation takes care of
their interpolation. Likewise, each input feature (listed in Ta-
ble 2) is decomposed independently using either eight EOFs
(sea ice thickness and age) or four EOFs (all other variables).
At first, 14 a priori relevant features are used as inputs, and
then an arbitrary threshold of the variable importance enables
the adequate selection of the best-suited variables. The input
features are provided to the algorithm at different time lags
(ind): r—30,7r—7,1t0,t+7, and t +30. Considering that us-
ing eight components for the EOF decomposition of the SIT
bias yields satisfactory results (Supplement Fig. S2), the sub-
sequent results will exclusively focus on this configuration.

Long short-term memory (LSTM) is a recurrent neural
network designed to model chronological sequences and
store information on a long time range (Hochreiter and
Schmidhuber, 1997). LSTM estimates the current prediction
using data from its own prior prediction and enables the prop-
agation of the bias backward in time, like a nonlinear type
of autoregressive process. A unique model is developed for
every single PC, as each depends on different input vari-
ables and time lag. The architecture is composed of three
backward-prediction LSTM layers alternating with dropout
layers, which prevent overfitting by randomly deactivating
neural connections during training. Hyperparameters such as
the number of components of the inputs, the input variables,
and their time lags can change between models, while the
overall architecture remains the same. Details regarding the
differences between each model can be found in Table 2.
Since certain PCs proved more challenging to predict than
others, a comprehensive analysis of PC prediction is pro-
vided in Appendix A to better understand the performance
of each model. Throughout this investigation, we discovered
that the input variables have a much greater impact on the
prediction than the ML architecture.
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The uncertainty associated with the nonlinear estimation is
computed by introducing random-walk processes to perturb
the inputs of the LSTM. Multiple perturbation instances are
employed to compute the ML-adjusted SIT, and the standard
deviation of the resulting ensemble of SIT predictions is used
as an uncertainty estimate. It is important to note that this un-
certainty solely characterizes the sensitivity of the algorithm
to its inputs and does not encompass the uncertainty associ-
ated with the training process of the ML algorithm. The final
uncertainty is computed using 50 members, with a random-
walk perturbation of the inputs set to 100 % of the original
values scaled between —1 and 1.

To predict SIT biases in the past, our method is the fol-
lowing. We project the values of each input variable onto its
principal components. As a result, we obtain a time series of
each principal component for each variable. Then, the ML
algorithm predicts the PCs of the SIT bias, and thus SIT bi-
ases can be retrieved by inverting the EOF projection. Lastly,
TOPAZA-ML SIT is reconstructed by adding SIT biases to
TOPAZA-FR. For a comprehensive assessment, we evaluate
the total sea ice volume as the product of the sea ice thickness
with the concentration and area of each grid cell.

We introduce a trivial bias correction as a baseline to eval-
uate the efficiency of our ML adjustment. Monthly biases
between TOPAZ4-RA and TOPAZ4-FR are averaged from
2014 to 2022. The daily baseline SIT, called TOPAZ4-BL, is
then obtained by adding the monthly biases to the SIT from
TOPAZA-FR at each grid point for the corresponding month.
Considering that TOPAZ4 generally has too thin SIT in ar-
eas of thick ice, even this simple baseline a priori constitutes
a solid benchmark.

4 Results

After a brief analysis of the SIT biases of TOPAZ4, the sec-
tions below follow the standard steps of ML applications:
first testing the algorithm on omitted data (2011-2013) and
then predicting SIT biases outside of the training and test-
ing windows, in our case extending the SIT data into the past
(1992-2010).

4.1 Features of the SIT bias in TOPAZ4 between 2011
and 2022

Between 2011 and 2022, the mean Arctic sea ice thickness
(SIT) within the ice edge (sea ice concentration (SIC) above

The Cryosphere, 19, 731-752, 2025
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Table 2. List of variables used as inputs for the machine learning algorithm. An x indicates that the variable is used for the corresponding
PC. The lower part of the table displays the parameters used to train each model.

Variable Source PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Sea ice thickness X X X X X X X
Sea ice concentration X X X X X X X
Snow depth on top of sea ice. TOPAZA4 free run X X X X X X X X
Sea surface height above geoid X X X X X X X X
Sea ice drift x velocity X X X X X X X X
Sea ice drift y velocity X X X X X X X X
Sea ice age Korosov et al. (2018) x X X X X X X X
Air temperature at 2 m X X X X X X X X
Mean sea level pressure X X X X X X X
10m wind U X X X X X X X
10m wind V ERA5S X X X X X X
Total precipitation X X X X X
Surface net solar radiation X X X X X X
Surface net thermal radiation X X X X X X X

Number of input features

12 13 14 14 12 13 9 13

Number of epochs 100 40 60 70 50 60 100 100
SIT Bias
PC (t=0)
output M L‘J\ i
M [Yaly Nﬁ'
tL‘ \\».’d‘ MM

Extracted on 2014-2022

—>

Extracted on 2014-2022

Figure 2. Illustration of LSTM prediction for one component of the EOF decomposition. The PCs of oceanographic and atmospheric features
are used as inputs (blue boxes) to predict one PC of the SIT bias (red box), while the EOFs are not used as predictors (in brackets). Multiple
variables (var) are used as input features at different times ¢ and ¢ plus or minus time lag n (because the LSTM can use input features

backward or forward in time).

15 %) ranges between 0.6 and 2 m (Fig. 3a) for the two ver-
sions of TOPAZ4 used in this study. Both SIT simulations
show a yearly cycle that is consistent with available observa-
tions. When assimilating CS2SMOS, TOPAZ4-RA SIT gets
closer to the observations (Fig. 3a), and the spatial distri-
bution improves drastically. The bias (Fig. 3b) varies from
year to year and shows extreme peaks (mostly negative), of-
ten at the end of summer, as SIT errors accumulate in the
absence of SIT data for assimilation. The three most recent
years (2020-2022) show lower SIT biases compared to ear-
lier years, both versus TOPAZ4-RA and in the CS2SMOS
datasets. The recent decline in SIT is less pronounced in the
free running model, where the ice is already thin.

The Cryosphere, 19, 731-752, 2025

A systematic bias in SIT can be noted all-year-round
(Fig. 4). TOPAZA4-FR shows too thin ice in all areas of thick
ice: the central Arctic, close to the north of Greenland, and
the Fram Strait, while it depicts too thick sea ice in the
Beaufort Gyre and the Canadian Archipelago. The magni-
tude of this error fluctuates slightly with the seasons but re-
mains a systematic feature. The underestimation of thick ice
is widespread among other models (Johnson et al., 2012;
Uotila et al., 2019) and can be explained by too strong ice
drift along the north of Greenland, advecting the multiyear
ice westwards into the Beaufort Gyre, whereas observations
show a dense and stable area of multiyear ice to the north
of Greenland. The complex geography of the Arctic region,
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Figure 3. (a) Daily sea ice thickness (m) averaged over the Arctic within the ice edge. TOPAZ4-RA, TOPAZ4-FR, and the CS2SMOS
merged-satellite products are displayed. (b) Bias of sea ice thickness (m) computed as follows: TOPAZ4-FR — TOPAZ4-RA. The freezing
periods from October to April are shown with grey backgrounds.

(@)

Winter (Oct-Apr)

Summer (May-Sep)

TOPAZ4-FR

(b) TOPAZ4-BL TOPAZ4-ML

-0.118

0
Bias SIT (m)

Figure 4. Seasonal bias of SIT (m) averaged over the test period (2011-2013) between (a, d) TOPAZ4-FR and TOPAZ4-RA, (b, e) TOPAZ-
BL and TOPAZ4-RA, and (c, f) TOPAZ4-ML and TOPAZ4-RA. The blue colour indicates that the TOPAZ4 reanalysis SIT is thicker. The
freezing period (a—c) extends from October to April, while the melting season (d—f) spans May to September.

notably in the Beaufort Gyre, is prone to sea ice entrapment

due to inaccurate ocean currents and winds or because of de- and 2013
ficiencies of the sea ice rheology.

https://doi.org/10.5194/tc-19-731-2025

4.2 Evaluation of the ML performance between 2011

After training the algorithm, we apply it to the period of
2011-2022 and evaluate its performance on the test dataset
from 2011 to 2013, which was excluded from the calcula-
tion of the EOFs and therefore from the training. Due to
the high temporal autocorrelation of SIT data over short
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timescales (&1 month), we chose two contiguous periods for
the test and training datasets rather than using the method of
random shuffling to minimize dependencies between them.
From now on, the SIT predicted by our algorithm will be
called TOPAZ4-ML for the sake of brevity. Our models pre-
dict the PC for each EOF (further analysed in Appendix A),
which are then converted to SIT following the methodology
presented in Sect. 3. Within this section, we will exclusively
focus our evaluation on sea ice thickness.

As dimensionality reduction leads to an ineluctable loss of
information due to truncation, the EOF decomposition intro-
duced an inherent error into our SIT retrieval. The EOF er-
ror (Fig. 5b) represents a lower bound that even optimal ML
performance cannot mitigate. The highest root-mean-square
error (RMSE) values (0.5m) are obtained in the marginal
seas, particularly in the east Greenland Sea, Beaufort Gyre,
and Laptev Sea regions. Conversely, the error obtained by
the baseline (Fig. 5c) is considered our upper bound, being
a trivial bias correction. In contrast to the lower bound, the
RMSE values are much higher (up to 1.5 m) from the Fram
Strait to the whole central Arctic, as well as in the Cana-
dian Archipelago, areas where the free run is most biased.
The baseline RMSEs are, however, small in the marginal seas
where sea ice is thin. The ML-adjusted error reveals patterns
more similar to the EOF error (Fig. 5 left). This can be inter-
preted as the residual error being predominantly influenced
by the truncation of the EOF rather than the ML error. The
ML-adjusted RMSE increases by 0.2 m compared to the EOF
truncation RMSE, mostly visible in the central Arctic as well
as in the Beaufort Gyre. On average, the mean RMSEs of
0.24 m (ML-adjusted), 0.21 m (EOF), and 0.31 m (baseline)
attest that the ML algorithm is more accurate than the base-
line, with performance close to the optimal EOF capability.
Despite the large RMSE observed in the central Arctic, the
baseline manages to provide an acceptable correction on av-
erage.

Similar behaviours have been noted for other error indica-
tors, such as the bias and the correlation (not shown). This
demonstrates that our methodology can reconstruct the SIT
with a relatively small error induced by the ML algorithm
itself and that the correction goes beyond a trivial monthly
bias adjustment.

Over the test period, TOPAZ4-ML SIT is in strong con-
cordance with TOPAZ4-RA SIT (Fig. 6), while still showing
discernible differences, specifically during the melting pe-
riod of 2011 and at the end of the growth period of 2013.
The temporal evolution of the mean SIT for all methods, in-
cluding the TOPAZ4-RA used as our reference, is shown for
the entire training period in Fig. 6. These time series show
the artefacts related to the experimental setup throughout the
summer, mostly due to the lack of sea ice thickness assimi-
lation. As anticipated, the ML algorithm closely aligns with
TOPAZA-RA during the training period, although the degree
of agreement varies from year to year during the test pe-
riod, supporting the assumption that the latter is largely in-
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dependent of the training period. The baseline presents more
substantial differences, mostly during the melting period as
well as in the later years of thinner ice. In particular, a sec-
ondary peak of SIT that is occasionally thicker than the win-
ter maximum stands out at the beginning of each melting
period. This eye-catching feature is also observed simulta-
neously in TOPAZ4-FR, albeit to a lesser extent, as a sta-
tistical artefact of computing the average thickness: the thin
ice melts first, and the surviving thick ice causes the aver-
age to increase where the ice is still present. It will be further
addressed in Sect. 5. The baseline, however, agrees robustly
with TOPAZ4-RA during the growth season. This indicates
that the spatially averaged SIT bias repeats identically ev-
ery year during the freezing season and could be improved
by tuning a model parameter like the thickness of new ice
(Wang et al., 2010) or, more preferably, by upgrading to a
more advanced thermodynamical model.

The application of the ML algorithm results in a drastic
bias reduction, outperforming the baseline. Over the test pe-
riod, the mean bias between TOPAZ4-FR and TOPAZ4-RA
is —10.0 cm. The year-round bias reduces to 1.4 cm after ML
adjustment, with a seasonal modulation of 2.5 cm (October—
April) and 0.4 cm (May—-September) (Fig. 4c, f). Regarding
the baseline, the averaged remaining bias is 4.9 cm, and the
seasonal values are the following: 3.6 cm (October—April)
and 6.2 cm (May—September) (Fig. 4b, e). Although the base-
line constitutes a clear improvement during the test period,
particularly during the winter season, the errors remain large
in some areas (Fig. 5).

4.3 Application of the ML adjustment between 1992
and 2010

Since the ML algorithm performed well during the test pe-
riod, it is further extrapolated to predict SIT biases before the
CryoSat-2 and SMOS missions were launched in 2011. As
suggested by Lam et al. (2023), better performance is antici-
pated when training on the whole dataset, so in this section,
we retrained the ML algorithm, taking into account all years
starting in 2011, without adjusting any parameters. Undeni-
ably, three additional cycles of growth and melt are valuable
information, especially considering that our full dataset only
spans 12 years.

In the following section, we use several validation datasets
(described in Sect. 2) as a series of indicators to assess the re-
liability of our sea ice thickness estimations. Unfortunately,
the absence of a universal ground truth for sea ice thickness
makes validation challenging. By presenting diverse sources
of SIT, we aim to provide a comprehensive view of the legit-
imacy of our correction. Given the strengths and limitations
of each product, we recommend that readers be mindful of
differences in sea ice thickness related to various observa-
tion types, including measurement methods, processing tech-
niques, and associated uncertainties, as well as any potential
inconsistencies between products.
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Figure 5. RMSEs of the SIT bias (m) over the test period (2011-2013) for (a) ML-adjusted error, (b) EOF error, and (c) baseline error
against the SIT bias between TOPAZ4-FR and TOPAZ4-RA.
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Figure 6. Daily SIT (m) averaged over the Arctic for SIC > 15 %. SITs for TOPAZ4-RA (considered our truth), TOPAZ4-FR, TOPAZ4-ML,
and TOPAZ4-BL are shown. A vertical line in 2014 separates the test (2011-2013) from the training sets (2014-2022). The freezing periods

from October to April are shown with a grey background.

4.3.1 Validation with independent datasets

Our first step is to assess the performance of our prediction
against in situ datasets during the first decade of prediction
(2000-2010). In the central Arctic, TOPAZ4-ML demon-
strates the closest alignment with mooring data (NPEO) com-
pared to the baseline and the free run. In contrast, in the
Beaufort Gyre, TOPAZ4-ML fails to provide the closest es-
timation to mooring data (BGEP), as detailed in Table 3.

We will further analyse the discrepancies by focusing on
the representative case of mooring A from BGEP (Fig. 7),
situated within the Beaufort Gyre. While it shows a clear
enhancement over the melting season when contrasting
TOPAZA-FR and TOPAZ4-ML SIT, the freezing season re-
veals less consistent agreement, indicating weaker perfor-
mance. Overall on buoy BGEP A, TOPAZ4-BL exhibits the
best performance based on all statistical indicators, followed
by TOPAZ4-ML and then TOPAZ4-FR. The baseline always
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underestimates SIT at the onset of the melting season, an is-
sue that is potentially specific to the Beaufort Gyre region, as
it is the only area where the free run systematically overesti-
mates SIT. The SIT data from the buoy exhibit considerable
variability, particularly towards the end of 2006 and during
the transition between 2007 and 2008. This variability might
be attributed to the specific climatic conditions during those
years, notably 2007, which marked a record-setting ice re-
treat characterized by the flushing of old and thick sea ice,
and we do not expect a coarse resolution model like TOPAZ4
to render this level of variability.

The mooring is occasionally in open water, while the free
run still has ice covering it. Since both the baseline and the
ML algorithms are not trained to reduce ice edge discrep-
ancies, their performance is poor during these periods. On
the positive side, the time series does not indicate that the
adjustment methods degrade further back in time, so the ex-
trapolation yields reasonable values.
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The improvement in the ML compared to the baseline is
less striking than during the test period, mostly because as-
sessing one specific location over a brief time period may
not provide sufficient representativity to distinguish between
these two adjustment methods. Additionally, the Beaufort
Gyre displays different error patterns compared to the central
Arctic, which might explain why the ML algorithm reduces
bias more efficiently in the central region than in the Beaufort
Gyre when compared to buoys. While exploring various ML
configurations (e.g. different input features and numbers of
epochs), an earlier experiment determined that TOPAZ4-ML
achieved the closest agreement with mooring data compared
to TOPAZA4-BL and TOPAZ4-FR in the Beaufort Gyre across
all seasons. Ultimately, we selected the current ML configu-
ration, which displayed the best performance during the test
period without relying on past observations for calibration.
Future versions of this dataset could consider incorporating
similar calibration techniques to potentially improve results.

A qualitative comparison between remote sensing data and
TOPAZA-ML (Fig. 8) exhibits close agreement in SIT and
spatial distribution patterns, indicating that our reconstruc-
tion effectively behaves as a coherent correction when ap-
plied to the past. To compare these products, monthly values
averaged over October between 2003 and 2007 are consid-
ered for TOPAZA4, Envisat, and the Pan-Arctic Ice—Ocean
Modeling and Assimilation System (PIOMAS; Schweiger
et al., 2011, described in Sect. 4.3.2), while ICESat-1
campaigns do not precisely align with calendar months.
TOPAZA-ML enhances the SIT gradient from Greenland
to the North Pole, addressing the well-known issue of a
flattened gradient of sea ice thickness as one moves away
from the northern coast of Greenland, which can be seen
in TOPAZ4-BL/FR and PIOMAS. TOPAZ4-ML and re-
mote sensing show similar patterns within the Beaufort Gyre
and Canadian Archipelago, whereas TOPAZ4-BL displays
a comparable correction but with insufficient intensity. Con-
sidering Envisat SIT, we observe significantly less young and
thin sea ice around the periphery of the central Arctic when
compared to other datasets. As a consequence, Envisat shows
high SIT (> 2 m) in March (Supplement Fig. S3) near the sea
ice edge in the Barents Sea, a scenario considered unrealistic
and that is consistent with past reports of Envisat’s tendency
to overestimate SIT compared to other datasets (Paul et al.,
2018; Tilling et al., 2019). Additionally, while PIOMAS SIT
appears to be lower than that of ICESat-1 and Envisat along
the coasts of Siberia and Alaska, it is generally consistent
with satellite observations in the central Arctic along 80° N.

4.3.2 Comparison with other datasets

This section compares SIT time series from 1992 to 2022
with three pertinent datasets: one widespread model recon-
struction (PIOMAS; Schweiger et al., 2011) and two satellite
datasets using altimeters (Bocquet et al., 2023) and passive
microwaves (Soriot et al., 2024b), which are two completely
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different remote sensing principles. PIOMAS (the Pan-Arctic
Ice—Ocean Modeling and Assimilation System) is a coupled
sea ice—ocean model that assimilates several observations to
improve SIT, including SIC from passive microwave satel-
lites and sea surface temperature and sea ice velocity. Boc-
quet et al. (2023) provide SIT estimations from the Euro-
pean Remote-Sensing Satellite (ESR-1), ESR-2, Envisat, and
CryoSat-2 and ensure consistency over all altimeters using
a neural-network-based method. Soriot et al. (2024b) esti-
mate SIT using a neural network based on 18 and 36 GHz
brightness temperatures, measured by the Special Sensor Mi-
crowave/Imager (SSM/I) and the Special Sensor Microwave
Imager Sounder (SSMIS) sensors. The two satellite products
have different Polar holes, so all data above 81.5°N have
been removed for consistent coverage, meaning that the re-
sults described in this section mostly apply to first-year ice.
This section does not intend to identify the most accurate SIT
or to explain the differences between datasets. Rather, our ob-
jective is to provide a clear comparison of how our TOPAZ4-
ML SIT performs relative to other relevant datasets.

March and October trends (Fig. 9) are considered proxies
for the evolution of the seasonal maxima and minima of sea
ice thickness averaged over the Arctic. March was used, as
it is the latest month available before the melting season in
Soriot et al. (2024b).

Decreasing trends align relatively well across datasets in
March (—0.21, —0.13, —0.10, and —0.19 m per decade for
TOPAZA-ML, PIOMAS, Bocquet23, and Soriot24, respec-
tively), while October trends show more pronounced dis-
crepancies (—0.22, —0.26, —0.11, and —0.36 m per decade).
In October, Soriot24 has the strongest trend (—0.36 m per
decade) compared to model-based SIT (TOPAZ4-ML and
PIOMAS), while the trend in Bocquet23 is the weakest
(—0.11 m per decade).

This distinctly different behaviour of model-based
(TOPAZ4-ML and PIOMAS) and observation-based SIT
(Bocquet23 and Soriot24) also appears in the mean values.
For instance, Bocquet23’s mean October SIT values are re-
markably high after 2014 compared to other datasets (around
1.2 m, while others are between 30 and 90 cm). Furthermore,
the October SIT mean is consistently lower for model-based
estimates throughout the entire time series. In October, SIT
values exhibit greater interannual variability within individ-
ual datasets compared to March, and the differences between
datasets are also more pronounced.

This intercomparison shows that all datasets demonstrate
realistic SIT values. This section highlights the differences
in SIT among datasets and emphasizes the importance of
having diverse products derived from varying primary data
sources and methodologies, given the absence of ground
truth.
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Figure 7. Daily SIT (m) for the buoy BGEP A, the TOPAZ free run, the baseline, and ML-adjusted SIT. The standard deviation of SIT for
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Figure 8. Sea ice thickness (m) for (a) TOPAZ4-ML, (b) ICESat-1, (c) Envisat, (d) TOPAZ4-FR, (e) TOPAZ4-BL, and (f) PIOMAS averaged
over Octobers between 2003 and 2007. The ICESat-1 observation period varies, extending into November depending on the year.

4.3.3 Interpretation of the reconstructed data

The first section validated the reconstructed SIT, while the
second positioned it within the context of other relevant prod-
ucts. Here, we will evaluate the consistency of TOPAZ4-ML
SIT over the whole Arctic, for which there are no observa-
tions available. This section will quantify various trends and
changes identified with this new dataset over time.

The May (October) mean sea ice thickness in 1992 is es-
timated at 2.16 m (1.08 m), while in 2022, it shrunk down

https://doi.org/10.5194/tc-19-731-2025

to 1.54m (0.57m). In total volume, this corresponds to
26605 km> (12575km?) and 18 804 km? (6258 km?), with
linear trends of —3274km> per decade (—3002km> per
decade). The year-round trend is —3153 km? per decade ac-
cording to our reconstruction, while the PIOMAS model re-
construction estimates a slightly steeper trend of —3583 km?
per decade.

We observe a significant downward trend in the mean SIT
from 2002 to 2012, surrounded by two periods without dis-
tinct trends (Fig. 10b). Our ML-adjusted SIT respects this
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Table 3. Sea ice thickness bias in metres, RMSE, and the Pearson correlation coefficient (R) between SIT from TOPAZ4-ML (ML), TOPAZ4-

L. Edel et al.: Reconstruction of sea ice thickness

BL (BL), and TOPAZ4-FR (FR) and in situ datasets. The highest score is highlighted in bold.

Buoy Freezing Melting All time
ML BL FR ML BL FR ML BL FR
Bias BGEPA -0.33 —-0.13 0.19 0.03 —0.19 023 | —0.15 —0.16 0.21
BGEPB -0.29 —0.03 0.10 | —0.13 —0.09 005 | —0.21 —0.06 0.07
BGEPC -054 -0.19 -0.11 | —-029 -0.19 -0.16 | —042 -0.19 —-0.14
BGEPD -0.33 —0.12 0.07 0.31 0.04 028 | —0.01 —0.04 0.17
NPEO -0.78 —-084 —-177 | —093 —-099 -172 | —-0.85 —-0.92 —-1.74
RMSE BGEP A 0.67 0.50 0.55 0.53 0.49 0.60 0.60 0.49 0.58
BGEP B 0.53 0.34 0.39 0.55 0.50 0.56 0.54 0.42 0.48
BGEP C 0.75 0.44 0.45 0.70 0.55 0.58 0.73 0.49 0.51
BGEP D 0.73 0.58 0.60 0.91 0.72 0.93 0.82 0.65 0.76
NPEO 1.11 1.18 1.95 1.25 1.29 1.91 1.18 1.24 1.93
R BGEP A 0.53 0.71 0.67 0.80 0.85 0.76 0.67 0.78 0.72
BGEP B 0.80 0.89 0.88 0.88 0.90 0.92 0.84 0.90 0.90
BGEPC 0.63 0.83 0.82 0.60 0.82 0.83 0.61 0.82 0.83
BGEPD —0.01 0.42 0.28 0.35 0.59 0.20 0.17 0.51 0.24
NPEO 0.77 0.75 0.75 0.63 0.64 0.63 0.70 0.70 0.69

0.25 —— March —— Bocquet23 —— Soriot24
--v-- October —— TOPAZ4-ML —— PIOMAS
0.00
1992 1990 2000 200% 2008 2032 2030 2020

Figure 9. Monthly mean sea ice thickness over the Arctic (latitudes < 81.5°N) for March and October from 1992 to 2022. The datasets
displayed include TOPAZ4-ML (this study), PIOMAS, Bocquet et al. (2023), and Soriot et al. (2024b). Trends are shown for the entire time

period.

behaviour qualitatively and does not introduce unrealistic
trends by extrapolation.

Sumata et al. (2023) show how the distribution of SIT ex-
iting the Arctic through the Fram Strait changed through-
out the past 2 decades, as observed by moored upward-
looking sonar devices. They reveal a bimodal distribution
and a regime shift following the sea ice minimum of summer
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2007. Since the Transpolar Drift brings sea ice from large
stretches of the Arctic into the Fram Strait, the representa-
tiveness of these moorings is higher than in most other loca-
tions. Some delay should, however, be expected due to the
advection time to the Fram Strait, which can take anywhere
from months to a couple of years depending on the origin of
the ice.
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The yearly cycles of the main modes of SIT look generally
continuous in TOPAZ4-ML (see Fig. 10a), except for a few
occasional discontinuities. So the combination of DA and
ML did not seem to cause much distortion of the physical sig-
nals. The TOPAZ4-ML SIT distribution of the whole Arctic
also exhibits a more gradual transition from a bimodal distri-
bution (before 2007) during the growth period to an unimodal
distribution (after 2007), as depicted in Fig. 10a Prior to the
2007 minimum, a significant portion of the ice was thicker
than 2 m. However, after 2008, only thinner sea ice was ob-
servable year-round. At the end of the melting period in the
years before 2007, when most of the first-year ice had melted,
the median sea ice thickness fell within the 1 to 2m range.
In contrast, after 2007, the median sea ice thickness has been
almost consistently below 1 m. Moreover, the distribution of
the thickest sea ice (depicted in green in Fig. 10a) is notably
diminished when comparing the periods before 2007 (4-5 m)
and after 2007 (3—4 m). The area-average SIT (Fig. 10b) is
broadly similar between TOPAZ4-RA and TOPAZ4-ML, all
lying consistently about 20 cm above TOPAZ4-FR through-
out the whole time series. Compared to TOPAZ4-ML, PI-
OMAS indicates an earlier onset of the melting period, while
exhibiting a similar average of SIT throughout the time se-
ries, except for the period after 2020 (Supplement Fig. S4).
Contrary to the sea ice extent time series, the record min-
ima of SIT are somewhat less spectacular, indicating that
significant ridging may occur during years of the lowest ice
cover (Regan et al., 2023), piling up sea ice vertically rather
than horizontally. The years 2011 and 2012 are clear minima
of the SIT in all datasets, in agreement with the PIOMAS
model. The disagreements between the free run and other
datasets are more important in the later years, as the free
run indicates minimum years between 2017 and 2021, while
the TOPAZ4-RA and TOPAZ4-ML datasets instead point to
2021 and 2022 as minimum SIT years. Surprisingly, summer
2007 does not stick out in the area-averaged SIT time series,
as the regime shift seems to spread over a few years. In the
Discussion section, we will compare various trends reported
in the literature.

5 Discussion

The novelty of the present study lies in the combination of
ML and DA to adjust sea ice thickness backward in time over
a long period, longer than the training period. Since 1990, the
sea ice thickness distribution in the Arctic has shifted dras-
tically towards thinner sea ice (Sumata et al., 2023; Lind-
say and Schweiger, 2015), as documented by both satellite
and in situ data. With our adjusted dataset (TOPAZ4-ML),
the mean sea ice thickness in May (October) 1992 is 2.16 m
(1.08 m), while in 2022, it is 1.54 m (0.57 m), resulting in a
decrease of 29 % (47 %). Using independent data in the Arc-
tic Basin, Lindsay and Schweiger (2015) found that the an-
nual mean SIT over the period of 2000-2012 declined from
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2.12 to 1.41 m (34 %), while September thickness declined
from 1.41 to 0.71 m (50 %). When including all the marginal
seas up to the 15 % isoline of concentration, we find that the
annual SIT is generally lower, but the trends are compati-
ble, reducing from 1.51 m in 2000 to 1.01 m in 2012 (33 %),
while September thickness declined from 1.42m to 0.81 m
(43 %). In our estimation, the annual mean sea ice thickness
is lower compared to Lindsay and Schweiger (2015) due pri-
marily to differences in the area considered. These disparities
diminish in September as the residual sea ice shrinks toward
the central Arctic. Kwok (2018) reported losses of 2870 km?3
per decade in winter (February—March) for 15 years of satel-
lite records (2004-2018) from the non-overlapping ICESat
and CryoSat-2 periods. For the same period, the TOPAZA4-
ML data indicate losses of 2941km?> per decade (Fig. B1),
which falls well within the uncertainties caused by the lack
of snow depth data (Zygmuntowska et al., 2014). PIOMAS,
another data assimilation model, shows trends of —2.7 and
3241 x 10> km? per decade for April and September, re-
spectively, from 1979 to 2018 (Johannessen et al., 2020,
Fig. 5.24). In comparison, over the period of 1992-2022, PI-
OMAS indicates —3.0 and —3.8 + 1 x 10° km3 per decade,
while TOPAZ4-ML shows trends of —3120 and —2960 km?
per decade for April and September, respectively. Although
the two datasets align well for April, a notable discrepancy
emerges in September, with PIOMAS indicating a more pro-
nounced downward trend. Drawing from the range of avail-
able data, the ML-adjusted trends correspond closely to those
documented in the existing literature. Although TOPAZ4-FR
and TOPAZ4-ML differ significantly in the total SIT, their
respective trends are close.

By training our algorithm over the latest decade to pre-
dict the past, we assumed the following: the EOFs obtained
from the SIT bias between 2011 and 2022 are representative
of the statistical behaviour of the errors made by the model
over a longer time period, including a dramatic regime shift.
To probe the robustness of this assumption, we extracted the
EOFs over two subperiods of our dataset: the training pe-
riod with and without the test period. We only found differ-
ences in the least important components (from the sixth and
further), while showing similar patterns overall (Supplement
Fig. S5). The time series of the differences only shows un-
structured noise.

Moreover, since we lack summer SIT observations, we as-
sess the differences in SIT between two versions of TOPAZ
(with and without assimilation) and not the SIT directly, so
the data assimilation residuals may also have caused some
loss of signal for the ML. However, the ML algorithm can
adjust the thickness even of the thickest sea ice (> 6 m) with
less than 20 % error (Fig. C1), which explains its perfor-
mance in an earlier period dominated by multiyear ice.

Our approach based on EOF decomposition enables a
drastic reduction in dimensions, leading to fewer parameters
in the ML algorithm and thus reducing the costs required to
train and apply the algorithm. This method is fast to imple-
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Figure 10. (a) Distribution of daily TOPAZ4-ML SIT (m) from 1992 to 2022. Bins of 0.1 m are used, and the colour bar is a log scale.
(b) Daily SIT (m) averaged over the Arctic for SIC > 15 % for the same period. The ML algorithm has been retrained with 2011-2013
included, as indicated by the vertical line in 2011. The dot-dashed vertical black line marks September 2007. The freezing periods from

October to April are shown with a grey background.

ment and execute (around 1 h on a personal laptop), requiring
minimal computational resources. Given its effectiveness, it
demonstrates a strong ability to correct a large number of
the biases. In comparison, approaches relying on more in-
tricate 2D neural-network layers produced comparable out-
comes but at a higher cost (at least 12 h to train) and in a more
complex setup. Additionally, it is possible that with higher-
dimensional features, the training set would be too small, in-
creasing the risk of overfitting.

Multiple ML models (LSTM, convolutional neural net-
work, dense, extreme gradient boosting, and random forest)
were tested, yielding small local variations but no visible ad-
vantages in overall performance between models. The de-
cision to select LSTM was thus driven by its robust time
series prediction capabilities and its slightly better results.
Throughout this study, the ML architecture (i.e. number of
layers and hyperparameters) only played a minor role in
achieving the optimal prediction; instead, the prediction ac-
curacy is considerably dependent on the input variables, i.e.
the choice of variables and associated time lags.

Three distinct sources of errors were identified when pre-
dicting SIT before 2011: ML reconstruction error, errors in
the free run of TOPAZ4, and errors induced by regime shifts
in sea ice conditions. Since the latter two are impossible to
obtain within the scope of this study, we can only provide un-
certainty estimates related to the ML method itself. Note that
the uncertainty obtained here only characterizes the sensitiv-
ity of the algorithm to its inputs (details in Sect. 3). The areas
exhibiting the highest uncertainty encompass the Fram Strait;
the Canadian Archipelago; the Beaufort Gyre; and, with a
lower degree of uncertainty, the East Siberian Sea (Supple-
ment Fig. S6). Upon examining the temporal evolution of
uncertainty (Supplement Fig. S7), it appears that uncertainty
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diminishes during both the growth and melt phases of sea ice,
likely attributable to the strong sea ice thickness seasonal cy-
cle. Moreover, higher uncertainty is noted during the peak
of the winter and summer seasons, when sea ice thickness is
less affected by predominant freezing or melting, potentially
leading to divergence among individual members.

Despite the baseline yielding good average results, the
trivial bias correction displays strong regional biases and
mediocre performance during outlier years. In addition, we
expect the performance of the baseline to decrease even fur-
ther as we extrapolate back in time. Indeed, the correction
of the baseline is applied once and relies solely on the pat-
terns of mean bias observed during 2014-2022, with no abil-
ity to accommodate different environmental conditions. On
the contrary, our ML adjustment method proves more adapt-
able when predicting back in time since it takes into account
the past state of environmental variables and the varying rel-
ative importance of each component (as independent errors
identified by the EOF decomposition).

A distinct feature appears in the SIT averaged (Fig. 3) at
the onset of the melting season: a second peak, brief com-
pared to the first, occurs shortly after the SIT maximum.
It is observed almost yearly in TOPAZ4-FR but only twice
(2017 and 2020) in TOPAZ4-RA. The phenomenon can be
explained as follows: the relatively thin sea ice melts first,
decreasing the area faster than the thickness, thus increasing
the average SIT as a case of survivorship bias. This survivor-
ship bias may intensify in cases of erroneously thinner sea
ice in the central Arctic. Such instances can arise from either
thinner sea ice in the central Arctic (TOPAZ4-BL) or mis-
placed thick sea ice in the Beaufort Gyre (TOPAZ4-FR). To
prevent this artefact, many studies prefer to use the total vol-
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ume or a geographic restriction to an area of perennial ice in
the central Arctic.

Comparing TOPAZ4 to in situ datasets is challenging, pri-
marily due to representation errors. Knowing the true sea
ice thickness remains a major issue for evaluation, partic-
ularly when considering historical data from older satellite
missions such as ICESat-1 and Envisat. This issue becomes
more pronounced as we delve further into the past. Large
uncertainties linked to in situ observations and the model ul-
timately lead to differences in SIT and difficulties evaluating
our product. Adding to this point, the limited availability of
global datasets over extended periods in the Arctic restricts
the scope of possible comparisons. One notable advantage
of our methodology is its capacity to bridge data gaps when
mooring observations are unavailable.

6 Conclusions

In this investigation, we demonstrated that machine learning
(ML) can be combined with data assimilation (DA) to predict
sea ice thickness (SIT) errors backwards in time to 1992, us-
ing the ice—ocean model TOPAZ4 and atmospheric variables
from the ERAS reanalysis. The SIT biases are the results
of accumulated increments from the assimilation of sea ice
thickness data from CS2SMOS every 7d between 2011 and
2022 during the ice growth period (October—May). Then, we
reduced the dimensionality of the DA increments using em-
pirical orthogonal functions (EOFs). The LSTM learned to
predict SIT biases using principal components (PCs) of vari-
ous sea ice, ocean, and atmospheric variables as inputs. This
study demonstrates that our PC-based approach is effective
at providing a major sea ice thickness adjustment.

Our approach significantly reduced sea ice thickness bi-
ases throughout the test period (2011-2013) from a low year-
round bias of —10.0 to 1.4 cm. Significant improvements are
noted during the melting period, likely attributable to sub-
stantial errors in TOPAZ4 with assimilation, as sea ice thick-
ness data assimilation is unavailable during summer. Apply-
ing our algorithm before 2011, the evaluation with indepen-
dent mooring data indicates improvement in the central Arc-
tic compared to the TOPAZ4 free run, while results in the
Beaufort Gyre show poorer agreement. However, the scarcity
of in situ datasets and the often limited continuity of obser-
vations restrict the comparison to only a few locations. Re-
mote sensing data from Envisat and ICESat-1 were primar-
ily utilized for qualitative assessment due to their inherent
high uncertainties and temporal—spatial discontinuities. Our
approach demonstrates a general improvement in SIT despite
the challenge of selecting a reliable truth for validation.

Furthermore, this prolonged time series gives new insights
into various aspects of SIT, including distribution, spatial pat-
terns, and changes through time. The estimated May (Oc-
tober) mean sea ice thickness in 1992 was 2.16 m (1.08 m),
whereas it was 1.54m (0.57 m) in 2022, resulting in a 29 %
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(47 %) decline. This amounts to a decrease in total sea
ice volume from 19690 to 12700km?>, with a correspond-
ing trend of —3153 km?> per decade, corroborating previous
model estimates. A decrease in the thickest sea ice has been
observed throughout the years, with the proportion of sea ice
thicker than 2.5 m going from 28 % in 1992 to 7 % in 2022.
In the ML-adjusted data, the transition in 2007 is, however,
less abrupt than that deduced from moored observations from
the Fram Strait.

The ML-adjustment technique can be implemented for
other variables, as long as equivalent resources are available:
two model runs with and without assimilation of the target
variable and some auxiliary data related to the target variable
but in complex ways. Further work is required to compare
our SIT time series to the novel year-round processing of
CS2 (Landy et al., 2022), especially regarding the summer
sea ice thickness. The ML-adjustment method was originally
introduced within the framework of an iterative method com-
bining the DA and ML techniques (Brajard et al., 2020). In a
subsequent investigation, a second iteration of DA using the
reconstructed SIT and its uncertainty will be performed with
TOPAZA, improving the initial conditions of SIT from the
latter decade.
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Appendix A: Principal component prediction

For a deeper understanding of our method, the original val-
ues predicted by our algorithm are displayed (Fig. A1) and
commented on in this section. The corresponding EOFs are
plotted in Supplement Fig. S8. The quality of the final sea ice
thickness reconstruction relies on the accuracy of predicting
each component. A large error in one PC may be observed in
the resulting SIT. PCs showing a yearly cycle (such as nos.
1 and 2) show better predictability than the more irregular
PCs (nos. 4 and 7). The prediction of the ML shows a slight
smoothing of the signal. It is beneficial in the sense that the
ML is not trying to update SIT every week like DA does, thus
avoiding a noisy reconstruction. We notice some difficulties
in the prediction of the test period: major differences (no. 7)
and light offsets (nos. 1, 4, and 8), while PC nos. 2, 3, 5, and
6 show more consistent and reliable predictions.
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each component in this study. TOPAZ4-RA (considered truth) and
TOPAZ4-ML-predicted values are presented. A vertical line in 2014
indicates the separation of the test period from the training period.
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Appendix B: Sea ice volume

Sea ice volume (Fig. B1) is obtained by multiplying the sea
ice thickness by the area in each grid cell and by the sea
ice concentration. It is then summed over the whole model
domain. It is insensitive to high SIT values in areas of low
ice concentration and is therefore a more convenient quantity
than the average SIT to compare between models, although
it is not as easily obtained from observations. For a clearer
view of the decadal differences in sea ice thickness, refer to
Supplement Fig. S9.
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Figure B1. Total sea ice volume (1000 km3 ) for the entire Arctic domain from 1992 to 2022. The monthly average in May (October) is
indicated in blue (red). Trends for the entire period are depicted by dotted lines. Note that the TOPAZ domain excludes the Pacific seas south
of the Bering Strait.
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Appendix C: Capability of the adjustment method as a
function of sea ice thickness

To evaluate our method’s performance across various sea ice
thicknesses, we analyse the bias obtained from our method
with the true bias as a function of the SIT (Fig. C1). Over
the test period, our ML algorithm overestimates the adjust-
ment (SIT bias difference is positive) for sea ice thickness
between 3 and 5 m and underestimates the adjustment (SIT
bias difference is negative) for thickness above 6 m.
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Figure C1. (a) The difference in bias correction between the ML prediction and the true bias correction as a function of the sea ice thickness
from TOPAZA4-FR over the test period (2011-2013). The true bias correction is obtained from TOPAZ4-RA — TOPAZ4-FR. Bins of 10cm
are used to average the differences (blue) and their standard deviations (grey). The two diagonal lines represent 20 % of the sea ice thickness
for each bin. Positive values indicate that the ML algorithm predicts an excessively high adjustment of sea ice thickness compared to the
correction applied by the CS2SMOS data assimilation in TOPAZ4. (b) The number of pixels collected in each bin as a function of the sea
ice thickness estimated by TOPAZ4-FR. Grey stars indicate bins with fewer than 50 pixels.

Code availability. The code is available at https://github.com/
LeoEdel/tardis-ml-paperl and https://doi.org/10.5281/zenodo.
11191853 (Edel et al., 2024).
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Data availability. Our ML-adjusted SIT dataset (TOPAZ4-ML) is
available at https://doi.org/10.5281/zenodo.11191853 (Edel et al.,
2024) and can be visualized at https://doi.org/10.5446/68161
(Edel, 2024). Additionally, this dataset is included in
the sea ice thickness intercomparison exercise (Sin’XS,
https://sinxs.noveltis.fr; ~ SIN’XS,  2025). The following
datasets are used as inputs or for evaluation. ERAS data
are available at https://doi.org/10.24381/cds.adbb2d47 (Hers-
bach et al., 2023). TOPAZ4b reanalysis data are available at
https://doi.org/10.48670/moi-00007 (E.U. Copernicus Marine Ser-
vice Information, 2025e). SID used in the TOPAZ4b reanalysis is
available at https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007
(OSI SAF, 2010). CS2SMOS data are available at ftp:/ftp.awi.de/
sea_ice/product/cryosat2_smos/v204/ (Ricker et al., 2017). ICESat-
1 data are available at https://doi.org/10.5067/SXJVI3A2XIZT

(Yi and Zwally, 2009). Envisat data are available at

https://doi.org/10.5194/tc-19-731-2025


https://github.com/LeoEdel/tardis-ml-paper1
https://github.com/LeoEdel/tardis-ml-paper1
https://doi.org/10.5281/zenodo.11191853
https://doi.org/10.5281/zenodo.11191853
https://doi.org/10.5281/zenodo.11191853
https://doi.org/10.5446/68161
https://sinxs.noveltis.fr
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.48670/moi-00007
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007
ftp://ftp.awi.de/sea_ice/product/cryosat2_smos/v204/
ftp://ftp.awi.de/sea_ice/product/cryosat2_smos/v204/
https://doi.org/10.5067/SXJVJ3A2XIZT

L. Edel et al.: Reconstruction of sea ice thickness

https://doi.org/10.5285/f4c34f4£0f1d4d0da06d771f6972f180
(Hendricks et al., 2018). ULS BGEP data are available at
https://www2.whoi.edu/site/beaufortgyre/data/mooring-data/
(Beaufort Gyre Exploration Program, 2003). ULS NPEO data
are available at https://doi.org/10.5065/D6P84921 (Morison et
al., 2016). The Bocquet and Fleury (2023) dataset is available at
https://doi.org/10.6096/ctoh_sit_2023_01. The Soriot et al. (2024a)
dataset is available at https://doi.org/10.5281/zenodo.13880123.

Video supplement. Our ML-adjusted SIT dataset (TOPAZ4-ML)
can be visualized at https://doi.org/10.5446/68161 (Edel, 2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-731-2025-supplement.
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