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Abstract. We present an ensemble of physically-based ice
sheet model projections for the Greenland ice sheet (GrlS)
that was produced as part of the European project PRO-
TECT. Our ice sheet model (ISM) simulations are forced
by high-resolution regional climate model (RCM) output
and other climate model forcing, including a parameterisa-
tion for the retreat of marine-terminating outlet glaciers. The
experimental design builds on the Ice Sheet Model Inter-
comparison Project for CMIP6 (ISMIP6) protocol and ex-
tends it to more fully account for uncertainties in sea-level
projections. We include a wider range of CMIP6 climate
model output, more climate change scenarios, several cli-
mate downscaling approaches, a wider range of sensitivity
to ocean forcing and we extend projections beyond the year
2100 up to year 2300, including idealised overshoot scenar-
ios. GrIS sea-level rise contributions range from 1676 mm
(SSP1-2.6/RCP2.6), 22-163 mm (SSP2-4.5) and 27-354 mm
(SSP5-8.5/RCPS8.5) in the year 2100 (relative to 2014). The
projections are strongly dependent on the climate scenario,

moderately sensitive to the choice of RCM, and relatively in-
sensitive to the ice sheet model choice. In year 2300, con-
tributions reach 49 to 3127 mm, indicative of large uncer-
tainties and a potentially very large long-term response. Ide-
alised overshoot experiments to 2300 produce sea-level con-
tributions in a range from 49 to 201 mm, with the ice sheet
seemingly stabilised in a third of the experiments. Repeat-
ing end of the 21st century forcing until 2300 results in con-
tributions of 58—163 mm (repeated SSP1-2.6), 98-218 mm
(repeated SSP2-4.5) and 282—-1230 mm (repeated SSP5-8.5).
The largest contributions of more than 3000 mm by year
2300 are found for extreme scenarios of extended SSP5-8.5
with unabated warming throughout the 22nd and 23rd cen-
tury. We also extend the ISMIP6 forcing approach backwards
over the historical period and successfully produce consistent
simulations in both past and future for three of the four ISMs.
The ensemble design of ISM experiments is geared towards
the subsequent use of emulators to facilitate statistical inter-
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pretation of the results and produce probabilistic projections
of the GrIS contribution to future sea-level rise.

1 Introduction

The Greenland ice sheet (GrIS) has transitioned from a near
zero overall mass balance before the early 1990s to rapidly
increasing mass loss that is ongoing today (van den Broeke
et al., 2017). The driving mechanism of this change can be
largely attributed to atmospheric and oceanic warming sur-
rounding the ice sheet, which is amplified in the Arctic region
compared to the global mean (Rantanen et al., 2022). This
makes the ice sheet the currently largest single cryospheric
contributor to global mean sea-level rise (e.g. Fox-Kemper
et al., 2021). Projecting the future evolution of the GrIS is
therefore an important element in providing sea-level practi-
tioners with relevant information for adaptation planning and
providing policy makers with guidance concerning the urgent
need for mitigation, in line with the PROTECT project goals
(Durand et al., 2022).

Projections of ice sheet contributions to future sea-level
rise have recently been organised into a global community ef-
fort under the guidance of the Ice Sheet Model Intercompari-
son Project for CMIP6 (ISMIP6, https://climate-cryosphere.
org/about-ismip6/, last access: 14 December 2025). The
initiative provided projections for both the Greenland and
Antarctic ice sheets that served as the main source of the
ice sheet sea-level projections (Fox-Kemper et al., 2021) in
the latest report of the IPCC, AR6. The ISMIP6 GrIS pro-
jections (Goelzer et al., 2020a) used an experimental pro-
tocol (Nowicki et al., 2016, 2020) that included a regional
climate model (RCM) to dynamically downscale global cli-
mate scenarios to the ice sheet scale. While only one RCM
was used for the projections in ISMIP6 for feasibility rea-
sons, recent work has revealed that different RCMs can
show widely different behaviour under future climate change
(Glaude et al., 2024). This strongly suggests that fully char-
acterising uncertainties in ice sheet projections requires a
broader sampling of climate forcing uncertainty, in partic-
ular pertaining to the downscaling process. In addition, the
first wave of ISMIP6 projections was forced by output from
CMIP5 models (Goelzer et al., 2020a) and a subsequent up-
date used a small subset of the then available CMIP6 mod-
els forcing (Payne et al., 2021), both under only two sce-
narios (RCP8.5/SSP5-8.5 and RCP2.6/SSP1-2.6). Extending
the forcing to a broader range of downscaled CMIP6 climate
forcing and scenarios was therefore another major concern.

The ISMIP6 projections started with year 2015 and the
protocol did not provide any guidance on how ice sheet mod-
ellers should initialise to that starting point. This led to a wide
range of ice sheet histories preceding the GrIS projections,
with numerous models not matching observed mass changes
(Goelzer et al., 2020a; The IMBIE Team, 2020; Aschwan-
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den et al., 2021). This also created challenges in presenting
and combining projected ice sheet changes with observed
changes in the AR6. Since then, it has become a priority to
consider the historical experiment as part of the simulation
and it has been shown that extending the ISMIP6 forcing
protocol over the historical period can produce GrIS projec-
tions consistent with observed mass changes (Rahlves et al.,
2025a).

While physically-based ice sheet model simulations like
those produced by ISMIP6 now form an important basis
of sea-level change projections, statistical tools are needed
to generalise the results and make meaningful inferences.
This need arises largely from the limited sampling of climate
model forcing, model physics and parameter choices that re-
main relatively sparse due to practical limitations, computa-
tional cost and feasibility. A consequence is that some pro-
jections nowadays heavily rely on emulators (e.g. Edwards
etal., 2021; Rohmer et al., 2022, 2025) to help their interpre-
tation. Designing ice sheet experiments that can serve both
direct interpretation of the result and feeding into emulators
has become an important consideration.

This paper presents a new set of physically-based GrIS
sea-level projections designed to extend the ISMIP6 effort in
several aspects and to inform a next generation of emulator-
based projections. We describe the experimental protocol,
forcing and models (Sect. 2), present results (Sect. 3) and
close with a discussion (Sect. 4) and conclusions (Sect. 5).

2 Experimental setup
2.1 Experimental protocol

The ice sheet model experiments largely follow the ISMIP6
protocol for GrIS projections, which is documented in de-
tail elsewhere (Nowicki et al., 2016, 2020; Goelzer et al.,
2018, 2020a). Here, we provide a brief summary of the main
principles and differences. Output from selected CMIP Earth
system models (ESMs) serves as boundary conditions for
(i) RCMs (producing the surface mass and energy balance
and near-surface climate fields) and (ii) for a retreat parame-
terization for marine-terminating outlet glaciers (Slater et al.,
2019, 2020). These, in turn, provide forcing for ice sheet
models (Fig. 1).

Forcing approach

The forcing from three RCMs, namely MAR (Delhasse et al.,
2020), HIRHAM (Mottram et al., 2017) and RACMO (Noél
et al., 2018) and from a statistical downscaling approach
(Noél et al., 2022), is provided in the form of annual surface
mass balance (SMB) and surface temperature (ST) anomalies
relative to the period 1960-1989 (red box in Fig. 2). In addi-
tion, we provide estimates of local annual vertical SMB and
ST gradients, that are used to propagate dynamic ice sheet
elevation changes when updating SMB and ST. The SMB
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Figure 1. General forcing approach for Greenland ice sheet model projections.
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Figure 2. Surface mass balance and retreat forcing.

forcing applied in the ice sheet model at a given time ¢ is:

SMB(x, y, t) = SMBref(x, y) + aSMB(x, y, t)
+ dSMBdz(x, y, t) x dz(t), (1)

where SMBref [mm yr_l] is the surface mass balance
used by each individual ice sheet model during initiali-
sation, aSMB [mmyr~!] is the SMB anomaly, dSMBdz
[mmyr~!'m~!] is the vertical gradient of SMB and dz [m]
is the elevation change since the start of the experiment. A
similar approach applies to ST that can be used as boundary
condition for the evolution of ice temperature in the model.
Differences in SMB and ST stem from the various ESMs and
scenarios that are downscaled.

The retreat of marine-terminating outlet glaciers is param-
eterised as an empirically derived function of ocean thermal
forcing (from the ESMs) and runoff (from the RCMs), both
identified as the main drivers for melting of marine-based
calving fronts (green box in Fig. 2, Slater et al., 2019, 2020).
This is a relatively crude approximation for the complex in-
teraction between glaciers and the ocean that is poorly un-
derstood and difficult to resolve in large-scale ice sheet mod-
els. The uncertainty in this forcing is captured by a retreat
parameter « that can be expressed probabilistically and is
sampled at its median (med), 25th (high) and 75th (low) per-
centile value (like in ISMIP6) and in extension at its 5th and
95th percentile value (cf. Fig. 5a in Slater et al., 2019). In
some cases, we have added control experiments without any
prescribed retreat that are labelled “pno”.
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2.2 Regional climate model forcing

The emphasis of this project is to extend the range of avail-
able forcings to a larger number of CMIP6 ESMs, scenarios
(SSP1-2.6, SSP2-4.5, SSP5-8.5) and to provide surface mass
balance forcing from several RCMs: MAR (Delhasse et al.,
2020), RACMO (Noél et al., 2018) and HIRHAM (Mottram
etal., 2017). In addition, we use forcing produced by a statis-
tical downscaling approach (SDBN1, Noél et al., 2016, 2020,
2022), which has been used here to translate ESM forcing
from CESM2-WACCM directly to the ice sheet scale. We
consider this approach similar in capability to an RCM in
terms of the forcing it provides. An overview of available
forcing data is given in Table 1. Corresponding retreat mask
forcing can be constructed given sufficient climate model
output and additional ESM ocean data, typically retrieved
from the CMIP archives (https://esgf-node.llnl.gov/projects/
cmip6/, last access: 14 December 2025). Forcing with MAR
version 3.9 was produced for ISMIP6 and remained available
for ice sheet simulations under PROTECT.

Required climate model output data

The data required to produce ice sheet model forcing were
developed during ISMIP6 in collaboration with the devel-
opers of MAR, the only RCM used to generate projections
for the project at the time. This includes extension of the
RCM forcing beyond the observed ice sheet mask and pro-
ducing output needed for vertical adjustment of the forcing
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https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/

6890

H. Goelzer et al.: Extending the range and reach of physically-based Greenland ice sheet sea-level projections

Table 1. SMB forcing data available for ice sheet modellers. MARV3.9 output was produced for ISMIP6.

CMIP ESM SSP1-2.6 SSP2-4.5 SSP5-8.5
RCP2.6 RCPS.5
CMIP6 CESM2 MARV3.12 MARV3.12 MARV3.12
RACMO2.3p2 RACMO2.3p2
CESM2-Leo? MARV3.9
MARV3.12
RACMO2.3p2
HIRHAMS5
CESM2-WACCM SDBN1bP SDBN1bP
CNRM-CM6-1 MARV3.9
MARV3.12
CNRM-ESM2-1 MARV3.9
MARV3.12
EC-Earth3 HIRHAMS HIRHAMS5
IPSL-CM6A-LR MARV3.12
MPI-ESM1 MARV3.12 MARV3.12 MARV3.12
NorESM2-MM MARV3.12 MARV3.12
UKESM1-0-LL MARV3.12 MARV3.12
UKESM1-0-LL-Robin® MARV3.12
CMIP5 ACCESSI1.3 MARV3.9
MARV3.12
CSIRO-MK3.6.0 MARV3.9
HadGEM2-ES MARV3.9
IPSL-CM5-MR MARV3.9
MIROCS MARV3.9 MARV3.9
NorESM1-M MARv3.9

 Pre-CMIP6 ensemble member. ® Direct statistical downscaling of CESM2-WACCM (Noél et al., 2022).

to a changing ice sheet topography. In MAR this is done
with the same statistical downscaling method used to pro-
duce results at 1 km resolution (Franco et al., 2012) as done
in the GrSMBMIP intercomparison (Fettweis et al., 2020). In
RACMO and SDBNI, vertical gradients were estimated fol-
lowing Noél et al. (2016) combining statistically downscaled
SMB components with surface elevation and ice mask from
the Greenland Ice Mapping Project (GIMP) DEM (Howat
et al., 2014), down-sampled to 1 km spatial resolution. Ver-
tical gradients were first computed on ice-covered grid cells
using SMB components and surface elevation of the current
grid-cell and at least five (up to eight) neighbours and fur-
ther extrapolated outside the ice sheet to cover the tundra re-
gion. In HIRHAMS, gradients are produced at a 5 km hori-
zontal resolution using an updated subsurface scheme (Lan-
gen et al., 2017). These gradients are subsequently bilinearly
interpolated to the 1km MAR grid. Outside the observed
ice mask, extrapolation to cover the tundra is performed via
distance-weighted averaging, followed by smoothing using
weighted averages of the grid points, including the eight sur-
rounding points.

To facilitate use of RCMs and other downscaled climate
forcing in PROTECT and other projects, we outline a de-
tailed list of required data in Appendix A.

The Cryosphere, 19, 6887-6906, 2025

2.3 Forcing dataset preparation

Output from RCMs and ESMs is collected and processed
using methods established during ISMIP6. The aim is to
provide a consistent forcing dataset for ice sheet mod-
ellers in a familiar format. It requires interpolation of RCM
output to a common grid at 1km resolution, calculating
anomalies and adjusting units and file formats. Retreat mask
forcing is produced based on the initial ice sheet mask
for each individual participating ice sheet model and ver-
sion. All data are provided in NetCDF format following
the ISMIP6 guidelines (https://theghub.org/groups/ismip6/
wiki/ISMIP6-Projections-Greenland, last access: 14 Decem-
ber 2025).

2.4 Participating ice sheet models

The ensemble includes four numerical ice sheet models that
are routinely run by the participating partners for GrIS sim-
ulations (IMAU, VUB, IGE, NORCE). A brief overview of
the model characteristics is given in Table 2 and short model
descriptions are given below.

https://doi.org/10.5194/tc-19-6887-2025
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Table 2. Ice sheet model names and characteristics. SIA — Shallow ice approximation to the force balance, SSA — Shallow shelf approx-
imation, HO — higher order approximation (Fiirst et al., 2013), DIVA — variationally derived, depth-integrated approximation (Goldberg,

2011).
Group-Model Type Resolutions (km)  Variants
IMAU-IMAUICE  SIA-SSA, regular grid 10, 16, 20, 30,40  Sliding law, spinup
VUB-GISM Regular grid 5 HO, SIA
IGE-ELMERICE  SSA, finite element 1-6 (variable) Sliding law
NORCE-CISM DIVA, regular grid 2,4,8,16 Initial and historical SMB

24.1 IMAU-IMAUICE

The model (Berends et al., 2022) is initialised using a hy-
brid approach, combining a basal inversion method (Berends
et al., 2023) with a paleoclimate spin-up. During the in-
version phase of the initialisation, spatial patterns in basal
slipperiness are iteratively adjusted until the modelled ice
sheet reaches a stable state that closely matches the ob-
served present-day ice sheet geometry (Morlighem et al.,
2017) and surface velocity (Copernicus Climate Change Ser-
vice, Climate Data Store, 2020). The prescribed climate is
fixed at present-day conditions: monthly mean values of
2m air temperature and total precipitation, which are ob-
tained from the 1950-1980 mean of the ERAS reanalysis
(Hersbach et al., 2020). The SMB is calculated from these
quantities using the IMAU-ITM model, which is calibrated
to RACMO2.3p2 over the 1979-2014 period (Fettweis et al.,
2020). The steady-state geometry and basal slipperiness re-
sulting from the inversion phase are then used to initialise the
model during the last interglacial, 120 000 years ago. The cli-
mate evolution of the last glacial cycle is then prescribed us-
ing a matrix method (Berends et al., 2018), based on different
pre-calculated GCM output for the different IMAU-ICE ver-
sions: either HadCM3 (Singarayer and Valdes, 2010), CCSM
(Brady et al., 2013), or the PMIP3 best-performing ensemble
mean (Scherrenberg et al., 2023). Climate evolution during
the historical period is approximated by forcing the climate
matrix with the Law Dome ice-core CO, record (MacFar-
ling Meure et al., 2006), subjected to a 60 year smoothing
representing the delayed response of the climate to changes
in CO,.

242 VUB-GISM

VUB-GISM (Huybrechts, 2002; Fiirst et al., 2013, 2015) is
configured either with the higher order or a shallow ice ap-
proximation to the force balance. GISM was initialised to
the present-day geometry by assimilation of the observed
ice thickness (Le clec’h et al., 2019). A steady state was
assumed for the starting date of December 1989 using the
1960-1989 mean SMB from MAR forced by the ERAS5
meteorological reanalysis climate. The iterative initializa-
tion method optimised both the basal sliding coefficient in
unfrozen areas and the rate factor in Glen’s flow law for
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frozen areas. The ice temperature and the initial velocity
field needed in the initialization procedure were derived from
a glacial spin-up with a freely evolving geometry over the
last two glacial cycles with a synthesised temperature record
based on ice-core data from Dome C, NGRIP, GRIP and
GISP2 (Fiirst et al., 2015). For this spin-up experiment, a
PDD model was used with an observed precipitation field
derived from the Bales et al. (2009) surface accumulation for
the period 1950-2000 and scaled by 5% per degree. The
ice temperature and velocity fields from the “free geome-
try present-day” were rescaled to the observed ice thickness
(Morlighem et al., 2017) and excluded peripheral ice (Cit-
terio and Ahlstrgm, 2013). The historical experiment is run
from January 1990 to December 2014 using the yearly SMB
from MAR forced by ERAS meteorological reanalysis. For
the projections, the standard retreat forcing from the ISMIP6
protocol is applied.

24.3 IGE-ELMERICE

The model is initialised using an inverse control method as
in Gillet-Chaulet et al. (2012) to calibrate the basal friction
coefficient field. For the momentum equations, we solve the
shelfy-stream approximation with a sub-grid parameteriza-
tion of the friction for partially grounded elements. The ver-
tically averaged viscosity is constant in all simulations and is
initialised using the temperature field coming from a palaeo-
spin-up (125 kyr) of the SICOPOLIS model. The basal fric-
tion coefficient is constant in all transient simulations and
is initialised with the control method so that the mismatch
between observed and modelled surface velocities is mini-
mum. As observations, we use a composite from the NASA
Making Earth System Data Records for Use in Research En-
vironments (MEaSURESs) Greenland Ice Sheet Velocity Map
(V1) (Joughin et al., 2010). The ice sheet topography is ini-
tialised using the IceBridge BedMachine Greenland V3 data
set (Morlighem et al., 2017). The ice sheet model is then
relaxed for 20 years using a constant surface mass balance
given by the 1960-1989 mean SMB from the regional cli-
mate model MAR v3.12 forced with ERAS (Fettweis et al.,
2017). The calving front positions are fixed during the relax-
ation. We use an anisotropic mesh with a horizontal resolu-
tion ranging for 1 to 6 km. For the projections, the standard
ISMIP6 protocol is applied and we test the sensitivity to two

The Cryosphere, 19, 6887-6906, 2025
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Figure 3. Ice thickness comparison. (a) Present day observations (Morlighem et al., 2017). (b—e) Difference of modelled 2014 ice thickness
compared to observations for one model version per group. The root mean square (RMS) difference to the observations in m is given in the

lower right of panels (b)—(e).

different friction laws: a linear friction law and a Weertman
friction law with m = 1/3.

244 NORCE-CISM

The Community Ice Sheet Model (CISM; Lipscomb et al.,
2019) is run using a depth-integrated higher-order velocity
solver based on Goldberg (2011) and a basal-sliding law
based on Schoof (2005). The ice sheet is initialised with
present-day thickness and bed topography (Morlighem et al.,
2017) and an idealised temperature profile. CISM is then
spun up for 5000 years with surface mass balance and sur-
face temperature from a 1960-1989 climatology provided by
the MAR regional climate model (Fettweis et al., 2017) and
with basal heat fluxes from Shapiro and Ritzwoller (2004).
During the spin-up, the model is nudged toward present-day
thickness by adjusting friction coefficients in a basal-sliding
power law. There is no dependence of basal sliding on basal
temperature or water pressure. All floating ice is assumed to
calve immediately. For partly grounded cells at the marine
margin, basal shear stress is weighted using a grounding-
line parameterization. By the end of the spin-up, the ice
thickness, temperature and velocity fields are very close to
steady-state and closely match the provided observed geom-
etry and also the observed horizontal velocity, which is not
used during initialisation. For the historical period (1960-
2014), the model is run forward with SMB and surface tem-
perature anomalies, including lapse-rate corrections, from
the MAR simulation that provided the background climatol-
ogy and with retreat forcing of various sensitivities. Basal
friction coefficients are held fixed at the values obtained dur-
ing the spin-up. The different CISM model versions used
here differ by the horizontal grid resolution (2—-16 km), by the
RCM version used for spinup and historical run (MARv3.9
vs MARvV3.12) and by the sensitivity of the retreat parame-
terisation applied over the historical period.

The Cryosphere, 19, 6887-6906, 2025

2.5 Experiments
2.5.1 Ice sheet initialisation and historical run

Under ISMIP6 protocol, ice sheet modellers were free to ini-
tialise their model as they wish, with the aim to produce a
present-day state of the ice sheet that is close to observa-
tions. This procedure may involve a historical experiment
that brings the ice sheet into a state that is assigned to the end
of 2014. In contrast to this freedom in setting up the model,
the projections 2015-2100 that then follow are very tightly
constrained by the forcing. This is also the case for the re-
treat forcing, which takes the individual 2014 ice mask as
a reference and provides masks that impose the position of
the (retreated) calving fronts forward in time. For PROTECT
we have extended this approach by providing retreat forcing
before 2015 that is calculated from reconstructions of past
runoff and ocean thermal forcing (see Rahlves et al., 2025a).
This allows for a consistent forcing of the models in past and
future and considers historical retreat of the outlet glaciers,
which was an important source of mass loss after 1990 (The
IMBIE Team, 2020). We can now interpret the experiment
leading up to 2015 as a real historical simulation. The IS-
MIP6 practice of removing the results of an unforced con-
trol experiment from the projections is therefore not needed
here. Figure 3 illustrates the 2014 state of selected model
versions in comparison with observations (BedMachine v3,
Morlighem et al., 2017).

The practice of including the historical experiment as part
of the experimental design (which was not the case for IS-
MIP6) should ultimately imply that any variation in the ISM
modelling choices should be represented in this experiment.
As a consequence, each model variant would in principle
require a separate historical experiment, so that modelling
choices remain consistent at the beginning of the projections
(here in year 2015). At the beginning of the project, we did
not apply this constraint and most ice sheet model runs were
conducted with a single historical experiment (like in IS-

https://doi.org/10.5194/tc-19-6887-2025
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MIP6) with medium retreat sensitivity, which then branches
into projections with different sensitivity. We later conducted
some experiments with consistent retreat forcing sensitiv-
ity with NORCE-CISM (cf. list of ISM experiments in Ap-
pendix B).

2.5.2 Future projections to year 2100

The future projections from 2015 to 2100 follow the ISMIP6
forcing protocol with SMB anomalies and retreat forcing ap-
plied as described in Sect. 2.1. With the available forcing de-
scribed in Sect. 2.3, we obtained output from 14 different
global models, forced with three different scenarios (SSP1-
2.6, SSP2-4.5, SSP5-8.5) and downscaled with three RCMs
and one statistical downscaling method.

2.5.3 Extensions after year 2100

Few CMIP6 models have carried out the scenarioMIP ex-
tensions (O’Neill et al., 2016) to 2300, and even fewer have
provided 6-hourly output typically required for RCMs to
downscale the data. We have currently only three examples
of ice sheet forcing with what we will refer to as “natu-
ral extensions” beyond 2100 from the ESMs IPSL-CM6A-
LR (for scenarioMIP SSP5-8.5-ext) and CESM2-WACCM
(for scenarioMIP SSP5-8.5-ext and scenarioMIP SSP1-2.6-
ext). While SSP1-2.6-ext stabilises to a CO, concentra-
tion well below 500 ppm, SSP5-8.5-ext stabilises towards
a CO; concentration of about 2200 ppm, roughly double
its value at year 2100. CESM2-WACCM has been statisti-
cally downscaled with SDBN1 (not requiring 6-hourly out-
put) and IPSL-CM6A-LR has been dynamically downscaled
with variants of MARv3.12. There is one extension to 2200
with MARvV3.12 downscaling IPSL-CM6A-LR under sce-
nario SSP5-8.5/SSP5-8.5-ext using the same approach as for
the other experiments. The MAR modellers questioned the
validity of continuing to downscale the relatively strong cli-
mate forcing from IPSL-CM6A-LR SSP5-8.5-ext at a fixed
present-day topography beyond 2200, given that the ice sheet
geometry should have considerably changed by then, hence
impacting SMB (Delhasse et al., 2024). We have therefore
performed two additional pilot experiments with different
topography updates extending to 2300 (MARv3.13-e05 and
MARV3.13-e55). The construction of these forcings is de-
scribed in more detail in Appendix C. The retreat mask forc-
ing can in principle be constructed in the same way as for the
experiments extending to 2100. However, the underlying as-
sumptions of the parameterisation may not hold for the very
large retreat distances produced under sustained very strong
warming to 2300. Because of that we have already limited
the retreat sensitivity to the 25-75 percentile range for the
natural extensions, but caution that these simulations show
higher uncertainty.

In addition to the natural extensions, we have designed
schematic extensions of the forcing data to the year 2300
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to evaluate the longer-term response of the ice sheet for a
broader range of ESMs. The first set of extensions is carried
out by repeating the forcing of the last ten available years
(2091-2100) in randomised order and keeping the retreat
mask of year 2100 constant.

For a second type of schematic extension, we have
designed overshoot scenarios mimicking SSP5-3.4-OS by
reusing the regular SSP5-8.5 forcing before 2100 and sim-
ulating a climate cooling and corresponding increase of the
SMB until 2300. These overshoot scenarios are constructed
using global mean temperature as a proxy for the tempera-
ture and SMB evolution by sampling existing yearly forcing
data until 2055 and reorganising them to new time series until
2300. The shape of the global temperature proxy evolution is
parameterised and has been calibrated to a few existing ESM
results (CESM2-WACCM, IPSL-CM6A-LR, MRI-ESM2-0)
for overshoot scenario SSP5-3.4-OS. The resulting time se-
ries are illustrated in Appendix C.

Aside from the obvious shortcoming that the latter two are
schematic extensions, the formulation of the retreat forcing
implies a constant mask for stabilising the forcing, which
may underestimate the retreat. Furthermore, another problem
on this timescale in general may be that the climate response
to changing ice sheet geometry is not properly accounted for.
Alternative prolongations could be envisioned and thus the
current approaches should be considered pilot experiments
and not a guide to produce realistic scenarios.

2.5.4 Ensemble design

The collection of forcing data covers a wide range of varia-
tions across different ESMs and greenhouse gas (GHG) sce-
narios, but ultimately represents an “ensemble of opportu-
nity”. This is even more true for the selection of RCMs and
ISMs, which is limited to available models in the consor-
tium. PROTECT has therefore conceptualised and operated
a modelling strategy from the beginning that embeds the
physically-based modelling into a wider framework allow-
ing for a statistically meaningful probabilistic interpretation
of the results.

In order to facilitate the sampling strategy in that frame-
work, experiments in the ensemble are labelled by 6 charac-
teristics that are colour-coded in Fig. 4 and given in square
brackets in the following. Setting up a specific ice sheet sim-
ulation requires climate forcing (SMB and ST) for a given
choice [Global model, GHG scenario, Regional model] and
retreat mask forcing for a given choice [Global model, GHG
scenario, Regional model, Retreat sensitivity]. We further-
more have different ice sheet models built on a certain [Code
base] (here referred to by the ISM name) and they are op-
erated using certain modelling [Choices] (initialization strat-
egy, approximations, parameterizations, parameter choices).
In our current approach, different sets of modelling choices
are summarised and assigned to a specific model version
number. However, the impact of specific modelling choices
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Figure 4. Forcing and model options relevant for the larger ensem-
ble design.

could be further analysed e.g., by using the technique de-
scribed by Rohmer et al. (2022, 2025).

The current set of results discussed below is a broad sam-
pling of the available forcings and parameter choices, in-
tended to cover a wide range of possible projections and their
uncertainties. Based on feedback from the researchers run-
ning emulators using these results, we have iteratively up-
dated the ensemble with additional simulations to refine the
sampling for specific choices where needed. The repeated ex-
tensions and overshoot scenarios are examples of additional
experiments that were deemed important to improve the em-
ulator performance for predictions up to 2300.

3 Results

The following results are presented as an overview of avail-
able ISM simulations and provide insight into the typical
ranges and main uncertainties. We have produced 1472 in-
dividual ice sheet model projections that form the ensemble
of GrIS results. An overview of the used ISM model ver-
sions is given in Table B1. Sea-level contributions are cal-
culated taking into account density (and bedrock adjustment
for IMAUICE) following Goelzer et al. (2020b).

Figure 5 illustrates the typical time-dependence of the pro-
jections from the ensemble, with output from one model ver-
sion per group under the range of ESM and RCM forcing
with median outlet glacier retreat sensitivity. It also shows
historical simulations of various lengths for the different
ISMs. Under this forcing, which includes scenarios SSP1-
2.6, SSP2-4.5 and SSP5-8.5 for various ESMs, all sea-level
contributions are increasing and positive by the year 2100.
Judging by average mass loss rates over the last 30 years,
none of the simulations shows signs of ice sheet stabilisation
(zero or positive mass change) towards the end of the exper-
iment, but rather continued mass loss, suggesting larger to
much larger contributions for time scales beyond 2100.

Results for the year 2100 of the whole ensemble of pro-
jections with all available scenarios, ESMs, RCMs and ISMs
under five different retreat sensitivities (S5th percentile, high,
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Figure 5. Projected sea-level contribution from the GrIS until 2100
from a subset of experiments with all four participating ice sheet
models (one model version per group), median retreat sensitiv-
ity and forcings produced specifically for PROTECT (MARvV3.12,
RACMO2.3p2, HIRHAMS). The aim of this figure is to illustrate
the range and distribution of the projections, not individual mem-
bers.

med, low, 95th percentile) are summarised in Fig. 6. We
have not included results for the experiments that continue
to 2300 here, which are instead shown in Fig. 9 with results
at the respective ends of the simulations. The contributions
in the year 2100 (relative to 2014) lie in a range between
16 and 354 mm, with the largest numbers from experiments
that combine high climate sensitivity (UKESM1-0-LL vari-
ants) and very high retreat sensitivity (5th percentile). The
corresponding global mean temperature anomalies as diag-
nosed from the ESMs are given in Fig. S1 in the Supplement.

Figure 7 illustrates ISM results of the runs to 2100 sorted
by different categories. The comparison between ISMs,
RCMs, scenarios and CMIP iterations shows primarily the
sampling frequency across the ensemble. Unequal sampling
limits the direct interpretation of the results, but some con-
clusions can be drawn, nevertheless. The range of results for
the different ISMs is largely similar (Fig. 7a) and only larger
for CISM because a wider range of retreat parameters (Sth—
95th percentile range) was sampled with this model. Sim-
ulations forced with regional models MAR and HIRHAMS
(Fig. 7b) show higher contributions under high climate forc-
ing compared to RACMO, which is in line with SMB re-
sults discussed recently (Glaude et al., 2024): the contrasted
response to warming of the utilised RCMs primarily stems
from differences in projected runoff, which is amplified by
the positive melt-albedo feedback.

The full scenario ranges (Fig. 7c) of projected sea-level
contributions from the GrIS by the year 2100 (relative to
year 2014) are 16-76 mm (SSP1-2.6/RCP2.6), 22—-163 mm
(SSP2-4.5) and 27-354 mm (SSP5-8.5/RCP8.5). For the nar-
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Figure 6. Overview of produced GrlS sea-level projections for the year 2100 from 4 ice sheet models (23 different model versions) and
5 retreat parameter settings. Triangular light green markers for NORCE-CISM indicate experiments with extreme values of the retreat
parameter « in the 5th percentile (upward-pointing) and 95th percentile (downward-pointing).

rower range of the retreat parameter (25th—75th percentile
range as in ISMIP6 and performed by all ISMs), the (upper)
scenario ranges are reduced to 22—127 mm (SSP2-4.5) and
27-265 mm (SSP5-8.5/RCP8.5). In summary, these results
indicate a very large range of sea-level contributions in par-
ticular under forcing scenario RCP8.5/SSP5-8.5. Figure 7d
shows an increased sensitivity from CMIP5 to CMIP6, con-
firming earlier results (e.g. Hofer et al., 2020; Payne et al.,
2021), although unequal sampling is an additional factor.
Uncertainty in the projections arises from the climate forc-
ing (different ESMs, scenarios), the translation of the forcing
to the ice sheet scale (RCMs/downscaling, retreat parameter-
isation) and from the ISMs themselves. We have quantified
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these uncertainty ranges by comparing experiments with one
of the factors modified at a time and averaging over available
subsets. Under SSP5-8.5/RCP8.5 forcing, the ESM choice
explains a range of 130mm (cf. Fig. 7c), compared to a
range of 84 mm for RCMs (cf. Fig. 7b), 50 mm for ISMs (cf.
Fig. 7a) and 13 mm for retreat forcing (25th—75th percentile
range).

Figure 8a shows results for a schematic prolongation to
2300 for one of the ice sheet models with repeated SMB
forcing and constant retreat mask after year 2100. It illus-
trates that sea-level contributions from Greenland continue
to increase well beyond year 2100 even under stabilised forc-
ing. Contributions can exceed 1.2 m (under very high retreat

The Cryosphere, 19, 6887-6906, 2025



6896 H. Goelzer et al.: Extending the range and reach of physically-based Greenland ice sheet sea-level projections

350 4 o IMAU-IMAUICE
VUB-GISM
o NORCE-CISM
3009 & |GE-EImerice
250 - 5
=4 o
= o g
£ 200 A
E g
w g
@ 150 A g
]
|
100 - |
&
50 - :J 8
0 a
IMAlIJICE GIISM CIISM Elmérlce
Ice sheet model
350 A
300 A
250 A
E 200
£
4
» 150
100 4 g
B g g 8
50 gg'\ Eﬁ 3
o C
26 45 8.5
Scenario

350 4
300 4
]
250 o
O o
= 3 8
€ 200 go o g
£ B o)
w v ‘:: O 8
@ 150 Ao g
100 - = g
& 2 ;i ]
50 - g g P 5
0 b

MARv3.12 RACMO2.3p2 HIRHAMS5
RCM

MARV3.9

D>DB () 9]
Oapapo O

m

N

o

o
Qoo O

E:

SLE (
= =
o w
o o
@
O CIEIHA
o
DD O
DD DRI DD o etts
IO EERIDEEEED O
00 C 00D CD

| 8 3
N | H | d

CMIP5 CMIP6
Ensemble

Figure 7. Sea-level contribution by year 2100 from the GrIS sorted by (a) ice sheet model, (b) regional climate model, (¢) scenario and
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includes SSP5-8.5 and RCP8.5. Triangular light green markers for NORCE-CISM indicate experiments with extreme values of the retreat
parameter « in the 5th percentile (upward-pointing) and 95th percentile (downward-pointing).

forcing) by 2300 for prolonged SSP5-8.5/RCPS8.5 but may
stabilise for prolonged SSP1-2.6/RCP2.6 somewhere below
200 mm. The scenario ranges with repeated forcing are 58—
163 mm (repeated SSP1-2.6), 98-218 mm (repeated SSP2-
4.5) and 282-1230 mm (repeated SSP5-8.5).

Results from the schematic overshoot scenarios, mimick-
ing SSP5-3.4-OS (Fig. 8b) with sea-level contributions at
year 2300 in a range between 49 and 201 mm, show sta-
bilisation for three out of the nine experiments (CESM2-
WACCM SDBN1, CESM2-Leo RACMO2.3p2, NorESM2-
MM MARv3.12), while the others have an ongoing near-
linear mass loss trend at the end of the experiments by
2300. The natural extensions to 2300 (Fig. 8c) for CESM2-
WACCM SDBNI1 show a range between 92 mm (SSP1-2.6)
and 3127 mm (SSP5-8.5), indicating a strong dependence
on the climate forcing, large uncertainties and a potentially
very large long-term response. Results for IPSL-CMO6A-
LR SSP5-8.5-ext show that including a topography update
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(MARVv3.13-e55) leads to a 6 % larger contribution in 2300
compared to calculating the SMB for a fixed surface ele-
vation (MARvV3.13-e50). This is in addition to the parame-
terised SMB-height feedback active in both experiments. For
the natural extensions (Fig. 8c) we also show the correspond-
ing global mean temperature anomalies as diagnosed from
the ESMs (Fig. 8d) to put the results for the extreme warm-
ing scenarios into perspective.

Figure 9 summarizes results at the end of the experiments
for all schematic prolongations to 2300 (overshoot: 02300
and repeat: r2300) and also includes the natural extensions to
2300 for CESM2-WACCM and IPSL-CM6A-LR. Note that
results are displayed on a logarithmic vertical axis.
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Figure 8. Extensions to 2300 with NORCE-CISM for various ESMs/RCMs with median values of retreat parameter « for (a) repeated
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4 Discussion

For the scenarios and forcings covered in both ensembles and
for the same range of the retreat parameter (25th—75th per-
centile range), our ranges of projected sea-level contribu-
tions at 2100 (16—-67 mm for SSP1-2.6/RCP2.6, 27-265 mm
for SSP5-8.5/RCPS8.5) largely overlap with ISMIP6 results
(11-58 mm for SSP1-2.6/RCP2.6, 35-250mm for SSP5-
8.5/RCP8.5; Payne et al., 2021). Slightly different ranges
here are due to using a subset of ISMs, but also due to
the incorporation of additional ESMs and RCMs. Including
a wider range of the retreat parameter (5th-95th percentile
range) has led to a larger upper end of the full scenario
ranges presented here as 16-76 mm (SSP1-2.6/RCP2.6), 22—
163 mm (SSP2-4.5) and 27-354 mm (SSP5-8.5/RCP8.5). We
have added 159 experiments for the intermediate scenario
SSP2-4.5, that was not represented in ISMIP6. Inclusion of
these results of an intermediate scenario does not increase
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the total range of projections but adds additional information
for possible future emulation. Results for experiments with
the same climate model (CESM2-Leo) but different RCMs
(MAR, RACMO, HIRHAM) mirror the results from a com-
parison of the underlying SMB (Glaude et al., 2024), with
considerable differences in the projected sea-level contribu-
tion due to the choice of RCM. In addition, a larger relative
contribution from experiments forced with HIRHAM here
compared to the SMB results (Glaude et al., 2024) is related
to the way SMB is extended beyond the ice sheet mask and
how the vertical gradients are determined for parameterising
the SMB-height feedback. In combination, this highlights the
urgent need to include uncertainty due to climate downscal-
ing from global to ice sheet scale in the projections, which
was likely under-represented in ISMIP6 due to the use of
only one RCM and only one method to take the SMB-height
feedback into account.
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Uncertainties in the projections in this “ensemble of op-
portunity” arise from sampling of ESMs, RCMs, ISMs and
retreat parameters, which implies that statistically meaning-
ful interpretation of the raw model output is challenging. We
have therefore mostly limited the interpretation of results
to typical ranges and leave finer-grained analysis to down-
stream efforts (e.g. Rohmer et al., 2022, 2025; Edwards et al.,
2021). Under the high forcing scenario SSP5-8.5/RCP8.5,
global climate model uncertainty (here choice of ESM) dom-
inates and explains a total range of 130 mm in the projections
to 2100. This is compared to a range of 84 mm for choice of
RCM (not sampled in ISMIP6), and 50 mm for the choice of
ISM, which is similar to ISMIP6, despite the smaller number
of ISMs in the present work. The range of 13 mm for re-
treat forcing (25th—75th percentile range) is slightly smaller
compared to ISMIP6 (19 mm), but increases considerably to
52 mm when extending to the 5th-95th percentile range that
we have additionally explored here.

Extending the forcing and the simulations backwards over
the historical period is an important improvement compared
to ISMIP6 and will eventually allow for a better comparison
between observations and models. We have not attempted
here to perform specific experiments that quantify the effect
of including a real historical experiment on the projections,
but results by Rahlves et al. (2025a) give indications that the
impact on the projected sea-level contribution is minor.

Schematic extensions with repeated forcing to 2300 from
a subset of ESMs (and only one ice sheet model) show an
upper range of contributions exceeding 1.2 m for prolonged
SSP5-8.5/RCP8.5 and potentially stabilising contributions
for prolonged SSP1-2.6/RCP2.6 below 25 cm. These results
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are given with the caveat of the underlying schematic exper-
imental setup and a limited ensemble size. In comparison,
regular ScenarioMIP extensions under scenario SSP5-8.5-
ext that we have for two global models (IPSL-CM6A-LR,
CESM2-WACCM) produce contributions in the year 2300
exceeding 2.5 and 3 m, respectively. This is in strong con-
trast to results under CESM2-WACCM SSP1-2.6-ext with
only 92 mm, underlining that the climate scenario is the dom-
inant source of uncertainty on this timescale. We also em-
phasise that the natural extensions to 2300 lead to consid-
erably higher contributions compared to the extensions with
repeated forcing, indicating that these scenarios are very dif-
ferent and shouldn’t be conflated. It also underlines an urgent
need for more ESM output going to 2300 or even beyond.
On these timescales and under such high forcing, feedbacks
between ice sheet and climate and how they are taken into
account become first-order effects and introduce large uncer-
tainties. In our standalone ice sheet modelling approach, the
lack of proper climate feedbacks is an important limitation
that may be addressed with interactive coupling of ESMs
and ISMs (e.g. Muntjewerf et al., 2020; Smith et al., 2021;
Goelzer et al., 2025). In addition, the retreat forcing approach
has to be considered with caution for extended time periods
in particular under high forcing scenarios. Combined, these
results indicate that modifications to the ISMIP6 forcing pro-
tocols and new methods to account for a changing ice sheet
geometry (e.g. Goelzer et al., 2020c; Delhasse et al., 2024;
Rahlves et al., 2025b) are needed for robust standalone ice
sheet simulations well beyond year 2100. Nevertheless, the
experiments with repeated forcing give an approximate idea
of how stabilising forcing (and climate) at different levels
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could play out. On the considered timescale, stabilising the
forcing has the effect of stabilising the rate of change, not the
ice sheet itself (unless the rate is close to zero). Results from
the schematic overshoot scenarios, mimicking SSP5-3.4-0S,
were added specifically to provide an emulator with addi-
tional, complementary information on ice sheet changes un-
der forcing that does not follow a continuous increase in tem-
perature. Results under this forcing show that three (CESM2-
WACCM SDBN1, CESM2-Leo RACMO2.3p2, NorESM2-
MM MARV3.12) out of the nine experiments with different
climate model forcing produce what seems like a stabilising
GrIS towards 2300.

Creating this ensemble with a relatively small group of ice
sheet modellers bears the risk of underestimating an impor-
tant part of the ISM uncertainty. We anticipate this potential
gap to be closed by ISMIP7 and other follow-up initiatives.
The advantage of a smaller group of modelers that we have
exploited in this work lies in a more flexible and adaptable
experimental design.

5 Conclusions

We have produced a large ensemble of Greenland ice sheet
projections with four different ice sheet models under vari-
ous forcings drawn from a wide range of ESMs, scenarios,
RCMs, and retreat parameters. Uncertainty in the ice sheet
models is furthermore sampled with various model versions
that differ by horizontal grid resolution, applied sliding law,
and initial states. Under high forcing, the largest contribu-
tor to the uncertainty is the choice of ESM, followed by the
RCM and ISM. RCM uncertainty, or more generally, uncer-
tainties in the climate downscaling process need to be better
quantified in the future.

This contribution to the European project PROTECT ex-
tends the projections of ISMIP6 in several important regards,
with an additional, intermediate scenario, several different
RCMs, and more CMIP6 models. Results from different ex-
tensions up to 2300 give a perspective on challenges for stan-
dalone simulations on this time scale.

Appendix A: Required climate model output for ice
sheet forcing

This section describes the climate model output required to
construct ISMIP6-type ice sheet forcing for Greenland ice
sheet projections.

Surface mass
[mm yr*1 w.e.]

Like most variables, the SMB needs to be extended out-
side of the observed ice sheet mask to accommodate ice sheet
models with a slightly larger than observed footprint. See
main text for details on how this was done in the different
downscaling procedures.

balance: annual cumulative SMB

https://doi.org/10.5194/tc-19-6887-2025

Vertical gradients of runoff: annual mean slope of the local
runoff-elevation gradients [mmyr—! w.e.m™'].

This variable is needed to parameterise the SMB-height
feedback in ice sheet models (via dSMBdz in Eq. 1). The
gradients are expected to be predominantly negative as runoff
generally declines with elevation and should be masked to 0
where no runoff is present. This variable has to be relatively
smooth. Using gradients in runoff rather than gradients in
SMB to parameterize the SMB-height feedback is chosen be-
cause precipitation does not have consistent gradients with
elevation. The variable needs to be extended outside of the
observed ice sheet margin.

Surface temperature: annual mean surface temperature
[°C]

This variable should represent as best as possible the tem-
perature evolution at the upper ice surface as it is used to
force the thermodynamic ice sheet solution at the upper
boundary. In climate models with detailed snow physics, this
can be, for example, a deep firn temperature. In the absence
of detailed climate model output at that level, the skin tem-
perature or even the 2 m air temperature may be acceptable
workarounds. The variable needs to be extended outside of
the observed ice sheet margin.

Vertical gradients of surface temperature: annual mean
slope of the local temperature-elevation gradient [°Cm™!].

This variable is used to apply a lapse-rate correction of
the surface temperature boundary condition with changing
surface elevation. This variable should be relatively smooth
and needs to be extended outside of the observed ice sheet
margin.

Runoff: monthly cumulative runoff [mmyr™" w.e.].

This variable is used in combination with ocean thermal
forcing to derive the outlet glacier retreat parameterization.
As it is based on the observed geometry, this is the only vari-
able that does not need to be extended over the tundra.

Ocean thermal forcing: We need to know the exact model
version of the forcing ESM so we can extract matching ocean
data from the CMIP archive.

Because we calculate anomalies relative to the period
1960-1989, SMB and ST have to cover the historical pe-
riod (1960-2014) in addition to the projection period (2015-
2100). All other data should cover at least the projection pe-
riod (2015-2100). In addition, for climate forcing data to be
used for ice sheet model initialisation and historical experi-
ments, it should be provided over the historical period from
1950 under ERAS forcing or another reanalysis product.

1
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Appendix B: List of ISM projections

Table B1. Ice sheet model versions and number of experiments. Bold model versions are shown in Figs. 3 and 5. Linear — linear sliding
law, Weertman — Weertman sliding law (m = 1/3), ZI — Zoet-Iverson sliding law, RC — regularised Coulomb sliding law, PMIP3 — PMIP3
ensemble mean forcing for spinup, HadCM3 — HadCM3 forcing for spinup, CCSM — CCSM forcing for spinup, MARV3.9 — initialised with
MARV3.9, MARV3.12 — initialised with MARv3.12, Num — number of experiments for different forcings (ESM, scenario, RCM, retreat).

Group Model Resolution (km)  Variant Num
IGE Elmerlce2 1-6  Linear 14
Elmerlce3 1-6  Weertman 15
IMAU IMAUICE1 40 ZI, PMIP3 57
IMAUICE2 30 ZI, PMIP3 57
IMAUICE3 20 ZI, PMIP3 57
IMAUICES5S 10 ZI, PMIP3 57
IMAUICE6 20 ZI, HadCM3 57
IMAUICE7 20 ZI,CCSM 57
IMAUICES 20 RC, PMIP3 57
NORCE CISM02-MAR39 2  MARv3.9 36
CISM04-MAR312 4  MARv3.12 48
CISM04-MAR39 4  MARv3.9 69
CISM04c-MAR39 4 MARv3.9, consistent™ 95
CISM04e-MAR312 4  MARv3.12, extension to 2200 5
CISM04-MAR312 4 MARv3.12 4
CISM08-MAR312 8 MARv3.12 48
CISM08-MAR39 8 MARvV3.9 115
CISMO08c-MAR39 8 MARV3.9, consistent™ 95
CISM16-MAR312 16 MARv3.12 48
CISM16-MAR39 16 MARv3.9 100
CISM16¢c-MAR312 16 MARv3.12, consistent™ 110
CISM160c-MAR39 16 MARV3.9, overshoot to 2300 45
CISM16t-MAR39 16 MARv3.9, repeat to 2300 65
CISM16tc-MAR39 16 MARV3.9, repeat to 2300, consistent™® 59
CISM16xc-MAR12 16 MARVv3.12, extension to 2300, consistent™ 24
VUB GISMHOMvV1 5  Higher-order model 57
GISMSIAv1 5  Shallow ice approximation 21

* Retreat sensitivity consistent between historical and projection.
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Appendix C: Construction of extensions until 2300

Extensions under climate forcing IPSL-CM6A-LR SSP5-8.5
have been downscaled with MARvV3.13, which is largely sim-
ilar to v3.12. The only difference is a small correction of
albedo as a function of the liquid water content of the surface
snowpack. Experiment MARv3.13-e05 uses SMB forcing
produced at a fixed topography, as for the other experiments.
In addition, we have experiment MARv3.13-e55, which uses
SMB forcing produced at a changing topography. The topog-
raphy change was produced by running two iterations be-
tween MAR and CISM with consecutive update of SMB and
topography. The processing steps were the following:

1. Run MARv3.13 forced with IPSL-CM6A-LR SSP5-
8.5 to 2300, where a quarter of the cumulated SMB
anomaly is used to update the topography. This under-
estimates the topography change compared to a theoret-
ical fully-coupled experiment by around a factor 4, so it
is close to no update of the topography.

2. Run CISM with the SMB in 1.

3. Run MARV3.13 forced with IPSL-CM6A-LR SSP5-8.5
to 2300 with topography changes taken every 10 years
from 2070 forward from 2.

4. Run CISM with the SMB in 3.

Schematic extension of forcing between 2100 and 2300 based
on existing data until 2100:

a. Repeat scenarios.

The forcing until 2100 is the same as the corre-
sponding scenario. From 2101-2300 the forcing is
randomly repeated by shuffling the last 10 years of
existing data (2091-2100). The code is available in
Goelzer (2025f). The following indices are used.

year =2101, 2102, 2103, [...], 2298, 2299, 2300 ;

shuffled_time_repeat =2093, 2099, 2095, 2100, 2092,
2097, 2098, 2094, 2091, 2096, 2100, 2097, 2099, 2095,
2096, 2091, 2093, 2098, 2094, 2092, 2099, 2095, 2094,
2096, 2091, 2097, 2100, 2093, 2092, 2098, 2100, 2095,
2098, 2094, 2093, 2097, 2092, 2099, 2096, 2091, 2097,
2098, 2099, 2093, 2095, 2100, 2092, 2096, 2091, 2094,
2098, 2091, 2094, 2100, 2099, 2092, 2093, 2096, 2095,
2097, 2100, 2094, 2091, 2096, 2095, 2093, 2092, 2099,
2097, 2098, 2100, 2098, 2091, 2096, 2093, 2092, 2099,
2094, 2097, 2095, 2094, 2097, 2095, 2098, 2093, 2092,
2096, 2099, 2100, 2091, 2097, 2095, 2092, 2094, 2100,
2098, 2099, 2091, 2096, 2093, 2093, 2091, 2096, 2095,
2097, 2099, 2098, 2092, 2094, 2100, 2097, 2100, 2098
2096, 2091, 2094, 2099, 2092, 2093, 2095, 2091, 2099,
2100, 2093, 2095, 2094, 2092, 2098, 2096, 2097, 2094,
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2097, 2095, 2099, 2092, 2098, 2096, 2093, 2100, 2091,
2094, 2098, 2093, 2097, 2092, 2100, 2096, 2095, 2091,
2099, 2095, 2091, 2096, 2100, 2094, 2097, 2093, 2092,
2098, 2099, 2091, 2094, 2092, 2097, 2096, 2100, 2098,
2093, 2099, 2095, 2096, 2091, 2094, 2093, 2098, 2097,
2092, 2100, 2095, 2099, 2098, 2091, 2100, 2092, 2097,
2094, 2096, 2093, 2099, 2095, 2095, 2096, 2091, 2100,
2099, 2093, 2094, 2092, 2097, 2098.

. Overshoot scenarios.

The schematic overshoot scenario mimicking SSP5-
3.4-0S are based on the global temperature evolution as
illustrated in Fig. C1. The code is available in Goelzer
(2025e). Until year 2055, the forcing is the same as
SSP5-8.5. From year 2056-2165, the temperature
decreases similarly to the increase between 2030 and
2055 but backwards at 0.25 the rate (drawing 4 years
for one). From 2156 on we shuffle and repeat the
forcing earlier in the experiment, drawn from the time
window 2026-2038. Forcing until 2055 is the same as
the corresponding SSP5-8.5 scenario. From 20562300
the following indices are used.

year = 2056, 2057, 2058, [...], 2298, 2299, 2300 ;

shuffled_time_overshoot =2056, 2056, 2055, 2054,
2053, 2055, 2054, 2053, 2052, 2054, 2053, 2052, 2051,
2053, 2052, 2051, 2050, 2052, 2051, 2050, 2049, 2051,
2050, 2049, 2048, 2050, 2049, 2048, 2047, 2049, 2048,
2047, 2046, 2048, 2047, 2046, 2045, 2047, 2046, 2045,
2044, 2046, 2045, 2044, 2043, 2045, 2044, 2043, 2042,
2044, 2043, 2042, 2041, 2043, 2042, 2041, 2040, 2042,
2041, 2040, 2039, 2041, 2040, 2039, 2038, 2040, 2039,
2038, 2037, 2039, 2038, 2037, 2036, 2038, 2037, 2036,
2035, 2037, 2036, 2035, 2034, 2036, 2035, 2034, 2033,
2035, 2034, 2033, 2032, 2034, 2033, 2032, 2031, 2033,
2032, 2031, 2030, 2032, 2031, 2030, 2029, 2033, 2038,
2031, 2037, 2029, 2035, 2028, 2034, 2036, 2030, 2027,
2032, 2035, 2031, 2037, 2029, 2030, 2033, 2032, 2034,
2028, 2038, 2027, 2036, 2032, 2031, 2027, 2037, 2034,
2033, 2036, 2035, 2029, 2030, 2038, 2028, 2027, 2034,
2029, 2030, 2033, 2036, 2031, 2032, 2035, 2038, 2028,
2037, 2034, 2038, 2027, 2036, 2037, 2029, 2035, 2031,
2030, 2032, 2033, 2028, 2036, 2031, 2027, 2032, 2030,
2038, 2028, 2034, 2035, 2033, 2029, 2037, 2036, 2028,
2030, 2027, 2038, 2032, 2037, 2033, 2034, 2029, 2031,
2035, 2028, 2030, 2035, 2033, 2029, 2037, 2034, 2031,
2038, 2032, 2027, 2036, 2032, 2031, 2027, 2030, 2028,
2034, 2037, 2035, 2033, 2036, 2038, 2029, 2029, 2036,
2035, 2033, 2037, 2028, 2027, 2031, 2038, 2034, 2032,
2030, 2038, 2027, 2033, 2037, 2030, 2034, 2036, 2028,
2031, 2029, 2032, 2035, 2038, 2027, 2030, 2031, 2034,
2035, 2037, 2036, 2032, 2029, 2033, 2028
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CESM2 —— IPSL-CM6A-LR

global mean temperature anomaly (°C)

|\ —— CESM2-Leo MPI-ESM1-2-HR
01 —— CESM2-WACCM  —— NorESM2-MM
v —— CNRM-CM6-1 UKESM1-0-LL
—— CNRM-ESM2-1

T T T T T T T T
1950 2000 2050 2100 2150 2200 2250 2300
year

Figure C1. Illustration of the construction of schematic overshoot
scenarios mimicking SSP5-3.4-OS. To construct the forcing, SMB
and retreat forcing are drawn from existing annual forcing files (not
shown). Instead, the figure shows the sequence of global mean tem-
perature anomaly drawn from each individual original ESM tem-
perature time series.

Code availability. Code used to process the atmospheric forc-
ing is available at https://doi.org/10.5281/zenodo.17882933
(Goelzer, 2025d). Code used to process the ocean forcing is
available in archives https://doi.org/10.5281/zenodo.17882454
and https://doi.org/10.5281/zenodo.17882611 (Goelzer,
2025g,h). Code used to produce overshoot and repeat forc-
ing is available at https://doi.org/10.5281/zenodo.17882904 and
https://doi.org/10.5281/zenodo.17882890 (Goelzer, 2025¢, f).

Data availability. The forcing data is available in ISMIP6 format at
https://doi.org/10.11582/2025.prm9am5n (Goelzer, 2025a). It con-
sists of SMB and ST anomalies and their respective vertical gra-
dients that are generic for all ice sheet models. The retreat mask
forcing is produced specifically for each individual ice sheet model
version and is maintained by the modellers. The provided ice sheet
model data consists of the most important diagnostic output at an-
nual time resolution, such as ice thickness, bedrock and surface
topography, horizontal velocities and integral mass balance terms.
We are following the ISMIP6 data request format (https://theghub.
org/groups/ismip6/wiki/ISMIP6-Projections-Greenland, last ac-
cess: 14 December 2025). For common analysis, ice sheet
model output was conservatively interpolated to a standard 5
km diagnostic grid. These model output data are available at
https://doi.org/10.11582/2025.dlmefxt5 (Goelzer, 2025b), while the
raw ice sheet model output is the responsibility of the individual
modelling groups. Projected sea-level contributions are available at
https://doi.org/10.11582/2025.1f9m2wd0 (Goelzer, 2025c¢).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-6887-2025-supplement.
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