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Abstract. In recent years, opportunities have opened up to
develop and validate glacier models in regions that have pre-
viously been infeasible due to observation and/or computa-
tional constraints thanks to the availability of globally capa-
ble glacier evolution modelling codes and spatially extensive
geodetic validation data. The glaciers in the tropical Andes
represent some of the least observed and modelled glaciers
in the world, making their trajectories under climate change
uncertain. Studies to date have typically adopted empirical
models of the surface energy balance and ice flow to simulate
glacier evolution under climate change, but these may miss
important non-linearities in future glacier mass changes. We
combine two globally capable modelling codes that provide a
more physical representation of these processes:(i) the Joint
UK Land Environment Simulator (JULES), which solves
the full energy balance of snow and ice, and (ii) the Open
Global Glacier Model (OGGM), which solves a flowline rep-
resentation of the shallow-ice equation to simulate ice flow.
JULES-OGGM is applied to over 500 tropical glaciers in
the Vilcanota-Urubamba basin in Peru, home to more than
800 000 people that predominantly live in rural communities
with low socioeconomic development and high vulnerability
to climate change. The model is evaluated against available
glaciological and geodetic mass balance observations to as-
sess the potential for using the modelling workflow to sim-
ulate tropical glacier evolution over decadal timescales. We
show that the JULES—-OGGM model can be parameterized

to capture decadal (2000-2018) mass changes in individ-
ual glaciers, but we also show that limitations in the JULES
prognostic snow model prevent accurate replication of ob-
served surface albedo fluctuations and mass changes across
all glaciers simultaneously. Specifically, the model cannot
replicate the feedbacks between the driving meteorology,
surface energy balance, ablation processes, and snow darken-
ing. Only by forcing the model with observed net radiation
variables were we able to capture observed surface albedo
dynamics. When driven with statistically downscaled climate
change projections, the JULES—OGGM simulations indicate
that, contrary to point-scale energy balance studies, sublima-
tion plays a very minor role in glacier evolution at the basin
scale and does not bring about significant non-linearities in
the glacier response to climate warming. The ensemble mean
simulation estimates that total glacier mass will decrease to
17% and 6 % of that in 2000 by 2100 for Representative
Concentration Pathway (RCP) 4.5 and RCP8.5, respectively,
which is more conservative than estimates from some other
global glacier models.

1 Introduction

Meltwater from tropical Andean glaciers buffers water sup-
ply to domestic users, agriculture, and energy supply dur-
ing periods of drought (Buytaert et al., 2017; Carey et al.,
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2014; Ultee et al., 2022). The magnitude of buffering will
be inhibited in the future as glaciers recede in a warming
climate. Large-scale earth observation analyses of historical
glacier extent and geodetic mass balance indicate that trop-
ical Andean glaciers have been receding rapidly in recent
decades. Dussaillant et al. (2019) found that between 2000
and 2018 the average mass balance of glaciers in the tropical
Andes was — 0.42:l:0.24myr_1 w.e. Seehaus et al. (2019)
estimated that glacier extent in the Peruvian Andes, home to
~70 % of the world’s tropical glaciers, reduced by 29 % be-
tween 2000 and 2016, with over half of this retreat occurring
in the last 3 years of this period. Taylor et al. (2022) esti-
mated glacier area losses of between 54 % and 64 % (1970-
2020) across three mountain ranges in the southern Peruvian
Andes.

There is high confidence that temperatures in the Andes
will continue to increase throughout the 21st century (IPCC,
2023; Yarleque et al., 2018). The diversity of meltwater end
users and potential impacts of climate change necessitate re-
liable projections of glacier mass changes to inform policy
and adaptation pathways (Johansen et al., 2018). This is es-
pecially true in the tropical Andes, where many aspects of
future climate change remain highly uncertain due to inade-
quate climatic and glaciological monitoring networks.

Providing reliable projections of glacier mass changes for
the tropical Andes is challenging, and this is due in part to
the high spatiotemporal variability in ablation processes. At
lower elevations below the equilibrium line altitude, ablation
is dominated by melt. At higher elevations, point-scale en-
ergy balance studies show that sublimation can reduce the
energy available for melting, particularly in the cooler dry
season when humidity is low and the surface roughness of
ice is higher (Gurgiser et al., 2013; Winkler et al., 2009).
The implications of this for simulating glacier mass change
were demonstrated by Fyffe et al. (2021). They applied an
energy balance model at five on-ice meteorological stations
in the Cordillera Blanca and Cordillera Vilcanota in Peru
and perturbed precipitation and temperature inputs to explore
the mechanisms of mass balance sensitivity to climate. They
showed that at lower elevations the mass balance signal was
driven by a switch from snow to rainfall. At higher eleva-
tions, the change in mass balance was driven by a switch
from sublimation to melt processes. The mass balance re-
sponse to climate warming should therefore be expected to be
non-linear and spatially variable in response to temperature
changes brought about by climate change. Indeed, Marzeion
et al. (2012) concluded that the inability of their temperature
index model to capture glacier mass dynamics in the tropics
likely stemmed from the fact that it did not account for sub-
limation processes. Simulating mass changes over periods of
decades is further complicated by the need to account for ice
mass redistribution and the corresponding elevation feedback
to accumulation and ablation processes (Huss et al., 2010;
Van Tiel et al., 2018).
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The sparsity of glacier monitoring data and meteorologi-
cal observation networks in the tropics (Girtner-Roer et al.,
2019) has led many glacier evolution modelling studies to
use simplified models that do not necessarily account for po-
tentially important processes (e.g. Somers et al., 2019, did
not explicitly model ice flow) or constrain their simulations
to discrete on-ice locations where required observation data
exist (Fyffe et al., 2021; Rabatel et al., 2013), limiting their
usefulness for basin-scale assessments of meltwater pertur-
bations under climate change. However, significant advances
in methods to derive glacier mass variations from earth ob-
servation data has led to the development of regional and
global geodetic datasets of glacier mass change in recent
years (Dussaillant et al., 2019; Hugonnet et al., 2021). While
they are subject to uncertainty, they provide the means to
validate glacier evolution model simulations in regions that
have previously been infeasible due to lack of field data. The
availability of these data has coincided with the development
of a growing number of large-scale (up to global) glacier
evolution models (Marzeion et al., 2020). The Open Global
Glacier Model (OGGM) is the first open-source “commu-
nity” model for global glacier modelling (Maussion et al.,
2019). It takes advantage of global glacier outline and topo-
graphic datasets, automated approaches for glacier geome-
try delineation, and global geodetic and glaciological mass
balance data for parameter identification to provide a work-
flow through which users can build and run an ice dynamics
model of any glacier in the world. The availability of flex-
ible, globally capable glacier modelling codes like OGGM
and spatially extensive geodetic mass data allowed Caro et
al. (2024) to estimate the contribution of glacier meltwater
runoff for 786 glacierized river basins in the Andes: a feat
that would not have been possible until recently.

OGGM stands out from many other globally capable
glacier models in that it implements an efficient, physically
based flowline model to simulate ice redistribution rather
than an empirical approach, such as volume-area scaling
(Bahr et al., 2015), which employ parameterizations that are
arguably less robust for decadal projections. A potential limi-
tation of OGGM, however, is that it does not include a physi-
cal representation of the surface energy balance and therefore
cannot necessarily capture the non-linearities in ice evolution
under climate change that are expected to be observed for
glaciers situated in the tropics.

A very different globally capable model is the Joint UK
Land Environment Simulator (JULES), a community land
surface model that was originally developed as the land sur-
face component of the Met Office Unified (climate) Model
(Best et al., 2011) but is now used more broadly by environ-
mental scientists as a standalone model to simulate a range
of land surface processes. This includes a physically consis-
tent energy balance and snowpack model that can be used
to simulate surface mass balance changes in snow and ice.
While it has no representation of ice dynamics, Shannon et
al. (2019) demonstrated that the snow and ice component of
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JULES can be used to simulate the surface mass balance of
glaciers. In this study, we present a physically based glacier
modelling workflow that combines the energy balance model
in JULES with the ice dynamics model in OGGM. We ap-
ply the model to the Vilcanota-Urubamba Basin in southern
Peru, which contains over 500 tropical glaciers, including
the world’s largest (Quelccaya), and is home to the second-
largest tropical glacierized mountain range in the world. The
basin is home to over 800 000 people, whose lives are charac-
terized by mostly traditional livelihoods, low socioeconomic
development, and high poverty. Water is used for irrigated
agriculture and hydropower plants, which both rely on year-
round runoff from glaciers. The basin also provides drinking
water for the densely populated city of Cusco, which has ex-
perienced severe drought in recent years. With this study, we
pursue the following aims.

1. We aim to assess the model against available geodetic
and glaciological mass balance observations and on-ice
energy balance observations to explore the potential for
and limitations of a physically based glacier evolution
model in a tropical setting.

2. We also aim to drive the model with 21st-century cli-
mate simulations to forecast changes in ice mass and
area and explore the controls on these changes at the
process level.

2  Methodology
2.1 Study basin

The study focuses on the glacierized Vilcanota-Urubamba
Basin (VUB), situated in the Cusco region of southern Peru
between the dry high-Andean Altiplano and more humid
Amazon basin (Fig. 1). The VUB is characterized by a com-
plex topography (~ 1200-6400ma.s.l.) that is dominated
by the three glacierized mountain ranges: the Cordillera
Vilcanota in the south-east and the Cordillera Urubamba
and Cordillera Vilcabamba in the north-west. Total glacier
area reduced by 37 % between 1988-2016 to ~ 142km?
(Drenkhan et al., 2018). The remaining ice is situated be-
tween 4500—-6000 m a.s.1. and is predominantly faces south-
ward but with considerable variation across the basin. Typi-
cal glacier slope ranges between 20—40°, but a large number
of glaciers are perched on the gentler rolling slopes in the
Cordillera Vilcanota.

The climatology is typical of an outer tropical setting, with
a pronounced wet and dry season (austral summer and win-
ter, respectively; see Fig. 2b); however, hydroclimatology is
highly variable within the basin. Mean annual precipitation
ranges from ~ 1000 mm in the drier Cordillera Vilcanota up
to ~ 2000 mm for glaciers on the western edge of the VUB.
Temperature is strongly controlled by elevation, and the an-
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nual temperature range is generally small (~ 4.5 °C between
December and July, Fig. 2d).

2.2 Glacier outlines, mass balance, and volume data

The glacier outlines used in this study were derived by
Drenkhan et al. (2018) from multi-spectral optical satellite
data for the year 1998. These were chosen over the Ran-
dolph Glacier Inventory (RGI version 6 at the time of writ-
ing) as they have been ground-truthed and optimized to avoid
known issues with seasonal snow cover that impact the RGI
(RGI Consortium, 2023). Glacier intersects were manually
determined, resulting in a total of 532 individual glaciers.

Two sources of glacier mass balance data were used in this
study. The VUB benefits from glaciological mass balance
measurements from an ablation stake network, made up of
13 stakes, on the Suyuparina glacier, which is situated within
1-2 km of the Quisoquipina meteorological station. The data
span October 2013 to December 2014 at elevations between
5135 and 5190 ma.s.l. (Molina et al., 2015) and provide in-
formation on within-year mass balance dynamics. In addi-
tion, geodetic data were taken from Dussaillant et al. (2019),
who generated glacier mass balance estimates over 2000—
2018 for the entire Andes mountain range on a 30m grid
using the “Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) monitoring of ice towards ex-
tinction” geodetic method (Brun et al., 2017). These data
are provided as mean annual elevation change rates over the
18-year time period that have been converted to mass loss
with an assumed ice density of 917kgm™3. They provide
information on longer-term mass balance trends and spatial
variability, which is known to be high in the tropical Andes
(Clark and Barrand, 2020).

We also obtained glacier volume data from Millan et
al. (2022), who use an ice motion mapping approach to es-
timate the ice thickness and volume of the world’s glaciers.
These data are subject to some uncertainty given the tempo-
ral mismatch between their ice velocity maps recorded for
the years 2017 and 2018, glacier outlines based on maps
of Drenkhan et al. (2018), and the digital elevation model.
Nonetheless, they serve as a useful comparison for modelling
studies of glacier dynamics.

2.3 Climate data

Hourly historical meteorological variables, including near-
surface air temperature, wind speed, total precipitation, spe-
cific humidity, surface air pressure, and incident shortwave
and longwave radiation were taken from the Weather Re-
search and Forecasting (WRF) model, run from 1980 to
2018, with an outer domain with 12 km grid spacing and in-
ner domain covering the VUB with 4km grid spacing. The
precipitation and temperature variables were corrected for
bias using station data from within and around the VUB.
Equivalent data for the other variables were not available,
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Figure 1. Vilcanota-Urubamba Basin. The inset on the bottom left shows the location of the basin in South America. The inset on the top
right shows Quisoquipina and Suyuparina glaciers, with the meteorological station and ablation stake network also marked. The satellite
imagery is sourced from Esri World Imagery: Esri, Maxar, Earthstar Geographics, and the GIS user community.

and as such these were not adjusted for bias. The bias-
corrected temperature and precipitation outputs were used
as the “historical truth” to statistically downscale 30 global
climate models from the Coupled Model Intercomparison
Project 5 (CMIP5) to provide a 30-member ensemble of “fu-
ture” hourly temperature and precipitation driving data from
2019 to 2100 for both Representative Concentration Pathway
(RCP) 4.5 and RCP8.5 emission scenarios. The statistical
method used was a variation on quantile mapping, follow-
ing Cannon et al. (2015). This statistical method preserves
the trends in the original CMIP5 models, while adjusting the
absolute magnitude of temperature and precipitation and the
number of wet days. While statistical downscaling methods
like quantile mapping have been applied widely to tempera-
ture and precipitation variables in the past, they are not rou-
tinely used for other variables such as wind and radiation be-
cause of the weaker direct link between these variables across
spatial scales. For example, a future increase in meridional
near-surface wind in the CMIP5 models would not necessar-
ily translate into a future increase in near-surface wind at the
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WRF model resolution due to the influence of local-scale to-
pography. Similarly, radiation change may depend more on
local temperature and humidity variability than large-scale
radiation change. An additional challenge of applying sta-
tistical downscaling techniques to the other meteorological
variables would have been the lack of validation data as the
meteorological stations in the VUB only provide temperature
and precipitation variables. For these reasons, we decided not
to attempt to statistically downscale the CMIP5 projections
of the other variables as this could have introduced additional
unknown biases in our input data. Instead, equivalent future
data for the other meteorological variables were generated by
resampling (repeating) the 1980-2018 WREF simulations to
produce a continuous 2019-2100 time series. By resampling
in this way, we preserve the year-by-year sequencing of the
climate variables. This approach was deemed preferable to
randomly resampling the data as it preserves any multi-year
cycling, e.g. El Nifio-Southern Oscillation, which may be
present in the driving data. The data were manually checked
to ensure that this approach did not introduce any strange
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jumps in the driving data across the 2018 to 1980 crossover.
Full details of the WRF modelling setup, the bias correction
and the future statistical projections can be found in Potter et
al. (2023).

In addition to the gridded climate data, daily on-ice me-
teorological measurements between May 2012 and Octo-
ber 2016 were made available after the work by Suarez et
al. (2015). These were collected using an automatic weather
station, which was situated in the ablation zone of Quisoquip-
ina glacier (5180 ma.s.l.) in the north-east of the VUB (top-
right inset of Fig. 1). The measurements include air temper-
ature, relative humidity, incoming and outgoing shortwave
and longwave radiation, wind speed, and wind direction.

2.4 JULES-OGGM glacier modelling workflow

JULES-OGGM is a workflow for simulating glacier evo-
lution with climate forcing using the physically based en-
ergy balance and ice flow modelling schemes in JULES
and OGGM, respectively. It facilitates the exchange of data
and feedbacks between these models. This section describes
the approach used to integrate them into a single workflow.
The reader is referred to Best et al. (2011) and Maussion et
al. (2019) for a more detailed explanation of the models.

2.4.1 Climate data pre-processing

JULES requires continuous time series of meteorological
forcing variables, including near-surface air temperature, in-
cident longwave and shortwave radiation, air pressure, spe-
cific humidity, and precipitation. The approach to deriving
these is likely to be specific to each application. In the VUB,
given glaciers are small (<8 km?) relative to WRF node areal
coverage (16 km?), hourly driving data for each glacier were
extracted from the climate model node closest to the centroid
of the glacier. Analysis of temperature, surface air pressure,
and specific-humidity simulations from WREF, when taken
from the model nodes in the vicinity of the glaciers, showed
lapse rates with a systematic seasonal cycle (Appendix A).
Accordingly, 30d moving-average hourly lapse rates were
calculated for each glacier individually as estimated from
the four nodes surrounding the glacier centroid. The me-
dian of these was then taken to estimate a regional lapse
rate. This averaging step was necessary to remove what were
deemed to be unrealistically high or low lapse rates inferred
at some glaciers. Analysis of downward shortwave radiation
and wind speed indicated no clear lapse rate, and thus these
were assumed to be constant with elevation. However, inci-
dent shortwave radiation was adjusted to account for the fact
that the glaciers have a tilted surface, whereas the flux from
WREF is for a flat horizontal surface. The ratio of the direct
incident shortwave radiation received on a tilted surface with
respect to a horizontal surface can be calculated from the ge-
ometric factor, i.e. Ry =cosf/cosé,, where 6 is the angle
of incidence and 6, is the solar zenith angle. We calculated
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hourly R, over the simulation period using glacier slope and
aspect derived from the Shuttle Radar Topography Mission
(SRTM) digital elevation model and hourly simulations of
the position of the sun in the sky that were calculated using
the Pysolar Python package (version 0.11) (Stafford, 2023).
The WREF incident shortwave radiation flux includes both di-
rect and diffuse shortwave radiation. By default, JULES as-
sumes that half of the incident shortwave radiation is direct,
and there was no clear justification to change this. Accord-
ingly, the adjustment was only applied to half of the short-
wave radiation flux provided by WRF. Downward longwave
radiation is internally adjusted for elevation within JULES
as a function of temperature following Shannon et al. (2019).
Given the potential for significant bias in precipitation at high
elevation due to the lack of observation data, the precipitation
lapse rate was reserved as a calibration parameter.

2.4.2 JULES

JULES resolves land surface processes, including the surface
energy balance. The model domain is discretized into one or
more grid box nodes that can be further discretized into tiles
to incorporate sub-grid heterogeneity of the land surface and
subsurface, e.g. ice cover and soil properties, respectively.
Each grid box node resolves mass and energy fluxes in the
vertical direction only. Because of this, computational effi-
ciency can be improved by specifying the model grid as a
set of discontinuous grid box nodes where spatially continu-
ous outputs are not required. In the same vein, runtime may
be improved by switching off process schemes entirely. Of
relevance to glacier modelling is the multi-layer snowpack
scheme. The scheme solves the full energy balance at the
surface, given atmospheric forcing, following Eq. (1):
8 T* 4
Cs 5 = (I1-a)SW  +€elW | —0oe(Ty)"— H
—L.E—-G, (1

where Cy is the heat capacity of the surface Jm—2K™1), T,
is the surface temperature (K), o is the surface albedo, SW
in the downward solar radiation at the surface (W m~2), o
is the Stefan—Boltzmann constant (W m—2 K—%), € is the sur-
face emissivity, LW is the downward longwave radiation at
the surface (W m~—2), H is the turbulent heat flux (W m2),
L. is the latent heat of condensation of water at 0 °C (J kg’l),
E 1is the turbulent moisture flux (kg m~2s71), and G is the
heat flux to the material beneath (W m~2).

The snowpack scheme simulates vertical heat transfer be-
tween snowpack layers, snow compaction, ageing (grain size
and darkening), and age- and density-dependent albedo evo-
lution simulated using a prognostic albedo scheme based on
the Wiscombe and Warren (1980) spectral snow model. Rain-
fall on the snowpack percolates through the layers if the pore
space is sufficiently large, while any excess water contributes
to surface runoff. Liquid water below the melting tempera-
ture can refreeze. Shannon et al. (2019) configured a 0.5°
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Figure 2. Mean annual on-ice precipitation (a) and temperature (¢) and monthly average on-ice precipitation (b) and temperature (d) based
on a single WREF historical climate simulation and ensemble of CMIPS simulations with 90 % confidence bounds. Data taken from Potter et

al. (2023).

JULES model to simulate global glacier volume projections
for the 21st century. Each grid box was configured with 46
tiles that had elevations ranging from 0-9000m in incre-
ments of 250 m. For each grid box with glacier coverage, an
initial dense ice layer at the base of the snowpack was in-
cluded with proportional ice coverage across the tiles accord-
ing to the cumulative observed hypsometry of glaciers within
each grid box. Using hourly climate forcing data. Shannon et
al. (2019) simulated changes in glacier volume but without
any representation of ice flow.

In this study, version 6.0 of JULES was used, with a 10-
layer snowpack and ice pack being used following Shannon
et al. (2019). The first nine layers include 5 m of snow and
firn with depths of 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, and
2 m. The bottom layer was used to represent ice with a given
thickness of 500m and initial density of 917kgm™3. The
thickness was arbitrarily large to ensure that the entire ice
thickness did not melt out at any JULES node during the sim-
ulation period. Given the thickness of the bottom layer and
the fact that JULES does not account for layer density in its
estimation of liquid water holding capacity, this capacity was
set to zero to prevent excessive liquid water storage and re-
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freezing. The snow and ice layer density, grain size, tempera-
ture, and albedo were dynamically initialized using 20 years
(1981-2000) of hourly historical climate data. All model pa-
rameters, except those perturbed as part of the model cal-
ibration exercise (detailed below), were set to default val-
ues. All JULES modelling was performed on the UK NERC-
JASMIN high-performance computing facility. A 120-year
simulation for a single glacier (10 JULES grid boxes) takes
~25min to run on a single processor. All 10 JULES grid
boxes were used for every glacier to ensure that the glacier
hypsometry, regardless of its evolution over the simulation
period, was covered by the JULES grid box node elevations.

243 OGGM

OGGM simulates glacier surface mass balance and ice flow.
For any glacier with geometric and climate forcing data,
OGGM represents it as one or more connected flowlines that
are discretized into nodes and parameterized with approxi-
mations of glacier width, area, thickness, and bed shape. Ice
flow is simulated by solving the continuity equation along

https://doi.org/10.5194/tc-19-685-2025



J. D. Mackay et al.: Physically based modelling of glacier evolution 691

each flowline:
— =wm—V-us, 2)

where S is the area of the cross-section perpendicular to the
flow line, w is the width of the cross-section, m is the mass
balance [kgm~2s~!], and u is the average ice flow velocity
(ms~1), which includes ice deformation (u4) and basal slid-
ing (us). The ice deformation component is calculated using
the shallow-ice approximation:

24
T n42

uq ht", 3)
where A is the ice creep parameter (s~! Pa=3), 4 is the local
ice thickness, T is the basal shear stress, and n is the expo-
nent in Glen’s flow law. OGGM has an in-built temperature
index model that runs alongside the ice flow model to sim-
ulate glacier evolution given temperature and precipitation
forcing data.

OGGM version 1.4 with the default parameterization for
ice dynamics (n =3, A=24x 10241 Pa—3, and Us =
0ms~!) was used throughout this study. The initial glacier
hypsometry and thickness was established using the in-built
OGGM functionality based on the glacier outlines from
Drenkhan et al. (2018) and the SRTM digital elevation
model. Here, ice thickness is estimated at each flowline node
by solving the steady-state ice flow at each node. To do this,
OGGM version 1.4 uses an “equilibrium mass balance” pro-
file, where the cumulative mass balance across the glacier
sums to zero. The thickness at each node is derived from
the cumulative upstream surface mass balance. OGGM uses
the in-built temperature index model to generate the equi-
librium mass balance. For JULES—OGGM, this feature was
bypassed, and an equilibrium mass balance for each glacier
was instead derived from the calibrated JULES model simu-
lation over the historical period (1981-2018). To satisfy the
equilibrium mass balance requirement for each glacier, the
mean mass balance at each glacier node was scaled to pre-
serve the mass balance—elevation distribution while summing
to zero. All OGGM modelling was performed at the UKRI-
BGS high-performance computing facility. A 100-year sim-
ulation for a single glacier takes ~90s to run on a single
processor.

2.4.4 Sequential coupling of JULES-OGGM

The basic principle of the JULES—-OGGM workflow is to by-
pass the temperature index model in OGGM and drive the
ice dynamics flowline model with surface mass balance sim-
ulations from JULES, i.e. substituting m in Eq. (2) at each
OGGM flowline node. Given the elevation dependence of
surface energy balance dynamics, JULES—-OGGM must also
account for influences of glacier geometry changes on sur-
face mass balance. A workflow has been established that
meets both of these requirements through two consecutive
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modelling steps that does not require dynamic model cou-
pling.

— Step 1: generating mass balance data for each glacier
using JULES.

Each glacier is represented by N ice-covered JULES
grid boxes with elevations that are equally spaced be-
tween Zmin and Zmax. For this study, zmin and zmax were
set to 4000 and 6500 m a.s.1., respectively, over N = 10
grid box nodes that are equally spaced by ~ 278 m ele-
vation. These elevations do not change during a simula-
tion. The elevation range was instead selected to bound
the elevation of all glacier ice over the simulation pe-
riod, while N was selected to provide adequate repre-
sentation of changes in mass balance with elevation.
Climate data are pre-processed for each grid box us-
ing the prescribed lapse rates to represent the climate at
that elevation for each glacier. JULES is configured to
output annual accumulated snow and ice mass change
(specific mass balance) at each grid box elevation of
each glacier (hypothetical data for single glacier given
in Fig. 3a). The outputs from JULES therefore indicate
how surface mass balance changes as a function of el-
evation on each glacier. No other factors affecting the
spatial variability in mass fluxes are accounted for at
this stage.

— Step 2: driving OGGM with mass balance outputs from
JULES.

To bypass OGGM’s built-in temperature index model,
the OGGM source code (version 1.4) was modified to
include a new function that reads in the mass balance
outputs from JULES. For a given glacier, OGGM takes
the annual specific mass balance from the JULES simu-
lation over the N grid boxes (Fig. 3b). For each OGGM
node of that glacier, the mass balance at the OGGM
node elevation is extracted from the JULES grid box
simulations (dashed yellow arrows, Fig. 3b and d) using
linear interpolation. This approach allows for incremen-
tation of the glacier mass balance with elevation and
also implicitly accounts for the elevation feedback to
surface mass balance without requiring two-way cou-
pling between JULES and OGGM. The elevation feed-
back is demonstrated in Fig. 3c, where the subsequent
retreat of the glacier over time results in the lowering of
the ice surface (Fig. 3e), and OGGM consequently ex-
tracts the mass balance from the JULES simulations at
lower elevations. OGGM is configured to output annual
changes in glacier volume and area.

One important consideration in the presented JULES-
OGGM coupling is how the model deals with the varying
physics of surface energy fluxes on ice-free and ice-covered
regions as a glacier advances and retreats in OGGM. This
could be important, particularly when a glacier is advancing,
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as OGGM considers ice flowing into ice-free nodes in com-
bination with surface accumulation and ablation processes
when calculating the redistribution of ice mass into previ-
ously ice-free regions. It was decided to ignore these dif-
ferences, not only because including an ice-free representa-
tion in JULES would effectively double the computational
costs but also because all evidence suggests that glaciers in
the VUB are and will continue to be in a retreat phase over
the planned simulation period, which would render any dif-
ferences in ice-free and ice-covered physics inconsequential.
The implications of this simplification for this study and for
other studies will be explored further in the discussion.

2.5 Model calibration, evaluation, and sensitivity
analysis

JULES and OGGM both use model parameters that are likely
to be spatially variable and cannot easily be constrained from
observation data. In this study, only the parameters of the
energy balance in JULES were considered for calibration,
while the default parameters for the ice flow component of
OGGM were used. An iterative calibration strategy was un-
dertaken to tune the JULES parameters to achieve the best
fit to the geodetic mass balance data. Firstly, manual per-
turbations of the JULES model parameters were undertaken
to identify those that exhibited sensitivity. We began with
all seven parameters identified by Shannon et al. (2019) ex-
cept for the temperature lapse rate. These include the fresh
snow and ice albedo (for visible and near-infrared wave-
lengths), the precipitation gradient, and a wind speed scale
factor. We also included (i) the roughness length of mo-
mentum, given its potential importance for sublimation pro-
cesses; (ii) the temperature threshold below which precipi-
tation falls as snow; (iii) the density above which snow is
considered to be firn; and (iv) the weighting of albedo be-
tween visible and near-infrared wavelengths. From these ex-
periments, we identified four potentially important parame-
ters for model calibration and suitable calibration ranges (Ta-
ble 1).

Having established the calibration parameters, model cal-
ibration was undertaken using the concept of Monte Carlo
whereby random perturbations of these parameters were
tested and assessed for their goodness of fit to glacier-wide
estimates of specific mass balance over the 2000-2018 pe-
riod from the geodetic observation data. The aim of the cali-
bration procedure was to select the parameter set for JULES
that minimized the sum of the glacier-area-weighted root-
mean-square error (RMSE,,). A glacier-area-weighted bias
(mean error) was also calculated (BIAS,,). Computational
constraints limit the number of glaciers and number of ran-
dom perturbations that can reasonably be implemented in
the framework. Accordingly, a subset of 30 glaciers were
identified for the calibration procedure (red squares, Fig. 1)
and were selected to include glaciers with a range of el-
evation, aspect, and slope characteristics and have a good
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spread across the study basin. Given the uncertainty asso-
ciated with geodetic measurements of small glaciers, those
with the largest overall areas were selected where possible.
A total of 1000 random perturbations of the parameters were
tested and assessed for their goodness of fit to the geode-
tic data. The quasi-random Sobol sampling strategy (Bratley
and Fox, 1988) was used to sample the parameter space effi-
ciently. All parameters were sampled from a uniform distri-
bution.

The calibration parameters were assessed for sensitivity
using the PAWN density-based global sensitivity analysis
method (Pianosi and Wagener, 2015) that uses cumulative
distribution functions from model outputs conditioned on
different parameterizations to estimate sensitivity to differ-
ent parameters. The PAWN method provides a quantitative,
global sensitivity analysis that has been used across envi-
ronmental modelling applications (Amaranto et al., 2020;
Laarabi et al., 2022; Lin et al., 2020). It can be applied to
outputs from generic Monte Carlo experiments (Pianosi and
Wagener, 2018) and uses the Kolmogorov—Smirnov statistic
as the basis for quantifying parameter sensitivity, making it
easy to interpret and compute. In this study, we calculated the
PAWN sensitivity for each parameter across each calibration
using the RMSE,, scores from the Monte Carlo experiment.
All analysis was undertaken using the safepython Python li-
brary version 0.2.0 (Pianosi and Wagener, 2015). A total of
95 % confidence intervals were estimated for all metrics us-
ing the in-built bootstrapping algorithm. Following Pianosi
and Wagener (2018), a dummy parameter, which has no im-
pact on the model outputs, was introduced to the analysis to
estimate the magnitude of approximation errors.

The calibrated parameters were then incorporated into the
basin-wide JULES—OGGM model, which was subsequently
evaluated for robustness against the geodetic observations
of specific mass balance over all 532 glaciers in the VUB
and against the glaciological mass balance observations on
Quisoquipina and Suyuparina glaciers.

3 Results
3.1 Model calibration and sensitivity analysis

As a first assessment of the model appropriateness, the op-
timal simulation from the Monte Carlo experiment was ex-
tracted for each glacier individually. Figure 4a shows that
for all calibration glaciers it is possible to achieve a close
fit to the observed specific mass balance when the calibra-
tion parameters are tuned to each glacier separately. JULES—
OGGM is able to capture the observed specific mass bal-
ance within 0.008 m w.e. of the observations for all glaciers.
When the single best parameterization is chosen based on the
RMSEy, across all glaciers, the errors are larger (Fig. 4b),
ranging between —0.99 and 1.22 m w.e. with an RMSE,, of
0.56 mw.e. It would not be feasible to tune the parameters
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Figure 3. Hypothetical application of JULES-OGGM to single glacier including annual simulated specific mass balance at N = 10 JULES
grid boxes at different elevations on the glacier (a). The simulated annual mass balance at the 10 grid boxes for time =¢#; (b) and time =1,
(c). The glacier flowline representation in OGGM at ¢; (d) and #, (e). The dashed yellow lines represent the mass balance extraction process

from JULES to OGGM.

Table 1. Calibration parameters and ranges.

Parameter  Description Calibration range

20 Roughness length of momentum 1-100 mm

aicemax Maximum albedo of bare ice 0.2-0.6

wght_alb  Weighting of albedo between visible and near-infrared wavelengths ~ 0.5-0.9

Yprecip Orographic precipitation gradient 0 %—-10 % per 100 m

to each glacier individually. However, a single parameteriza-
tion appears to degrade the performance of the model sig-
nificantly. Accordingly, it was decided to investigate if an
improved goodness of fit could be obtained by adopting a
regional-parameterization approach. Here, we split the cal-
ibration glaciers into eight different regions (dashed white
boxes in Fig. 1), which in part reflected known differences
in glacier hypsometry and driving climate characteristics and
ensured that at least two glaciers are obtained within each
region. This resulted in eight parameterizations, which re-
sulted in a modest improvement of the RMSE,, to 0.46 m w.e.
(Fig. 4c). While the errors remain significant, the errors were
reduced for 21 of the 30 calibration glaciers, and the spatial
disaggregation makes upscaling the parameterization to all
glaciers in the catchment easier. As a result, this regional ap-
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proach was adopted for the remainder of the study. Note that
because of this regional lapse rates were also applied (Ap-
pendix A).

The RMSE,, and BIASy, scores range between 0.01-0.73
and —0.06-0.29 m yr~! w.e., respectively, across the regions
(Table 2). The calibrated parameters typically span a large
portion of the calibration range. The only exceptions to this
is zg, which does not exceed 7 mm for any of the regions.

The PAWN sensitivity analysis reveals that the modelled
mass balance is most sensitive to the wght_alb parameter for
all of the regions (Fig. 5). Furthermore, for all regions ex-
cept for R6, the wght_alb parameter is the only parameter
with a sensitivity index significantly greater than the magni-
tude of approximation errors, as shown by the dummy pa-
rameter. For R6, the simulated mass balance is also sensitive
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Figure 4. Simulated and observed mean annual specific mass balance over 2000-2018 for the 30 calibration glaciers using different calibrated
parameterizations, including those obtained for each individual glacier (a); when using the single best overall parameterization based on the
RMSEy, score (b); and when using the models optimized for the eight delineated regions (c).

Table 2. Calibrated parameter sets from the calibration parameters in Table 1 for each region and RMSEy, and BIASy, scores.

Region zg aicemax wght_alb Yprecip RMSEyw BIASw

(mm) (% per 100m) (myrtwe) (myrlwe)
1 5.01 0.26 0.77 9.48 0.49 0.08
2 2.82 0.25 0.62 1.60 0.01 —0.002
3 1.17 0.59 0.58 9.45 0.38 —0.001
4 1.62 0.25 0.64 2.07 0.49 0.15
5 1.49 0.50 0.71 5.26 0.21 —0.06
6 1.52 0.42 0.67 0.86 0.47 0.11
7 6.69 0.54 0.67 0.27 0.73 0.29
8 5.88 0.59 0.75 7.81 0.03 —0.002

to the precipitation gradient, i.€. Yprecip- The simulated mass
balance shows negligible sensitivity to the aicemax and zg
parameters for all regions.

3.2 Model evaluation
3.2.1 Basin-wide mass balance

When applied to all 532 glaciers, the simulated specific
mass balance varies considerably, ranging from —4 to
+4myr~! w.e., which is in line with the observed range
(Fig. 6a). The area-weighted specific mass balance across all
glaciers is —1.06 m yr~! w.e., approximately double that de-
rived from the geodetic observations (—0.52myr~! w.e.), in-
dicating that the model is losing mass too quickly over this
period. In addition, the model does not capture within-basin
variability in specific mass balance, with absolute errors as
high as 3myr~! w.e. The sources of these errors are not
clear. When aggregated to 0.05° tiles, there is considerable
variability in the magnitude and direction of error across the
basin and within the regions (Fig. 6b). A comparison of the
mass balance errors to glacier area, aspect, slope, and eleva-
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tion attributes showed no clear pattern of coherence to glacier
characteristics (Fig. B1).

3.2.2 Glacier volume simulations

A comparison of the estimated glacier volumes from Millan
et al. (2022) for the year 2018 against the JULES-OGGM
simulation shows that there is generally good agreement, es-
pecially for the largest glaciers in the catchment (Fig. 7).
JULES-OGGM does, however, show a tendency to underes-
timate the volume of the smallest glaciers (< 1072 km3). The
total JULES-OGGM ice volume for glaciers where Millan
data are available is 7.19 km?>, whereas Millan et al. (2022)
estimate it as 8.16 km?>.

3.2.3 Quisoquipina and Suyuparina glaciers

To aid the evaluation of the robustness of the calibrated
model parameters, a point-scale JULES model (no ice dy-
namics) was set up to evaluate against the ablation stake data
on Suyuparina glacier. The model was parameterized with
the corresponding R1 region parameterization. All WRF-
driving climate variables were corrected for bias in the long-
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Figure 6. Observed vs. simulated annual-mean specific mass balance (2000-2018) for all glaciers in the VUB (a) and area-weighted annual

mean specific mass balance errors aggregated to 0.05° tiles (b).

term mean using the daily Quisoquipina meteorological sta-
tion data. Suyuparina and Quisoquipina glaciers are two of
the 30 calibration glaciers. Bias correction of the hourly
WREF data, rather than the raw daily meteorological station
observations, were chosen due to the requirement of hourly
data to drive JULES and to ensure consistency with the
calibration-driving data. The model was run over an evalu-
ation period of June 2012 to January 2016 as meteorological
and ablation data are available for that period.

Using this model, the energy balance simulations (Fig. 8a)
show that solar radiation (SWpe) is the dominant energy in-
put for the majority of the simulation period, followed by
sensible heat warming from the air (H). Latent heat fluxes
(L E) are typically negative and smaller in magnitude. The
net diffuse radiation flux (LWpe() has a marked seasonality:
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positive during the wet season (austral summer) when cloud
cover is highest and negative during the cooler, clear-sky
days during the austral winter. Interestingly, SWye; shows
only weak seasonality, with a peak during the wet season.
This appears to be related to the behaviour of albedo at the
glacier surface (blue line, Fig. 8c), which rarely falls below
0.8 and appears to be highest in the dry season. This is in
contrast to the observed albedo (black line, Fig. 8c), which
typically peaks during the wet season when there is plentiful
fresh snow and falls as low as 0.2 by the end of the dry sea-
son when fresh snow cover is minimal and the ice surface has
darkened. Indeed, the simulated snow and ice layer density of
the top 2m (Fig. 8e) shows that even during the dry season
the top 5-10 cm typically resides at <500kg m~3, represen-
tative of old snow. In reality, at the Quisoquipina meteoro-
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Figure 7. Estimated glacier volumes from Millan et al. (2022) vs.
the JULES—-OGGM ice volume simulation for 2018 for all glaciers
where data are available in the VUB.

logical station, bare ice is exposed seasonally. The inability
to capture ice exposure and darkening through the dry sea-
son is consistent with the simulated cumulative ablation (yel-
low line, Fig. 8g) underestimating observed ablation (black
line, Fig. 8g) in 2014. This period is highlighted between the
dashed lines in Fig. 8g.

As an additional experiment, the observed daily proportion
of outgoing to incident solar and diffuse radiation at Quiso-
quipina met station were used to convert the hourly WRF ra-
diation inputs to net radiation, which effectively bypasses the
prognostic albedo model in JULES. When driving the model
in this way it can be seen that the simulated SWpe( and sur-
face albedo are much more seasonally variable (Fig. 8b and
d, respectively) and that the simulated albedo dynamics are
more coherent with the observations. The model also better
replicates the seasonal loss of the snowpack (Fig. 8f), where
the top 5-10 cm routinely exceeds a density of 700kgm~3.
In addition, within the period bounded by the dashed lines in
Fig. 8h, the simulated and observed ablation rates (gradients
of yellow and black lines, respectively, in Fig. 8h) are more
closely matched. Note, however, that the negative bias over
the preceding wet season persists.

3.3 Glacier projections for the 21st century
3.3.1 Area and mass evolution

The projections indicate that total glacier area and mass in
the VUB have decreased year on year from the year 2000
and will continue to do so to the end of the 21st century under
the RCP4.5 and RCP8.5 scenarios (Fig. 9). Relative to 2000,
the glacier area is predicted to halve by 2047 (2043) under
RCP4.5 (RCP8.5). The glacier mass is predicted to halve by
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2027 for both RCPs. This close agreement is likely reflective
of the relatively similar temperature and precipitation signal
across both RCPs for the early 21st century. By the end of
the century, the differences in predictions across the RCPs
are more pronounced, with the total glacier area predicted
to decrease to 28 % (11 %) of that in 2000, while the total
glacier mass predicted to decrease to 17 % (6 %) of that in
2000 for RCP4.5 (RCP8.5).

3.3.2 Variability in glacier response to climate change

K -means clustering was used to cluster the glaciers based on
their ensemble mean simulated annual glacier mass time se-
ries over the future period of 2020 to 2100 under RCPS8.5.
Four clusters were found to have distinct mass evolution dy-
namics (Fig. 10a and b). Clusters 1 to 3 all show sustained
mass loss over the simulation period, while cluster 4 shows
initial mass gain up to the middle of the century that is fol-
lowed by mass loss for the remainder of the century. The
timing of this inflection in cluster 4 is approximately 5 years
earlier in RCP8.5. The mass loss rate is greater in RCP8.5
than RCP4.5 for all clusters.

The proportional rate of retreat is progressively smaller
from clusters 1 to 4. This corresponds to a progressively
higher median elevation (Fig. 10f). At the two extremes, clus-
ters 1 and 4 are typically small in surface area and at low and
high elevations, respectively (Fig. 10e and f). Cluster 3 ac-
counts for the largest proportion (>80 %) of glacier mass for
the majority of the simulation period (Fig. 10c). This type
of glacier is the dominant in the Cordillera Vilcanota in the
east of the catchment. The lower-elevation glaciers (clusters
1 and 2) are more prevalent to the west of the catchment.

3.3.3 Mass and energy balance dynamics

Annual changes in ice elevation, specific mass balance,
and energy balance have been calculated for each cluster
and RCP combination (RCP8.5 in Fig. 11 and RCP4.5 in
Fig. E1). These variables have been calculated as an aver-
age across only the active ice area to avoid zero fluxes due
to the complete loss of glacier ice. This raises an additional
challenge when interpreting the results over an ensemble of
climate inputs given that the distribution of glaciers will not
be the same across all ensemble members over time. Simply
averaging across the ensemble therefore has the potential to
obscure co-dependencies between different mass and energy
fluxes. Rather than taking the mean over the full ensemble
of simulations, we have used a single global climate model
simulation (BNU-ESM) from the CMIP5 ensemble that was
found to most closely follow the ensemble mean mass evolu-
tion of the clusters under both RCPs (Fig. D1).

Mass balance (middle row of Figs. 11 and El) is consis-
tently negative for all clusters, with the exception of cluster
4, where we see a transition from positive to negative mass
balance in the mid to late 21st century. The remaining clus-
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Figure 8. JULES energy balance simulations on Quisoquipina glacier from July 2012 to January 2016 (when local meteorological and mass
balance data are available) for the model driven with incident radiation observations (a, ¢, e, g) and the model driven with net radiation
observations (b, d, f, h). All variables are shown as 7d moving averages for ease of interpretation. Note that sublimation, as output by
JULES, is the net effect of sublimation minus the deposition processes.

ters show a positive trend in mass balance under RCP4.5
but a more mixed response under RCPS8.5. These decadal
trends are primarily controlled by changes in snowmelt and
ice melt. The melt flux is typically more variable over the
21st century than the snowfall input and much higher in mag-
nitude than the net mass flux due to sublimation and deposi-
tion, which is only very weakly positive for all of the clusters
under both RCPs. Snowmelt and ice melt show some coher-
ence with changes in near-surface air temperature, which is
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itself a function of climate warming and the retreat of glaciers
up to cooler and higher elevations, a trend that is consistent
across the catchment (top row in Figs. 11 and E1). The ap-
parent stability in the snowfall input appears to be related
to a compensatory effect, where the warming and transition
of snowfall to rainfall is counter-balanced by (i) the retreat
of glaciers to higher elevations where precipitation rates are
higher and a smaller fraction of that precipitation falls as rain
and (ii) the increase in total precipitation over time projected
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by the CMIP5 models. This, however, is only true for the
larger glaciers of clusters 2 and 3 that span a large elevation
range. For the smaller high-elevation glaciers (cluster 4), the
reduction in mass input from snowfall due to rising temper-
atures is comparable to the magnitude of change in melt and
serves to accelerate the retreat of the glaciers.

While there is generally good coherence between the
snowmelt and ice melt flux and changes in near-surface air
temperature, this co-variability does not always hold. For ex-
ample, near-surface air temperature over the glaciers in clus-
ters 2 and 3 shows a steady increase from 2040 onwards on
average under RCP 8.5 (Fig. 11). The average melt flux in-
creases steadily at first but then more rapidly from 2080 on-
wards, which is not reflected in the temperature data. Anal-
ysis of the surface energy balance components (bottom row
in Figs. 11 and El) reveals that the melt flux is more co-
herent with changes in net shortwave radiation, which is the
dominant source of energy at the snow and ice surface for
all clusters under both RCPs and is itself inversely propor-
tional to the surface albedo. While higher temperatures fa-
cilitate more melt and inhibit snowfall, thereby lowering the
albedo, it is changes in net shortwave radiation that primar-
ily control decadal variability in melt rates and surface mass
balance. Turbulent heat fluxes are smaller than radiative en-
ergy fluxes for all clusters and RCPs. Sensible heat fluxes
typically increase with time, presumably due to the rising air
temperature, while latent heat fluxes decrease.

4 Discussion
4.1 Model performance and limitations
The model calibration experiments suggest that the energy

balance parameters in JULES—-OGGM can be tuned to cap-
ture the decadal (2000-2018) glacier-wide mass balance of
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a range of glaciers in a tropical setting with a small er-
ror (<=£0.01myr~! w.e.). This is encouraging for the fu-
ture use of physically based models for modelling tropical
glacier evolution. However, attempts to extrapolate these pa-
rameters across all 532 glaciers in the VUB resulted in in-
consistencies in model performance. This extrapolation step
was required given that the Monte Carlo calibration approach
was too computationally demanding to afford tuning the
model parameters to all glaciers individually like, for ex-
ample, Aguayo et al. (2024), who tuned the parameters of
a simpler temperature index model in OGGM for all of the
glaciers in the Patagonian Andes. A more efficient calibra-
tion routine or the availability of sufficient computational re-
sources would be required to calibrate the JULES parameters
in this way. However, this approach would need careful con-
sideration of how this model could reasonably be “validated”
outside of its calibration data. One could also argue that the
inherent uncertainties in geodetic mass balance data, particu-
larly for the smallest glaciers (Dussaillant et al., 2019), could
lead to significant model biases. In the same vein, it is fair to
assume that at least some of the apparent model inconsisten-
cies are themselves manifestations of the uncertainty in the
geodetic validation data. While this may be true, the assess-
ment of the model fit to the 30 calibration glaciers, which
were chosen for their relatively large size, showed similar
levels of inconsistency, which suggests the overall impact
on interpretations of model deficiencies is minimal. In fact,
the use of the geodetic data for calibration, we would ar-
gue, is more justifiable than using sparse glaciological data
for this tropical setting. Indeed, when Shannon et al. (2019)
calibrated JULES using a similar approach to that used here
but with elevation-band specific mass balance observations
from the World Glacier Monitoring Service (WGMS, 2023),
their model showed an unrealistically negative bias for low-
latitude regions.
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Figure 10. Annual glacier mass evolution of four identified clusters expressed as the proportion of the maximum simulated mass between
2020 and 2100 for RCP4.5 (a) and RCP8.5 (b) taken from the ensemble mean. Each cluster is represented by the median (solid line) and
interquartile range (shaded area). The dominant cluster by 0.05° cell (c¢), the evolution of glacier mass distribution between clusters (d), the
spread of glacier area based on initial mapped areas for the year 1998 (e), and the initial elevations based on SRTM elevation data for the
year 2000 (f) within clusters expressed as box plots.
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Figure 11. Simulated mean glacier-wide state variables from JULES—-OGGM between 2020 and 2100 for each cluster (columns) and based
on the BNU-ESM simulation under RCP8.5. The variables include ice elevation (top row), specific mass balance (middle row), and energy
balance (bottom row). All variables are calculated over a 10-year moving-average window and are taken as the mean across all glaciers

within a cluster as weighted by the glacier area.

Other improvements to the calibration strategy that could
provide gains in model performance include a more suit-
able grouping of glaciers that better captures the differences
in glacier properties (and model parameters) instead of the
location-based regionalization implemented in this study.
What the basis would be for this grouping, however, is not
clear from this study, given that there was no clear coherence
between simulated mass balance errors and glacier character-
istics. One should also consider that the ice flow parameters
in OGGM were not considered in the calibration procedure.
This has obvious implications for the simulated ice dynam-
ical response to climate forcing and for the initial ice thick-
ness inversion step, both of which have the potential to intro-
duce errors into the forward projections. The recent work of
Aguayo et al. (2024) has shown how the OGGM creep pa-
rameter can be included in the calibration of OGGM. They
propose a method whereby the this parameter is selected so
that the ice thickness inversion step, used to identify the ini-
tial ice volume, matches that of an independent set of glacier
volume estimates similar to those of Millan et al. (2022).
Within their calibration routine, the model is further vali-
dated against RGI glacier outlines for the year 2000 by im-
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plementing a “dynamic spinup” of the model from 1980.
Only when the model can capture the RGI glacier area, the
glacier volume estimates, and geodetic mass balance data
is the calibration deemed a success. Implementing this type
of calibration approach with JULES-OGGM is feasible, al-
though it comes with its own computational constraints that
would not make this straightforward. Even so, it could be that
additional gains in model performance are found by consid-
ering the ice dynamical parameters in the model calibration.

While modifications to the calibration strategy may be
beneficial to model performance, the expected benefits can
only be postulated here. This study suggests that mean-
ingful improvements in model performance could be at-
tained through targeting improvements to the prognostic
snow albedo routine in JULES. Specifically, it appears that
the model cannot accurately replicate the feedbacks between
the driving meteorology, surface energy balance, ablation
processes, and snow darkening. Because of this, the calibra-
tion problem was dominated by the sensitivity to the parame-
ter that controls the weighting of albedo between visible and
near-infrared wavelengths (wght_alb) in JULES: a parameter
that is important in controlling the rate at which snow albedo
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drops as the snow ages and grain size increases. While this
parameter can be tuned to capture long-term average esti-
mates of glacier-wide mass balance, comparisons of simu-
lated and observed surface albedo at the Quisoquipina mete-
orological station revealed an apparent case of “correct an-
swer for the wrong reason”: a case that is likely to manifest
itself in inconsistent performance outside of the spatiotem-
poral bounds of the calibration dataset. Only by forcing this
aspect of the model with observed net radiation variables
were we able to more-accurately capture day-to-day and sea-
sonal variability in surface albedo and the observed ablation
rates during the main ablation season. The prognostic snow
albedo routine in JULES is based on the Wiscombe and War-
ren (1980) spectral snow model, which simulates changes to
snow albedo in both the visible and infrared wavelengths as
a function of effective snow grain size. The models of snow
grain size development and spectral albedo are, in essence,
empirical and validated against a small number of obser-
vation studies in the Antarctic and Canadian Archipelago,
which raises the question of their validity in other settings.
They also highlight two limitations of the model in the inabil-
ity to account for (i) snow impurities and (ii) scattering prop-
erties of non-spherical snow grain shapes. Ice cores drilled
from the Quelccaya ice cap on the eastern edge of the VUB
show seasonal deposition of mineral dust during the dry sea-
son when westerly winds facilitate entrainment and trans-
port from the dry Altiplano (Thompson et al., 2013). Reis
et al. (2022) found that the average dry season dust concen-
tration between the years 2002 and 2018 was 6.8 £+ 1.8 ppm
but could be as high as 23.1 ppm. A limited number of ob-
servation studies suggest that black carbon concentrations of
less than 1 ppm can reduce snow albedo by several percent
but that the effect of mineral dust is approximately 2 orders
of magnitude smaller (Willeit and Ganopolski, 2018). How-
ever, recent numerical modelling studies suggest that the im-
pact of mineral dust on snow albedo could be much more
significant and is strongly influenced by snow grain size and
non-sphericity. He et al. (2019) explicitly simulated the de-
position and redistribution of dust through the snowpack and
the scattering properties of non-spherical snow grain shapes
in the stochastic aerosol-snow albedo model (Liou et al.,
2014) and showed that snow albedo can be reduced in the
visible wavelength spectrum by almost 20 % when the dust
concentration is 100 ppm and the snow grain radius exceeds
1000 pm, although the magnitude of reduction is dampened
for non-spherical snow grains. Hao et al. (2023) demon-
strated that including these processes in the E3SM land sur-
face model allowed them to more closely match observed
albedo dynamics on the Tibetan Plateau. However, they high-
light that the combined effects of non-sphericity and snow
impurities on albedo are complex, non-linear, and may be
negative or positive depending on the approach used to pa-
rameterize them. The composition of other impurities, e.g.
biological communities that could also serve to reduce snow
and ice albedo (Hotaling et al., 2021), have to our knowledge
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not been observed or quantified in the study region. Thus,
while gains could be made through implementing improve-
ments to the prognostic snow albedo routine in JULES, such
improvements would need to be underpinned by appropriate
observation data to appropriately parameterize them. Meet-
ing this challenge will undoubtedly require improvements to
our process models but likely also requires us to better con-
strain mountain snowfall timing and frequency, which have a
significant influence on albedo dynamics (Johnson and Rup-
per, 2020).

4.2 The “ice-free” limitation

In the methodology, we noted that the JULES—OGGM se-
quential coupling does not explicitly account for differences
between surface energy balance fluxes on ice-free and ice-
covered surfaces, which could be important when OGGM
determines if a glacier will advance into an ice-free node on
a given time step. For ice-free nodes, OGGM takes the sum
of the surface mass balance and ice flowing into that node
from upstream. If this sum is positive, the glacier “grows”
into this node. With the presented JULES—-OGGM setup, the
surface mass balance for the ice-free node is calculated as
though it were covered by ice. This means that there could
be some situations where JULES—-OGGM simulates the ad-
vance of a glacier at a given time step when an identical
model that accounts for the ice-free energy balance does not
(and vice versa). As a thought experiment, we could hypothe-
size a JULES—OGGM model that has an equivalent set of ice-
free JULES grid box nodes for each glacier spanning the full
elevation range of the glacier. We could then force OGGM
with surface mass balance simulations that are tailored to the
ice coverage conditions at a given point in time. The overall
impact that using such a model would have on the simula-
tion is difficult to postulate given that it will depend a lot on
how the exposed ground is parameterized in JULES, but we
would hypothesize that sensitivity to this model limitation
would be most pronounced for (i) advancing glaciers where
the surface mass balance will impact the ice thickness at the
margin during transition from an ice-free to ice-covered state
and (ii) glaciers where simulated mass balance at the tongue
is close to zero, meaning that small changes in the simulated
mass balance on ice-free nodes could decide whether or not
a glacier grows at a particular time step. For glaciers under-
going sustained retreat where the surface mass balance at the
glacier margin is consistently negative, the choice of using
JULES-OGGM with or without our hypothetical improve-
ment would have no discernible effect on the simulation. For
this reason and the fact that the mass balance of the glaciers
in the VUB over the simulation period is negative (partic-
ularly at the glacier tongue), we would argue that discrep-
ancies introduced by the ice-free limitation are likely to be
small in this study.
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4.3 The 21st-century simulations

Considerable variability in glacier response to climate exists
across the VUB. We identified four broad mass evolution
clusters, ranging from glaciers that lose most (if not all) of
their mass before 2040 to those that showed an initial mass
gain before subsequently retreating through the latter half
of the 21st century. While the exact trajectory of the simu-
lations needs to be considered within the limitations of the
model, the results suggest that the dominant control on this
variability is the glacier geometry. Specifically, the small-
est glaciers at low- and high-elevation ranges represented the
most and least rapidly retreating glaciers, respectively. Fyffe
et al. (2021) also found that elevation plays an important role
in controlling the non-linear response of tropical glaciers to
changes in air temperature. At higher elevations, they suggest
that decadal changes in mass balance are more strongly con-
trolled by the transition of sublimation fluxes to melt. While
this may be true at very localized high-elevation ice, we did
not find any evidence of significant sublimation fluxes at the
river basin scale. In fact, for all identified clusters, sublima-
tion made a negligible contribution to annual glacier mass
changes throughout the simulation period. This does raise the
question of the gains achieved through applying energy bal-
ance models for basin-scale analyses like these and whether
we should sacrifice the level of fit that can be achieved with
a simpler temperature-based ablation model just for the sake
of providing a more physically coherent model of the system.
We suggest that this depends on the purpose of the applica-
tion and the region of interest. The apparent insignificance
of sublimation in the VUB should not be expected every-
where. Furthermore, our simulations still showed deviations
between long-term temperature and mass balance trajecto-
ries. Specifically, the shortwave radiation was shown to be
the dominant energy source across the glaciers and is con-
trolled by the surface albedo, which was not necessarily co-
herent with temperature. Given the importance of shortwave
radiation, a key limitation of the projections is that this vari-
able was effectively assumed to be static for the future sim-
ulation period, and therefore the projections do not capture
the impact of changes in the radiation balance in the future.
To explore this limitation in more detail, we extracted the
incident longwave and shortwave radiation data from each
CMIP5 ensemble member at the point closest to the middle
of the domain (at —13.69° N, —72.02° E). These data showed
that the annual average incident longwave radiation is pro-
jected to increase by an average of 6.63 % from the 1980—
2018 average to the 2061-2099 average under RCP8.5, with
all models showing a statistically significant increase. These
data also showed an increase in average incident shortwave
radiation by 3.20 % over the same time period, with 22 mod-
els showing a statistically significant increase, 4 showing a
statistically significant decrease, and 4 showing no signifi-
cant change. While these changes would only result in a rel-
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atively small change in the radiation balance, they are not
accounted for in our projections.

To provide some context for the simulated ice area and
mass simulations, we obtained simulations for the VUB
from the GlacierMIP experiments (Marzeion et al., 2020)
for the GloGEM (Huss and Hock, 2015) and MAR2012
(Marzeion et al., 2012) models. These models are much sim-
pler than JULES—OGGM, using temperature-based energy
balance models and empirical ice evolution routines to ac-
count for mass redistribution. When driven with the same
CMIP5 GCMs, the overall trajectory of total glacier area and
mass is broadly similar across the three models (Fig. C1),
showing a consistent decrease over time. However, JULES—
OGGM is shown to be more conservative (slower retreat),
particularly with respect to the change in glacier area. Un-
der RCP4.5, JULES—OGGM estimates that 17 % of the ice
mass will remain by 2100, while GloGEM and MAR2012
estimate this to be 2 %. For RCP8.5, JULES-OGGM esti-
mates that 6 % of the ice mass will remain, while GloGEM
and MAR2012 predict that less than 1 % will remain. These
differences likely stem from a range of sources in addition
to differences in the glacier models themselves. Arguably of
major importance is the fact that JULES—-OGGM was shown
to overestimate surface albedo at one observation point in
the basin, at least at the one observation point in the basin. If
this behaviour is indicative of basin-wide simulations, the ap-
parent conservativeness of the simulated retreat likely stems
from this model deficiency. Additionally, as has been dis-
cussed, we did not use the raw CMIP 5 climate projections
used to force the GloGEM and MAR2012 projections. In-
stead, we used a combination of statistically downscaled and
resampled driving climate data that will have inherently dif-
ferent biases and trends over the 21st-century simulation pe-
riod. Aguayo et al. (2024) compared the impact of perturb-
ing various aspects of the model setup for OGGM on glacier
runoff simulations for the Patagonian Andes and showed that
the uncertainty in simulated glacier runoff mainly stemmed
from the choice of historical climate data used to calibrate the
model for 78 % =21 % of the catchment area. In contrast,
“future” sources of uncertainty (choice of climate model,
emission scenario, and method of bias correction) were only
the main sources of uncertainty for 18 % £ 21 % of the catch-
ment area. Similarly, Li et al. (2022) showed that the pro-
jected mass loss difference between two identical glacier dy-
namics models of central Asia with different initial glacier
inventories was higher than that of adjacent emission sce-
nario forcing data.

Aguayo et al. (2024) also showed the significance of other
aspects of the model setup, such as the initial ice thickness
and glacier outline maps. Indeed, our study used the more
refined glacier outline maps of Drenkhan et al. (2018) than
those in the GlacierMIP, and there are clearly differences in
our initial glacier areas that we estimate to be significantly
smaller (186.5km?) compared to those from the Glacier-
MIP models that are based on the less accurate RGI 6.0
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glacier outlines (250.1-264.3 km?2). For the initial ice vol-
ume, it is important to note that our simulated ice mass for
the year 2000 lies somewhere between that of GloGEM and
MAR2012 (Fig. Clc and d), which suggests that this is not a
principal driver of the differences in our simulations to these
models. When we compared our ice volume simulations for
2018 against the estimates of Millan et al. (2022) the level of
agreement was certainly encouraging, but there were some
discrepancies, especially for the smallest glaciers where the
JULES-OGGM simulations generally underestimate glacier
volume. Even so, there are significant uncertainties in the
Millan et al. (2022) ice volume estimates given the tempo-
ral mismatch in input data. They also note that errors in ice
thickness (and thus volume) for areas with thicknesses below
100 m, which account for 95 % of the glacierized area in the
VUB, are assumed to >50 %.

Perhaps most significantly, we tuned JULES-OGGM to
geodetic data, while the GlacierMIP models were tuned to
World Glacier Monitoring Service (WGMS) data. Indeed,
this could explain why, even though the model evaluation
showed JULES-OGGM to overestimate mass loss by a fac-
tor of 2, it is is shown to be more conservative than the
GlacierMIP models. A crucial component in understanding
how to improve physically based glacier evolution models
like JULES—-OGGM will be developing a fuller understand-
ing of where the sensitivities (and potential sources of er-
ror) in the model setup lie. Implementing a framework akin
to Aguayo et al. (2024) using JULES—OGGM should be a
priority for developing this understanding. One should not
expect the relative importance of different sources of uncer-
tainty to be the same. Including more complex models like
JULES-OGGM in large-scale model comparison studies like
GlacierMIP where input and forcing data are standardized
would also help to deduce sources for model discrepancies.
The GlacierMIP results have already shown that the choice
of glacier model can be the dominant source of uncertainty
in projections, particularly for the low latitudes, highlighting
the need to develop and test different modelling approaches
(Marzeion et al., 2020). Indeed, both JULES and OGGM
have been applied at the global scale, and while this study
has identified potential aspects that should be prioritized for
application to tropical glaciers, it remains to be seen how this
model performs in other glacierized basins around the world.

5 Conclusions

We show that the model parameters in JULES—-OGGM can
be tuned to capture observations of long-term average glacier
mass changes as determined from geodetic glacier mass bal-
ance data, but inconsistencies in model performance can be
attributed, at least in part, to limitations of the JULES prog-
nostic snow model that mean it cannot accurately replicate
observed fluctuations in surface albedo that have important
implications for the radiation balance of snow and ice. This
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study suggests that a key challenge in applying “physical”
glacier evolution models at the scale of whole river basins in
tropical regions lies in our limited understanding and ability
to represent surface albedo dynamics. We suggest that this
should be a priority development area for future applications
of JULES-OGGM. Two key limitations of the current snow
albedo routine are the lack of (i) representation of deposition
and redistribution of snow impurities and (ii) parameteriza-
tion of non-spherical snow particles. Furthermore, we have
not examined the role of the ice flow component in the iden-
tified model deficiencies, and thus additional improvements
could be made by, for example, including the ice flow param-
eters with the model calibration step.

The results from this study also indicate that, contrary to
point-scale energy balance studies, sublimation will likely
play a very minor role in the evolution of glaciers in VUB
at the basin scale over the 21st century and will not be a sig-
nificant source of non-linearities in the glacier response to
climate warming. These results are not necessarily indicative
of all glacierized basins in the tropics, but they do imply that
sublimation processes may not be as important for long-term
glacier evolution as some studies suggest. Indeed, we believe
there is much to be learnt from applying a physically based,
globally capable model like JULES—OGGM to other basins
inside and outside of the tropics, and the availability of global
geodetic datasets provides an opportunity to interrogate and
validate the model for any almost any glacier in the world.
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Appendix A: Lapse rates

The plots below show the annual lapse rate cycle for all years
of historical data (1980-2018) for each calibration region of
glaciers in Fig. 1. The lapse rates were first estimated for each
glacier individually based on the climate simulations from
the four bounding WRF nodes of the glacier centroid. The
median of these was then taken for each calibration region.
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Figure A1. Annual temperature lapse rate cycles for all historical years (1980-2018, black lines) overlain with the median annual cycle (red
line).
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Figure A2. Annual surface pressure lapse rate cycles for all historical years (1980-2018, black lines) overlain with the median annual cycle

(red line).
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Figure A3. Annual specific-humidity lapse rate cycles for all historical years (1980-2018, black lines) overlain with the median annual cycle

(red line).
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Appendix B: Assessment of relationship between glacier
characteristics and simulated mass balance errors
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Figure B1. Comparison of simulated mass balance errors to six glacier characteristics.
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Appendix C: Comparison of JULES-OGGM
simulations to a subset of GlacierMIP simulations
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Figure C1. Simulated annual total glacier area (a, b) and mass (c, d) for the VUB between 2000 and 2100 based on RCP4.5 and RCP8.5
scenarios. Simulations include JULES-OGGM and those from the GloGEM and MAR2012 models from the GlacierMIP experiments
(Marzeion et al., 2020). Solid lines represent the ensemble mean simulations using all available GCMs that are not coherent across glacier
models. Dashed lines represent simulations driven with the subset GCMs that are coherent across the glacier models. Shaded areas represent

the 90 % confidence bounds.
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Appendix D: Selection of the BNU-ESM simulation
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Figure D1. Annual glacier mass evolution of four identified clusters expressed as the proportion of the maximum simulated mass between
2020 and 2100 for RCP4.5 (a) and RCPS8.5 (b) overlain with the BNU-ESM simulation, which was selected to most closely match the
ensemble mean. Annual glacier mass evolution of four identified clusters expressed as the proportion of the maximum simulated mass
between 2020 and 2100 for RCP4.5 (a) and RCP8.5 (b) taken from the ensemble mean. Each cluster is represented by the median (solid line)
and interquartile range (shaded area).

Appendix E: Mass and energy balance simulations
under RCP4.5
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Figure E1. Simulated mean glacier-wide state variables from JULES—OGGM between 2020 and 2100 for each cluster (columns) and based
on the BNU-ESM simulation under RCP4.5. The variables include ice elevation (top row), specific mass balance (middle row), and energy
balance (bottom row). All variables are calculated over a 10-year moving-average window and are taken as the mean across all glaciers
within a cluster as weighted by the glacier area.
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Code availability. The source code for JULES v6.0 can be down-
loaded by accessing the Met Office Science Repository Ser-
vice (MOSRS) (requires registration): https://code.metoffice.gov.
uk/ (last access: 1 March 2024). All code used to run the JULES
experiments in this study is also available on MOSRS and is stored
within two versioned JULES Rose suites: the Monte Carlo exper-
iments are stored in the u-ce887 JULES Rose suite, while the fu-
ture climate experiments are stored in the u-ck523 JULES Rose
suite. The model runs at the Quisoquipina and Suyuparina glaciers
are stored in the u-cw985 JULES Rose suite. The source code for
OGGM v1.4 used in this study can be accessed via https://doi.org/
10.5281/zenodo.4546676 (Maussion et al., 2021). The safepython
Python library version 0.2.0 used in this study (Pianosi and Wa-
gener, 2015) and Pysolar v0.11 are both available to use for free
under the GNU General Public License (safepython: https://github.
com/SAFEtoolbox/SAFE-python; pysolar: https://pypi.org/project/
pysolar/0.11/, Stafford, 2023).

Data availability. Data are available upon request to the corre-
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