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Abstract. This study evaluates the potential of Volunteered
Geographic Information (VGI) for mapping and monitoring
ice-wedge polygons in Arctic permafrost regions through
two case studies in Alaska and Canada. We developed and
tested a web-based mapping application that enables vol-
unteers to identify ice-wedge polygon centroids in high-
resolution aerial imagery, with data collected from 105 con-
tributors as part of organized mapping events. The volunteer-
contributed data achieved completeness scores of 88.74 %
and 70.81 % for the Cape Blossom (Alaska) and Blue-
berry Hills (Canada) study regions respectively, with me-
dian positional accuracies of 1.29 and 1.38 m (both vali-
dated against expert mapping data). Analysis shows that con-
tributions from approximately five volunteers per polygon
are sufficient to achieve reliable results. Using Voronoi di-
agrams derived from the crowd-sourced centroids, we suc-
cessfully reconstructed ice-wedge polygon networks and ex-
tracted key geomorphological and hydrological parameters
including polygon area, perimeter, and network topology.
The results demonstrate that VGI can effectively support per-
mafrost monitoring by enabling efficient mapping of ice-
wedge polygons across large areas while maintaining high
data quality standards.

1 Introduction

Permafrost, the largest non-seasonal component of the
cryosphere in area, plays a crucial role in Arctic ecosys-
tems. Large-scale monitoring of its state and changes is ur-
gently needed to better understand the direct impacts of cli-
mate warming in the Arctic, which vary greatly by region
and are already in full swing (Nitzbon et al., 2024). As a sub-
surface thermal phenomenon, permafrost cannot be directly
observed using remote sensing methods (Westermann et al.,
2015). Instead, geomorphological structures of the Earth’s
surface, such as polygonal tundra, are used to identify and
classify permafrost areas that are highly vulnerable to climate
warming (e.g. Nitze et al., 2018; Runge et al., 2022). Due
to the relatively small size of these polygonal land surface
structures, very high-resolution image data is required for de-
tection (Rettelbach et al., 2021). The rapid technological de-
velopment of satellites has given rise to a growing database
of high-resolution images available for the identification of
these key indicators of permafrost and its condition.

The surface structures of ice-wedge polygons provide in-
formation about the presence of ice-rich permafrost (e.g.
Bernard-Grand’Maison and Pollard, 2018). Their size and
shape also provides information about the local climate
and soil conditions that have controlled their development
(Lachenbruch, 1962). In addition, the reconstruction of ice-
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wedge networks allows the drainability and hydrological
changes of tundra ecosystems to be better delineated (Lil-
jedahl et al., 2024). Thus, mapping the structure of ice-wedge
polygonal networks is crucial for assessing the vulnerability
of permafrost regions to climate change. These networks play
a key role in controlling shifts in geomorphological and hy-
drological regimes as permafrost thaws and polygonal tundra
degrades (Liljedahl et al., 2016; Nitzbon et al., 2019).

Several methods for detecting polygonal land surface
structures have been developed and tested in the past, rang-
ing from manual (e.g. Frappier and Lacelle, 2021) to semi-
automated (e.g. Skurikhin et al., 2013) detection techniques.
More recently, the application of AI image analysis meth-
ods has substantially improved the ability to recognize and
classify these structures (e.g. Zhang et al., 2018; Witharana
et al., 2020). However, as a basis for training or as baseline
data for verification, ground truth data is essential. This data
is usually obtained through terrestrial surveying or visual in-
terpretation of very high resolution imagery by experts. The
generation of such baseline data is, however, labor intensive
and therefore limited to a few regions that do not cover the
full variability of land surface conditions under which polyg-
onal structures occur. This limitation leads to substantial un-
certainties in automatic recognition methods, which cannot
reveal the subtle changes in polygonal structures that result
when permafrost thaws (e.g. Witharana et al., 2021; Lou-
sada et al., 2018). To improve and expand ground-truth data
on ice-wedge polygons, we investigate the quality of geo-
graphic data generated by volunteers using a crowd-mapping
approach that allows large areas to be mapped, utilizing hu-
man skills of structure recognition and context interpretation.

A considerable number of studies have demonstrated the
potential and fitness for purpose of Volunteered Geographic
Information (VGI) for a range of use cases, such as disas-
ter response (Goodchild and Glennon, 2010), disaster man-
agement (Eckle-Elze and De Albuquerque, 2015) and dis-
aster risk reduction (Scholz et al., 2018), earthquake dam-
age assessment (Barrington et al., 2012; Kohns et al., 2021),
deforestation detection (Arcanjo et al., 2016), archaeologi-
cal prospection (Stewart et al., 2020), and many more. There
are numerous applications that facilitate and sometimes (spa-
tially and thematically) coordinate contributions of VGI for
specific use cases and goals. One example is the applica-
tion MapSwipe (Herfort et al., 2017). With MapSwipe, vol-
unteers can collaborate with humanitarian organizations to
help map regions in the world where relevant data for pre-
paredness, resilience and humanitarian response is missing.
In the standard type of project, volunteers examine tiles of
tessellated orthorectified aerial and satellite imagery from
various sources in order to detect given features of interests
(e.g. buildings) in them, thus helping to identify areas that
need more detailed mapping (i.e. digitization of previously
unmapped features).

Based on an adapted version of MapSwipe, we developed
a web application to enable crowd-sourced mapping of ice-

wedge polygons in aerial imagery. As part of the project,
several different project designs were explored and put to
test in order to find the best solution that balances the fea-
sibility of the task by non-expert contributors with the use-
fulness and relevance of the mapping output for permafrost
research. During preliminary tests, the most promising ap-
proach in terms of volunteer engagement and mapping effi-
ciency proved to be a design in which volunteers were in-
structed to mark the approximate centroids of recognizable
ice-wedge polygons. In this study, we demonstrate to what
extent the output of such projects (i.e. the crowd-sourced cen-
troids) can be used to derive accurate geomorphological and
hydrological properties of the ice-wedge network.

2 Study regions

Two study regions were selected to test the application of
VGI for the structural analysis of ice-wedge polygons. The
two regions are very different in terms of climate, geomor-
phology, and soil characteristics (Fig. 1). The first study re-
gion, Cape Blossom (CB), is located on the Baldwin Penin-
sula in western Alaska. This region is located near the transi-
tion zone between continuous and discontinuous permafrost
(Jorgenson et al., 2008; Jongejans, 2017). It is character-
ized by ice-rich Pleistocene permafrost featuring massive
ice wedges which form high- but in parts also low-center
polygons at the surface (Strauss et al., 2017). The undulat-
ing landscape features a variety of thermoerosional valleys,
lake basins and drained lake basins. Due to its proximity to
this transition zone and relatively warm permafrost condi-
tions, the region is particularly susceptible to climate warm-
ing (Strauss et al., 2017). The mean annual temperature in
Kotzebue (approximately 20 km north of CB) is − 5.05°C,
with annual precipitation of 280 mm (Alaska Climate Re-
search Center, 2023). The ground at this region is domi-
nated by marine, fluvial and glaciogenic fine-grained sedi-
ments (Hopkins et al., 1961) and is primarily vegetated by
mosses and sedges.

The second study region, Blueberry Hills (BH), is located
in the Northwest Territories of Canada within the Macken-
zie Delta. It is located in the zone of continuous permafrost
where the permafrost depth exceeds 700 m (Ehlers, 2011).
This region is characterized by ice-rich permafrost and is
undergoing major transformations due to climate warming
(Van der Sluijs et al., 2018). Furthermore, the region is ac-
commodating the largest concentration of infrastructure in
the Canadian Arctic, which requires dedicated monitoring of
permafrost changes (Van der Sluijs et al., 2018). The mean
annual temperature at BH is around −8.6°C, and it receives
approximately 254 mm of precipitation annually (Climate
Atlas of Canada, 2023). The vegetation at the region is dom-
inated by mosses, sedges, and shrubs, including a notable
presence of blueberries.
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Figure 1. Study regions (a) Overview map showing location of the study regions with permafrost zones (Obu et al., 2018), (b) Cape Blossom
study region with high resolution MACS imagery (Rettelbach et al., 2024), (c) Blueberry Hills study region with UAV-aquired imagery
(Mueller et al., 2024), (d) Detail of Cape Blossom, (e) Detail of Blueberry Hills.

3 Material and methods

3.1 Remote Sensing Data

The CB region was surveyed as part of an aircraft based cam-
paign in 2021 that delivered high-resolution multi-spectral
imagery of the permafrost landscapes using the Modular
Aerial Camera System (MACS) (Grosse et al., 2021). The
entire survey, conducted on 25 June 2021, covers approx-
imately 25.22 km2. The data collection involved multiple
flight lines, with the aircraft maintaining an altitude between
approximately 1490 and 1510 m above ground level. The
imagery captured by the MACS system was processed into
four-band orthophotos (blue, green, red, and near-infrared)
and DSMs both featuring a spatial resolution of 20 cm. Data
post-processing was performed using photogrammetric soft-
ware to produce high-resolution orthomosaics (Rettelbach
et al., 2024). In this study, a selected part from tile 11-2 of the
CB sub-project 1 RGB orthophoto was used as the study re-
gion. The area of the study region corresponds to 0.714 km2

(see Rettelbach et al., 2024).
The BH region was surveyed using the DJI Mini 2 drone as

a Citizen Science activity with students from the Moose Kerr

School in Aklavik. The survey was conducted on 24 Septem-
ber 2022, with the aim of creating a drone image based
orthomosaic. The dataset consists of 3557 individual Digi-
tal Negative (DNG) images with RGB color channels cap-
tured at 120 m flight height resulting in an average resolu-
tion of 4.97 cm per pixel. Later resampling in the course of
photogrammetric post-processing resulted in a resolution of
about 10 cm per pixel, covering an area of 1.58 km2. The Un-
occupied Aerial Vehicle (UAV) system was equipped with
a camera using a 12 megapixel CMOS sensor. To enhance
the accuracy of the DSMs, we employed a novel spiral flight
pattern developed within the UndercoverEisAgenten project
and presented in Mueller et al. (2023). The images were post-
processed using Agisoft Metashape 1.8.4, generating sparse
and dense point clouds, DSMs, and orthomosaics, with al-
titude data adjusted using the local 2 m resolution Arctic-
DEM (Porter et al., 2022) for improved vertical accuracy.
The dataset is openly available here (Mueller et al., 2024).

3.2 VGI data collection

The remote sensing data were analyzed by volunteers, pri-
marily as part of workshops at schools and universities or-
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ganized as mapping events (“mapathons”). The participants
consisted of university level Geography students in Ger-
many (two mapping events) and the Netherlands (one map-
ping event) and school students in grades 7–12 (approximate
age range 12–18 years, seven mapping events) in German
Higher Secondary Education (Gymnasium). Contributions to
the mapping projects were made from a total number of 105
distinct user accounts.

All mapping events were preceded by an introduction
adapted to the level of expected prior knowledge of the tar-
get group that comprised information on the topic of per-
mafrost thawing, the formation of ice-wedge polygons, and
the consequences of permafrost thawing for the environment
and infrastructure. Subsequently, the students participated in
mapping activities. The mapping projects differed between
the mapping events in regard to area of interest (subsets of
the two study regions) and task format. Following the micro-
mapping approach, the larger areas of interest were split into
smaller regularly shaped and equally sized micro-tasks. Par-
ticipants mapped groups of spatially adjacent tasks one af-
ter another until either the area of interest was completely
mapped or the mapping event ended.

While several task designs were tested with different audi-
ences, this study is based on the output of point digitization
tasks (see Appendix A). In the context of this task design,
participants were instructed to mark the approximate cen-
troids of ice-wedge polygons within the respective bound-
aries of each task area. Such digitization tasks aim to pro-
duce digital geographic objects (vector features) using given
georeferenced image data (Albuquerque et al., 2016). In the
crowd-sourced mapping application, the participants could
interact with a web map by placing, modifying and deleting
point markers within the task area boundaries.

Classification tasks of geographic crowd-sourcing – usu-
ally consisting in enriching georeferenced images with la-
bels – are considered the task type with the lowest level
of spatial cognitive complexity (Albuquerque et al., 2016).
However, classifying ice-wedge polygons on aerial imagery
of the Arctic surface has proven to be a considerably more
challenging task for volunteer contributors than e.g. the de-
tection of buildings (Fritz et al., 2022). Our further experi-
mentation demonstrated that point digitization tasks allowed
volunteers to detect ice-wedge polygons with higher agree-
ment (as an intrinsic indicator for accuracy) and at the same
time in a more time-efficient manner. Beyond information on
the presence of ice-wedge polygons (as the output of classifi-
cation tasks), point digitization of polygon centers allows to
quantify and locate individual polygon structures. While line
digitization of ice-wedge polygons (i.e. the tracing of poly-
gon outlines), on the other hand, would provide additional in-
formation on the polygon sizes and shapes, initial trials have
shown that this task type overwhelms volunteer contributors
and reduces the area to be mapped compared to point digi-
tization. Assigning volunteer contributors with less difficult
point digitization tasks while deriving further geomorpholog-

ical and hydrological information through the network recon-
struction method described in Sect. 3.3 was thus identified as
a promising task design to monitoring Arctic permafrost with
VGI.

For quality assurance of crowd-sourced data, it is common
practice that multiple contributors map the same area. The
individual contributions are then compared and aggregated
to a collective result (Albuquerque et al., 2016). Here, each
micro-task was assigned to more than one contributor, each
of them producing an individual point data set for the respec-
tive task area. These individual task results were merged into
comprehensive vector point data sets covering the two study
regions. To derive an “aggregated” result data set from the
individual task results, it was necessary to cluster the point
markings (see Sect. 3.3) to match the identified polygon cen-
ters before further analysis.

Along with the VGI data, an additional set of ice-wedge
polygon centroids in the same two study regions was con-
tributed by experts for the purpose of quality assessment.
The study regions were analyzed by three authors of this pa-
per analogously to the procedure of the VGI data, but in this
case using the GIS software QGIS. It is referred to as the ex-
pert data set. For further validation of the Voronoi polygons
in the reconstructed networks, a set of “ground truth” refer-
ence polygons were created through manual digitization by
experts for subsets of the two study regions.

3.3 Data processing and analysis

To derive the target variables describing the geomorpho-
logical and hydrological characteristics of polygonal tun-
dra, a specific multi-stage workflow was applied on both the
volunteer-contributed and the expert-contributed ice-wedge
polygon centroids (Fig. 2). In contrast to the expert contri-
butions, multiple volunteer contributions were collected for
the same micro-tasks in order to ensure the quality of the
results. It was thus necessary to aggregate the individual vol-
unteer contributions of ice-wedge polygon centroids into av-
erage results, i.e. the mean locations of ice-wedge polygon
centroids. To aggregate the individual results, clusters of the
contributed ice-wedge polygon centroids were identified us-
ing DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise), a density-based clustering algorithm orig-
inally developed by Ester et al. (1996) and the mean of each
cluster was used for further analysis. One-point clusters were
excluded, as the aim here was to ensure that an ice-wedge
polygon was recognized by at least two volunteers. The cen-
troids of the resulting clusters were considered as the crowd-
contributed locations of ice-wedge polygon centroids.
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Figure 2. Data processing and analysis workflow: Ice-wedge polygon networks are reconstructed from ice-wedge polygon centroids con-
tributed by both volunteers and experts separately and validated against polygons digitized by experts. Geomorphological and hydrological
parameters are derived from the reconstructed networks.

To establish the number of volunteer contributors needed
to map the same region, we compared the positional accu-
racy of volunteer-contributed ice-wedge polygon centroids
by cluster size (i.e. number of volunteer contributions estab-
lishing the centroid location) using a pairwise Tukey Hon-
estly Significant Difference (HSD) test as implemented by
the Python library statsmodel (Seabold and Perktold, 2010).

A second step of clustering needed to be applied on
both the expert-contributed and the aggregated volunteer-
contributed centroids to delineate ice-wedge polygon sub-
networks, as it cannot be assumed that a study region is
characterized by only a single connected ice-wedge poly-
gon network. A combination of Delauny triangulation and
alpha shape (Edelsbrunner et al., 1983) was used to identify
the sub-networks in both study regions. An alpha value of
0.067 was chosen for this application. These steps were ap-
plied consistently across both research regions, and thus have
the potential for replication in other contexts.

Voronoi diagrams were generated from both the expert-
contributed and the aggregated crowd-sourced ice-wedge
polygon centroids to reconstruct the polygonal ice-wedge
networks. Cresto Aleina et al. (2013) and Ulrich et al. (2014)
have demonstrated that automatically derived Thiessen poly-
gons can represent ice-wedge networks with sufficient accu-
racy (i.e. a goodness of fit of R2

= 0.84 for the linear re-
gression values of manually mapped polygon sizes against
Thiessen polygon sizes according to Ulrich et al., 2014). In
our workflow we made use of the relationship between De-
launy triangulation and Voronoi diagrams to derive polygon
networks from the individual ice-wedge polygon centroids

within each sub-network. Ice-wedge polygon centroids at the
edge of each (sub-) network were omitted as they would gen-
erate incorrect Thiessen polygons due to the lack of neigh-
bors.

To assess the accuracy of the polygons generated from
points digitized both by volunteers and experts through ap-
plication of the Voronoi method, we compared them against
a set of reference polygons whose outlines (not: centroids)
were manually digitized by experts (see Appendix B1), con-
sidered as ground truth. These reference polygons were cre-
ated by experts through visual interpretation of the same
high-resolution aerial imagery, ensuring a high level of accu-
racy in delineating individual ice-wedge polygons. The val-
idation process involved the calculation of four key metrics
being precision, recall, F1-score, and Intersection over Union
(IoU). Precision measures the proportion of correctly identi-
fied polygons among all polygons generated by the Voronoi
method. Recall quantifies the proportion of correctly identi-
fied polygons out of all true polygons in the reference data.
The F1-score provides a harmonic mean of precision and re-
call, offering a balanced measure of overall accuracy. IoU
calculates the ratio of the intersection area to the union area
between the predicted Voronoi polygon and its correspond-
ing reference polygon reflecting the degree of overlap.

As the last step, geomorphological and hydrological pa-
rameters were derived from the network graphs of the two
entire study regions and of subsets for the two regions used in
the comparison with reference polygons. Geomorphological
parameters include polygon area, perimeter, and distance to
nearest neighbor. The latter describes the Euclidean distance
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from the center of each polygon to the centers of directly
neighboring polygons per sub-network. The results were av-
eraged for each polygon center. The hydrological properties
were derived using the Python package NetworkX which has
already been successfully used for the delineation of ice-
wedge networks by Hagberg et al. (2008). In this study, Net-
workX was used to calculate betweenness centrality, which
quantifies the centrality of troughs within the ice-wedge net-
work. The betweenness centrality is a measure of the im-
portance of individual troughs for maintaining the flow of
water within the network (Rettelbach et al., 2021). Thus, a
high betweenness centrality indicates troughs that are likely
to feature an increased water discharge and could therefore
be more susceptible to erosion.

4 Results

4.1 VGI mapping results

For the CB data set, 21 volunteers mapped 10 337 points over
five calendar days. 88 % of the points were mapped during
two school visits (Fig. 3). The remaining 12 % were mapped
individually outside of any organized event. The aerial image
illustrates that the ice-wedge polygons are evenly distributed
over the study region, as are the contributed ice-wedge poly-
gon centroids.

For the BH data set, 86 volunteers participated in the map-
ping process. A total number of 7878 points (see Fig. 3) were
mapped over 29 calendar days. 76.61 % of the points were
contributed during one of the mapping events at three differ-
ent schools and one university. Most points were contributed
by students from Higher Secondary Education (Gymna-
sium). The individual events resulted in different numbers
of digitized points. The events were organized independent
from each other at different locations. The exact format of
each mapping event was slightly different, as was the num-
ber of participants. About one quarter of the points (23.39 %)
were not mapped during any mapping event. In contrast to
the CB study region, the aerial imagery clearly shows that
ice-wedge polygons are distributed in spatial clusters over
the BH study region. Accordingly, the contributed points
form visually noticeable clusters within the study region.
Furthermore, in both regions, the points contributed by mul-
tiple volunteers visibly form smaller clusters within the ob-
servable boundaries of ice-wedge polygons (see inset maps
of Fig. 3). This indicates that different volunteers contribut-
ing to the same mapping micro-tasks effectively identified
the same ice-wedge polygons and approximately the same
centroid locations.

4.2 Ice-wedge polygon centroid quality assessment

One concern regarding VGI is the data quality and its fit-
ness for a specific purpose (Mocnik et al., 2017). The pur-
pose of generating the dataset of volunteer-contributed ice-

wedge polygon centroids is to derive geomorphological and
hydrological properties of the polygon networks in the two
study regions. The dataset’s fitness for purpose depends on
(i) the feature completeness of the ice-wedge polygon cen-
troids and (ii) their positional accuracy. Errors such as com-
mission, omission, as well as misplacement of the centroids
will influence the accuracy of the reconstructed networks
and, consequently, of the derived properties.

In absence of ground truth data captured in situ, these
two relevant dimensions of data quality are compared to a
dataset of expert-contributed ice-wedge polygon centroids
(see Sect. 3.2). While the expert-contributed data cannot be
considered ground truth in the narrower sense, the extent of
the deviation between volunteer- and expert-contributed data
is expected to provide an indication of the data quality.

The feature completeness can be assessed by comparing
the total number of ice-wedge polygon centroids in the vol-
unteer and expert datasets. For the CB region, the number
of clustered volunteer-contributed centroids (1710) amounts
to 88.74 % of the number of expert-contributed centroids
(1927). In the BH region, however, clustered volunteer-
contributed centroids (769) only amount to 70.81 % of the
number of expert-contributed data (1086). The lower com-
pleteness of the volunteer-contributed dataset in BH, as-
sessed against expert data, can be explained by the differ-
ence in the configuration of the polygon networks. Volun-
teers particularly often omitted ice-wedge polygons in areas
at the borders of networks, and in smaller sub-networks (that
characterize the BH region, see Sect. 4.3), whereas the single
large network of CB as well as the larger sub-networks in BH
are better represented.

Regarding the positional accuracy of the ice-wedge poly-
gon centroid, the clustered volunteer-contributed centroids
can be assessed by the deviation from the nearest expert-
contributed centroid in space. For both study regions, the
distributions of distances of all volunteer-contributed cen-
troids from their nearest expert-contributed neighbor are
clearly right-skewed, with rather small deviations for most
of the centroids (Fig. 4): The median distance is 1.29 m
(mean: 1.56 m) in CB and 1.38 m (mean: 2.66 m) in BH. For
comparison: the approximate median distance between ice-
wedge polygon centroids, based on the aggregated volunteer-
contributed centroids, was determined as 19.34 m (CB) and
13.15 m (BH) respectively (see Table C1).

With regard to the efficiency of the use of VGI in moni-
toring Arctic permafrost, it is vital to determine the optimal
number of volunteers per micro-task required to map ice-
wedge polygons with the sufficient quality. From the distri-
butions of the distances between volunteer-contributed cen-
troids and their nearest expert-contributed neighbor per clus-
ter size (i.e., the number of volunteers that contributed to the
centroid), it can be seen that, as a general trend, the higher
the number of contributors per polygon, the better the posi-
tional accuracy (Fig. 5). For CB, the positional accuracy of
the volunteer-contributed centroids does not improve signif-
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Figure 3. Volunteer-contributed points representing the approximate centroids of ice-wedge polygons for (1) Cape Blossom and (2) Blueberry
Hills.

icantly after surpassing the number of five contributions per
polygon (see Table C2). For the BH region, the data does not
support clear conclusions due to the relatively low number
of volunteer-contributed points of medium cluster sizes (see
Table C3).

4.3 Network reconstruction

Following the generic workflow described in Sect. 3.3, ice-
wedge polygon networks could be effectively reconstructed
from volunteer-contributed ice-wedge polygon centroids in
both of the study regions, despite their very different charac-
teristics. For both of the study regions, the resulting networks
appear plausible upon visual inspection. In the CB region
with its rather evenly distributed ice-wedge polygons visible

on the surface across the entire study region, the proposed
approach has a single contiguous network of 1490 polygons
as an output (see Fig. 6).

In the BH region, the reconstructed network is in agree-
ment with the clearly clustered occurrence of ice-wedge
polygons in specific regions of the study region. The result-
ing network consists of 21 different sub-networks with an av-
erage number of 16 polygons, ranging from one single poly-
gon to 133 per sub-network (see Fig. 6).

Comparing the originally contributed points (see Fig. 3)
with the resulting network (see Fig. 6), it becomes, however,
evident that due to the necessary removal of centroids at the
edge of networks (see Sect. 3.3), some smaller sub-networks
may be entirely omitted.
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Figure 4. Distribution of distances between volunteer-contributed points and their nearest expert-contributed neighbors (as an indicator of
positional accuracy) by study region.

Figure 5. Distributions of distances between volunteer-contributed points and their nearest expert-contributed neighbors (as an indicator of
positional accuracy) by cluster size. Cluster size refers to the number of volunteers that mapped a specific polygon.
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Figure 6. Voronoi diagrams derived from clustered volunteer-contributed ice-wedge polygon centroids, representing the reconstructed ice-
wedge network for (1) Cape Blossom and (2) Blueberry Hills. In the BH study region, smaller sub-networks are entirely omitted where
polygons could not be formed due to missing neighbors.

4.4 Voronoi Network Validation

The results of the accuracy assessment of reconstructed ice-
wedge polygons derived both from centroids contributed by
volunteers and by experts against polygons digitized by ex-
perts (see Sect. 3.3) indicate a reasonably good agreement
between the Voronoi polygons and the reference data across
the two study regions and data sources (Table 1).

In general, the expert-derived polygons exhibit higher val-
ues across the accuracy metrics compared to the VGI-derived
polygons. In the CB region, a difference in the F1-score is
driven by a better recall in the expert set (experts: 0.88, VGI:
0.81), whereas precision and median IoU do not vary sub-
stantially between the comparison data sets. This concludes

Table 1. Accuracy assessment of the Voronoi polygons generated
from volunteer- and expert-derived polygon centers at the Blueberry
Hills and Cape Blossom study regions. Metrics include Precision,
Recall, F1-Score, and Median Intersection-over-Union (IoU).

Metric Cape Blossom Blueberry Hills

volunteer expert volunteer expert

Precision 0.77 0.77 0.65 0.72
Recall 0.81 0.88 0.73 0.82
F1-Score 0.79 0.83 0.69 0.77
Median IoU 0.71 0.72 0.57 0.67
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that volunteer mappers failed to detect more ice-wedge poly-
gon centroids than experts, but did not commit more errors
in the points that they did identify than the experts. How-
ever, the difference in the values is more pronounced, and
extends to the precision (experts: 0.72, VGI: 0.65). Despite
the overall good performance, the moderate IoU values (CB:
0.71, BH: 0.57) suggest some discrepancies in the shapes
and sizes of the polygons. Visual inspection revealed that
these discrepancies are more pronounced in regions with het-
erogeneous landscapes, where the underlying environmental
factors influencing ice-wedge polygon morphology are more
complex.

4.5 Geomorphological properties

The workflow described in Sect. 3.3 results in CB being rep-
resented as a single network of 1490 ice-wedge polygons
in the volunteer dataset and 1679 in the expert dataset (Ta-
ble C1). BH consists of multiple sub-networks (21 in the
volunteer dataset and 25 in the dataset mapped by experts),
encompassing 1–133 and 1–140 polygons respectively. Both
the average number of polygons per sub-network and the
number of sub-networks in this study region are lower in
the volunteer dataset than in the expert dataset. On the aver-
age, ice-wedge polygons in BH are smaller than the ones in
CB (Fig. 7). The median polygon area is 304 m2 for CB and
147 m2 for BH, with the expert-contributed data set showing
a slightly higher median area for BH (160 m2) and a similar
one for CB (303 m2). The ice-wedge polygons have a median
perimeter of 68 m in CB and 48 m in BH, differing by only
1–2 m from the values in the expert data set. The median dis-
tance between neighboring centroids is approximately 19 m
for CB and 13 m for BH, which is consistent with the expert
dataset. The relative standard deviation values for all parame-
ters are in high agreement between the expert- and volunteer-
contributed datasets.

The same statistics computed for subsets of each study
region allow for evaluation against reference polygons (de-
scribed in Sect. 3.3). The relevant subsets covered by the
reference polygon data are shown in Appendix B and in-
clude about 100 ice-wedge polygons in CB and 150 in BH.
The polygon area exhibits the most discrepancies between
the three datasets (Table 2). Both the volunteer- and expert-
contributed datasets overestimate the polygon area by an av-
erage of 10–30 m2 while the data set contributed by volun-
teers is somewhat closer to the reference data set for both
study regions. The polygon perimeter is accurately repre-
sented in both the expert- and volunteer-contributed datasets
for CB with only minor deviations from the reference dataset
(mean deviations: 0–2 m). In BH, the perimeters are overes-
timated by about 3–4 m on average by both volunteers and
experts. In both study regions, only minor deviations are ob-
served between the reference, volunteer and expert polygons
as concerns the distance between neighboring centroids.

4.6 Hydrological properties

Betweenness centrality provides a measure of the importance
of individual channels for water drainage within hydrologi-
cal networks (Marra et al., 2014). Channels with high cen-
trality act as critical connectors, linking otherwise isolated
parts of the network and thereby playing a key role in main-
taining or enabling overall drainage. In the context of the hy-
drological function of ice-wedge polygon networks, through
segments with high centrality are likely to carry dispropor-
tionately large water fluxes, as they concentrate flow. Conse-
quently, they play an important role in the transport of dis-
solved nutrients and other substances, while also being more
susceptible to enhanced erosion and thermokarst develop-
ment (Rettelbach et al., 2021).

In CB, edges with high betweenness centrality values de-
rived from the volunteer-contributed graphs, i.e., troughs po-
tentially more affected by erosion, are located at the center
of the network (Fig. 8). The polygons delimited by edges
with high betweenness centrality values often have relatively
large areas and perimeters. When visually comparing these
troughs with remote sensing data, they often coincide with
areas of surface water occurrence (dark polygon centers).

In BH, the maximum betweenness centrality value is ap-
proximately ten times lower than in CB due to the smaller
size of the sub-networks (Fig. 8). For the same reason,
the maximum betweenness centrality values of edges differ
within the same region between the sub-networks, and are
generally higher in larger sub-networks. Similar to CB, edges
of high betweenness centrality are located in the center of
the sub-networks. In addition, visual inspection intriguingly
shows visible drainage path underneath edges of relatively
high betweenness centrality.

5 Discussion

5.1 Application

Mapping the polygon network provides a primary under-
standing of polygonal terrain and the results can be used
for a variety of applications, such as determining where ice
wedges tend to form by comparing their distribution with
landscape parameters like slope and surficial deposits (Frap-
pier and Lacelle, 2021). Furthermore, it enables quantita-
tive characterization of ice-wedge polygons conditions and
spatial properties, which provides critical insights into past
and current landscape shaping and altering processes. For in-
stance, measuring the angles and regularity of the network
based on spatial patterns of polygon intersections, helps de-
termine the maturity of ice-wedge networks and how they
evolve in different geomorphological settings (Haltigin et al.,
2012; Sletten et al., 2003; Frappier and Lacelle, 2021). More-
over, 3D subsurface models derived from the mapped poly-
gon networks allow for estimating wedge ice volume, a key
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Figure 7. Distribution of values for (a) polygon area (in m2), (b) perimeter (in m) and (c) the distance to the neighboring ice-wedge polygon
centroids (in m). The plot compares the study regions and the volunteer- (red) and expert-contributed (grey) dataset each.

Table 2. Comparison of Ice-Wedge Polygon Statistics between ice-wedge polygons derived from centroids digitized by volunteers and ex-
perts, and polygons from outlines manually digitized by experts (reference) for two Arctic study regions (Cape Blossom and Blueberry Hills).
The metrics include polygon count, area and perimeter measurements, and distances between neighboring ice-wedge polygon centroids and
are calculated for a subset area specified by the extent of the mapped reference polygons.

Cape Blossom Blueberry Hills

volunteer expert reference volunteer expert reference

No. of polygons 108 100 100 138 150 159

Polygon area (m2)

mean 301.54 321.31 289.65 162.68 164.33 140.31
median 292.99 319.33 270.59 153.85 155.17 126.25
standard deviation (std) 82.38 100.82 114.93 66.13 59.02 90.61
relative std 27.32 % 31.38 % 39.68 % 40.65 % 35.91 % 64.58 %

Polygon perimeter (m)

mean 67.29 69.37 67.20 50.30 49.79 45.26
median 66.62 69.83 66.53 49.30 49.27 44.44
std 8.36 10.44 13.23 9.64 8.77 14.11
relative std 12.43 % 15.05 % 19.69 % 19.17 % 17.61 % 31.17 %

Distance between neighboring centroids (m)

mean 19.26 19.78 19.16 14.15 13.90 13.26
median 18.90 19.92 19.23 14.21 13.81 13.39
std 2.38 2.77 2.74 2.27 2.26 2.81
relative std 12.33 % 13.99 % 14.29 % 16.07 % 16.27 % 21.24 %

factor in predicting thermokarst formation as permafrost de-
grades (Ulrich et al., 2014; Couture and Pollard, 2017).

Additionally, once the polygon network has been delin-
eated, it can be used to effectively extract different properties
of the polygonal terrain, contributing to the understanding of
surface and subsurface processes occurring at the local scale
(i.e., intra- or inter-polygons). The microtopography of the
polygons can be extracted from high resolution digital eleva-
tion models (DEMs) (Abolt et al., 2019; Abolt and Young,
2019) or ground displacement can be measured from InSAR
data (Short and Fraser, 2023). These data can inform on the

state of the ice wedges, as degradation typically leads to sub-
sidence of the soil above the ice wedge, progressively form-
ing high-centered polygons (Kanevskiy et al., 2017; Jorgen-
son et al., 2015). Similarly, vegetation and wetness indices
can be extracted from spectral imagery to understand surface
and subsurface wetness as well as vegetation distribution pat-
terns, which control a broad range of interactions between the
ground and the atmosphere (e.g., Zhang et al., 2018; Morse
and Burn, 2013; Langer et al., 2011a, b).

The ability to derive these spatial metrics and characteris-
tics not only improves our understanding of ice-wedge dis-
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Figure 8. Visualization of the betweenness centrality values of the edges in the ice-wedge networks reconstructed from volunteer-contributed
ice-wedge polygon centroids for (1) Cape Blossom and (2) Blueberry Hills. Especially the inset of CB shows visible drainage paths under-
neath edges of relatively high betweenness centrality.

tribution and condition, but also supports broader applica-
tions such as extrapolating these findings to other regions and
contributing to predictive models of ice-wedge polygon evo-
lution (Jorgenson et al., 2015; Zhang et al., 2018; Liljedahl
et al., 2016; O’Neill et al., 2019).

5.2 Limitations and potentials

Reconstructing the ice-wedge polygon network from
volunteer-generated ice-wedge polygon centroids can be a

viable alternative to automated workflows, particularly if oth-
erwise necessary data (such as a high resolution digital eleva-
tion model) is not available. The high similarity between the
reconstructed networks and the polygon networks observed
in RGB aerial images, despite significant differences in the
ice-wedge polygon network configurations, demonstrates the
effectiveness of the presented approach. The combination of
low-effort, time-efficient crowd-sourced mapping by point
digitizing with the reconstruction of networks can be a suit-
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able solution to derive geomorphological and hydrological
properties of polygonal tundra under different landscape con-
ditions. However, the spatial coverage that can be reached
by such an approach is limited by (i) the number of partic-
ipating volunteers, (ii) the number of tasks that each vol-
unteer is willing to complete, (iii) the overall person-hours
of volunteer contributions that can be mobilized for the the
crowd-sourced mapping process, and (iv) the time needed for
the completion of each task. In the case of the volunteer-
contributed data used in this study, the participants needed
a median time of 2.9 s for each digitized point. Observations
in early trials indicated that point digitization was the most
time-efficient one of the tested task designs. In a trial session
to evaluate different task types, participants needed a median
of 2 s per 1000 m2 of area (compared to 2.8 s in a classifi-
cation task design). It is important to note that the mapping
speed may vary strongly with factors such as the visibility
of the ice-wedge polygons in the imagery and the mapping
experience of the contributors. To make efficient use of vol-
unteer contributions, it is important to optimize the number
of participants that each task is assigned to. In Sect. 4.2, we
identify a number of five contributions per task as sufficient
for assuring a high quality of the aggregated crowd-sourced
data. This number is in line with previous findings on the op-
timal number of volunteer contributors to tasks of building
classification from aerial imagery (Herfort, 2018).

In relation to the efficiency of the mapping method pre-
sented, the additional effort required to recruit volunteers for
a crowd-sourcing activity must also be taken into account.
Volunteer engagement clearly demands communication, out-
reach, provision of context information and motivation. In
our case, this entailed among other outreach to schools and
teachers, creation of teaching material, and the preparation of
mapping events, with 13 person months allocated to commu-
nity involvement and training in the framework of a larger
citizen science project. As Huang et al. (2023) highlight,
recruiting volunteers for crowd-sourced mapping tasks can
be particularly challenging when the features of interest are
highly specific and unfamiliar to most people, such as ice-
wedge polygons. Sustaining volunteer contributions beyond
individual mapping events across larger spatial extents is
therefore likely to require tailored engagement strategies.
Potential approaches include: (a) substantially broadening
outreach efforts to educational institutions, while equipping
teachers with ready-to-use teaching materials to facilitate in-
class mapping sessions; (b) integrating ice-wedge polygon
mapping projects into established crowd-sourced mapping
platforms with active communities and providing interactive
tutorials to support self-guided learning; and (c) incorporat-
ing gamification elements such as leaderboards, badges, and
activity streaks to foster motivation and sustained participa-
tion.

The application for crowd-sourced mapping of ice-wedge
polygons was designed to enable contributions by people
without particular domain expertise, with some information

and context provided through teaching materials. While prior
knowledge allowed for providing more in-depth contextual-
ization to geography students at the respective events, the
concrete mapping task was designed to depend on general
pattern recognition skills. The majority of results were gen-
erated by secondary school students. This study does not
provide a comparison of quality of results for different user
groups from a controlled experimental setting. Such a com-
parison might be useful to inform any further extension of
the volunteer base.

For (volunteer) contributors to be able to accurately iden-
tify polygonal structures, the quality of imagery used as a
base in crowd-sourced mapping is critical. Factors such as
lighting and atmospheric conditions during image acquisi-
tion significantly influence the clarity and contrast needed
for recognition (O’Connor et al., 2017). In the case of this
study, some areas in the BH dataset contain small blurry sec-
tions due to the UAV flight geometry and lighting conditions.
However, it is well-documented that human interpreters can
often discern and infer subtle structures within images even
if the image quality is strongly reduced (Wang et al., 2024).
This ability is providing a distinct advantage over traditional
automated methods, which are more dependent on high con-
trast and clear image conditions for effective structure recog-
nition. With the advancement of modern machine learning
techniques in image analysis, such as Convolutional Neural
Networks (CNNs) the differences between human and auto-
mated structure recognition abilities are increasingly fading
(e.g. Wei et al., 2024). There is an interest in assessing how
these approaches compare to human interpretation in accu-
racy and reliability (e.g. Lake et al., 2015). The VGI method
presented here could contribute valuable insights, offering a
baseline dataset that could serve both training and validation,
potentially further enhancing machine learning models.

With respect to spatial resolution, this study does not ex-
perimentally compare mapping outcomes generated from
20 cm (CB) and 10 cm (BH) resolution imagery. It is to be
assumed that resolution – at this level – is not a decisive fac-
tor for the results. The BH orthomosaic was indeed down-
sampled from 5 to 10 cm for practical reasons, as the na-
tive resolution was deemed excessive for the given mapping
task on visual inspection. Nonetheless, access to sufficiently
high-resolution imagery remains important: given the typi-
cal dimensions of ice-wedge polygons and the width of their
delimiting troughs, crowd-sourced mapping of these features
would not be feasible with coarser-resolution data.

The assessment in Sect. 4.2 demonstrates that the qual-
ity, and particularly the completeness of the crowd-sourced
ice-wedge polygon centroids depends on the configuration
of the network, with more centroids omitted in areas of bor-
ders of networks and in smaller sub-networks. This may be
explained by the fact that the identification of smaller clus-
ters of ice-wedge polygons within regions with only few fea-
tures of interest requires a more systematic approach inspect-
ing the imagery of a specific micro-task. In addition, our ap-
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proach required to omit edge polygons from sub-networks
(see Sect. 4.3). For smaller networks, edge removal will re-
sult in a larger proportion of the polygons identified by vol-
unteers being removed from the output data, and may even
lead to entire sub-networks being omitted. Therefore, results
may be more accurate for regions with large contiguous ar-
eas of ice-wedge polygons (such as CB) than for regions with
dispersed clusters of smaller ice-wedge networks.

The application of the Voronoi method to reconstruct poly-
gon networks from approximate centroids means that the re-
sulting ice-wedge polygon boundaries are inclusive of the
troughs. This may partially explain differences both in av-
erage area and perimeter, when the reconstructed crowd-
sourced polygon boundaries are compared to reference poly-
gon boundaries that were captured exclusive of troughs, as
shown in Sect. 4.5. In general, our proposed method does not
allow for gaining information about trough sizes.

It has been demonstrated that natural crack mosaics in dry-
ing clay represent a random tessellation that evolves with
repeated wetting and drying cycles towards a Voronoi mo-
saic that minimizes internal energy (Haque et al., 2023). Al-
though there are similarities between the repetitive crack-
ing processes in drying and revetted clays and the formation
of thermal contraction cracks in frozen soils, it is not clear
whether this analogy is generally transferable to formation
of Voronoi structures. So far reconstructing ice-wedge net-
works using Voronoi diagrams are reported to be particularly
effective for orthogonal polygons featuring mainly rectangu-
lar or hexagonal shapes. These structures are often associated
with relatively early stages of ice-wedge polygon develop-
ment (low- and flat-centered polygons). It has been demon-
strated that these types of polygons can be well-represented
by Voronoi tessellations (Cresto Aleina et al., 2013; Ulrich
et al., 2014).

However, as the ice-wedge network evolves, forming sec-
ondary and higher order cracks, the ice-wedge network
can become more irregular. This could limit the ability of
Voronoi diagrams to represent all components of mature
polygon networks. In consequence this would result in over-
estimation of polygon areas and underestimation of wedge-
ice volume (Bernard-Grand’Maison and Pollard, 2018). This
leads to the need to better understand the structural formation
of ice-wedge networks. The presented VGI method could be
used to better understand to what extent the real polygon net-
work differs from the one reconstructed by the Voronoi dia-
gram. This could be added to the VGI concept, which could
be extended by a function to directly map trough lines in ad-
dition to ice-wedge polygon centroids. The degree of devia-
tion could deliver important insights into the evolution stage
of of the ice-wedge network. However, extending the VGI
concept with polygon or line digitization tasks would require
further research into the consequences of such extension on
mapping efficiency, accuracy, and volunteer engagement.

While our proposed method for network reconstruction
from crowd-sourced ice-wedge polygon centroids is specif-

ically tailored to the monitoring of ice-wedge polygons,
the underlying approach of micro-task-based crowd-sourced
mapping holds potential for a wider range of environmental
monitoring applications. In particular, it could be applied to
other permafrost landforms such as pingos or thaw slumps,
provided these features are sufficiently visible in available
imagery to non-expert volunteers. A key limitation, however,
lies in the spatial distribution of the target features: if they
occur too sparsely within the designated mapping area, sus-
taining volunteer engagement may become increasingly dif-
ficult.

6 Conclusions

The proposed methodology enables the use of VGI for mon-
itoring Arctic permafrost. Reconstruction of ice-wedge net-
works from crowd-sourced ice-wedge polygon centroids can
be a viable alternative to automated workflows for deriving
geomorphological and hydrological properties of permafrost
landscapes, especially when elevation data of the necessary
horizontal resolution and vertical accuracy is unavailable.

Volunteers are able to efficiently map ice-wedge polygon
centroids with reasonable accuracy. Volunteer-contributed
point data in both study areas show acceptable variation in
completeness (CB: 88.74 %, BH: 70.81 %) and positional
accuracy (median distance to nearest expert-mapped cen-
troid – CB: 1.29 m, BH: 1.56 m) when compared to expert-
contributed points. The quality of the volunteer-contributed
data, however, depends on the number of volunteers con-
tributing to each mapping task and on the configuration of
the ice-wedge network (e.g. the spatial distribution of ice-
wedge polygons) in the study region. Based on our findings,
we recommend to assign five volunteers to each micro-task
to achieve high quality results. The VGI data match those
generated by experts best in evenly distributed networks like
those at Cape Blossom.

The point data have been successfully utilized to recon-
struct ice-wedge polygon networks. A visual inspection of
the derived network shows a high level of agreement with
the actual network structure, consistent with previous studies
by Cresto Aleina et al. (2013) and Ulrich et al. (2014), which
also employ Voronoi diagrams to reconstruct ice-wedge net-
works. Compared with reference polygons traced by experts,
the reconstructed networks reach high values of accuracy,
particularly in evenly distributed networks (F1-Score: 0.79,
Median IoU: 0.71), and with only a small difference between
networks reconstructed from volunteer- and from expert-
contributed centroids. Our findings demonstrate that using
the Voronoi characteristics of ice-wedge polygons can effec-
tively simplify the mapping process, enabling volunteers to
complete the task with high quality and comparatively low
effort.

Quantitative statistical descriptors on the geomorphol-
ogy (polygon area, perimeter, and distance between neigh-
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boring centroids) and hydrology (betweenness centrality)
were successfully derived from the reconstructed networks
created from volunteer-contributed ice-wedge polygon cen-
troids. These statistics allow comparing landscape differ-
ences spatially and monitoring changes over time. Moreover,
the data generated can be utilized in land surface model-
ing schemes that incorporate information of aggregated land-
scape units to simulate sub-grid scale thermal and hydrolog-
ical processes.

Appendix A: Crowd-sourced mapping application

The VGI used in this study, that is, the approximate loca-
tions of ice-wedge polygon centers sourced by the crowd,
was collected by the participants in the UndercoverEisAgen-
ten project with the help of a web application that was devel-
oped as part of the project.

This web application is based in large part on MapSwipe1

an existing application for crowd-sourced mapping in hu-
manitarian use cases. While MapSwipe was originally de-
veloped as a mobile application for iOS and Android, the
UndercoverEisAgenten app uses a web based user interface
made with the JavaScript framework Vue. The newly devel-
oped web application serves as a client for an adapted ver-
sion of the MapSwipe back-end (see Fig. A2). One of the
major advancements is that the UndercoverEisAgenten ap-
plication allows for point digitization mapping tasks both in
the user interface as well as in back-end workflows to cre-
ate mapping projects and process mapping results. The web
client directly communicates only with a Firebase Realtime
database to load crowd-sourced mapping projects and tasks,
and to save the results, i.e. the volunteer contributions. Us-
ing Firebase Realtime database ensures horizontal scaling,
so that there is practically no limit of concurrent users of
the app. Tasks are assigned to the user by random selec-
tion among the groups of tasks with the highest number of
required contributions remaining. The mapping results are
regularly transferred from the Firebase Realtime database
to a Postgres database by Python workers for more sustain-
able and efficient storage and processing of large amounts
of data. Mapping projects are drafted with a Manager Dash-
board. Python workers regularly create projects from drafts
and generate statistics from the results of ongoing projects
stored in the Postgres database. Results and statistics are
provided via an API in appropriate open formats (comma-
separated value and GeoJSON files). Based on the Undercov-
erEisAgenten web client, MapSwipe was recently expanded
to include a web interface as well. The MapSwipe web
client source code is licensed under GPL-3.0 and is avail-
able at https://github.com/mapswipe/mapswipe-web (last ac-
cess: 24 November 2025). The back-end is available at https:
//github.com/mapswipe/python-mapswipe-workers (last ac-
cess: 24 November 2025) under Apache-2.0 license.

1https://mapswipe.org/ (last access: 24 November 2025)
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Figure A1. Screenshot of an ice-wedge polygon centroid digitization project in the crowd-sourced mapping application.

Figure A2. MapSwipe architecture diagram showing the interaction between the mapping clients, the Firebase Realtime database and the
backend.
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Appendix B: Visual Comparison and Validation of
Voronoi Polygons and Reference Data

Figure B1 provides a visual comparison of the generated
Voronoi polygons against the manually digitized reference
polygons for both study regions (Cape Blossom and Blue-
berry Hills) and data sources (VGI and expert).

– Subfigure (a) illustrates the Voronoi polygons derived
from VGI (pink) overlaid on the reference polygons
(light blue) for the Cape Blossom region, with a median
IoU of 0.71. The visual alignment between the Voronoi
and reference polygons appears to be better in this case
compared to Blueberry Hills, likely due to the more ho-
mogeneous landscape characteristics of the Cape Blos-
som region.

– Subfigure (b) shows the expert-derived Voronoi poly-
gons for Cape Blossom (yellow), which achieve the
highest median IoU of 0.72. The visual comparison
confirms the high accuracy, with the Voronoi polygons
closely matching the reference polygons across most of
the region.

– Subfigure (c) depicts the Voronoi polygons derived from
VGI (pink) overlaid on the reference polygons (light
blue) for the Blueberry Hills region. The accompanying
histogram shows the distribution of Intersection over
Union (IoU) scores, with a median IoU of 0.57. Visu-
ally, the Voronoi polygons generally align with the ref-
erence polygons, but some discrepancies in shape and
size are evident, particularly in areas with more com-
plex terrain features.

– Subfigure (d) presents the expert-derived Voronoi poly-
gons (yellow) for the same region. The median IoU in
this case is 0.67, indicating a better agreement with the
reference data compared to the VGI-derived polygons.
The visual comparison supports this observation, show-
ing a closer correspondence between the predicted and
reference polygons.

The figure highlights the influence of landscape hetero-
geneity and data source accuracy on the performance of
the Voronoi method. Areas with complex terrain and VGI-
derived polygon centers tend to exhibit lower IoU values
and more visual discrepancies compared to areas with homo-
geneous landscapes and expert-derived centers. This visual
analysis complements the quantitative assessment presented
in Table 1, providing a more comprehensive understanding
of the accuracy and limitations of the Voronoi approach for
mapping ice-wedge polygons.
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Figure B1. Visual comparison of Voronoi polygons and reference data. (a) VGI-derived polygons at Cape Blossom. (b) Expert-derived
polygons at Cape Blossom. (c) VGI-derived polygons at Blueberry Hills. (d) Expert-derived polygons at Blueberry Hills.
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Appendix C: Tables

Table C1. Comparison of Polygon Statistics for Different Study regions.

Cape Blossom Blueberry Hills

volunteer- expert- volunteer- expert-
contributed contributed contributed contributed

No. of sub-networks 1 1 21 25

No. of polygons per sub-network

minimum 1490 1679 1 1
maximum 1490 1679 133 140
mean 1490 1679 16.85 19.68

Polygon area (m2)

mean 322.20 315.94 156.09 174.46
median 303.85 303.44 146.95 159.84
standard deviation (std) 113.79 109.46 64.68 71.76
relative std 35.32 % 34.65 % 41.44 % 41.13 %

Polygon perimeter (m)

mean 69.28 68.36 49.07 51.38
median 68.34 67.99 48.48 50.15
std 11.11 10.88 9.74 10.01
relative std 16.04 % 15.92 % 19.85 % 19.49 %

Distance between neighboring centroids (m)

mean 19.57 19.34 13.32 14.08
median 19.34 19.20 13.15 13.70
std 3.02 3.01 2.53 2.74
relative std 15.44 % 15.59 % 19.03 % 19.49 %
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Table C2. Cape Blossom: Statistical Results of Post-hoc Test (Tukey HSD) for differences in medium distance between volunteer-contributed
points and their nearest expert-contributed neighbors (as indicator of positional accuracy) between groups of different cluster sizes.

Cluster size 1 Cluster size 2 Mean Diff p-adj Lower Upper Reject

2 3 −0.4526 0.0394 −0.8936 −0.0116 True
2 4 −0.6758 0.0000 −1.0634 −0.2882 True
2 5 −0.8182 0.0000 −1.1940 −0.4425 True
2 6 −0.9245 0.0000 −1.2969 −0.5520 True
2 7 −1.0173 0.0000 −1.4028 −0.6318 True
2 8 −1.0242 0.0000 −1.4036 −0.6447 True
2 9+ −0.8095 0.0000 −1.2270 −0.3921 True

3 4 −0.2232 0.5872 −0.5898 0.1434 False
3 5 −0.3656 0.0371 −0.7196 −0.0117 True
3 6 −0.4718 0.0012 −0.8224 −0.1213 True
3 7 −0.5647 0.0001 −0.9290 −0.2003 True
3 8 −0.5715 0.0000 −0.9294 −0.2136 True
3 9+ −0.3569 0.1167 −0.7549 0.0410 False

4 5 −0.1424 0.7977 −0.4272 0.1423 False
4 6 −0.2487 0.1259 −0.5291 0.0318 False
4 7 −0.3415 0.0119 −0.6390 −0.0440 True
4 8 −0.3484 0.0066 −0.6380 −0.0588 True
4 9+ −0.1338 0.9317 −0.4716 0.2041 False

5 6 −0.1062 0.9254 −0.3700 0.1575 False
5 7 −0.1990 0.3872 −0.4808 0.0828 False
5 8 −0.2059 0.3023 −0.4794 0.0675 False
5 9+ 0.0087 1.0000 −0.3155 0.3329 False

6 7 −0.0928 0.9722 −0.3703 0.1847 False
6 8 −0.0997 0.9515 −0.3687 0.1693 False
6 9+ 0.1149 0.9593 −0.2055 0.4353 False

7 8 −0.0069 1.0000 −0.2936 0.2798 False
7 9+ 0.2077 0.5653 −0.1277 0.5432 False

8 9+ 0.2146 0.4938 −0.1139 0.5431 False
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Table C3. Blueberry Hills: Statistical Results of Post-hoc Test (Tukey HSD) for differences in medium distance to between volunteer-
contributed points and their nearest expert-contributed neighbors (as indicator of positional accuracy) between groups of different cluster
sizes.

Cluster size 1 Cluster size 2 Mean Diff p-adj Lower Upper Reject

2 3 −0.8823 0.1319 −1.8848 0.1203 False
2 4 −1.5442 0.0063 −2.8222 −0.2662 True
2 5 −2.0151 0.0001 −3.3029 −0.7273 True
2 6 −2.7012 0.0010 −4.6853 −0.7171 True
2 7 −1.3433 0.5554 −3.4993 0.8128 False
2 8 −1.3566 0.4653 −3.3927 0.6796 False
2 9+ −2.5678 0.0000 −3.3504 −1.7852 True

3 4 −0.6620 0.8253 −2.0348 0.7108 False
3 5 −1.1328 0.2004 −2.5147 0.2491 False
3 6 −1.8189 0.1236 −3.8654 0.2275 False
3 7 −0.4610 0.9984 −2.6746 1.7526 False
3 8 −0.4743 0.9973 −2.5713 1.6227 False
3 9+ −1.6855 0.0000 −2.6149 −0.7562 True

4 5 −0.4709 0.9862 −2.0639 1.1222 False
4 6 −1.1570 0.7486 −3.3516 1.0376 False
4 7 0.2010 1.0000 −2.1502 2.5522 False
4 8 0.1877 1.0000 −2.0541 2.4294 False
4 9+ −1.0236 0.1774 −2.2450 0.1979 False

5 6 −0.6861 0.9811 −2.8864 1.5142 False
5 7 0.6718 0.9888 −1.6847 3.0283 False
5 8 0.6585 0.9869 −1.5888 2.9059 False
5 9+ −0.5527 0.8731 −1.7844 0.6790 False

6 7 1.3580 0.8205 −1.4405 4.1564 False
6 8 1.3447 0.8020 −1.3625 4.0519 False
6 9+ 0.1334 1.0000 −1.8148 2.0816 False

7 8 −0.0133 1.0000 −2.8489 2.8223 False
7 9+ −1.2246 0.6518 −3.3476 0.8985 False

8 9+ −1.2113 0.5927 −3.2124 0.7899 False
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Code and data availability. A high-resolution UAV orthomosaic
that served as a basis for crowd-sourced permafrost mapping of the
Blueberry Hills study region is published as Mueller et al. (2024)
(https://doi.org/10.5281/zenodo.14283656), the aerial MACS
dataset for the Cape Blossom study region is made available as Ret-
telbach et al. (2024) (https://doi.org/10.1594/PANGAEA.962535).
Datasets of crowd-sourced and expert generated ice-wedge
polygon centroids are available with Walz et al. (2025)
(https://doi.org/10.5281/zenodo.14756139). Python scripts for
data processing and analysis as described in Sect. 3.3 are available
with Walz (2025) (https://doi.org/10.5281/zenodo.17296844). The
availability of the web application used for crowd-sourced mapping
is described in Appendix A.
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