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Abstract. How do snow distribution patterns influence the
surface temperature of snow on sea ice? Despite its cru-
cial role in the sea-ice energy balance, snow on Antarctic
sea ice remains under-sampled and poorly understood. In
our study, we combined Uncrewed Aerial Vehicle (UAV)
and ground-based measurements to obtain high resolution
(9 cm per pixel) maps of snow topography (Digital Eleva-
tion Model; DEM), surface temperature, and modeled irra-
diance over a 200m x 200 m test site on relatively uniform
landfast sea ice (2.4+0.04 m thick) in McMurdo Sound,
Ross Sea, Antarctica. A key technical advance presented
here is a new algorithm to correct thermal camera drift from
Non-Uniformity Correction (NUC) events in the DJI Matrice
30T, enabling consistent, accurate airborne temperature re-
trievals with applications beyond polar research. Based on
MagnaProbe measurements, the average snow depth for the
test site is 0.1 & 0.04 m. Snow surface temperatures average
—14.7+0.4°C, with local variations up to 12°C. Small-
scale topography strongly affects local irradiance (modeled
592 +45 vs. 593 +20 Wm 2 measured), revealing that flat-
surface assumptions underestimate local variability of irradi-
ance. Statistical analyses identify irradiance and visible sed-
iment deposition as dominant predictors of surface temper-
atures, while snow depth plays only a minor role. These re-
sults highlight that assuming that snow-covered sea ice is a
flat surface fails to represent the full irradiance range, po-
tentially impacting non-linear energy balance processes. Our
study provides new insights into drivers of snow surface tem-
peratures over sea ice with potential implications for the sea-
ice energy balance.

1 Introduction

The effects of climate change have far-reaching conse-
quences in polar environments, particularly in the ice-
dominated high-latitude regions of the Arctic and Antarc-
tica (Callaghan et al., 2011; Simmonds, 2015; Lindsay and
Schweiger, 2015; Meredith et al., 2022). These regions ex-
perience polar amplification, a phenomenon where warming
is more pronounced compared to lower latitudes (Stuecker
et al.,, 2018; Wendisch et al., 2022). As polar ice caps,
glaciers, and sea ice melt, the exposed darker surfaces, such
as the open ocean and bare land surfaces, can absorb more
solar energy, leading to further melting and darkening, and
thus influencing large-scale atmospheric circulation patterns
(Perovich et al., 2007).

Sea ice growth and decay play a key role in this ice-albedo
feedback loop (Riiheld et al., 2021). The annual growth cy-
cle of sea ice is one of the most extensive changes observed
on Earth’s surface (Parkinson, 2014), and its long-term trend
differs significantly between the Arctic and Antarctica. Arc-
tic sea ice has experienced a trend of rapid sea ice loss
(Lindsay and Schweiger, 2015). In contrast, the minimum
Antarctic sea ice extent exhibits more variability, with a gen-
eral increase through the satellite period (since 1978) un-
til 2016, and a decrease thereafter. Recent records show the
lowest minimum extent since record-keeping began in 1978
(Wang et al., 2022). The thickness, extent, and duration of
sea ice impact the absorption and reflectance of solar radia-
tion, thereby influencing the Earth’s energy balance (Massom
and Stammerjohn, 2010). Additionally, sea ice affects ocean
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circulation patterns, ecosystems, and the carbon cycle (Stein
et al., 2020; Massom and Stammerjohn, 2010).

Snow cover is a critical factor in sea ice thermodynamics,
impacting interactions between sea ice and the atmosphere
(Landrum and Holland, 2022). Snow, one of the most insu-
lating natural materials, is a barrier to heat exchange between
the ocean, sea ice, and atmosphere (Webster et al., 2018).
It has a high albedo, up to 0.9, compared to the albedo of
bare sea ice (~ 0.4-0.6) or the open ocean (0.06) (Perovich
et al., 2007; Brandt et al., 2011; Light et al., 2022; Smith
et al., 2022), enhancing reflectance and influencing regional
and global climate by affecting heat and mass balance (Za-
tko and Warren, 2015). Snow accumulation and metamor-
phism impact the conductive and radiative properties of sea
ice, affecting its thickness, salinity, temperature, and perme-
ability, highlighting the importance of understanding snow-
pack dynamics (Sturm et al., 1997; Perovich and Polashen-
ski, 2012). Despite the recognized influence of snow prop-
erties on sea ice thermodynamics, the relative importance of
different factors — such as snow depth, surface microtopogra-
phy, and sediment deposition — on snow surface temperature
remains poorly understood.

Comprehensive datasets concerning the spatial evolution
of snow on sea in Antarctica are limited (Eicken et al., 1994;
Massom et al., 2001; Brandt et al., 2005; Sturm and Mas-
som, 2016; Arndt and Paul, 2018). Antarctic snow on sea ice
differs markedly from its Arctic counterpart, with large spa-
tial variability depending on the location. Antarctic snow is
generally thicker (Arndt et al., 2017; Arndt and Paul, 2018;
Nicolaus et al., 2021; Lawrence et al., 2024), colder, and
persists throughout the year, contrasting with the thinner,
warmer snow in the Arctic (Massom et al., 2001). In Mc-
Murdo Sound, snow on sea ice persists through summer until
breakout, but is generally thinner than in other Antarctic fast
ice regions (Brett et al., 2020). This persistent snow cover
influences sea ice albedo, primarily through snow thickness
and physical properties such as specific surface area, salin-
ity and liquid water content in summer (Zhou et al., 2001).
In some areas in Antarctica, like the Weddel Sea, the thick
snow cover and thinner sea ice lead to flooding, where the
weight of the snow depresses the ice surface, allowing seawa-
ter to infiltrate the snow. This seawater-saturated snow then
refreezes, resulting in snow-ice formation and thickening of
the ice from above (Eicken et al., 1994; Massom et al., 2001;
Arndt et al., 2017).

In McMurdo Sound, in particular, research on snow is
sparse (Price et al., 2013, 2019; Brett et al., 2020). Recent
advancements, such as the Tan et al. (2021) airborne study
provide valuable data into snow depth distribution, but under-
score the need for more extensive datasets to address critical
gaps in our understanding of Antarctic snow on sea ice dy-
namics. The lack of comprehensive snow data on Antarctica
sea ice, and the significant differences between the Antarctic
and Arctic lead to biases in modeling sea ice behavior and
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errors in global climate system scenarios (Wever et al., 2021;
Landrum and Holland, 2022).

To collect data on the physical properties of snow on
Antarctic sea ice, drones are a promising tool (Gaffey and
Bhardwaj, 2020; Pirazzini et al., 2021; Roman et al., 2024).
They have been widely used in scientific studies of the
cryosphere outside the polar regions (Biihler et al., 2016;
Sproles et al., 2020). Drones can cover extensive areas and si-
multaneously measure specific snow parameters at high res-
olution, bridging the gap between point-based ground mea-
surements and low-resolution satellite remote sensing (Wig-
more et al., 2019; Tan et al., 2021; Wigmore and Molotch,
2023), and even provide opportunities for validating satellite
remote sensing products. For example, airborne laser scan-
ning has been used to assess ICESat-2’s ability to capture
sea ice surface topography and roughness, revealing limi-
tations in detecting small-scale features such as ridges and
cracks (Ricker et al., 2023). Similarly, drone-based observa-
tions could contribute to validating missions like Polar Radi-
ant Energy in the Far Infrared Experiment (PREFIRE), which
aims to improve our understanding of the Earth’s energy bud-
get in polar regions (Kahn et al., 2020).

Our study has three objectives: (1) To develop and validate
an airborne method for accurately mapping snow surface to-
pography and surface temperature on flat sea ice in the polar
regions. (2) To use this airborne method to quantify the snow
topography and surface temperature variability over landfast,
flat Antarctic sea ice at the 100 m-scale. (3) To investigate the
relative influence of potential drivers — including snow depth,
sediment presence, and microtopography-driven irradiance
variations — on snow surface temperature. We used multi-
spectral (visible, thermal infrared) Uncrewed Aerial Vehicle
(UAV) imagery at sub-metre spatial resolution, closely fol-
lowing the workflow published by Wigmore et al. (2019).
We integrate airborne surface elevation and temperature data
collected in November 2022 with ground-based surveys of
snow depth, snow surface temperature, and ice thickness.
The resulting datasets, combined with topography-dependent
irradiance modeling, allowed us to examine how fine-scale
surface topography and local sediment deposition control
snow surface temperature variability. Our findings demon-
strate that no single factor alone can explain the complexity
of the sea ice surface energy balance. Our work not only pro-
vides new insights into the role of small-scale variability in
snow-atmosphere interactions but also delivers a novel, high-
resolution dataset to support improved parameterizations of
sea ice models.

This paper first describes the study site, ground-based and
airborne data, and processing methods, including UAV ther-
mal imaging, Digital Elevation Model (DEM) generation,
and the resulting snow depth proxy. The results explore spa-
tial patterns of snow depth and surface temperature, followed
by a discussion on technical considerations, and the roles of
snow depth, sediment, and irradiance on snow surface tem-
perature.
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Figure 1. Landsat image from 6 November 2022. Study area (black star) in West Antarctica, McMurdo Sound, and Ross Island with Scott
Base (NZ), McMurdo Station (USA), and the Camp Site (CS) test field (yellow rectangle) on the ice wedge between the Ross Ice Shelf and

the tip of Ross Island.

2 Methods

During a field campaign in November 2022 (4 weeks), we
collected snow and sea ice data on the fast ice in front of the
McMurdo Ice Shelf, Ross Sea, about 5 km southwest of Scott
Base and McMurdo Station (Fig. 1). We collected a new and
unique airborne dataset consisting of aerial Red, Green, Blue
(RGB) and Thermal InfraRed (TIR) images of the snow sur-
face along with photogrammetrically derived digital eleva-
tion models, the latter also used to model local irradiance pat-
terns. We calibrated the airborne dataset with ground-based
surface temperature, snow depth, and ice thickness surveys,
as well as radiation measurements.

2.1 Study site and conditions

McMurdo Sound is located in West Antarctica, in the south-
western part of the Ross Sea, framed by Ross Island to the
east, the Ross Ice Shelf to the south, and Victoria Land to the
west (Fig. 1). McMurdo Sound has a variable snow cover of
0.1-0.3 m (Brett et al., 2020) and limited snow-ice formation
compared to wetter regions like the Weddell Sea (Maksym
and Markus, 2008). The landfast sea ice is usually 2-2.5m
thick (Brett et al., 2020), and there is an extensive sub-ice
platelet layer (up to 9 m) due to the proximity of the Ross Ice
Shelf and its super-cooled water supply (Gough et al., 2012;
Langhorne et al., 2015; Haas et al., 2021). During our field
campaign, the average wind speed was 4.7 ms~!, and the av-
erage temperature was —14.2 °C (Fig. A2).

Typically, sea ice formation starts in March and lasts un-
til October, followed by a break-out in January/February. In
2022, the sea ice formation was highly impacted by southerly
storms repeatedly interrupting the sea ice formation cycle,
similar to the conditions in winter 2019 (Leonard et al.,
2021). Except for a small “wedge” of ice pinned between the
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front of the ice shelf and the tip of Ross Island (Fig. 1), the
Sound remained largely ice-free until August 2022. As a re-
sult, two distinct sea ice types formed: “old ice”, which began
forming in the typical cycle around March/April and reached
a thickness of about 2.5 m during our field campaign, and
“new ice”, which started forming only after August 2022 and
grew to about 1-1.5 m thickness by November 2022. During
the November 2022 field campaign, we collected data on five
200 m x 200 m sites with different snow and ice conditions,
of which, in this study, we only discuss the site we assumed
to be “flat and relatively homogeneous”. The site was our
main test site (Camp Site; CS), located on the flat “old ice”,
next to the field camp (Fig. 1, yellow rectangle).

2.2 Ground-based data

Our ground-based dataset consists of automated radiation
data, weather data, and snow and ice thickness measure-
ments. All sensors, instruments, and parameters used in this
study are listed in Table 1.

2.2.1 Radiation and weather data

We installed automated measurement stations to capture the
local radiation, surface temperature, and weather conditions
and to validate and correct airborne measurements, as well as
to calibrate the irradiance model. The radiation station was
outfitted with a pair of Kipp & Zonen CMP22 pyranometers,
one facing upward and one facing downward, to measure
the broadband incident (Sw}) and reflected (Sw1}) solar ir-
radiance in the 200-3600 nm wavelength range, and a pair
of Kipp & Zonen CGR4 pyrgeometers, one facing upward
and one facing downward, to measure the broadband incom-
ing (Lwl}) and outgoing (Lw1}) longwave radiation in the
450042000 nm wavelength range. The sensors were ven-
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Table 1. Summary of ground-based and airborne instruments with measurement parameters and uncertainties.

Airborne  Ground-based Parameter Instrument/Method Unit Uncertainty
X Ice Thickness Geonics EM31 m +0.1
X Snow Depth SnowHydro MagnaProbe m +0.02
X Snow Depth (Proxy) DJI Matrice 30T m +0.045*
X Surface Temperature Apogee SI-121-SS °C +0.2
X Surface Temperature DJI Matrice 30T °C +2
X Wind Direction R.M. Young Heavy Duty Wind Monitor
HD-Alpine ° +3
X Wind Speed R.M. Young Heavy Duty Wind Monitor
HD-Alpine ms~1  +03
X Air Temperature Vaisala HMP155 Temperature Probe °C + (0.226-0.0028
X temperature)
X Relative Humidity Vaisala HMP155 Temperature Probe % +2%
X Incoming (direct/diffuse) Delta-T Devices Wm—2 +5%
Shortwave Radiation SPN1 Pyranometer Daily integrals
X Incoming/Outgoing Kipp & Zonen Wm2 +£12%to
Shortwave Radiation CMP22 Pyranometer +14%
X Incoming/Outgoing Kipp & Zonen Wm2 +15%to
Longwave Radiation CGR4 Pyrgeometer +2.0%
X Location (Long/Lat) Septentrio AsteRx m £0.01 horizontally

+0.02 vertically

The uncertainty for the airborne snow depth (*) is the propagated error counting for the MagnaProbe snow depth error and the GCP error in the z-direction.

tilated, and according to the manufacturer’s specifications,
the nominal accuracy of the Sw and Lw measurements is
~ 1% and 3 %, respectively. The radiation station also in-
cluded a DeltaT SPN1 radiometer that measured broadband
global and diffuse incident irradiance (Sw{} and Swggr {}) in
the 400-2700 nm wavelength range. According to the man-
ufacturer, the nominal accuracy of both measurements is
+8 %. Inter-calibration studies have shown that an extra fac-
tor of 1.05 should be applied to Swyifr {} to compensate for
its systematic underestimation (Badosa et al., 2014). A sta-
tionary Apogee infrared radiometer (model SI-121-SS) in-
stalled slightly north of the radiation station was pointing at
clean snow (“cold target”) with an angle of approximately
45° mounted at ~ 1.2 m height, leading to an elliptical foot-
print of about 1.6 m?. The data were logged every 10s. A
non-stationary Apogee infrared radiometer (model SI-121-
SS) on a tripod was placed in the test field and mounted at
1.02 m, pointing vertically downward (nadir view) a sedi-
ment patch (“sediment target”), yielding a near circular foot-
print of 0.35 m?.

The Cryosphere, 19, 6103-6126, 2025

2.2.2 Snow depth

To capture the spatial distribution of snow depth, we con-
ducted MagnaProbe transects (Sturm and Holmgren, 2018).
The MagnaProbe is a user-friendly device that allows for
rapid snow depth measurements. The snow depth is mea-
sured by inserting a 1.53 m steel rod with a sliding ring mag-
net inside a plastic disk into the snow until the tip of the rod
hits the ground. An electronic pulse from a magnetostric-
tive sensor determines the position of the magnet, convert-
ing the signal into the distance from the rod’s tip to the disk
and indicating snow depth. The snow depth and the GPS
position (GARMIN™ receiver and Campbell Scientific an-
tenna) are recorded with a Campbell Scientific CR800 data
logger (Sturm and Holmgren, 2018). The accuracy of the
snow depth depends on (1) the hardness of the underlying
surface (a too-soft material will cause compaction and over-
probing), (2) the positioning of the plastic disk on the snow
surface, and (3) the correctness of the vertical angle. For our
measurement campaign, the uncertainty is mainly influenced
by (2) and (3) as the snow surface is relatively hard and un-
even, affecting the insertion of the probe and the ability of
the plastic disk to lie flat on the snow surface. We assume
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the measurements are within a £ 0.02 m uncertainty. This is
slightly larger than the 0.01 m assumed for the winter MO-
SAiC (Multidisciplinary drifting Observatory for the Study
of Arctic Climate) measurements over likely similar rough-
ness (Itkin et al., 2023), to account for the exceptionally hard
snow surface, which made it difficult for the MagnaProbe
disc to lay perfectly flat. The GPS accuracy is + 2.5 m. Our
measurement strategy was to conduct transects along the
measurement field borders and a cross through the middle,
taking a measurement approximately every 1.5 m, which re-
sulted in 813 measurements for this particular “study field”.

2.2.3 Ice thickness

We used the Geonics electromagnetic conductivity meter
(EM31) combined with manual drilling to survey the ice
thickness. The EM31 is a geophysical instrument that mea-
sures sea ice conductivity and in-phase components to detect
subsurface features (Tateyama et al., 2006). It operates based
on the principles of electromagnetic induction. The EM31,
consisting of a transmitter and receiver coil, was mounted on
a sledge and towed over the snow by a snow machine. The
transmitter coil emits a primary electromagnetic field into the
ground, and as the field penetrates the ice, it reaches the con-
ductive seawater beneath. This causes strong eddy currents to
form, generating a secondary electromagnetic field. The re-
ceiver coil detects this secondary field, which is altered by the
distance it travels through the ice. The EM31 measures the
apparent conductivity of the subsurface and the phase shift
between the primary and secondary fields. These measure-
ments are recorded continuously as the instrument is moved
across the ice. To account for local variations in ice thickness
and device calibration, we took direct ice thickness measure-
ments at various points (approximately every 50 m) using a
Covacs ice drill. We used the same survey pattern for the
EM31 ice thickness measurements as for snow depth. While
there is a significant platelet ice layer in our survey field, we
excluded it from our ice thickness evaluation by calibrating
the EM31-signal to ice and snow thickness only. The snow
and ice thickness was calculated following a linear regres-
sion between conductivity and manually measured ice and
snow thickness at the CS test field:

hice+snow = —0.0103 k +4.2285 (1)

with A;ice4snow the combined ice and snow thickness and «
the conductivity. During our surveys the EM31 was mounted
0.5 m above the surface (snow or ice depending on the mea-
surement location) on a sledge that was pulled with a snow
machine. To calculate only the ice thickness, we subtracted
the mounting height as well as the average snow depth of
0.16 m from the DEM.
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2.3 Airborne data

We used a DJI Matrice 30T, a multi-rotor (quadcopter) UAV
with self-heating batteries, suitable for operations in polar
conditions (temperature range from —20 to +50°C). The
UAV has a wide-angle camera (12MP) for RGB images
and a thermal camera (Uncooled Vox Microbolometer, long-
wave infrared spectrum 8—14 um, 1.31 MP) for TIR images
with an accuracy of £2°C or £2 % (Da Jiang Innvoations
(DJI), 2022). The exact wavelength for the wide angle and
TIR camera is unknown.

To retrieve RGB and TIR imagery, we programmed two
missions following a lawnmower cross-grid survey pat-
tern at two different flight altitudes, and executed them on
14 November 2022. The first flight at 60 m altitude took off
at 22:12:00 and finished at 22:31:19 (UTC). We changed the
batteries and executed the second flight at 75 m altitude, with
the take-off at 22:44:45 and landing at 23:01:37 (UTC). The
frontal overlap of the images was set to the maximum of 95 %
and the side overlap to 80 %. The high frontal overlap only
affects the frequency at which the pictures are taken and does
not affect the flight pattern or flight time. The RGB and TIR
images were shot simultaneously.

2.3.1 Georeferencing

To georeference the RGB and TIR images, we used 10 tar-
gets as Ground Control Points (GCPs) on the snow surface
across the 200 m x 200 m measurement area before the drone
flight. The RGB targets were 0.3 m x 0.3 m sheets of yel-
low coroplast plastic, with a pink duct-tape cross defining
a centre point. For the TIR survey, 0.4 m x 0.4 m black tar-
gets were installed next to the RGB targets. As black (hot)
targets, we used thermal insulation material, similar to camp-
ing mats, that was black on the top side, with silver-colored
foil as backing (similar to first aid blankets) at the bottom.
The location of each of the RGB targets was measured us-
ing dual-frequency GNSS receivers, and post-processing was
done using the Precise Point Positioning kinematic method
(Malinowski and Kwiecien, 2016) and the software <teqc>>
(Estey and Meertens, 1999).

2.3.2 TIR image processing: Non-Uniformity
Correction (NUC)

The proprietary RIPG format used by the thermal camera re-
tains absolute brightness temperatures but cannot be directly
analyzed. We therefore converted the images to TIFF using
the ImageJ IR UAV plugin (Pereyra Irujo, 2022) before pro-
cessing them with the SfM workflow in Agisoft Metashape
Pro version 1.8.4 (Wigmore and Molotch, 2023) in Fig. 2.
The thermal camera of the DJI Matrice 30T uses an un-
cooled microbolometer, which is prone to non-uniformities
in its sensor array; each pixel responds slightly differently
to the same temperature. To correct for measurement drift

The Cryosphere, 19, 6103-6126, 2025
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Figure 2. Workflow for processing and analyzing RGB and TIR images captured with the DJI Matrice 30T during two flights in 60 and
75 m altitude. The process includes converting RJIPG images to TIFF format using the ImageJ IR UAV plugin, applying the NUC correction
algorithms for the internal camera calibration, and processing both TIR and RGB images through photogrammetry steps in Metashape. Key
steps include sparse point-cloud generation, georeferencing, optimization, dense cloud generation, mesh creation and the DEM and RGB/TIR
orthomosaic production. Then, we apply a final offset correction using ground-based MagnaProbe snow depth measurements and the surface

temperature calibration using ground-based Apogee temperature data.

caused by these differences, the camera performs periodic
internal calibrations known as Non-Uniformity Correction
(NUC) events. This process involves a shutter that blocks the
lens, providing a uniform temperature source for calibration.
The camera measures each pixel’s response to this source and
adjusts its settings to correct any discrepancies. After cal-
ibration, these adjustments ensure accuracy and uniformity
in subsequent images. The frequency of NUC events varies
depending on the camera model and environmental condi-
tions, but it is often not documented and seldom adjustable
for off-the-shelf drones, like the DJI Matrice 30T. Conse-
quently, temperature differences of up to 1.5 °C can occur in
consecutive TIR images taken before and after a NUC event,
as shown in Fig. 3a (red and yellow dots, respectively). We
introduce a novel NUC correction algorithm that aligns and
compares temperature measurements across frames, mitigat-
ing discontinuities caused by internal NUC events:

The Cryosphere, 19, 6103-6126, 2025

Step 1: Read  sequential
1280 x 1024 px)

image pairs (RIPG;

Step 2: Identify overlapping areas in each image pair (in
this dataset, the overlap is at least 70 %). We do this by
finding and extracting unique features to ensure iden-
tical regions in each image pair. For this, we use the
Oriented FAST and Rotated BRIEF (ORB algorithm)
detector, which combines two key components: FAST
(Features from Accelerated Segment Test) and BRIEF
(Binary Robust Independent Elementary Features De-
scriptor). FAST identifies interesting points (corners) in
an image, similar to spotting unique landmarks on a city
map. BRIEF then describes these corners using com-
pact binary “fingerprints”, analogous to noting a land-
mark’s distinctive features (e.g., “a red brick house with
a tall chimney”). The ORB algorithm enables efficient
and robust feature matching between images (OpenCV

https://doi.org/10.5194/tc-19-6103-2025
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Developers, 2000; Rublee et al., 2011). Then, we use
the Brute-Force Matcher (OpenCV Developers, 2000)
to calculate corresponding points and select the 50 best
feature matches in each image pair to estimate a homog-
raphy matrix, which describes the geometric relation-
ship between the two images.

Step 3: For each pair of successive images, the first image
is warped to align with the grid of the second image
to ensure accurate overlap and compensate for camera
movement.

Step 4: Extraction of brightness temperatures from each
pixel. From here on, we use the converted TIFF images
(TIFF; 640 x 512 px).

Step 5: For each TIFF image, calculation of the mean
brightness temperature Tbrighmess of the area (¢ overlap-
ping with the following image. Ideally, the T brightness
of the same overlapping area in different images should
match, as the thermal images were captured nearly si-
multaneously. However, due to temperature drift and
NUC events, discrepancies arise and must be corrected.

Step 6: Identification of NUC events. A NUC; event, with
i =1,... m (m being the total number of NUC events
during the considered flight), is identified when the ab-
solute differences between the Tbrighmess of overlap re-
gions in consecutive images is > 0.5 °C (Fig. 3a). NUC
events in this study were identified using a fixed thresh-
old of 0.5 °C, chosen empirically based on the stabil-
ity of the correction curve (Fig. 3a). We tested different
thresholds (1 °C, 0.5 °C, and a dynamic 99th percentile
approach) and found that 0.5 °C visually identified the
NUC events most clearly and consistently at this site.
We therefore chose this fixed threshold for the present
analysis, while noting that adaptive approaches may
be more appropriate at sites with greater temperature
heterogeneity. Between two NUC events, NUC; and
NUC, 1, there are n images I;, with j =1,...n (n be-
ing the number of TIR images taken between two con-
secutive NUC events). For image /;, Tbrighmess(i,j) rep-
resents the mean temperature of image /; 1 (in the over-
lap region). We do not consider a temperature change
> +0.5°C to be a NUC event if it affects one image
only (e.g. Fig. 3a: blue dot).

Step 7: Correction of the temperature drift between two
consecutive NUC events. We assume that the tempera-
tures measured immediately after the NUC events are
accurate, and that the temperature drift (drift rate d;)
over the n images between two consecutive NUC events
(NUC; and NUC; ) is linear:

di = (Trightness(i+1,1) — T brightness(i,n)) /7 )

where Tbrighmess(,-,n) is the mean temperature of the
overlap area in the final image n in the series after the
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NUC; event (red dots in Fig. 3), and Tbrightess(i+1,1) 1S
the mean temperature of the overlap area in the first im-
age after the NUC; | event (yellow dots in Fig. 3). d;
is then applied to calculate the linear correction ¢;,; for
the Tbirghtness(i, j) mean temperatures of the j =1,...n
images between NUC; and NUC;:

ci,j=jdi ®)

The brightness temperature of each pixel in each TIR
image is then corrected by adding ¢; ;.

To understand the improvement achieved with this tem-
perature correction procedure, we analysed the temperature
in 250 random areas of 10 m x 10 m taken from the NUC un-
corrected and NUC corrected TIR orthomosaics. While our
algorithm to correct the images for NUC events is applied se-
quentially (it depends on the order of images), we found that
this analysis does not depend on the order in which the im-
ages were taken. For each of the 250 areas that contained at
least 10 images, we calculated the temperature anomaly per
image by subtracting the mean areal temperature from the
mean image temperature Tbrighmess. By comparing the tem-
perature anomalies in the NUC uncorrected and NUC cor-
rected TIR orthomosaic, we can assess the algorithm’s im-
pact performance in reducing drift and variability of temper-
ature anomalies (Fig. 3c, dark grey vs. light grey) across the
dataset.

In the NUC uncorrected TIR orthomosaic, the spread of
anomalies ranged between +4°C due to the temperature
drift in between NUC events and the consequent variabil-
ity in Tbrighmess among the images capturing the same over-
lapping area. In the NUC corrected TIR orthomosaic, the
distribution of temperature anomalies narrowed to the range
+2°C, there were fewer outliers, and the whiskers of the
temperature anomaly boxplot shrank (Fig. 3c). This suggests
that our correction improved the repeatability of Tbrighmess at
each site, reaching an accuracy comparable to the sensor un-
certainty (see Sect. 2.3). The Root Mean Square (RMSE) of
the temperature anomalies across all 250 sampled areas was
1.11 °C in the NUC uncorrected orthomosaic and decreased
by 0.53 °C down to 0.58 °C in the NUC corrected orthomo-
saic.

2.3.3 TIR orthomosaic

To produce the TIR orthomosaic, we first generated the
sparse point cloud through tie-point generation, alignment,
and cloud creation. After georeferencing with GCPs from
both RGB and TIR images, we optimized the sparse cloud
by removing outliers. We then created a high-quality, dense
point cloud, generated a TIN mesh, and applied an oval-
shaped vignette correction mask. The vignette correction
mask is applied to remove the areas affected by the tem-
perature distortion at the edges (corners) of the TIR images,
which tend to be cooler than the centre due to lens proper-
ties, sensor characteristics, and optical aberrations (Wigmore
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Figure 3. Illustration of NUC events (a) and their correction (b) for the first flights at 60 m altitude. (a) Mean brightness temperature
(Tbrightness) for overlap area per image. Red dots indicate Tbrighmess before the NUC event, and yellow dots indicate Tbrightness after the
NUC event. NUC events are temperature jumps of more than 0.5 °C in two consecutive images. The blue dot indicates a temperature outlier
for one image, which is not a NUC event. (b) The same dataset after the correction algorithm (Eqs. 2 and 3) is applied. (¢) The Kernel Density
Estimate (KDE) function showing the distribution of brightness temperature anomalies in the 250 randomly sampled areas of 10 x 10 m?
taken from the NUC uncorrected (dark grey) and NUC corrected (light grey) TIR orthomosaics.

and Molotch, 2023). We then calculated the first orthomo-
saic, we manually corrected motion blur in the corner ar-
eas of the DEM by excluding these images, and produced
the final orthomosaic, which was then calibrated using the
ground-based Apogee temperature dataset (see the following
Sect. 2.3.4). The TIR orthomosaic has a reprojection error
of 0.6 px and GCP errors in x-, y- and z-directions of 0.008,
0.003 and 0.001 m. The workflow is summarized in Fig. 2.

2.3.4 TIR orthomosaic: Ground-based temperature
calibration

To derive the surface temperature orthomosaic, we calibrated
the brightness temperatures of the TIR orthomosaic using
surface temperature data obtained from sea-ice-based obser-
vations. We calculated the snow surface temperature from
the brightness temperature measured by the Apogee infrared
radiometer, accounting for the contribution of the reflected
fraction of downwelling longwave radiation measured with
a Kipp & Zonen CGR4 pyrgeometer (Apogee Instruments
INC., 2022):

A TR oe— (1 —ELwy /o
Tsurface = \/ e (4)

€

where Tguface 18 the surface temperature (K), Tapogee is the
surface brightness temperature measured with the Apogee
sensor (K), € =0.98 is the snow thermal emissivity, and o
is the Stephan—Boltzman constant.

In Fig. 4a, we present the surface temperature time se-
ries of the snow surfaces within the footprints of the two
Apogee infrared radiometers during the flights, alongside the
Thrightness Of the corresponding TIR images that cover the two
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footprints (with a RMSE of 0.58 °C quantifying the residual
error in the temperature dataset and serving as an uncertainty
estimate for the surface temperature maps). We extracted
Torightness Within the Apogee sensor footprints from the TIR
images and plotted it against the Apogee-measured surface
temperatures (Tgyrace) in Fig. 4b. We calibrated the airborne
brightness temperatures to surface temperatures by calculat-
ing the best (linear) fit between the Apogee-measured, sea
ice-based surface temperatures Tyyrface and the collocated, si-
multaneous TIR image brightness temperatures Torightness- To
match the airborne data points with the temporally higher
resolved (10s) sea ice-based measurements, we averaged
the three Tyurface measurements taken before and after the
Torightness timestamp. We used this dataset to calculate the
linear fit:

Teatibrated = 0.68 Tprightness — 4.44 5)

This equation is applied to each pixel in the TIR orthomo-
saic. The total uncertainty of the derived surface temperature
is calculated as the square root of the sum of the following
squared contributions: the RMSE of the linear fit (0.48 °C),
the thermal camera uncertainty (£ 2 °C), and the RMSE as-
sociated with the NUC correction (0.58 °C). This results in a
total uncertainty of 4 2.1 °C for the surface temperature de-
rived from airborne thermal imagery.

2.3.5 Digital Elevation Model (DEM)

We derived the DEM from the RGB images following the
workflow detailed in Fig. 2. First, we generated the sparse
point cloud through image alignment and tie-point gener-
ation. After georeferencing using GCPs from both RGB
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Figure 4. (a) The time series (line plots) of surface temperatures measured on 14 November 2022 with the two Apogee sensors (Table 1)
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error bars indicate the temperature anomaly RMSE of 0.58 °C and the manufacturer’s uncertainty for the Apogee sensor, respectively.

and TIR images, we optimized the sparse cloud by remov-
ing outliers with poor accuracy values. We then created a
dense point cloud, generated a triangular irregular network
(TIN) mesh and finally calculated the RGB orthomosaic
(2 cm per pixel ground resolution) and DEM (5 cm per pixel
ground resolution). We upscaled both to 9 cm per pixel to
match the TIR orthomosaic resolution. The projection error
for the RGB orthomosaic and DEM is 0.96 px, and the GCP
errors in x-, y-, and z-directions are 0.05, 0.05 and 0.04 m.

As the last processing step, we detrended the DEM by fit-
ting a planar surface to the elevation data and subtracting this
fitted plane from the original DEM. The trend is likely due to
the time window of about 3 h between when the GCP survey
was conducted and when the site was flown, as the site is in-
fluenced by tidal variations, which are about 0.2 m for this 3h
time window as shown in Fig. A1. We fitted a plane through
the DEM to remove this trend, determined the best-fit param-
eters for the plane, and subtracted it from the original DEM,
producing a detrended DEM. This allowed us to focus on an-
alyzing the smaller-scale topographical features of the snow
surface, which is the aim of this study.

2.3.6 Snow depth proxy

Mapping snow depth typically requires surveying the area
both when it is snow-free and when it is snow-covered. How-
ever, this approach was not feasible in our case because the
underlying surface is sea ice, which was never snow-free (for
our field work window) and continuously changed in eleva-
tion due to tides, thickening, and thinning processes. To over-
come this limitation and generate a continuous snow depth
estimate, we derived a snow depth proxy from the detrended
UAV-based DEM, under the assumption that the underlying
sea ice surface was smooth and nearly flat (Fig. A3). Because
the DEM and snow thickness share the same vertical scale, a
relative change in DEM elevation (e.g., 0.10 m) corresponds
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directly to an equivalent change in snow thickness measured
with the MagnaProbe. Thus, even though the absolute offset
is unknown, the proxy retains the correct variability, which is
sufficient for our analyses. The main limitation is that sea ice
is not perfectly flat, which introduces some additional uncer-
tainty.

Instead of spatially aligning individual MagnaProbe mea-
surements to the DEM, we used a single value offset between
the lowest DEM elevation and the shallowest measured snow
depth to correct the DEM surface. Specifically, the minimum
snow depth measured with the MagnaProbe (0.012m) and
the minimum DEM elevation (—0.149 m) differ by 0.16 m as
shown in Fig. 5a. We therefore added a uniform 0.16 m off-
set to the entire DEM to approximate snow depth for each
pixel as illustrated in Fig. 5b. Differences between the dis-
tributions are expected because the DEM and MagnaProbe
surveys capture snow depth at different spatial scales and
sampling densities. The MagnaProbe transect data (£ 0.02m
snow depth error) provided the reference for this offset but
could not be used for a direct geospatial match because of
the limited accuracy of the MagnaProbe GNSS positions. As
a result, the corrected DEM values should be interpreted as
a proxy for snow depth rather than an exact measurement.
The propagated vertical uncertainty (per-pixel vertical mea-
surement uncertainty), which combines the DEM vertical er-
ror (£ 0.04 m from GCPs) and the MagnaProbe error, is es-
timated at 4= 0.045 m. Since we do not co-locate DEM pixels
to exact MagnaProbe points for point-wise validation, we are
not propagating a horizontal offset through a point-by-point
comparison.

This approach, while simplified, is supported by field
observations indicating smooth, flat ice surface conditions
across the study site as shown in Fig. A3. However, it does
not represent an absolute snow depth, or capture any local-
ized sea-ice surface roughness that was not sampled, which
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Table 2. Mean thickness and Standard Deviation (STD) for the sea
ice thickness (m), snow depth proxy (m) derived from the DEM and
snow depth (m) measured with the MagnaProbe, the number of data
points (n) and the relative change (%) for each dataset.

Mean Rel.
+STD Change
Thickness n (m) (%)
Sea ice 2449 2.4+0.04 1
Snow (DEM) 6211943 0.16£0.06 30
Snow (Magna) 813 0.1+0.04 32

should be considered when interpreting the proxy snow
depths.

The test field was situated on sea ice with an average thick-
ness of 2.4 + 0.04 m across 2449 measurements. The relative
variability in sea ice thickness was calculated as the mean
absolute deviation of all measurements expressed as a per-
centage of the mean thickness, yielding 1 % (Fig. 6). Thick-
ness ranged from 2.28 to 2.52 m with a measurement uncer-
tainty of 0.1 m (Table 1). Since sea ice is buoyant, changes in
thickness lead to only minor surface elevation variations, as
most of the ice mass remains submerged. In contrast, snow
depth varied significantly more at 32 % (see Table 2), even on
this “flat” field, highlighting the snow cover’s heterogeneity
driven by wind processes.

To show that a direct correlation of the DEM elevation
values and MagnaProbe measurements is not feasible, we ex-
tracted DEM values within a 2.5 m radius around 6 randomly
selected MagnaProbe measurement locations to mimic the
effect of positioning uncertainty (Table 1). For each point, we
plotted histograms of the DEM-derived snow depths along-
side the measured MagnaProbe depth (Fig. A4).

2.3.7 Irradiance calculation

We calculated surface irradiance on each DEM grid cell by
combining UAV-derived topography (slope and aspect) with
solar position at the time of the flight. We based the irra-
diance calculation on the SPN1 values because they allow
partitioning into direct and diffuse components, which is re-
quired to apply the geometric slope correction. The radiation
values are scaled to match the full-spectrum CMP22 pyra-
nometer This approach follows established methods such as
those described by Dozier and Frew (1989). We computed
the direct irradiance on a sloped snow surface using the inci-
dence angle between the Sun and local surface normal:

cos® = cos B cosf, + sin B sinf, cos (¢ps — @) (6)

with ® the angle of incidence (°), 8 the surface slope (°), ¢
the surface aspect (°), 6, the solar zenith angle (°), and ¢ the
solar azimuth angle (°) at the time of the UAV flight. Self-
shaded cells are assigned a value of cos ® = 0 and received
zero direct radiation.
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We scaled the SPN1 radiometer measurements (total Iy =
543 Wm~? and diffuse I = 62 Wm™? at the time of flight)
using the full-spectrum pyranometer (Isw = 593 Wm™2) to
account for spectral bias using k = Isw/I;, then separated
total and diffuse components, correcting the diffuse radiation
with a factor 1.05 following Badosa et al. (2014):

Lair = « (Iy — 1.05 Igifr) @)

where Ig;; is the direct beam irradiance corrected for spectral
bias. The slope- and shading-corrected surface irradiance for
each DEM grid cell was then calculated as:

I = I4ir M cos © + 1.05 « Lgise (8)

where O is the incidence angle between the Sun and the local
surface normal, and M is the shade mask (O for shaded cells,
1 for sunlit cells) following Corripio (2003). We note that
multiple scattering between snow facets can enhance irradi-
ance, particularly in steep and complex terrain (Robledano
et al., 2022). However, given the relatively shallow slopes at
our site, we assume this effect is minor and do not account
for it in our model.

3 Results and Discussion

3.1 Airborne maps: red band orthomosaic, snow depth
proxy and surface temperature

Our airborne products are shown in Fig. 7. The upper row
contains the orthomosaics for red band values, the snow
depth proxy (DEM) and surface temperatures. The red band
orthomosaic (Fig. 7a) provides an overview of the study area
and allows us to identify areas with visible sediment deposi-
tion as they are visible by the eye as darker regions (Fig. 7d).
We use the red band (wavelengths > 0.6 um) of the RGB
orthomosaic to detect visible sediment deposition on snow.
Snow albedo is most sensitive to impurities in the visible
wavelengths (Warren and Wiscombe, 1980), and we found
the most contrast in the red band, where, qualitatively, sedi-
ment patches stand out more clearly against the bright snow
background. The lower panel shows a close-up of a region
with site-specific surface features. In the close-up two main
features stand out: the sediment deposition in the upper left
corner and the snow dunes in the lower part. The sun-exposed
sites of the snow dunes look “brighter”, which could be due
to snow thickness or due to irradiance and shading effects.
Both features, the sediment and the dunes, are visually dis-
tinguishable and provide information for understanding the
drivers of surface temperature.

Figure 7b shows the DEM. The snow depth proxy derived
from this DEM ranges from 0.01 to 0.65 m, with a mean of
0.16 and a standard deviation (STD) of +0.06 m (Fig. 8a).
We identified values exceeding 0.4 m as snow drifts around
obstacles, such as measurement stations, solar panels, and
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flags based on Fig. 8¢ and i. The DEM reveals relatively
high variability in the snow depth proxy values, mainly due
to wind-induced snow dunes (e.g. Fig. 7e, lower left). Al-
though we expected dunes to align with the predominantly
southerly winds during our campaign (Fig. A2b), the local
aspects of snow slopes (i.e., dune slopes, Fig. 9c) showed no
clear preferential orientation. This random distribution sug-
gests that prevailing winds had limited influence on dune
alignment during the measurement period. While dune ori-
entation is outside the scope of this study, evaluating a longer
period of wind data preceding our field campaign would be
necessary to understand dune alignment.

In Fig. 7c, we present the TIR orthomosaic with surface
temperatures ranging from —17.5 to —5 °C. The mean tem-
perature is —14.710.4 °C (Fig. 8b). Temperatures exceeding
—4°C are caused by the measurement infrastructure and are
masked in the TIR orthomosaic. The sediment patches iden-
tified in Fig. 7d are warmer than areas with cleaner snow as
sediment has a lower albedo and absorbs more shortwave ra-
diation (Fig. 7f). We also observe that the shaded sides of the
snow dunes have lower temperatures (Fig. 7f, lower left) and
are also darker in red band orthomosaic (Fig. 7d).
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3.2 Possible drivers of small-scale surface temperature
variations: snow depth, sediment deposition or
irradiance?

In this section, we use the UAV-derived maps of snow depth,
surface temperature, and red bad values, as well as the mod-
eled map of solar irradiance, to try and disentangle the rele-
vant drivers of local surface temperature variations. All sta-
tistical correlations are shown in Table Al.

3.2.1 The role of snow depth

To test if snow surface temperatures are driven by snow depth
(given relatively uniform sea ice thickness), we first explore
the correlation between the snow depth proxy and snow sur-
face temperature. Given the visible sediment patches and
their strong effect on albedo (Warren and Wiscombe, 1980),
we split the data into three sub-datasets: (1) the “entire
field” dataset, containing 6211943 data points (approxi-
mately 99.9 % of the original dataset), (2) the “sediment”
dataset, which includes 285396 data points (approximately
5 %) from areas with visible sediment and some clean snow,
and (3) the “no sediment” dataset, containing 341473 data
points (approximately 6 %) representing areas with visible
clean snow only.

We delineated sediment patches by manually drawing
polygonal areas around visible sediment deposits with the
QGIS Geographic Information System (Fig. AS). We tested
various automatic RGB thresholds to identify impurities, but
the results were unsatisfactory, partly because distinguishing
between impurities and shaded areas proved challenging. For
the “no sediment” dataset, we randomly selected rectangular
patches where no visible sediment was apparent, ensuring a
similar sized area for comparability.

The scatter plot in Fig. 10a reveals a very weak but sta-
tistically significant correlation between surface tempera-
ture and snow depth proxy (Spearman correlation coeffi-
cient rg = 0.16, Table A1) for the “entire field” data set. The
mean snow surface temperature and snow depth proxy are
14.7+0.4°C and 0.16 £ 0.06 m, respectively (Fig. 8b, a).
In the “sediment” dataset the correlation is slightly stronger
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(rs = 0.26, Fig. 10d). This suggests that sediment deposition
is influenced by the same wind processes as snow depth, with
both snow and impurities accumulating in the same areas.
The “sediment” dataset has a higher mean surface tempera-
ture and greater variability (—13.97 4 0.82 °C; Fig. 8f). The
larger temperature variability shows that the delineated sedi-
ment patches include both clean and “dirty” snow, likely re-
flecting variations in sediment concentration (Fig. 8f). The
“sediment” dataset also shows a higher mean snow depth
proxy (0.21 £0.07 m, Fig. 8e).

The “no sediment” dataset shows the weakest positive cor-
relation between surface temperature and snow depth proxy
(rs=0.06, Fig. 10g). It also has the lowest mean temperature
(—14.8410.28 °C; Fig. 8)) — likely caused by the absence of
the (visible) warmer sediment patches — and the lowest mean
snow depth proxy (0.14 % 0.05 m, Fig. 8i).

In summary, we conclude that the positive correlation be-
tween snow depth and snow surface temperatures is primar-
ily driven by sediment deposition rather than snow depth it-
self. This emphasizes the role of sediment on albedo and
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radiation absorption rather than the role of snow depth on
thermal resistance. The sediment will have the effect that,
when air temperatures rise later in the season, the increased
solar radiation absorption by the sediment will reduce the
snow specific surface area and accelerate snow melt, fur-
ther decreasing the albedo and triggering the albedo feedback
(Ledley and Pfirman, 1997; Skiles et al., 2018). While snow
depth plays an important role in the energy balance of sea
ice through albedo and thermal conductivity effects (Warren
and Wiscombe, 1980), our data show that it is not the pri-
mary driver of surface temperatures in our case, even when
excluding visible surface impurities.

3.2.2 The role of ‘““darker” areas: sediment or shadows?

Building on our finding that sediment strongly influences
surface temperatures, we correlated the surface temperature
with the red band values from the orthomosaic. Sediment
particles — like dust, soot, or organic matter — absorb more
sunlight in the visible spectrum than clean snow (Tuzet et al.,
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Figure 8. Histograms with PDFs for the snow depth proxy, surface temperature, red band values and irradiance for the three sub-datasets.
The first row is the “entire field” dataset, the second row is the “sediment” dataset, and the last row is the “no sediment” dataset. The snow
depth bin size (a, e and i) is 2 cm. The temperature bin size (b, f and j) is 0.5 °C. The red band bin size (c, g and k) is 5. The irradiance bin

size (d, h, and 1) is 10 Wm™2.

2019; Cui et al., 2021). These surface impurities largely in-
fluence the snow albedo and, consequently, surface temper-
atures (Warren and Wiscombe, 1980; Doherty et al., 2010;
Réveillet et al., 2022).

We use the red band orthomosaic as a proxy for “surface
sediment darkness”. While red band intensity is not a per-
fect quantitative indicator of sediment concentration — and
is also influenced by shading, sun illumination or variations
in thin snow cover — we also must consider the effects of
the RGB camera’s automatic settings (ISO, aperture, shut-
ter speed). These settings adjusted in response to changing
scene features and illumination. Although we applied an av-
eraging blending mode to reduce exposure inconsistencies,
this does not fully eliminate differences in camera response
across flight legs. Such factors may contribute to the spread
in the red band values and affect correlation strength. How-
ever, in areas with high sediment concentrations, we expect
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their impact on red band “brightness” to be minimal. As in
the previous section, we assess the correlation between sur-
face temperature and red band values for the “entire field”
dataset (Fig. 10b), for the “sediment” dataset (Fig. 10e) and
for the “no sediment” dataset (Fig. 10h).

For the “entire field” data set, surface temperature and
red band intensity show a moderate correlation (rg = 0.35,
Table Al). The corresponding scatterplot (Fig. 10b) reveals
two clusters, which we disentangle by analyzing the “sedi-
ment” and “no-sediment” subsets separately. The “sediment”
dataset shows a weak yet significant negative correlation be-
tween the red band intensity (lower values represent “darker”
pixels) and surface temperature (s = —0.23, Fig. 10e). This
pattern is consistent with expectations, as impurities typically
increase radiation absorption (Ledley and Pfirman, 1997;
Réveillet et al., 2022).
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Figure 9. Scatter plot showing the relationship between slope and irradiance for the entire field, excluding stations and targets (a). (b)
Histogram for the irradiance, the slope (c) and the aspect (d), each across the CS test field.

Surprisingly, the “no sediment” dataset showed the same
moderate, but positive correlation (rs = 0.4, Fig. 10h) be-
tween red band values and surface temperature as observed
for the “entire field” dataset. In this case, darker areas were
colder — opposite to the relationship found in the “sediment”
dataset. This result was initially puzzling, since even under
the consideration that clean snow most likely contains small
amounts of impurities, there is no clear reason why lower red
band values should correspond to lower temperatures.

A closer look suggests that variations in red band inten-
sity within the “no sediment” dataset are primarily driven
by differences in solar exposure and illumination, caused by
small-scale topography such as snow dunes (Fig. 7d, e, f).
In this case, the positive correlation reflects the influence of
solar illumination and shading: shaded areas appear darker
and colder, while sunlit areas are brighter and warmer. By
contrast, in the “sediment” dataset, red band values capture
both sediment concentration (which drives a negative corre-
lation with surface temperature) and local irradiance varia-
tions (which drive a positive correlation). The overlap results
of these competing influences yield the weak overall corre-
lation (rs = —0.23). Nevertheless, the negative relationship
dominates, indicating that in regions with higher sediment
concentrations, the warming effect of impurities outweighs
variations caused by local irradiance.

We can now interpret the pattern in Fig. 10b as the com-
bined effect of the “sediment” and “no sediment” dataset.
The positive correlation for the “entire field” dataset is
largely driven by the “no sediment” (clean snow) areas, since
the “sediment” dataset is about 20 times smaller and con-
tributes little to the overall statistics. The stronger correla-
tion in the “no sediment” dataset indicates that, in snowpacks
without (visible) sediment deposition, surface temperature is
controlled more directly by irradiance and shading than by
the likely small “imperceptible” impurities. Thus, for clean
snowpacks without significant sediment deposition, our re-
sults emphasize the dominant role of solar illumination and
local topographic shading in driving surface temperature and,
by extension, the near-surface energy balance.

The Cryosphere, 19, 6103-6126, 2025

In summary, we find that the correlation between red band
values and surface temperature is stronger than the correla-
tion between the snow depth proxy and surface temperature
across all three sub-datasets. This indicates that the red band
intensity — influenced by (1) impurity concentration, (2) il-
lumination variations, and (3) optical snow depth differences
— serves as a better predictor of local surface temperatures.
As shown in the previous subsection, snow depth variations
are not the primary driver. The contrasting correlations be-
tween the “no sediment” dataset (r¢ =0.4) and the “sedi-
ment” dataset (rg = —0.23) suggest that local illumination
conditions, driven by small-scale surface topography, play a
major role in shaping surface temperatures where sediment
is absent.

3.2.3 The role of irradiance

Building on the previous section’s findings that solar irradi-
ance may play an important role in driving local tempera-
ture differences, we examined the correlation between mod-
eled, topography-dependent irradiance and surface tempera-
tures across all three sub-datasets (Fig. 10c, f, i). Each sub-
dataset shows a significant, though weak, positive correlation
between surface temperature and irradiance (“‘entire field”:
rs=0.22, “sediment”: ry=0.22, “no-sediment”: ry=0.24).
While the mean irradiance is nearly identical across all three
sub-datasets (Fig. 8d, h, 1), the variation (STD) is largest in
the “sediment” dataset, likely reflecting higher snow depth
and a rougher surface (Fig. 8e).

To investigate whether local irradiance influences the red
band intensity (through illumination and shading) — which
could explain the observed connection between red band
values and surface temperature — we calculated the correla-
tion between these two parameters. Across all three datasets,
we found a moderate correlation between the red band val-
ues and irradiance (Table A1), confirming that variations in
red band intensity are at least partially driven by irradiance
(Fig. 11). In the “no sediment” dataset, the correlation be-
tween red band values and irradiance (s = 0.44) is compa-
rable to the correlation between red band values and surface
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temperature (rg = 0.4), supporting our hypothesis that irradi-
ance is an important driver of surface temperature. While the
correlation between red band values and irradiance is simi-
lar for the “sediment” dataset — because irradiance depends
only on topography — sediment deposition has a stronger in-
fluence on surface temperature (Fig. 10e). This suggests that,
in areas with sediment, impurities dominate surface heating,
outweighing the effect of shading and local irradiance.

In Fig. 9a, we show the spread of modeled irradiance
against the local slope at each pixel. Slope serves as a proxy
for surface orientation, capturing variations in the local in-
cidence angle and, consequently, in effective irradiance. The
cluster of points around 71 Wm™2 represents shaded areas
receiving only diffuse shortwave radiation. The spatially av-
eraged modeled irradiance — calculated using the measured
snow topography (slope and aspect) to adjust the solar ef-
fective zenith angle — is 592 4 45 Wm™2, with a range from
71 to 1167 Wm™2. This modeled mean closely matches with
the measured irradiance of 593 Wm™2 at the time of calcula-
tion, as we used observed shortwave radiation to determine
atmospheric transmissivity and the fraction of the diffuse ra-
diation. Over the entire flight period (about 40 min), the tem-
poral mean measured irradiance was 593 & 10 Wm™2.

The uniform distribution of slope and aspects in the DEM
(Fig. 9c, d) indicates a near-random terrain pattern, with no
preferred alignment of roughness features. This explains the
approximately normal distribution of the locally modeled ir-
radiance (Fig. 9b). While the measured irradiance — repre-
senting irradiance on a flat plane — and the spatially average
modeled irradiance (Fig. 9a, red and blue lines, respectively)
are nearly identical, reflecting that the total incoming energy
over the area remains constant, accounting for topography
reveals a much wider range of values. The min-max spread
and variability (STD) in modeled irradiance increase sub-
stantially when surface topography is considered, highlight-
ing the strong influence of small-scale topography on local
irradiance patterns.

Even at our relatively flat site, topography-dependent irra-
diance exhibits spatial variability (Fig. 9) with 95 % of val-
ues (£2 STD) ranging from 502 to 682 Wm™2 — roughly
420 % of the areal mean. This variability arises from seem-
ingly small changes in local topography, which primarily
alter the apparent solar zenith angle and thus affect local
surface temperatures (Wiscombe and Warren, 1980). While
these small-scale topographic variations do not change the
mean areal irradiance — since the total incoming energy over
the area remains constant — they can nonlinearly influence
the local snowpack energy balance (Weller, 1969; Hao et al.,
2022), producing localized temperature gradients both verti-
cally and horizontally. For example, temperature differences
between Sun-exposed and shaded sides of snow dunes can
drive lateral heat fluxes (Sturm and Holmgren, 1994), modi-
fying snow microstructure and affecting albedo and thermal
conductivity (Clemens-Sewall et al., 2024). In more extreme
cases, this lateral heat transfer and associated metamorphism
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can alter snow height and surface topography through sub-
limation (Gow, 1965; Orheim, 1968; Weller, 1969). Later
in the season, as surface temperatures approach 0°C, even
small variations in local irradiance may trigger differential
melting, freezing and densification, further amplifying spa-
tial variability within the snowpack.

Moreover, surface topography — even from modest slopes
— can distort the spectral shape of albedo via multiple re-
flections, leading to errors in estimating intercepted solar ra-
diation (Picard et al., 2020; Manninen et al., 2021). Slopes
as small as 1° can produce such distortions, with their com-
plexity increasing with steeper terrain. Accurate albedo esti-
mates, therefore, require accounting for surrounding topog-
raphy at the full range of spatial scales (Picard et al., 2020;
Manninen et al., 2021; Larue et al., 2020).

3.2.4 Integrating predictors via Linear Mixed-effects
Modeling (LMM)

To complement the pairwise correlation analyses and better
quantify the relative influence of snow depth, irradiance, and
sediment, we combined the “sediment” and “no sediment”
datasets (626 869 data points) and applied a linear mixed-
effects model. This approach allows us to assess the inde-
pendent contribution of each predictor to surface temperature
while accounting for grouping effects in the data. The LMM
provides a formal, integrated evaluation of the drivers iden-
tified in the previous sections and enables a comparison of
their practical impact over the observed range of variability.

The LMM results (Table 3) confirm and quantify the pat-
terns observed in the previous correlation analyses. All three
predictors — snow depth, irradiance, and red band intensity
— were significant, with irradiance producing the largest po-
tential change in surface temperature (AT = +4.3 °C), fol-
lowed by red band reflectance (AT =~ —3.1°C) and snow
depth (AT =~ 4 0.75 °C). The results remain consistent even
when accounting for propagated errors in snow depth and
surface temperature (& 0.045 m and + 2.41 °C respectively).
These results reinforce our earlier findings: while snow depth
has a measurable effect on surface temperature, the dominant
controls on local surface temperature are irradiance and sed-
iment (as captured by red band values), consistent with the
spatial patterns and correlations discussed in the preceding
sections. However, it needs to be kept in mind that irradiance
and red band intensity are not independent parameters, be-
cause, obviously, shaded areas are darker than sun-exposed
areas.

3.2.5 Technical considerations for high-resolution
mapping of snow topography and snow surface
temperature

Producing accurate maps of these variables requires three key
technical considerations:
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Figure 10. (a), (d) and (g) show the correlation between surface temperature and the snow depth proxy (the color bar is based on the red
band values). (b), (e) and (h) show the surface temperature and irradiance (the color bar is based on the red band values). (¢), (f) and (i)
show the surface temperature and red band values (the color bar is based on the snow depth proxy). The first row is the “entire field” dataset,
excluding targets and measurement stations. The second row is te “sediment” dataset, which only contains data points within areas of visible
sediment deposition. The last row displays the “no sediment” dataset for areas of clean snow without visible sediment deposition. Dataset
and correlation statistics details are Fig. A5 and in Table Al.
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Figure 11. Correlation between irradiance (Wm_z) and red band intensity for “entire field” dataset (rs=0.44) (a), “sediment” dataset
(rs=0.41) (b) and “no sediment” dataset (rs =0.44) (c). We cannot with certainty explain the horizontal cluster from about 140 to 160 red
band intensity that stretches across a larger range of irradiances than the rest of the data. However, the only connection we found for this
cluster is snow depth, because the cluster disappears for higher snow depths, as discussed in A5 (Fig. A6). This cluster, however, has a low
data density (Fig. A6d) and is therefore outside of the scope of our study.
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Table 3. LMM results for the prediction of snow surface temperature (predictors: snow depth proxy, irradiance, red band). The model
included 626869 observations across two datasets (“sediment” and “no sediment”) with group variance =0.292. Model fit: Restricted
Maximum Likelihood (REML), variance of error term = 0.2916. All predictors were significant (p < 0.001). AT shows the impact of each
predictor over its observed range; Bmean and AT e show results after introducing 4 0.045 m error in snow depth and +2.41 °C error in

temperature (Monte Carlo, 100 iterations).

Predictor Coeff (8) Coeffimean (Bmean) Range AT (°C) ATyoise (°C)
Snow depth proxy 1.77 1.16 0.42m 0.75 0.74
Irradiance 0.004 0.004 1067 Wm—2 4.27 4.70
Red band —0.023 —0.023 134 —3.08 -3.14

1. Precise georeferencing is essential for reliable spatial
accuracy, requiring high-accuracy GPS and a sufficient
number of visible and thermal targets to co-locate RGB
and thermal images. We recommend at least 10 GCPs
for a study site of 200 m x 200 m.

2. Rigorous post-processing of TIR images is critical to
ensure accurate temperature data. We developed a cor-
rection algorithm that automatically detects and reduces
temperature jumps caused by NUC correction events,
minimizing sensor temperature drift and improving data
accuracy. Our algorithm can be applied to various cam-
era models, offering broad utility for studies beyond po-
lar research.

3. Ground-based temperature measurements are neces-
sary to validate airborne temperature surveys. Airborne
temperature measurements should ideally be taken near
local solar noon to capture peak solar radiation, mini-
mize radiation variability, and maintain a high Sun an-
gle to reduce shading. Clear skies are preferable to avoid
cloud shadows that alter the surface temperature, though
consistent high cloud cover can also be acceptable. The
“best” conditions depend on the specific purpose of the
survey, but random intermittent cloud cover should al-
ways be avoided as it is problematic.

At least two non-contact infrared radiometers (e.g.,
Apogee sensors or equivalent) should be set up during
the flight to measure snow surface temperature and cal-
ibrate the airborne measurements. To ensure accurate
calibration, there should be a significant temperature
difference between targets (e.g. a hot target like sed-
iment, sea ice or a temperature-controlled target with
known emissivity, and a cold target like clean snow).

4. Ground-based snow depth measurements are neces-
sary to validate and bias-correct airborne snow depth
surveys (on flat sea ice) and calculate the snow depth
proxy. These measurements should be taken in the flight
area, though not necessarily during flight.

A balance between area coverage and flight duration was
necessary to avoid changes in local irradiance (e.g., the mea-
sured irradiance during the entire flight increased from 575
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to 609 Wm™2). Validation was challenging due to the non-
uniform snow cover and the imprecision of the MagnaProbe
measurement positiong. We used the MagnaProbe measure-
ments to correct the offset of the airborne DEM (Fig. 5), an
approach that is valid primarily because of the small range
of variability in the sea ice thickness and the smoothness of
the ice surface. Our findings are based on a test site with
smooth, approximately 2.4 m thick sea ice and a relatively
flat snowcover of 0.1 £0.04 m, representing a limited spa-
tial scale. In areas with heterogeneous sea ice thickness and
greater surface roughness — such as pack ice (Haas, 2004)
or ridged ice (Itkin et al., 2023) — the DEM would reflect
the combined topography of variable sea ice thickness, ridg-
ing, and snow depth, and our snow depth proxy would not
be applicable. Future studies should extend these methods
to more complex ice conditions and evaluate their sensitiv-
ity in energy balance models. High-resolution UAV observa-
tions remain a valuable tool for improving our understanding
of snow-ice interactions and informing both regional models
and satellite-based remote sensing applications.

4 Conclusions

This study demonstrates that UAV-based remote sensing pro-
vides an effective approach for mapping snow topography,
depth and surface temperatures on relatively uniform landfast
sea ice in the Ross Sea, Antarctica. A key technical advance
is our algorithm to correct NUC camera calibration events,
which ensures accurate airborne temperature measurements
and has broader applicability beyond polar research.

Our high-resolution data reveal how small-scale spatial
variability in snow surface topography strongly influences ir-
radiance and surface temperatures. Assuming a flat ice sur-
face underestimates irradiance variability, potentially affect-
ing non-linear energy balance processes such as localized
melting and sediment transport. We found that irradiance
and surface impurities dominate surface temperature pat-
terns, while snow depth plays a secondary role.

Although our snow depth proxy works only on flat, smooth
sea ice, the methods for retrieving topography and surface
temperature are valid for a wider range of ice types. Apply-
ing these techniques to heterogeneous or deformed sea ice
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will require careful adaptation but could provide critical in-
sights into local energy balance dynamics. Overall, our work
highlights the feasibility and importance of high-resolution
airborne measurements for understanding snow on sea ice
processes and the potential to improve snow parameteriza-
tions in climate models and remote sensing retrievals.

We demonstrate that if models do not account for snow
surface roughness — either due to the lack of availability of
local topography data or insufficient model resolution — they
tend to underestimate the variability in irradiance and sim-
plify the amount of energy available for localized snow meta-
morphism and melt processes, particularly in areas with pro-
nounced topography variations.

Taken together, our findings highlight that both small-scale
topography and surface impurities are key controls on lo-
cal snow surface energy balance, and their combined effects
should be carefully represented in models to improve predic-
tions of snowpack evolution and sea ice melt.

Appendix A: Additional figures and statistics
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Figure A1l. Tidal movements (m) at the Scott Base tidal gauge from the sea level recorder (nitrogen bubbler system with a paroscientific
pressure transducer located on a bottom-mounted spigot of the osmosis boom and barometer). The data is recorded in 5 min intervals. The

orange part of the plot marks the flight survey.
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Figure A2. (a) Hourly averaged air temperature and wind speed during field campaign at CS test field. The vertical yellow bar indicates the
UAV mission. (b) The prevailing wind directions at the CS test field during the field campaign.
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Figure A3. Sea ice surface at two different snowpit locations (AS006, AS002) inside the 200 m x 200 m CS test field during our field
campaign showing the flat and smooth sea ice surface.
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Figure A4. Distribution of offset-uncorrected (black) and offset-corrected (gray) elevation within a 2.5 m radius of six randomly selected
MagnaProbe locations. The red dashed line indicates the snow depth measured with the MagnaProbe, and n is the number of pixel values from
the DEM within the 2.5 m radius. The variability in the DEM-derived elevation/snow depth proxy within the radius around the MagnaProbe

is almost as much as in the whole field.
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Figure AS5. Masks used to create the three sub-data sets “entire field” (a), “sediment” (b) and “no sediment” (c) in the RGB orthomosaic.
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Figure A6. (a) scatter plot of red band intensity versus snow depth proxy (m) for “no sediment” sub-dataset (rs = 0.08). The red line indicates
the visible cluster separation. (b) Scatter plot of red band intensity versus irradiance (Wm™2) for “no sediment” dataset, considering only data
points where the snow depth proxy exceeds 0.25m (rs = 0.69). (¢) Same as (b) but for snow depth proxy values below 0.25m (rs = 0.41).
Statistics details are provided in Table A1l. These plots reveal that the horizontal cluster observed the red band intensity range of 140 to 160
disappears when considering only snow depth proxy values is connected to the snow depth as it disappears when considering only snow
depth proxy values above 0.25 m, indicating a connection to snow depth. For snow depth proxy values below 0.25 m, the entire irradiance
range is present, suggesting a link to topography. However, the red band intensity shows no direct dependence on the snow depth proxy, and
a more detailed analysis is beyond the scope of this study. (d) Highlights that the horizontal extent of the cluster corresponds to a region with
low data density.

Table A1. Statistics table for Fig. 10. Entire field: all data points excluding targets and measurement stations. Sediment: data points within
areas of visible sediment deposition (and clean snow), excluding targets and measurement stations in these areas. No sediment: areas with
no visible sediment deposition, excluding targets and measurement stations. The three datasets are displayed in Fig. AS5. The correlation
strengths are formatted as plain (very weak), italic (weak), bold (moderate), and underlined (strong) font styles.

Parameter A Parameter B Data points ~ Spearman (rs)  p-value (@ =0.01) Info
Temperature Snow depth proxy 6211943 0.16 <1x1071%  entire field
Temperature Snow depth proxy 285396 0.26 <1x1071%  gediment
Temperature Snow depth proxy 341473 0.06 <1x1071  no sediment
Temperature Red Band 6211943 0.35 <1x10716  entire field
Temperature Red Band 285396 -0.23 <1x10716  sediment
Temperature Red Band 341473 0.40 <1x10716 o sediment
Temperature Irradiance 6211943 0.22 <1x1071%  entire field
Temperature Irradiance 285396 0.22 <1x10710  sediment
Temperature Irradiance 341473 0.24 < 1x 10716 o sediment
Red band Irradiance 6211943 0.44 <1x 10716 entire field
Red band Irradiance 285396 0.41 <1x1071%  gediment
Red band Irradiance 341473 0.44 <1x10716 1o sediment
Red band Snow depth proxy 341473 0.08 <1x1071  no sediment
Red band Snow depth proxy (> 0.25m) 16965 0.69 <1x1071°  no sediment
Red band Snow depth proxy (< 0.25m) 324508 0.41 <1x10716 o sediment
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