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Abstract. The effective permittivity of wet snow and firn
links the snow microphysics to its radiometric signature,
making it essential for accurately estimating the liquid water
amount (LWA) in the snowpack. Here, we compare ten com-
monly used microwave dielectric mixing models for estimat-
ing LWA in wet snow and firn using L-band radiometry. We
specifically focus on the percolation zone of the Greenland
Ice Sheet (GrIS), where the average volume fraction of liquid
water is between 0 % and 6 %. We used L-band brightness
temperature (TB) observations from the NASA Soil Moisture
Active Passive (SMAP) mission in an inversion-based frame-
work to estimate LWA, applying different dielectric mixing
formulations in the forward simulation. We compared the ef-
fective permittivities of the mixing models over a range of
conditions and evaluated their impact on the LWA retrieval.
We also compared the LWA retrievals to the corresponding
LWA from two state-of-the-art Surface Energy and Mass Bal-
ance (SEMB) models. Both SEMB models were forced with
in situ measurements from automatic weather stations (AWS)
of the Programme for Monitoring of the Greenland Ice Sheet
(PROMICE) and Greenland Climate Network (GC-Net) lo-
cated in the percolation zone of the GrIS and initialized with

relevant in situ profiles of density, stratigraphy, and sub-
surface temperature measurements. The results show that the
mixing models produce substantially different real and imag-
inary parts of the dielectric constant, significantly impacting
the LWA retrieved from the TB. The correspondence with the
SEMB-derived LWA varied by model and site, with correla-
tion coefficients ranging from 0.67 to 0.98 and RMSD val-
ues between 5.4 and 23.9 mm. Overall, the power law-based
empirical models demonstrated better performance for 2023
melt season. The analysis supports informed selection of di-
electric mixing models for improved LWA retrieval accuracy.

1 Introduction

Surface melting and consequent runoff/refreezing play an in-
creasingly major role in the Greenland Ice Sheet (GrIS) sur-
face mass balance (SMB) and its contribution to the global
sea-level rise (Greene et al., 2024; Khan et al., 2022; Khan et
al., 2015; Mouginot et al., 2019; Otosaka et al., 2023; Shep-
herd et al., 2020). The column-integrated amount of liquid
water (LWA) at the surface and within layers of the surface
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snowpack is a key variable for understanding processes re-
lated to meltwater on the ice sheet, and is thus an important
quantity for diagnostic study, modeling, and prediction. Cur-
rently, there is no direct means of measuring LWA in the ice
sheet. In situ AWS provides surface meteorological observa-
tions for limited locations over the ice sheet, which are trans-
lated to LWA estimates using coupled surface energy balance
and sub-surface hydrology and heat transfer models (Fausto
et al., 2021; Samimi et al., 2021; Vandecrux et al., 2020).
Regional climate models provide pan-ice sheet estimates of
LWA (Fettweis et al., 2020), but uncertainty results from the
significant differences in the configuration and physical pro-
cess representations in these models (Thompson-Munson et
al., 2023; Fettweis et al., 2020; Vandecrux et al., 2020; Ver-
jans et al., 2019). Spaceborne microwave radiometers have
also been used for large-scale mapping of polar ice sheet melt
(Picard et al., 2022; Tedesco, 2007; Tedesco et al., 2007; Ab-
dalati and Steffen, 1997; Mote and Anderson, 1995; Zwally
and Fiegles, 1994). However, shallow penetration into the
wet snow restricts the conventional high frequency radiome-
ters (i.e., greater than 6 GHz) to providing only surface and
near-surface binary melt status, and not the actual volumetric
amount of liquid water in the snow/firn (Leduc-Leballeur et
al., 2025; Colliander et al., 2022a, b, 2023; Mousavi et al.,
2022).

The higher penetration of L-band radiometry offers a
promising new tool for quantifying the total surface-to-
subsurface LWA in the firn, in addition to providing the
areal extent and duration of seasonal surface snow melt
(Houtz et al., 2019, 2021; Mousavi et al., 2021; Schwank and
Naderpour, 2018; Colliander et al., 2022a, b; Miller et al.,
2020a, 2022a, b; Mousavi et al., 2022). Houtz et al. (2019,
2021) used L-band brightness temperature (TB) from the
European Space Agency’s Soil Moisture and Ocean Salin-
ity (SMOS) mission for simultaneous estimation of snow
liquid water content and density in the GrIS. They used
the Microwave Emission Model of Layered Snowpacks Ver-
sion 3 (MEMLS V3; Mätzler and Wiesmann, 2012) with L-
band specific modifications (LS-MEMLS; Schwank et al.,
2014) in an inversion-based retrieval framework. By default,
MEMLS V3 uses the Mätzler (1996) and Mätzler and Wies-
mann (2012) formulations for dielectric mixing of dry and
wet snow, respectively. Naderpour et al. (2021) used the
same algorithm to quantify LWA at the Swiss Camp location
(70° N, 49° W) with close-range (CR) single-angle L-band
microwave radiometer measurements. Mousavi et al. (2021)
developed an L-band specific snow/firn radiative transfer
model that uses the Mätzler (2006) and Ulaby et al. (2014,
p. 140–145) dielectric mixing model for dry and wet snow,
respectively, to estimate LWA. Hossan et al. (2025) used the
same approach to quantify and validate the LWA with two
surface energy balance models forced with in situ observa-
tions and reanalysis data products. Additionally, Moon et
al. (2025) compared the Hossan et al. (2025) retrieval with
LWA values derived from subsurface thermal measurements.

The studies showed mixed correspondence of the L-band re-
trievals to the alternative LWA estimates.

The L-band TB responds to the real and imaginary parts
of the firn dielectric constant, which increases markedly with
volumetric liquid water content (snow wetness or the volume
fraction of liquid water in the snow mixture, vw hereafter,
expressed as a percentage) in the firn (Picard et al., 2022;
Samimi et al., 2021; and references therein). The measured
dielectric constant is translated into LWA using a model be-
tween snow vw and the dielectric constant. The formulation
of the effective dielectric constant of the ice, air, and water
mixture is key to accurately quantifying LWA. As it is in-
dependent of the radiometer measurement, it adds an uncer-
tainty component to the LWA retrieval that is solely depen-
dent on the accuracy of this dielectric mixing model. Picard
et al. (2022) demonstrated large differences in commonly
used wet snow dielectric mixing models for both the real and
imaginary parts over a wide range of vw.

In this manuscript, we assess the performance of ten com-
monly used microwave dielectric mixing models in quanti-
fying the seasonal LWA using L-band (1.4 GHz) enhanced-
resolution (rSIR) TB data products from the Soil Moisture
Active Passive (SMAP) mission. For this, we confine our at-
tention to the GrIS percolation zone where the average vol-
ume fraction liquid water inclusions in the snow/firn envi-
ronment is less than about 6 % of the total volume (Colbeck,
1974; Coléou and Lesaffre, 1998), and L-band TB during
melting is mainly dominated by absorption (increasing trend
compared to frozen season; Hossan et al., 2025).

2 Methods

Snow and firn (the transitional snow that survives at least a
summer season) is generally a three-phase porous dielectric
mixture of air, ice, and liquid water, where dry snow can be
considered as a special case having no liquid water. Here we
briefly discuss the dielectric properties of snow and firn.

2.1 Dielectric Mixing Formulas

Dielectric mixing rules attempt to approximate the effective
macroscopic dielectric constant (also known as effective per-
mittivity) εeff of snow/firn mixture that relates the average
electric flux density D to the incident or emitting electric field
E and the average polarization P of the mixer (Sihvola, 1999;
Jones and Friedman, 2000),

D= εeffE= εeE+P (1)

where εe is the complex dielectric constant of the background
medium. The polarization term, P represents the number of
dipole moments per unit volume in the mixture and is a func-
tion of inclusion geometry. εeff thus, depends on the indi-
vidual dielectric constant of the constituent materials, their
respective volume fractions, and sizes, shapes, and orienta-
tions. For a two phase mixture, a generalized mixing formula
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can be derived from the Maxwell Garnett (MG) mixing rule
(Garnett, 1904),

εeff = εe+ 3vεe
εi− εe

εi+ 2εe− v(εi− εe)
(2)

where εi is the complex dielectric constant of the inclusion
(guest), and v is the volume fraction of the inclusion. How-
ever, the fundamental MG rule considers only dilute con-
centration of spherical inclusions (v� 1) (Jones and Fried-
man, 2000) and assumes homogeneous mixtures, ignoring
the second-order effects due to the mutual interactions be-
tween the inclusions. When the inclusions are arbitrarily
spread within the host material, the fields within the inclu-
sions are a function of the mutual interactions of the inclu-
sions (through their polarization field P). The interactions
among the inclusions are dependent on their relative geom-
etry and alignment, which are both taken into account by a
parameter called the depolarization factor. For an ellipsoid,
the depolarization factor along its u axis is given by (Jones
and Friedman, 2000; Sihvola, 1999),

Nu =
abc

2

∞∫
0

ds(
s+ u2

)√(
s+ a2

)(
s+ b2

)
(s+ c2)

u= a,b,c (3)

where Na +Nb+Nc = 1. Aspect ratios of the axial dimen-
sions (u) of the particle describe the shape of the particle,
a : b = 1 defines the spherical inclusions whereas a : b < 1
and a : b > 1 describe oblate and prolate inclusions, respec-
tively. The depolarization factorNu is commonly included in
the more general mixing formula described below.

The Bruggeman mixing rule (Ulaby et al., 2014; Sihvola,
1999) considers mixing phases to be symmetric to describe
the effective permittivity of a mixture as an implicit function
of unknown effective permittivity of the mixture, which for
the case of randomly oriented ellipsoidal inclusions (Sihvola,
1999) reads as,

εeff = εe+
v

3
(εi− εe)

∑
u=a, b, c

[
εeff

εeff+Nu(εi− εeff)

]
(4)

Polder and van Santen (1946) (PVS hereafter) derived similar
implicit formulation for a two-phase mixture with randomly
oriented ellipsoidal inclusions. de Loor (1968) extended the
work as follows,

εeff = εe+
v

3
(εi− εe)

∑
u=a, b, c

[
1

1+Nu
(
εi
ε∗
− 1

)] (5)

where ε∗ is the effective dielectric constant of the region
surrounding inclusions. For v ≤ 0.1, ε∗ ≈ εe and for higher
value of f , ε∗ approaches to εi (de Loor, 1968).

Another widely used mixing rule is the Coherent Potential
(CP here after) formula (Tsang et al., 1985), which for the

case of randomly oriented ellipsoidal inclusions is given by
(Sihvola, 1999),

εeff = εe+
v

3
(εi− εe)

∑
u=a, b, c

[
(1+Nu)εeff−Nuεe

εeff+Nu(εi− εeff)

]
(6)

For dilute inclusion (v� 1), all of these formulas (Eqs. 4–
6) provide the same results as the MG mixing rule (Si-
hvola, 1999). However, as v increases the MG formula usu-
ally predicts εeff closer to εe (dielectric constant of host or
background environment) which is lower than that estimated
by both the PVS and CP formulations. This is because, as
mentioned above, MG neglects the second-order effects due
to the mutual interactions between neighbouring inclusions.
The CP formula considers the effective medium instead of
the background to find the local field and, therefore, esti-
mates higher εeff compared to εe. The PVS formula, on the
other hand, represents a balance between MG and CP, as it
treats both the inclusions and the surrounding environment
symmetrically, resulting in an equal influence from the per-
mittivity of the two phases (Jones and Friedman, 2000; Si-
hvola, 1999). However, a computational difficulty of PVS
and CP formulae is that they are both implicit in εeff.

Tinga et al. (1973) derived an explicit formula for εeff
by considering a two-phase mixture composing of two ran-
domly oriented confocal ellipsoids with an inner ellipsoid
representing the inclusion and an outer ellipsoidal shell rep-
resenting the host material.

εeff = εe+
v

3
(εi− εe)

·

∑
u=a, b, c

[
1

1+ (Nu2− fNu1) (
εi
εe
− 1)

]
(7)

whereNu2 andNu1 are the depolarization factors of the inner
and outer ellipsoids, respectively. It is noted that for spheri-
cal inclusions (Nu2 =Nu1 =

1
3 ), Eq. (7) also reduces to the

MG mixing rule, but any deviations from the spherical shape
increase the εeff if εi > εe (and vice versa).

Another group of mixing formulas follows empirical
power-law relations, where a certain power of effective per-
mittivity of a multi-phase mixture relates to the linear combi-
nation of components raised to the same power and weighted
by their respective volume fractions, v (Sihvola et al., 1985;
Sihvola, 1999). These exponential models do not explicitly
consider the microstructure shapes (i.e. through depolariza-
tion factor, N ) but take into account the higher order mutual
interactions through the power-law averaging. The general
form of these models takes the form,

ε
β

eff =
∑
j

vjε
β
j (8)

where vj and εj are the volume fraction and dielectric con-
stant of the j th constituent, respectively, and

∑
j

vj = 1. The

https://doi.org/10.5194/tc-19-6077-2025 The Cryosphere, 19, 6077–6102, 2025



6080 A. Hossan et al.: Wet snow dielectric mixing models

exponent β controls the degree of nonlinearity of the model
(Sihvola et al., 1985), which is bounded by 0< β ≤ 1. The
lower the value of β, the higher the influence of the back-
ground (dominant volume fraction).

The effective dielectric constant of a mixture is also cal-
culated in the frequency domain using dispersion models. In
case of inclusions with permanent electric dipole moments,
like liquid water in wet snow, the Debye relaxation model
is best suited (Hallikainen et al., 1986; Sihvola, 1999). Wet
snow shows a distinct Debye relaxation spectrum in the mi-
crowave range (Ulaby et al., 2014, p. 140–145). The Debye-
like semi-empirical models are of the form (Hallikainen et
al., 1986),

ε′eff = A+
Bvxw

1+ ( f
f0
)2

(9a)

ε′′eff =
C
(
f
f0

)
vxw

1+
(
f
f0

)2 (9b)

where ε′eff and ε′′eff are the real and imaginary parts of the
effective dielectric constant of the mixture and vw is the vol-
ume fraction of liquid water in snow. f and f0 are the oper-
ational and relaxation frequencies respectively and A,B,C,
and x are constants that are determined empirically by fitting
experimental data.

There are numerous models and formulas in the literature
describing the dielectric behaviour of mixtures. Comprehen-
sive reviews on the topic can be found in Sihvola (1999) and
Mätzler (2006), and the references therein. Many of these
formulas are special cases or modifications of the above ba-
sic mixing rules. Some others are empirical in nature. In the
following section, we will briefly describe some specific wet
snow mixing models that we evaluated in this study.

2.2 Dielectric Constant of Dry Snow

Dry snow is a two-phase mixture of ice and air. Since the real
part of the dielectric constant of ice, ε′i, is independent of fre-
quency and almost independent of temperature, it is assumed
that the real part of the dielectric constant of dry snow, ε′ds
is also independent of both frequency and temperature (Hal-
likainen et al., 1986). ε′ds is thus fully determined by the den-
sity of the dry snow (Denoth, 1989; Denoth et al., 1984; Tiuri
et al., 1984). However, the imaginary part of ice dielectric
constant, ε′′i , and thus the dry snow ε′′ds are strongly sensitive
to both frequency and temperature (Ulaby et al., 2014). With
known dielectric constants of air and ice, the above dielectric
mixing models, such as two phase PVS mixing rule, can be
applied to find the effective dielectric constant of dry snow.
Empirical formulations based on experimental data also pro-
vide good results (e.g., Mätzler, 2006). For the real part of
dry snow permittivity, we follow the empirical relation pre-

sented in Mätzler (2006),

ε′ds =

{
1+ 1.4667vi+ 1.435v3

i for 0≤ vi ≤ 0.45
(1+ 0.4759vi)

3 for vi ≥ 0.45
(10)

where vi is the volume fraction of ice in snow given by the
ratio of snow and ice density.

For the imaginary part, ε′′ds, we follow the Hallikainen et
al., (1986) formulation based on Tinga mixing model (Eq. 7),

ε′′ds =
0.34viε

′′
i

(1− 0.42vi)
2 (11)

where ε′′i is the imaginary part of the dielectric constant of
ice determined based on Mätzler (2006).

Various formulations are available for the effective dielec-
tric constant of dry snow. Since our focus in this manuscript
is wet snow mixing models, we apply the same dry snow
model (Mätzler, 2006) for the mixture where the host is dry
snow.

2.3 Dielectric Constant of Wet Snow

In this subsection, we discuss ten commonly used dielectric
mixing models for estimating the complex dielectric constant
of wet snow. Mätzler model (Mätzler and Wiesmann, 2012;
used in MEMLS V3) uses the MG rule to compute the effec-
tive dielectric constant of wet snow as a two-phase mixture
of liquid water inclusions in a dry snow background (host)
with experimentally determined depolarization factors Na =

0.005, Nb =Nc = 0.4975 (representing a prolate spheroidal
shape of the inclusion) from Hallikainen et al. (1986) and
Matzler et al. (1984),

εeff =
(1− vw)εds+ vwεwK

(1− vw)+ vwK
(12a)

K =
1
3
(Ka+Kb+Kc) (12b)

Ku =
εds

εds+Nu(εw− εds)
u= a, b, c (12c)

where εw is the dielectric constant of pure water which is
determined from Liebe et al. (1991) relaxation formula.

Tinga model (Tinga et al., 1973) also considers wet snow
as a three-phase mixture (air-snow-liquid water) where air is
the background and water is a spherical shell surrounding an-
other confocal shell (ice). The effective dielectric constant is
then determined following Eq. (7). Hallikainen et al. (1986)
first proposed a Debye-like model for wet snow with the fol-
lowing expression for the constants in Eq. (9).

A= 1+ 1.83ρds+ 0.02A1v
1.015
w +B1 (13a)

B = 0.073A1 (13b)
C = 0.073A2 (13c)
x = 1.31 (13d)
f0 = 9.07GHz (13e)

where for the original Debye-like model, A1 = A2 = 1, and
B1 = 0.
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Hallikainen et al. (1986) derived the expressions below for
the constants A1, A2, and B1 in Eq. (13) as a function of fre-
quency by fitting Eq. (13) to the field measurements of vw
with a range 0 %–12 %, a density range of 0.09–0.42 g cm−3,
a temperature range of −15–0 °C, grain radius covering 0.5–
1.5 mm at the frequency range of 3 to 37 GHz (see Hal-
likainen et al., 1986).

A1 = 0.78+ 0.03f − 0.58× 10−3f 2 (14a)

A2 = 0.97− 0.39f × 10−2
+ 0.39× 10−3f 2 (14b)

B1 = 0.31− 0.05f + 0.87× 10−3f 2 (14c)

where f is in GHz. Here, we test the applicability of this
model for L-band and full possible density range in the per-
colation zone of the GrIS. For f = 1.4 GHz (L-band), the
values of A1, A2, and B1 are 0.82, 0.96, and 0.24 respec-
tively. Hereafter, we refer to this model as Hallikainen model
for simplicity. Ulaby et al. (2014, p. 140–145) used the same
formulation (Eqs. 13–14) from Hallikainen et al. (1986), ex-
cept they scaled the A parameter in Eq. (13a) (i.e., the real
part of the εeff) with the A1 factor (< 1) from Eq. (14a),
as follows. The imaginary part, ε′′eff, of Ulaby et al. (2014,
p. 140–145) and Hallikainen et al. (1986) remained the same.
Here, this model is referred to as the “Ulaby model”.

A= A1(1+ 1.83ρds+ 0.02A1v
1.015
w )+B1 (15)

Based on observations, Colbeck (1980) revised the PVS mix-
ing theory to derive the dielectric constant of wet snow for
three distinct cases. The salient feature of this model is that
it permits air, ice, and liquid water to form the continuum
environment depending on their volume fraction. When both
the density and liquid inclusion are low (ρds < 550 kg m−3

and vw < 7 %), air is the continuous environment through-
out the medium. This regime (Colbeck (1980) case I) called
the ‘pendular regime’ where ice grains form clusters and
isolated liquid water resides in the fillets and veins of the
grain contacts, describes well the liquid water inclusion in
the percolation zone of GrIS. The shape of the fillets (thin
and longer) and veins (shorter) is represented by their as-
pect ratio (n= c

a
=

c
b

), which can lie between 1 (spherical)
and 10 (needle shaped) Colbeck (1980). However, compar-
ing with the measurements, Colbeck (1980) suggested an av-
erage value of n= 3.5 for this case (vw < 7 %).

As the liquid water inclusions increase beyond 7 % and
there is enough pore space (ρds < 550 kg m−3 and thus
porosity, φ > 0.4), grain clusters break down, and a transition
from the pendular regime to another regime called the “funic-
ular regime” occurs when liquid water becomes continuous
throughout the pore space containing isolated air bubbles and
rounded ice grains. Although other studies (Denoth, 1982,
1989, 1994; Denoth et al., 1984) report that this transition
can occur at lower vw (< 7 %), we do not consider this case
(Colbeck (1980) case II) as it is not representative of typi-
cal melt conditions in the percolation zone. It may represent
saturated snow or slush in the GrIS ablation zone.

However, if the density is high (ρds > 550 kg m−3, high ice
fraction and thus low porosity, φ < 0.4), ice forms the con-
tinuum medium and air becomes spherical isolated bubbles,
while liquid water still resides in the fillets and veins of the
grain clusters for low liquid inclusions (vw < 7 %). This case
(Colbeck, 1980; case III) is also relevant to percolation zone
firn, especially at depth below the seasonal snow. Therefore,
we implement Colbeck (1980) cases I (pendular regime) and
III (low porosity) using 3 component PVS mixing theory in
the following form.

εeff =

Three-phase PVS mixing ρds ≤ 550kgm−3

with air background

Three-phase PVS mixing ρds > 550kgm−3

with ice background

(16a)

For n= 3.5, we used m= 0.072 following Picard et
al. (2022), where m is the ratio of the depolarization factors.

m=
Nc

Na
=
Nc

Nb
(16b)

Among the power-law based models, we considered follow-
ing three well known models. The Birchak et al. (1974)
model uses an exponent, β = 1

2 in the power-law relation of
Eq. (8). Sihvola et al. (1985) used a similar model based
on Cummings (1952) results and obtained a best fit with
β = 0.4. The Looyenga model (Looyenga, 1965) also fol-
lows the power-law relations of the form in Eq. (8). Specif-
ically, it uses β = 1

3 . We will refer these models as Birchak,
Sihvola, and Looyenga models, respectively. To determine
the effective dielectric constant of wet snow, Eq. (8) can
be extended for a three-component mixing with respective
volume fraction, but we used Mätzler (2006) model for dry
snow, then used Eq. (8) for water inclusion in a dry snow
environment.

Aside from above models, we considered purely empiri-
cal Tiuri et al. (1984) model that used experimental data to
measure the complex dielectric constant of wet snow for fre-
quencies 859 MHz–12.6 GHz. Their results suggest that the
complex dielectric constant of snow is largely unaffected by
the snow structure. In dry snow, the dielectric constant is pri-
marily determined by the density. For wet snow, both the
imaginary part (ε′′s ) and the increase in the real part due to
liquid water (ε′s) show a similar dependence on volumetric
wetness, which were empirically modelled as,

ε′s = 1+ 1.7ρds+ 0.7ρ2
ds+ 8.7vw+ 70v2

w (17a)

ε′′s =
f

109 (0.9vw+ 7.5v2
w), f = 500− 1000MHz (17b)

A summary of the above-mentioned wet snow dielectric mix-
ing models is given in Table 1.

2.4 Theoretical Penetration Depth

An important quantity of interest for liquid water quantifi-
cation is the depth of penetration (also known as e-folding
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Table 1. Salient features of the ten selected dielectric mixing models.

Models Mixing rule Host Key parameters References

Mätzler Maxwell Garnett (MG) Dry snow Depolarization factors
Na = 0.005,
Nb =Nc = 0.4975

Mätzler and Wiesmann
(2012)

Tinga Tinga-Voss-Blossey
(TVB)

Air Multi-phase mixture of
randomly dispersed
confocal ellipsoids
described by the
depolarization factors
of the inner and outer
ellipsoids.

Tinga et al. (1973)

Debye-like Bruggeman Symmetric Eq. (9), with
A1 = A2 = 1, and
B1 = 0 (Eq. 13)

Hallikainen et
al. (1986)

Hallikainen (Modified
Debye-like)

Eq. (9), with A1, A2
and B1 were
determined from
empirical fit (Eq. 14)

Hallikainen et
al. (1986)

Ulaby (Modified
Debye-like)

Same as Hallikainen et
al. (1986), with scaled
A by Eq. (15)

Ulaby et al. (2014,
p. 140–145)

Colbeck Polder–van Santen
(PVS)

Air, or ice, or liquid
water depending on
their volume fraction

Pendular regime and
low porosity cases
defined by Eq. (16),
with aspect ratio,
n= 3.5

Colbeck (1980), Picard
et al. (2022)

Birchak Power-law relation
(Eq. 8)

Dry snow β = 1
2 Birchak et al. (1974)

Sihvola β = 0.4 Sihvola et al. (1985)

Looyenga β = 1
3 Looyenga (1965)

Tiuri Empirical fit Dry snow Assumed to be
independent of the
snow structure
(Eq. 17).

Tiuri et al. (1984)

depth, δp), a depth at which the signal power drops to 1
e

times (∼ 37 %) of its initial power at a reference location
due to absorption and scattering in the snow and firn. The
effective depth from which microwave radiometers receive
emissions is usually higher depending on the medium prop-
erties although the signal strengths progressively diminish
(less than 3 % and 5 % of their initial value at depths 5δp
and 3δp, respectively). The actual depth of penetration also
depends on the signal to noise ratio (SNR) as well as the
precision of the radiometer instruments. To estimate the total
liquid water amount, the radiometer should receive emissions
from the full wet layer. The signal power of an electromag-
netic wave propagating through snow/firn is determined by
the extinction coefficient κe of the medium, which is the sum
of the volume absorption and scattering coefficient respec-

tively, κe = κa+ κs. Since the snow grains are much smaller
than the L-band wavelength, κs� κa, the absorption coeffi-
cient dominates the extinction, κa ≈ κe. Therefore, neglect-
ing scattering losses at L-band for a low volume fraction of
liquid water (ε′′� ε′) in snow/firn, the penetration depth can
be approximated following Elachi and Zyl (2021) and Ulaby
et al. (2014, p. 140–145) as:

δp =
1
κa

(18)

where κa is the wet snow power absorption coefficient given
by κa = 2α and α is the attenuation coefficient (Np m−1) de-
fined by,

α =−k0 · Im
(√
εeff
)

(19)

The Cryosphere, 19, 6077–6102, 2025 https://doi.org/10.5194/tc-19-6077-2025



A. Hossan et al.: Wet snow dielectric mixing models 6083

where k0 is the wave number in vacuum, k0 =
2πf
c

, c is
the speed of light, and f is the frequency in Hz. There-
fore, for a given frequency, δ is determined by the effective
dielectric constant, depending on the average volume frac-
tion of liquid water content and the density of snow/firn. For
L-band, the penetration depth in dry snow is significantly
higher (> 100 m) (Matzler et al., 1984) depending on the
density. However, in wet snow, the liquid water inclusion sig-
nificantly increases absorption (ε′′) thus decreasing δ.

2.5 Liquid Water Amount

For a volume fraction of liquid water vw (percent) with a
wet layer thickness of twet, (m), the LWA is calculated by the
product of the two,

LWA= vwtwet mw.e (20)

We chose to express the LWA in [mm], which is equivalent to
[kg m−2] (because the density of water is 1000 kg m−3). The
LWA represents the vertically integrated liquid water content
within the SMAP grid point at that timestamp, corresponding
to the SMAP effective sensing depth.

2.6 Liquid Water Retrieval Algorithm

For the LWA retrieval, we iteratively used an inversion-
based framework, first minimizing a cost function between
the simulated and mean observed TB measured at verti-
cal (p = V ) polarization during the frozen season which we
considered to span 1 January–31 March and 1 November–
31 December for the pre- and post-summer seasons, respec-
tively, across the GrIS percolation zone. For the observa-
tions, we used the SMAP enhanced-resolution data products
generated using the radiometer form of the Scatterometer
Image Reconstruction (rSIR) algorithm (Long et al., 2019;
Brodzik et al., 2021) posted on the EASE-2 3.125 km grid
(Brodzik et al., 2012, 2014). The rSIR technique utilizes the
measurement response function (MRF) of each sample and
combines the overlapping (at close but different acquisition
times) MRFs to reconstruct an enhanced-resolution TB im-
age (Early and Long, 2001; Long, 2019; Long et al., 1993;
Long and Brodzik, 2016; Long and Daum, 1998). The data
product provides the twice daily sampling of GrIS in the form
of combined morning and evening passes. The advantage of
this rSIR processing is that it improves the overall effective
resolution of the measurements by about 30 % as compared
to the original data products (Long et al., 2023; Zeiger et al.,
2024). The radiometric precision of the SMAP original data
is within 0.5 K (Chaubell et al., 2018, 2020; Piepmeier et al.,
2017).

Using the average measured density from the top 3 m of
snow as recorded from the PROMICE or GC-Net AWS,
the algorithm first optimizes the pre-summer baseline emis-
sion using the pre-summer mean frozen season (1 January–
31 March) TB. If the post-summer mean frozen-season TB

Figure 1. Configuration of a simplified three-layer ice sheet model
to represent equivalent snow and firn stratigraphy for forward mod-
eling of the brightness temperature.

(1 November–31 December) is lower than the pre-summer
mean frozen-season TB – such as due to crust formation
caused by refreezing – the post-summer frozen-season TB
is used in the optimization to determine a separate reference
for the late melt season. The transition between frozen refer-
ences is identified by the day on which the maximum TB is
observed, as refreezing becomes the dominant process there-
after. However, if the post-summer mean frozen-season TB is
higher than the pre-summer mean, indicating a warmer back-
ground from remnant melt or latent heat, the pre-melt frozen
reference is used throughout the year. With these initial con-
ditions, the melting TB in the summer season is a nonlinear
function of the wet layer thickness (twet), liquid water content
(vw), and melt-related and other snow firn metamorphisms.
Here, we did not account for melt induced snow metamor-
phism in the forward simulation, except for the adjustments
in the reference TBs. We then used the melt season observed
TBs to derive an average wet layer thickness (twet) and liq-
uid water content (vw) in a two-step optimization process. To
remove any spurious melt during frozen season, we also de-
rived a threshold-based binary melt flag. The threshold was
determined by an algorithm following Torinesi et al. (2003):

Th= TBref+m · σ (21)

where TBref is frozen reference, σ is the standard deviation of
the TB during the pre-summer reference period, and m is an
empirically derived constant. For SMAP V-pol TBs over the
Greenland percolation zone, we foundm= 10 to be optimal.

The near-surface density profile in the percolation zone
is highly variable and characterized by multi-scale fluctua-
tions (Rennermalm et al., 2022; Johnson et al., 2014, and the
references therein). Seasonal melting and refreezing further
complicate this structure, leading to the formation of features
such as random ice layers and ice pipes. Accurately model-
ing these effects across the percolation zone remains a signif-
icant challenge due to the lack of detailed ancillary data (e.g.,
temperature, density) and is an ongoing area of research.
These sub-grid-scale structural variabilities contribute to the
substantial scattering of L-band TBs, particularly during the
frozen season (Hossan et al., 2025). Even with measured ice
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core profiles, simulating L-band TBs remains difficult due to
these complexities.

We implemented a simplified three-layer ice sheet config-
uration (Fig. 1) to simulate TB using MEMLS V3 (Mätzler
and Wiesmann, 2012). In this configuration (Fig. 1), the top
layer represents the seasonal snowpack, dry snow/firn during
frozen season and wet snow during melt. The bottom layer
of the three-layer configuration is treated as semi-infinite ice.
To account for the influence of internal firn stratigraphy, we
introduced a middle layer modelled as an effective dielectric
slab. This layer captures the bulk reflective effects of com-
plex subsurface layering in background emission, following
a similar approach used by Mousavi et al. (2022). Rather than
representing any specific physical layer, it serves to model
the cumulative dielectric contrast beneath the seasonal snow-
pack. Its properties remain fixed over time at each grid point
and have insignificant influence on liquid water retrievals,
which are governed by the top layer’s dynamic properties.

In MEMLS each layer is defined by its thickness (d), phys-
ical temperature (T ), density (ρ), volumetric liquid-water
content (vw), exponential correlation length (lex), and salinity
(S). Since our objective is to evaluate the relative behaviours
of dielectric mixing models, we tried to make the model as
simple as possible by assuming reasonable ranges and fixed
values of possible parameters. The top layer has thickness
0.1–20 m, volumetric liquid-water content of 0 %–6 %, and
a fixed temperature of 250 and 273.15 K when mv = 0 (dry)
and mv > 0 (melt) respectively.

While, L-band TB is sensitive to dry snow density (Hos-
san et al., 2025; Houtz et al., 2019), we used the average
measured density in the top 3 m to better constrain the re-
trievals. Considering the insensitivity of L-band measure-
ments to snow microstructure, we set lex = 0 mm for all three
layers (Schwank et al., 2014). Planar interfaces and specu-
lar reflection are assumed. For ice sheets, the salinity can
also be set to 0 ppt. The range of volume fraction of liquid
water was determined based on earlier Experiments (Coléou
and Lesaffre, 1998; Colbeck, 1974), which suggest that the
irreducible water saturation because of capillary retention
ranges between 6.5 %–8.5 % of the pore volume depending
on the density. Considering snow/firn density in the percola-
tion zone, we determined the maximum volume fraction is
within 6 %. Exceptions to this are the saturated water such
as buried and open lakes (Dunmire et al., 2021), firn aquifers
(Miller et al., 2022b, 2020b), which are atypical for this area
and we did not include these cases into our consideration

The middle layer has a fixed thickness of 5 m. It shares
the same physical temperature as the top layer during the
frozen season and uses a fixed temperature of 265 K when
the top layer contains liquid water (at melting point). The
real part of its relative dielectric constant is tuned to match
the simulated TB with the observed TB during frozen season
while the imaginary part is fixed 0.0002 (same as ice loss fac-
tor). The bottom layer is semi-infinite ice with fixed density
(917 kg m−3) and physical temperature of 255 K regardless

of dry and melt season. We also considered the cosmic back-
ground radiation (Tc = 2.7 K). However, we did not consider
any correction for the atmospheric contribution, because it
is small compared to the melt signal (approximately at most
2 K at L-band frequencies (Houtz, et al. 2019)). For a fixed
location, the same layer characteristics were applied to all the
models.

MEMLS utilizes the six-flux theory to model volume scat-
tering and absorption. It also accounts for the effects of ra-
diation trapping due to internal reflection, along with the co-
herent and incoherent reflections at the layer interfaces (Mät-
zler and Wiesmann, 2012). The model uses an empirical ap-
proach to compute the scattering coefficient, while the ab-
sorption coefficient, refraction, and reflection at layer bound-
aries are derived using physical models. For effective permit-
tivity, by default, the latest version (V3) of MEMLS consid-
ers wet snow as a two-phase mixture of prolate ellipsoidal
liquid water inclusions in a dry snow background and uses
the MG dielectric mixing rule with depolarization factors
from Hallikainen et al. (1986) as mentioned in the previous
section. We refer to this default configuration of MEMLS
V3 as simply Mätzler model. For other models, we used
the same setup and input parameters, except we changed the
formulations for the complex wet snow dielectric constants
(Sect. 2.3).

2.7 LWA Estimates from a Surface Energy and Mass
Balance Model

As references, we considered independent LWA estimates
from two ice sheet SEMB models, namely the Samimi
et al. (2021) SEMB model, which was locally calibrated
(Samimi et al., 2020, 2021; Ebrahimi and Marshall, 2016)
and the Glacier Energy and Mass Balance (GEMB) model
(Gardner et al., 2023), within the NASA Ice-sheet and Sea-
Level System Model (ISSM). Both models were forced with
the in situ automatic weather stations (AWS) measurements
from the Programme for Monitoring of the Greenland Ice
Sheet (PROMICE) and Greenland Climate Network (GC-
Net) located in the percolation zone of the GrIS. These mod-
els used averaged hourly observations of air temperature, air
pressure, upwelling and downwelling short and longwave
radiation fluxes, snow-surface height, wind speeds (Fausto
et al., 2021) along with subsurface profiles of temperature,
density, and stratigraphy for initializations (Vandecrux et al.,
2024). The SEMB models determine the net energy available
for melting if the surface temperature is at the melting point,
otherwise for warming or cooling the snow in the upper layer.
The subsurface temperature and density then evolve within a
one-dimensional model, which is coupled with hydrological
processes like meltwater infiltration, refreezing, and reten-
tion within the firn. Although the two models under consid-
eration used the same forcing, they use separate parameter-
izations for these physical processes and a separate model
configuration. We refer the reader to Samimi et al. (2021),
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and Gardner et al. (2023), for specific model details. Despite
limitations, these SEMB models are currently the most vi-
able way of validating satellite retrievals. For comparison,
we consider these two models individually as well as their
ensemble (average).

3 Results

3.1 Effective Complex Dielectric Constant

Liquid water increases both the real and imaginary part of
the dielectric constant of snow/firn. Since the dry snow has
negligible loss factors at microwave frequencies, almost all
the changes in imaginary parts come from liquid water in-
clusion. Figure 2 shows the change of the complex dielectric
constant at a fixed density of 400 kg m−3 as function of the
volume fraction (vw) of liquid water inclusions for up to 6 %
as appropriate for the percolation zone.

There are large spreads between the models for both the
real (Fig. 2a and b) and imaginary parts (Fig. 2c and d);
this spread increases as vw increases. The deviations between
the models are higher for the imaginary part than in the real
part. For vw < 2 %, the models’ agreements for the real part
(Fig. 2b) are consistent within two tenths of the relative di-
electric constant, except the Hallikainen model (dashed black
line), which appeared an outlier. The Ulaby model (solid blue
line) uses a scaling factor ofA< 1, resulting in the lowest es-
timate among the models up to about 2 % (Fig. 2b); at higher
vw values it provides an intermediate estimate (Fig. 2a). The
Ulaby, Tinga, and Debye-like models provide real part of di-
electric constant lower than that of even dry snow (the dashed
grey line indicates the permittivity of dry snow at −0.5 °C
with the Mätzler, 2006 model) for up to vw 1.2 %, 0.7 %, and
0.4 %, respectively. The Debye-like model and the low fre-
quency approximate of the Hallikainen model closely agree
with the empirical Tiuri model, and both lie in the upper end
for the vw > 2 % range, while the Mätzler model (solid black
line) predicts an intermediate result for the entire vw range.
The exponential models (Looyenga, Sihvola, and Birchak)
reasonably agree with the median model (e.g., Mätzler) for
low vw (< 2 %) and stay in the lower end of the curves for
the higher vw. Among the structure dependent models, the
Colbeck and Tinga models provide relatively lower estimates
of the real part of the dielectric constant and agree with the
exponential models, especially for vw > 2 %.

For the imaginary part of the snow/firn dielectric constant,
the Debye-like, Hallikainen, and Ulaby models, which are
the same group of models with modifications for frequency
dependencies, generally follow the empirically derived Tiuri
model almost for the entire range of vw under consideration.
However, it is worth noting that small differences in the loss
factor, especially in the lower end, can result in significant
differences in terms of TB and depth of penetration. The Hal-
likainen and Ulaby models are the same for the imaginary

part, overlapping with each other. The Tinga model provides
the highest estimate of the loss factor for vw up to about
2 %, then it falls exponentially for the higher end. Mätzler
model again provides an intermediate estimate of the loss
factor for the entire vw range under consideration. The ex-
ponential models stay in the lower end, as in the case of the
real part, with the lower value of β, giving the lower esti-
mate. The Colbeck model results consistently in the lowest
value of the imaginary part of the dielectric constant for the
entire range of vw. Since the density is less than 550 kg m−3

for these curves, it included only Case I (pendular regime) of
Colbeck (1980).

3.2 Penetration Depth

The differences in the imaginary part of the dielectric con-
stants are manifested in the penetration depth, an important
variable for liquid water quantification. Figure 3 illustrates
the penetration depth of L-band (1.41 GHz) signals estimated
by the models for a snow/firn density of 400 kg m−3 as a
function of vw in the 0 %–6 % range (Fig. 3a) and the 3 %–
6 % range (Fig. 3b). All models predict an exponential decay
of penetration, but they exhibit substantial differences with
respect to one another, though the range generally reduces
with increasing vw. For vw of 1 %, 3 %, and 5 %, the model
estimates of penetration depth range between 2.8–12.8, 1–4,
0.5–2.3 m respectively. The Tinga and Ulaby models provide
the lowest estimate of penetration depth for vw < 2 %, and
vw > 2 % ranges respectively, while the Colbeck model gives
the highest estimate for the entire vw range as it estimates
the lowest loss factor among all the models. The Debye-like,
Hallikainen, and Ulaby models closely follow each other.
Mätzler model provides an intermediate estimate of pene-
tration depth. The empirical Tiuri model aligns with Mät-
zler model for low vw (< 1 %); however, it matches better
with Debye-like, Hallikainen, and Ulaby models for higher
vw (> 2 %). The exponential models, consistent with their
complex dielectric constant, lie in between.

3.3 Simulated Brightness Temperature

TBs simulated with these models for a typical representative
snowpack in the percolation zone are illustrated as function
of vw (bottom x axis) and LWA (top x axis) in Fig. 4 for
wet layer thicknesses of 1 m (Fig. 4a, d), 2 m (Fig. 4b, e),
and 3 m (Fig. 4c, f), respectively. For the V-pol, the Tinga
model appears to be the most sensitive for low vw and LWA,
then it gradually slows down as the LWA increases, when the
Ulaby model provides the highest TB. The Debye-like model
closely follows the Ulaby model; the Hallikainen model,
which uses the same imaginary part as the Ulaby model, but a
higher real part of the dielectric constant, shows lower TB es-
timates. The difference that is also function of LWA, is more
obvious in the H-pol results (Fig. 4d–f). The Tiuri and Mät-
zler models produce higher TB projections than the Ulaby
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Figure 2. Change of real (a, b) and imaginary (c, d) parts of complex dielectric constant of snow/firn of a fixed density of 400 kg m−3 as
function of volume fraction (vw) of liquid water content. The right panel shows a zoomed version of the left panel for vw range 0 %–2 %.
As reference, real (a, b) and imaginary (c, d) parts of complex dielectric constant of dry snow at the same density and snow temperature of
−0.5 °C are shown by horizontal grey dashed lines.

and Debye-like models for the lower range of LWA, but it
flipped for higher range of LWA, and the transition depends
on the thickness of the wet layer. In line with the complex
dielectric constant, the Colbeck model provides the lowest
estimates for almost the entire LWA range under consider-
ation (except for LWA > 150 mm, H-pol), and the Birchak,
Sihvola, and Looyenga models offer moderate values for all
cases. Although, the changes are more pronounced in the
H-pol TB, the trends with the LWA are similar except that
the saturation in TB occurs for relatively lower LWA com-
pared to the V-pol signals, especially for thicker wet layers
(Fig. 4e–f).

The results depend on the density of the dry snow
(porosity), which are shown for three different densities
(200 kg m−3 (Fig. 5a, d), 400 kg m−3 (Fig. 5b, e), and
600 kg m−3 (Fig. 5c, f)) for a fixed thickness of wet layer
(2 m) in Fig. 5. The Debye-based models (Debye-like, Hal-

likainen, and Ulaby) along with the Tiuri model show sig-
nificantly higher sensitivity with vw and thus provide lower
estimates of LWA than the Mätzler and Tinga models for
the low snow density (200 kg m−3) at both V- and H-
pol results. However, for high snow density (600 kg m−3),
this is reversed, Tinga and Mätzler models exhibit higher
sensitivity and provide lower estimates of LWA than the
Debye-based and Tiuri models, while at intermediate density
(400 kg m−3), they agree closer for both V- and H-pol TB.
Although the sensitivity of the rest of the models varies with
the dry snow density, they consistently demonstrate lower
sensitivity and provide higher estimates of LWA than the
above-mentioned models across the complete density range.

Figure 6 depicts simulated TB, like Fig. 4, but as a func-
tion of wet layer thickness in (bottom x axis) and LWA (top
x axis) at a fixed snow/firn density of 400 kg m−3 for three
cases of fixed vw of 1 % (Fig. 6a and d), 2 % (Fig. 6b and e),
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Figure 3. Penetration depth at L-band (1.41 GHz) for a snow/firn density of 400 kg m−3 as function of volume fraction (vw) of liquid water
content (a). (b) a zoomed version of (a) for vw range 3 %–6 %.

and 3 % (Fig. 6c and f). In a broader perspective, the trends of
TB with the thickness of the wet layer at a fixed vw are simi-
lar to the TB trends with vw at the fixed thickness of the wet
layer, as presented in Fig. 4. TB grows exponentially with
both vw and twet, where each model has a different growth
factor, which also depends on vw and twet themselves along
with dry snow density and other background conditions.

3.4 Brightness Temperature Sensitivity to Liquid
Water Change

The sensitivity of TB to LWA change decreases with increas-
ing LWA. We compute the change of TB for every 1 mm
change in LWA, which is shown for V- and H-pol TB in
Fig. 7. Here we considered a vw of 3 %, and increased the wet
layer thickness from 0.1 to 5 m. The sensitivities at H-pol are
higher than at V-pol for all models. The sensitivity of TB to
the change of LWA decays exponentially across all models,
falling below 1 K mm−1 at < 50 mm of LWA for V- and H-
pol. For models that demonstrate higher sensitivity for lower
LWA, the sensitivity declines more sharply and saturates at

relatively lower LWA (after which they show negative sensi-
tivity, i.e., TB decreases as LWA increases; however, we did
not consider negative sensitivity regime in this manuscript as
this happens at oversaturated LWA not typical for the perco-
lation zone of the Greenland Ice Sheet, see Sect. 1).

The Ulaby and Tiuri models show the highest sensitivity
at lower LWA, closely followed by the Hallikainen, Tinga,
and Mätzler models. However, the sensitivities of these mod-
els fall below tenths of K mm−1 for LWA > 70 mm for both
V- and H-pol. The Birchak, Sihvola, and Looyenga models
demonstrate moderate sensitivities, while the Colbeck model
presents the lowest sensitivity among the models for lower
LWA; however, their sensitivities also decrease slowly with
LWA, and they remain reasonably sensitive for the higher
end of the LWA. Although, the first group of models shows
almost negligible sensitivities close to or beyond 100 mm of
LWA, no models showed perfect 0 or negative sensitivities
within 150 mm of LWA. However, it is obvious that for a ma-
jority of the models the uncertainty of the retrievals at LWA
> 60–70 mm will be significantly higher.
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Figure 4. Vertically (a–c) and horizontally (d–f) polarized brightness temperature at L-band for a snow/firn density of 400 kg m−3 as function
of volume fraction (vw) of liquid water content in percent (bottom x axis) and total liquid water amount in mm (top x axis) simulated with
MEMLS using different wet snow mixing models for three wet layer thickness: 1 m (a, d), 2 m (b, e), and 3 m (c, f).

3.5 LWA Retrievals

Figure 8 compares the simulated V-pol TBs with the ob-
served V-pol SMAP TB time series (blue dash-dotted line)
along with the frozen season TB references (dashed grey
lines), during the 2023 melt season at six PROMICE and GC-
Net AWS. The AWS were selected based on their varying
geographic locations in the percolation zone, climatic record
of melt, and in situ data availability for the validation. Ta-
ble 2 shows the geographic locations, elevations along with
the mean 2 m air temperature, the mean dry snow density of
the upper 3 m, and the mean pre-summer frozen season V-pol
L-band TB at these sites.

The 2023 melt year experienced above average melting
(Poinar et al., 2023), though the annual average temperatures
reflect both a cooler accumulation period and warmer melt
season (Poinar et al., 2023). All sites have very stable but dif-
ferent frozen season TB, representative of their different sub-
surface backgrounds. Some occasionally decreasing spikes
before and after the melt season at the SDM site are artifacts

of the rSIR processing (Long and Brodzik, 2024, confirmed
through personal communications). Since the simulated TBs
were optimized with the mean observed TBs during frozen
season, they are less affected by these artifacts during frozen
season. Throughout the summer season at each of the AWS
location, the simulations with different models closely align
with the observations with no significant bias. The agree-
ments are so close that the simulated TBs are almost overlaid
by the observed TBs (Fig. 8). But this was obtained with dif-
ferent combinations of twet and vw, resulting different LWA.

CP1 and DY2 are both perfect representatives of the
Greenland percolation zone, with moderate upper layer den-
sity and numerous ice layers and pipes due to annual re-
freezing of seasonal melt (Jezek et al., 2018; Vandecrux et
al., 2024). These ice layers significantly attenuate microwave
emissions from deeper layers giving very low frozen season
TBs (∼ 148 and 144 K, respectively). At the same time, these
sites also provide high TB sensitivity to liquid water during
peak melt season as the effective emissions approaches close
to unity (> 0.95, see Fig. 8a–b). At both AWS locations, the

The Cryosphere, 19, 6077–6102, 2025 https://doi.org/10.5194/tc-19-6077-2025



A. Hossan et al.: Wet snow dielectric mixing models 6089

Figure 5. Vertically (a–c) and horizontally (d–f) polarized brightness temperature at L-band for a wet layer thickness of 2 m as function of
volume fraction (vw) of liquid water content in percent (bottom x axis) and total liquid water amount in mm (top x axis) simulated with
MEMLS using different wet snow mixing models for three snow/firn densities: 200 kg m−3 (a, d), 400 kg m−3 (b, e), and 600 kg m−3 (c, f).

TBs remained elevated through October compared to their
pre-summer frozen references.

KAN_U is located at the lowest elevation (1848 m) of all
the sites close to the equilibrium line in the southwestern
Greenland. Air temperatures are often above freezing during
the melt season (Table 2), and the region experiences sub-
stantial surface melting. As a result, ice layers are thicker,
and the near surface densities are high with low variability.
Frozen season TB is the highest of all sites examined, and
during 2023 melt season (Table 2), TB is possibly saturated
due to extensive persistent melt that keeps TB elevated be-
yond the end of October (Fig. 8c).

NSE, SDL, and SDM are located at high elevation in
southeast Greenland. These locations generally receive more
accumulation and less melt than the other stations examined
here (Fausto et al., 2021). Upper layer densities are low to
moderate with lesser number of ice layers. This is revealed
by their moderate means frozen season TBs (Table 2). Con-
temporaneous large summer peaks of TB at these three sites
in 2023 are indicative of melt events (Hossan et al., 2025).

However, the duration of the melt events at these AWS loca-
tions is substantially shorter than at the previous three AWS
locations. In addition, the post-summer mean frozen-season
TBs drop below their pre-summer frozen references (note the
changes in the reference TBs, Fig. 8d–f), unlike at the previ-
ous three sites. This is because the post-melt temperature at
these locations drops sharply, possibly due to crust formation
that enhances internal reflections.

LWA retrieved from L-band TB using different dielectric
mixing models and two SEMB models for 2023 melt season
at the selected AWS locations are presented in Fig. 9. For all
the mixing models, the retrieved average thicknesses of wet
layer used in the LWA retrieval are given in Table 3.

Regarding the onset of melt season at CP1, the satellite re-
trievals with different mixing models are the same (24 June)
and reasonably contemporary with the SEMB models con-
sidering noise levels of in situ instruments. We used the
SMAP melt flags (see Sect. 2) to remove spurious melts in
winter. Similar flagging for SEMB models is difficult to find.
Some studies have used thresholds in LWA (e.g., > 2 mm in
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Figure 6. Vertically (a–c) and horizontally (d–f) polarized brightness temperature at L-band for a snow/firn density of 400 kg m−3 as function
of wet layer thickness (bottom x axis) and total liquid water amount in mm (top x axis) simulated with MEMLS using different wet snow
mixing models for three fixed volume fraction (vw) of liquid water content: 1 % (a, d), 2 % (b, e), and 3 % (c, f).

Hossan et al., 2025; Zhang et al., 2023; Leduc-Leballeur et
al., 2020; Van Den Broeke et al., 2010). However, we did
not use such threshold because dielectric mixing models that
show higher sensitivity for light melt events can result LWA
within 2 mm. Hence, here we rather focus on relative intensi-
ties and durations of significant and consistent melt events
qualitatively, ignoring suspicious melt events, like one in
early June at CP1 where GEMB estimated a short-lived melt
(∼ 2.5 mm in amount) but the SAMIMI model like all the
satellite retrievals indicates no melt even when both models
used the same in situ measurements.

All three methods (SAMIMI, GEMB, and satellite re-
trievals) agreed qualitatively on three main persistent melt
events in terms of relative intensities and duration at CP1
during the melt season: a small one in late June, followed
by the major melt event that sustained whole July through
late August, and a moderate one that begun in late August
(on top of the sub-surface remnant melt), lasting through
mid-September based on SMAP or early October based on
the SEMB models (Fig. 9a). For the early and late season

melt events (light to moderate amount), the SEMB models
estimated more LWA than any of the satellite retrievals with
GEMB surpassing SAMIMI. However, during the peak melt
event, we observed mixed results with the dielectric mixing
models when comparing them to the SEMB models: the Col-
beck and Looyenga models estimate higher LWA (Table 4)
than the SEMB models, while the Tiuri, Ulaby, Debye-like,
Hallikainen, Mätzler, and Birchak models show lower esti-
mates of LWA compared to the SEMB models (Table 4).
These retrievals are lower than the ones Hossan et al. (2025)
presented using the Ulaby model at this site during the same
melt season. Different constrains in frozen and melt season
parameters, mainly density and background temperatures,
explain some of these differences.

The Sihvola model was found to be in closest agreement
with the SEMB models at CP1 until the peak of the melt sea-
son. Afterward, when active melting at the surface stops (as
evidenced by gradual loss of LWA) and meltwater percolates
deeper and refreezes, the satellite retrievals and the SEMB
models exhibit more substantial differences (Table 6), which
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Figure 7. L-band vertically (a) and horizontally (b) polarized brightness temperature sensitivity (change of TB in K per mm change in liquid
water amount) at a snow/firn density of 400 kg m−3 as of total liquid water amount in mm simulated with MEMLS using different wet snow
mixing models for a fixed 3 % volume fraction (vw) of liquid water content with varying wet layer thickness. Top panel shows the results for
a LWA range 0–50 mm, and the bottom panel shows the results for an extended range (0–100 mm).

impacted the overall correlation and RMSD (0.74≤ r ≤ 0.84
and 18 mm≤RMSD≤ 28 mm; see Tables 5–6). All the satel-
lite retrievals consistently indicate a faster refreezing rate of
the subsurface liquid water than in case of both the SEMB
models, where the refreezing is determined by the evolution
of the density profile and thermal conduction.

The melt trends at DY2 (Fig. 9b) are similar to CP1 with
some differences (Tables 3–6). The early season melt in late
June is minor, while the late season peak is relatively higher
with gradual loss of persistent subsurface melt that extended
even beyond the end of September in consensus with the mix-
ing models and with the SEMB models. Under such persis-
tent liquid water and warmer subsurface background, while
the surface recommences melting, liquid water is expected
to infiltrate deeper and form a thicker wet layer. Satellite
retrievals of average wet layer thickness by majority of the
mixing models support this (Table 3). The overall agreement
between the SEMB models and satellite retrieval with differ-
ent mixing models is better at this site (0.95≤ r ≤ 0.98 and
5 mm≤RMSD≤ 17 mm; see Tables 5–6).

KAN_U is known to undergo extensive LWA throughout
the summer (Hossan et al., 2025). However, all the mix-
ing models, including SEMB models, report relatively lower
LWA but prolonged melting conditions (Fig. 9c). All the mix-
ing models, except the Tinga model estimated higher average
thickness of the wet layer than the SEMB models (Table 3).
The snowfall at this site is climatologically lower (MacFer-
rin et al., 2019; Machguth et al., 2016) and thicker ice lay-
ers underneath ought to prevent deeper infiltration. Regard-
ing LWA, the SEMB models showed better alignment with
the Colbeck, Looyenga, and Sihvola model-based retrievals
at the beginning of the peak melt (early July). However, as
the melt season progresses and the snow/firn profile evolves,
the differences intensify with the previous models, rather
they better match with the rest of the models which claim
lower estimates of LWA throughout. Firn models push the
liquid water out of the system (called runoff) if the water
balance exceeds certain limit (irreducible water saturation)
determined by the available pore space. In reality, this ex-
cluded liquid water must still exist somewhere, which may
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Figure 8. L-band vertically polarized observed and simulated brightness temperature time series during 2023 melt season at six selected
PROMICE and GC-Net within the GrIS automatic weather stations (AWS) locations within the percolation zone. Frozen season TB refer-
ences are shown as dashed grey lines. In panel (f), the large downward spikes are processing artifacts.

explain some of these misalignments (Tables 4–6). Never-
theless, the spread of maximum summer melts between the
mixing models (satellite retrievals) is large (min 21 mm by
Tinga and Mätzler models to max 60 mm by Colbeck model
with SD= 15 mm; see Table 4).

Since NSE is located at higher elevation (Table 1), histor-
ically it receives less frequent and less intense melt. In the
2023 melt season, we, however, observed similar melt trends
with shorter duration compared to the previous three sites
(Fig. 9d). Only the GEMB model detected the early season
melt in late June. Both GEMB and SAMIMI models estimate
the presence of liquid water (max. 18 and 7 mm respectively)
in the late melt season, which were also detected by all the
satellite retrievals (mixing models) that better align with the
estimate of SAMIMI model. Compared to the pre-summer
mean frozen TB, the post-melt mean frozen TB dropped
around 5 K at this site possibly from ice layers formed by
refreezing of summer melt, common in this higher elevation
areas (Hossan et al., 2025). Without dynamic thresholding,
these late-season, less intense melt events would have been
missed as false negatives. Other than this, although lesser in
intensities, the order of magnitude of the satellite retrievals
remains the same. However, the results of the SAMIMI
model better match with the group of mixing models that

provide a lower estimate of LWA while the GEMB model
provides the upper limit and better aligns with the models
that indicate higher LWA. The GEMB model also refreezes
noticeably more slowly than the SAMIMI model, refreezing
faster and aligning better with the satellite retrievals.

Though all the satellite retrievals and SEMB models esti-
mated an overall slightly higher LWA at SDL site in 2023,
the trends closely replicated that of NSE (Fig. 9e). The late
season melt is however now stronger at this site, and the
threshold algorithm detected melt and LWA was quantified
by all the mixing models with the similar sequence – the
Tinga model giving the lowest and the Colbeck model giving
the highest maximum summer LWA (Table 4). Compared to
the maximum summer LWA, the average thickness of the wet
layer (Table 3) was found to be overall higher at this site, sim-
ilar to NSE, which is anticipated since there is enough pore
space but a lower number of ice layers allowing liquid water
to percolate deeper. The SEMB models, despite differences
between them, better align with the Sihvola, Looyenga, and
Colbeck models than the rest of the others (Table 6), but both
retain subsurface liquid water for elongated periods in the
fall but indicate a thinner thickness of wet layer compared to
the satellite retrieval with the majority of the mixing models
(Table 3).
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Figure 9. Comparison of the total daily liquid water amount (LWA) estimated from SMAP L-band TB observations using ten dielectric
mixing models, with estimates from the SAMIMI EBM (orange dash-dotted line) and GEMB (pink dotted line), both forced with PROMICE
and GC-Net AWS in situ measurements for 1 June–31 October 2023.

At the SDM site, no significant melt was determined until
the beginning of July, neither by the satellite retrievals nor by
the SEMB models. The late season melt was also insignifi-
cant. The two SEMB models closely resemble at this site in
phase and magnitude, but again they disagree with all mix-
ing models in the satellite retrievals in the rate of subsurface
refreezing in the late melt season, which impacted the com-
parison metrics in Tables 5 and 6.

4 Discussion

The strong dielectric contrast between dry snow background
and liquid water inclusion causes the complex dielectric con-
stant of wet snow to significantly change with vw, which can
vary over a wide range depending on the density (porosity)
of the dry snow. Here, we focused on the GrIS percolation
zone where typical vw is known to be approximately 0 %–
6 %. Selected dielectric mixing models were found to vary
widely over this narrow range, giving large uncertainties in
modelling the effective depth of penetrations, TB, and conse-
quently, in quantifying LWA based on the dielectric constant
retrieved from satellite measurements. Differences of depo-
larization factors that describe the shape and orientation of
the liquid water inclusion with respect to the emitting EM

field mainly contribute to these differences for the structure
dependent models. For the power law-based models, their de-
gree controls the higher order local interactions in lieu of de-
polarization factor. There are significant uncertainties in the
penetration depth, or emission contribution depths, between
the models, especially when the vw (and hence the absorp-
tion) is low (pendular regime).

MWR TB is on the other hand a non-linear function of
multiple parameters that gradually or abruptly vary with
depth. Therefore, with limited knowledge of detailed snow-
pack properties and their evolution, modelling and interpreta-
tion of snow/firn microwave radiation, especially at L-band,
which is sensitive from the surface to deeper layers, is diffi-
cult. Here, we used a simplified profile of temperature, den-
sity, and stratigraphy to simulate frozen and melt season TB
at L-band. Nevertheless, LWA estimation with a single fre-
quency is an underdetermined problem – even with con-
strained frozen background parameters, numerous combina-
tions of volume fraction of melt and wet layer thickness can
produce the same or close TB, but with different LWA. By
using average measured dry snow density and parameteriz-
ing the wet layer thickness with an average retrieved thick-
ness over melting days, we attempted to minimize some of
the uncertainties.
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The Debye-like, Hallikainen, and Ulaby models show
higher TB sensitivity to lower vw at low density snow/firn
background and provide lower estimates of overall LWA. The
opposite results were observed when the background density
is higher (see Fig. 4). This is counterintuitive because when
the background density is low, there should be enough pore
space in the snow to either hold more vw or to support deeper
percolation or vice versa. The results of these models, how-
ever, align most closely with the empirical Tiuri model. This
is encouraging in the sense that the Hallikainen and Ulaby
models were originally derived and validated for measure-
ments in the 3–37 GHz range and for a limited density range;
these agreements support their applicability to L-band appli-
cations. However, the Tiuri model assumes that the effective
dielectric constant of wet snow is independent of the snow
microstructure, whereas these models depend on specific mi-
crostructural characteristics. In reality, snow microstructures
are often irregular, aggregated, and dynamically evolving.

The Tinga model, on the other hand, shows more consis-
tency with the change of dry snow density, yet it is highly
nonlinear with vw (Figs. 4 and 5). The Mätzler model pro-
vided an overall intermediate result in terms of effective di-
electric constants (these results are in line with Picard et
al., 2022, results), depth of penetration, TB, and LWA, and
showed a reasonable fidelity over a wide range of density
(Fig. 4). But compared to the SEMB models, which were
forced by AWS measurements, Mätzler model, along with
the above-mentioned models, provided the lower LWA in all
six AWS (Fig. 9 and Table 4).

So, if these models represent TB realistically, saturation at
relatively low LWA would limit the liquid water estimation
at L-band within a certain limit (approximately no more than
60–70 mm). The Colbeck model has a convincing theoretical
and experimental basis, nevertheless this model consistently
stayed apart from other models and provided the low end of
the effective dielectric constant (and TB), and the high end of
the LWA and penetration depth. The power-law dependent
models, Birchak, Sihvola, and Looyenga, provided consis-
tent estimates of the LWA and penetration depth throughout
(dielectric constant and TB w.r.t. vw) in the order of lower
to higher (higher to lower), respectively. Sihvola model was
found to be the best match with SEMB models for the AWS
and melt season considered (the overall RMSD at six AWS
was ∼ 11 mm; see Table 6). Although these empirical mod-
els are heuristic in nature and lack rigorous physical founda-
tions, they offer the advantage of being easily configurable
through the degree of the model (a single parameter to fit –
β) and can easily be fitted to the available ground truth (or
SEMB estimates).

However, we refrain from recommending any particular
model in this article, except exploring and demonstrating
their individual and comparative characteristics under differ-
ent vw, density, and other firn conditions, because caution
should be taken when considering SEMB models as the ref-
erence for validating LWA estimates since they have their
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Table 3. Average thickness of wet layer (in cm) during 2023 melt season (May–September) retrieved by ten dielectric mixing models with
SMAP observations and two surface energy and mass balance models forced by in situ observations at the six selected PROMICE and
GC-Net automatic weather station (AWS) locations.

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri SAMIMI GEMB

CP1 117 83 205 141 205 315 151 160 170 122 193 179
DY2 177 100 173 177 239 281 131 201 272 194 177 169
KAN_U 149 62 152 175 134 180 165 187 202 139 99 79
NSE 114 88 208 288 158 268 184 181 231 104 77 100
SDL 116 143 153 258 165 345 212 169 273 172 185 122
SDM 117 87 156 164 225 294 140 165 214 154 119 79

Table 4. Maximum summer melt (in mm) during 2023 melt season (May–September) estimated by ten dielectric mixing models with SMAP
observations and two surface energy and mass balance models forced by in situ observations at the six selected PROMICE and GC-Net
automatic weather station (AWS) locations.

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri SAMIMI GEMB

CP1 44 50 39 41 39 114 60 86 102 37 76 97
DY2 37 39 37 41 38 101 54 76 96 36 64 91
KAN_U 21 21 24 28 24 60 31 45 57 23 30 45
NSE 25 22 27 32 25 73 35 52 66 23 32 70
SDL 33 25 30 36 30 95 45 67 84 28 77 69
SDM 31 33 29 32 30 90 44 64 82 27 52 55

own limitations. Difference between the SEMB models when
forced with the same inputs partly explains this. Consistent
delayed refreezing in both the models (SAMIMI and GEMB)
when melting at the upper surface ceases is an apparent indi-
cation of inaccurate thermal conduction, affecting the overall
LWA. Thermal conductivity of wet snow and wet-dry inter-
face is probably lower. Future work should better parametrize
these processes to refine the models.

Satellite derived LWA can be attributed to infiltrating wa-
ter, occurring through two distinct modes of unsaturated
flow: the downward propagation of a wetting front and the
movement of water through preferential flow paths (also
called pipes or flow fingers) (Marsh and Woo, 1984). Under
sustained melting, wetting fronts typically form and prop-
agate downward from the surface into the underlying cold
firn (Colbeck, 1975), although their advancement can be hin-
dered by nightly refreezing or by snowfall events. Addition-
ally, structural features in the firn, such as ice layers or mi-
crostructure contrasts, can trap water. However, as water ac-
cumulates, it occasionally breaks through in highly heteroge-
nous locations. The resulting preferential flow paths allow
large volumes of water to infiltrate deep below the wetting
front, bypassing the cold firn layers (Marsh and Woo, 1984;
Pfeffer and Humphrey, 1996). The partitioning of meltwa-
ter between infiltration via wetting fronts versus preferential
flow paths is highly variable and inherently difficult to pre-
dict due to its sensitivity to subtle firn structural and thermal
conditions.

Several factors suggest that twice-daily LWA retrievals are
more likely to reflect the water associated with the surface

wetting front than liquid water contained within deeper pref-
erential flow paths. First, the signal from water in subsur-
face pipes must propagate through the overlying wet layer,
which has a stronger and more coherent L-band response
due to its proximity to the surface and higher spatial con-
tinuity. Second, flow through preferential pathways is typ-
ically event-driven, with the breakthrough of accumulated
water quickly penetrating deep into colder firn, where it of-
ten refreezes within hours rather than persisting for days or
weeks (Humphrey et al., 2012). Finally, the L-band signal
inherently averages over broad spatial footprints on the or-
der of kilometres, favouring detection of the spatially exten-
sive and homogeneous surface wet layer over the centimetre-
to metre-scale, highly heterogeneous pipe structures. There-
fore, future work should better understand and parametrize
these processes to refine the algorithm.

Parametrizations in the retrieval framework – such as the
assumption of simplistic stratigraphy and liquid water dis-
tributions – may affect the absolute LWA estimates. How-
ever, these factors are likely to impact all models in a sim-
ilar proportion. Therefore, the relative differences between
the model estimates are more likely attributable to the spe-
cific formulations and assumptions of each model. Neverthe-
less, future work should aim to incorporate more advanced
algorithms capable of resolving vertical profiles. Addition-
ally, a spatially and temporally dependent threshold should
also be considered in future work to account for not only the
ice layers due to refreezing but also the seasonal evolution of
the snowpack that obviously contributed to the uncertainty
in the results. The challenge would be the sensitivity and sat-
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Table 5. Pearson linear correlation coefficient between LWA estimate by each of the dielectric mixing model and their ensemble with SMAP
observations during 2023 melt season (May–September) and corresponding LWA estimate obtained by averaging Samimi and GEMB surface
energy and mass balance models forced by in situ observations at the six selected PROMICE and GC-Net automatic weather station (AWS)
locations.

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri Ensemble

CP1 0.79 0.74 0.84 0.83 0.85 0.80 0.79 0.80 0.80 0.81 0.80
DY2 0.97 0.95 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.98 0.98
KAN_U 0.70 0.71 0.67 0.68 0.67 0.70 0.70 0.70 0.70 0.70 0.70
NSE 0.92 0.90 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92
SDL 0.83 0.83 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.84 0.84
SDM 0.92 0.90 0.93 0.93 0.94 0.92 0.92 0.92 0.92 0.92 0.92

Overall 0.86 0.84 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86

Table 6. Mean root mean squared differences (RMSD in mm) between LWA estimate by each of the dielectric mixing model and their
ensemble with SMAP observations during 2023 melt season (May–September) and corresponding LWA estimate obtained by averaging
Samimi and GEMB surface energy and mass balance models forced by in situ observations at the six selected PROMICE and GC-Net
automatic weather station (AWS) locations.

Sites Mätzler Tinga Debye-like Hallikainen Ulaby Colbeck Birchak Sihvola Looyenga Tiuri Ensemble

CP1 23 23 22 22 22 19 20 18 18 24 20
DY2 15 17 14 12 13 14 9 5 11 15 8
KAN_U 8 9 8 9 8 20 8 13 18 8 9
NSE 10 11 9 8 9 8 8 6 7 10 7
SDL 21 23 21 19 21 16 18 15 15 22 18
SDM 10 11 9 9 9 10 7 6 8 10 7

Overall 15 16 14 13 14 14 12 11 13 15 11

uration of TB with increasing LWA. As shown, the signal
power/field intensity decreases exponentially with depth and
vw at a rate determined by the absorption and scattering coef-
ficients (Figs. 3 and 7). Over absorption dominated regions,
LWA estimates beyond ∼ 60–70 mm would be highly uncer-
tain. Future retrievals should consider a wider range of vw to
incorporate the negative sensitivity (scattering dominated re-
gions). To handle the inherent nonlinearities and dimensions
of the problem, advanced techniques (such as deep learning)
may be beneficial. Upcoming lower frequency missions (e.g.,
CryoRad: Macelloni et al., 2018) would also offer new op-
portunities to sense deeper and enhance the capabilities.

5 Conclusion

We investigated performances of ten dielectric mixing mod-
els for modelling wet snow TB at L-band to estimate the
LWA in snow/firn column in the percolation zone of Green-
land ice sheet. Six of the models (Tinga, Debye-like, Hal-
likainen, Ulaby, Mätzler, and Colbeck) are derivatives of
fundamental mixing models (either MG or more generally,
PVS) with empirically derived depolarization factors that ac-
count for the shape and orientation of the liquid water inclu-
sions in dry snow background with respect to the emitting

electromagnetic field. Except for the Colbeck model in this
group, all models show overall relatively higher sensitivity
of the effective dielectric constant to LWA, and thus TB, and
generally produce lower estimates of LWA compared to the
SEMB models. Colbeck model displays the lowest sensitiv-
ity of LWA to the effective dielectric constant and TB and,
hence, yields the highest LWA of all models.

The differences among these models mostly originate
from their depolarization factors that depend on multiple fac-
tors including density and LWA; they are deemed to be very
difficult to quantify. Another group of models that follows
power law relationships (Birchak, Sihvola, and Looyenga),
not explicitly considering the depolarization factor, exhibit
intermediate sensitivity of LWA to the effective dielectric
constant and TB, and offer higher LWA than the former
group of models (Tinga, Debye-like, Hallikainen, Ulaby,
Mätzler, and Colbeck). A lower exponent (β) results in a
lower sensitivity and a higher LWA, since a lower exponent
allows the background to dominate in the mixing model. The
results of the Tiuri model, which is fully based on empirical
fitting to the field measurements at around 1 GHz, generally
lie with that of the former group of models that explicitly
consider the higher order interactions between the liquid wa-
ter inclusions through depolarization factors. While the Hal-
likainen and Ulaby models were originally derived and veri-
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fied for measurements made at 3–37 GHz, these agreements
with Tiuri model support their applicability to L-band appli-
cations.

Compared to the SEMB models (SAMIMI and GEMB)
driven by in situ observations, the first group of mixing
models (Tinga, Debye-like, Hallikainen, Ulaby, Mätzler, and
Tiuri) estimated consistently lower LWA in five of the six
PROMICE GC-Net sites (except KAN_U) which are more
typical of percolation zone snow/firn physical conditions.
Colbeck and Looyenga models measured consistently higher
LWA than the SAMIMI and GEMB models in all six sites.
In general, the Sihvola model aligned best with the SAMIMI
and GEMB models for 2023 melt season. However, the best
match does not imply correctness in the absence of an ac-
tual truth estimate. The SAMIMI and GEMB models dis-
agree widely in certain cases; in general, the SEMB models
have been found to produce diverging LWA estimates with
the same in situ meteorological measurements (e.g., Vande-
crux et al., 2020; Hossan et al., 2025; Moon et al., 2025).

Despite the satellite retrievals using the different mixing
models showing a wide variance in the total and maximum
summer LWA, no significant discrepancies were observed in
the timing of the onset and refreezing melt, which is based
on the observed TB change. However, although satellite re-
trieval agrees well with the onset of melt with SEMB models,
significant disagreements were found in timing of complete
refreezing of sub-surface liquid water in snow/firn. While all
L-band retrievals indicate a sharper refreezing in all sites ex-
cept KAN_U, the SAMIMI and GEMB models seemed to
refreeze slowly and retain sub-surface liquid water for an
elongated period in post melt season. This was attributed to
low thermal conductivity and slow heat transmission in the
firn models. The differences between SAMIMI and GEMB
models, even when they were run by the same set of in situ
observations, are also indicative of the differences in their
process representations.

This study sheds light on the behaviour of wet snow di-
electric mixing models and consequent TB in presence of low
liquid water (vw: 0 %–6 %, or LWA: 0–120 mm). The sensi-
tivity and saturation behaviour of the models were broadly
explored that gives an idea about the uncertainty associated
with translating the L-band retrieved effective dielectric con-
stant to LWA. Further work is required to better understand
the melt water process in the snow and firn and their inter-
actions with the microwave emissions. More sites specific in
situ measurements of firn profiles under various conditions
will be the next step to calibrate and validate these models to
make better recommendation about using a group of specific
mixing models.

Code and data availability. SMAP Twice-Daily rSIR-Enhanced
EASE-Grid 2.0 Brightness Temperatures, Version 2 data prod-
ucts were provided by National Snow and Ice Data Center and
are publicly available at https://doi.org/10.5067/YAMX52BXFL10

(Brodzik et al., 2021). The PROMICE hourly AWS measure-
ments are available at https://doi.org/10.22008/FK2/IW73UU (How
et al., 2022). The SUMup subsurface temperature and density
profiles are available at https://doi.org/10.18739/A2M61BR5M
(Vandecrux et al., 2024). SMAP and model LWA along with
the other simulated data are available at a Zenodo repository
at https://doi.org/10.5281/zenodo.17195725 (Hossan, 2025a). The
scripts used to perform the analysis for this study are avail-
able in a GitHub repository: https://github.com/HossanAlamgir/
DielectricModels4WetSnow (v2.0; last access: 27 October 2025)
(https://doi.org/10.5281/zenodo.17478663; Hossan, 2025b). MAT-
LAB source code for glacier surface energy balance coupled
with firn thermodynamic and hydrological modelling is avail-
able in PRISM Data: University of Calgary’s Data Repository at
https://doi.org/10.5683/SP2/WRWJAZ (Marshall, 2021).
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