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Abstract. Polynyas are open water or thin-ice areas within
the ice pack. They play a crucial role for the Earth system,
from deep water to cloud formation, causing large gas ex-
changes, and acting as hotspots for marine life. Yet their
monitoring in the Arctic is challenging because polynya de-
tection is non-trivial, owing to the Arctic’s complex geome-
try. Recently, a labelled dataset was released in which daily
winter Arctic sea ice concentration since 1978 was turned
into a polynya mask. After oversampling to reduce the class
imbalance from 0.1 % to 2.5 %, we use this labelled dataset
to train a Unet autoencoder to detect polynya pixels in daily
sea ice concentration images. We further filter out the false
positives in the marginal ice zone using an unsupervised
Gaussian Mixture Model classifier. False negatives are vir-
tually absent from 2012 onwards, when noise in the labelled
dataset is reduced by combining ice concentration and thick-
ness masks. False positives exhibit a significant trend with
time and anticorrelation with the Arctic sea ice area. Coupled
with our expert assessment of individual images, we argue
that most “false positives™ are in fact correct, detecting pat-
terns of reduced ice within the changing, more unpredictable
ice cover that the rigid traditional methods with fixed thresh-
olds cannot identify. We also successfully apply our trained
model to detect polynyas in daily and monthly climate model
output at low computing costs. As Arctic sea ice continues to
decrease, pushing traditional methods to their limits, we ex-
pect such machine-learning methods to become the norm.

1 Introduction

Polynyas, openings in the pack ice generally less than
100 000 km? in the Arctic, play a crucial role for the climate
and ecosystem. Winter polynyas in particular, by exposing
the warm ocean to the frigid atmosphere, act as “ice fac-
tories” (Smith and Barber, 2007), with just a few polynyas
being responsible for most of the sea ice production in the
Arctic (Tamura and Ohshima, 2011; Preuf3er et al., 2016).
The intense air-sea interaction also induces a strong heat-
and moisture- loss to the atmosphere (Morales Maqueda et
al., 2004; Zhou et al., 2023) that results in cloud formation
locally (Monroe et al., 2021) and even impacts the regional
and large-scale atmospheric circulation (Gordon et al., 2007).
In the ocean, the brine rejected during ice re-formation in the
polynya causes deep water formation (Martin and Cavalieri,
1989; Ohshima et al., 2016). The combined effect of ocean
mixing and air-sea exchanges further leads to intense gas ex-
changes and nutrient upwelling (Else et al., 2013; March-
ese et al., 2017), making polynyas hotspots for marine life
(Moore et al., 2023; Golledge et al., 2025).

Automatically detecting polynyas around Antarctica is
somewhat straightforward due to the zonal distribution of
ocean — sea ice — land (e.g. Mohrmann et al., 2021). In the
Arctic in contrast, that distribution is way less regular. Just
in the Nordic Seas, to the west sea ice can extend to the
southern tip of Greenland while to the east north of Svalbard
can be ice-free. The land geometry is also more complex,
with polynyas often forming in the lee of the region’s
many islands (Smith and Barber, 2007). Finally, Arctic
polynyas are much smaller than their Antarctic counterparts
(Morales Maqueda et al., 2004). The result is that few real
pan-Arctic polynya studies exist; instead, researchers tend
to focus on a series of regions with recurrent polynyas
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(e.g. Tamura and Ohshima, 2011; Preufler et al., 2016). In
these regions, they then use a fixed threshold in sea ice
properties to distinguish polynyas from the pack ice. This
threshold is chosen somewhat arbitrarily, ranging from
30% (e.g. Tamura and Ohshima, 2011) to more than 60 %
(e.g. Monroe et al.,, 2021) for sea ice concentration and
10 (e.g. Martin et al., 2004) to 30cm (e.g. Smedsrud et
al., 2006) for sea ice thickness. The reason for this wide
range of thresholds is that there is no strict definition
of a polynya (Smith and Barber, 2007); authors instead
choose thresholds adapted to the processes that cause or are
caused by polynyas they are most interested in studying. As
throughout the Arctic sea ice concentration and thickness
are dramatically decreasing with climate change (Stroeve
and Notz, 2018; Jahn et al., 2024), it is unclear whether and
for how long these thresholds will remain valid. Besides, the
more winter observations of the Arctic we gather, the more
we understand that even a small local decrease in sea ice is
enough to trigger some processes (Hoppe et al., 2024; Loose
et al., 2024). There is an urgent need to try novel approaches,
for full pan-Arctic automatic detection.

Enter machine learning. As recently reviewed by Bracco
et al. (2025), examples abound of applications of machine
learning methods to climate science, including in the polar
oceans (Sonnewald et al., 2021). The most famous example
for Arctic sea ice probably is IceNet (Andersson et al., 2021),
a series of Unet networks that can forecast Arctic sea ice ex-
tent up to 6 months in advance. A Unet network consists of
two convolutional neural networks (CNN), i.e. neural net-
works that identify patterns in blocks of an image. The first
CNN, named the encoder, “zooms in” on the image, while the
second one, the decoder, “zooms back out” so that the result
of Unet is a pixel-wise classification. Originally designed for
medical applications (Ronneberger et al., 2015), this archi-
tecture has proven particularly suited to so-called anomaly
detection, i.e. finding a rare event occurrence among a ma-
jority of normal data points, with applications ranging from
detecting image forgery (Choudhary et al., 2024) or electric-
ity theft (Aslam et al., 2020) to pest infestation in forests (Ye
et al., 2022). Unet is a type of supervised classifier, which
means that it needs labelled data to learn from. Wong et al.
(2025) recently produced such a labelled dataset for winter
Arctic polynyas since 1978, at a daily resolution; more de-
tails about this dataset are provided in the next section. We
here leverage this dataset and use it to train a Unet network
to automatically detect Arctic polynyas. Following Liu et al.
(2025)’s work on lead detection in the Arctic, we improve our
results by combining Unet with a Gaussian Mixture Model
(GMM), an unsupervised classification method widely used
in climate science (e.g. Jones et al., 2023; Pacal et al., 2023;
Poropat et al., 2024).

The objective of this manuscript is dual: First automati-
cally detecting Arctic polynyas in satellite observations us-
ing hybrid supervised-unsupervised machine learning, then
briefly investigating whether our new method can be applied
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to climate model data. We present the satellite and model data
in Sect. 2, in which we also describe the Unet (Sect. 2.3) and
GMM (Sect. 2.4) models. We then evaluate and discuss their
application to observations (Sects. 3.1 and 3.2) and to cli-
mate model output (Sect. 3.3). We summarise our findings
and make final remarks in the conclusions.

2 Data and model architectures
2.1 Observed and modelled sea ice data

The objective of this paper is the automatic detection of
polynyas from individual Arctic sea ice concentration (SIC)
maps. Our input data are the daily SIC from the National
Snow and Ice Data Center (NSIDC). Briefly, the daily SIC
is obtained from satellite microwave radiometers processed
with the NASA Team algorithm (Cavalieri et al., 1999). We
use the daily data in November to April, from 1978 to 2023,
at a 25km resolution. We generated the daily sea ice area
and sea ice extent from this time series, using the common
threshold of 15 % concentration for the sea ice extent and no
threshold for the area.

For supervised learning, a labelled dataset is required.
Here we use the daily polynya mask produced by Wong et al.
(2025), based on the NSDIC SIC described above and hence
on the same spatial grid as our input data. Wong et al. (2025)
also produced a second mask, based on the Soil Moisture
Ocean Salinity (SMOS) and Soil Moisture Active Passive
(SMAP) derived sea ice thickness (SIT Patilea et al., 2019).
In brief, Wong et al. (2025) detect the pack ice (SIC > 0 %
or SIT > 0 cm) using a flood-fill algorithm, seeded in the At-
lantic and Pacific oceans. Within the pack ice north of 65° N,
they then identify polynyas as any pixel with SIC < 50 % or
SIT < 20 cm. On the masks, the pixel value is 0 if that pixel
is not a polynya, and 1 if it is.

We use their SIC mask for training, validation, and testing
our model. We use their SIT mask to better analyse our false
positives (model says there is a polynya, but the mask says
there is none) and false negatives (model says there is no
polynya, but the mask says there is) after 2012, i.e. when
SIT data became reliable. The two masks are available at a
daily resolution but only for the winter months, November—
April included. We therefore also limit our analysis to these
months. The dataset hence consists of 7300 daily images.

Finally, to demonstrate the wider applicability of our
method, we apply it to the global coupled model MIROC6
(Tatebe et al., 2019). We chose this model for two reasons:
it provides both daily and monthly sea ice concentration
(“siconc”); and the brief polynya analysis of Heuzé et al.
(2023) revealed that it features large and small polynyas in
the Arctic. The model’s nominal horizontal resolution for the
sea ice grid is 1/3°, which in the Arctic is approximately
30km. We used the last 30 years of SIC from its historical
run, i.e. 1 January 1985-31 December 2014.
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Figure 1. The two stereographic grids used in this study: The orig-
inal 448 x 304 pixel grid from NSIDC used for the unsupervised
network is shown in orange; the reduced 192 x 192 pixel grid used
for the supervised learning, in blue. For increased readability, all
subsequent figures will show only the rectangular/square regions
with pixel data, rotated. Blue numbers in a circle indicate the nine
Arctic regions, as defined by Meier and Stewart (2023): 1. Central
Arctic Ocean; 2. Beaufort Sea; 3. Chukchi Sea; 4. East Siberian Sea;
5. Laptev Sea; 6. Kara Sea; 7. Barents Sea; 8. East Greenland Sea;
9. Baffin Bay.

2.2 Input preparation and oversampling

The original NSIDC grid has 448 by 304 pixels. It extends far
south into the open Pacific and Atlantic oceans, and includes
many land pixels (orange on Fig. 1). For the unsupervised
detection of the open ocean described at the end of this sec-
tion, we keep the grid as it is. But for most of the work, we
instead use a reduced grid with 192 x 192 pixels, chosen so
that it includes the entire Arctic Ocean (blue on Fig. 1). On
both grids, we set all NaNs caused by the pole hole, land, and
the very rare missing data to 1, i.e. SIC = 100 %.

We originally wanted to preserve the time dimension,
assuming that the model would learn from the day-to-
day polynya formation and shape evolution. Unfortunately,
polynyas are so-called “rare events” on the images. That is,
on each daily image on average polynya pixels covered less
than 0.05 % of the image, barely rising to 0.1 % after image
size restriction. After unsuccessful training, we reluctantly
gave up on the time dimension and instead created an over-
sampled training dataset of 1000 192 x 192 pixel scenes con-
sisting of a random mix of:

— 100 scenes that combine 500 randomly selected daily
images;
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— 200 scenes that combine 200 randomly selected daily
images;

— 400 scenes that combine 100 randomly selected daily
images;

— 200 scenes that combine 50 randomly selected daily im-
ages;

— and 100 scenes that combine 10 randomly selected daily
images.

The polynya mask was set to 1 on the oversampled scene if
the grid cell was 1 on at least two of the original images.
Visual inspection (not shown) revealed that two images was
the minimum required to reduce noise. Where this new, over-
sampled polynya mask was set to 1, the sea ice concentration
was set to the mean sea ice concentration of only the im-
ages where the original polynya mask was 1. The sea ice
concentration elsewhere was set to the mean of all images
elsewhere. Visual inspection (not shown) revealed that the
transition polynya/not polynya looks more natural on these
oversampled scenes if prior to averaging we set all concen-
trations lower than 15 % to 0.

The resulting oversampled dataset has an average of 2.5 %
polynya pixels per scene. This is still a large class imbalance,
but it is on par with what most anomaly detection algorithms
can manage (Krawczyk, 2016; Ghosh et al., 2024).

2.3 Supervised binary classification polynya/not
polynya with a Unet autoencoder

Using Keras (Chollet and The Keras Team, 2015), we imple-
mented a Unet autoencoder for the supervised classification
of our highly imbalanced dataset. See schematic on Fig. 2:

— The encoder is made of two levels with two 2D-
convolutional layers of filter size 16 (first level) then 32
(second level) and kernel size of 3 with a relu activation,
followed by a 2D maxpooling with a pool size of 2 by 2;

— The bottleneck on the third level is made of two 2D-
convolutional layers of filter size 64, also with a kernel
size of 3 and a relu activation;

— The decoder is made of two levels of upsampling done
by conv2Dtranspose of filter size 32 (second level) then
16 (top level), kernel size of 2, and 2 strides; a concate-
nation; and two 2D-convolutional layers of filter size 32
(second level) then 16 (top level) and kernel size of 3
with a relu activation. The output layer is a final 2D
convolution of filter size 1, kernel size 1, and a sigmoid
activation.

Due to the class imbalance, we used a weighted binary
cross entropy as loss function and monitored the precision
and F1 score. We used an Adam optimiser. The oversampled
set was randomly split between 70 % for training, 15 % for
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Figure 2. Schematic architecture of our Unet implementation. Numbers indicate the output dimensions. See text for the settings of each

layer.

validation and 15 % for testing. The best model was chosen
based on its performance on the validation set.

We varied the weight from 0 to 100 with an interval of
5, and obtained the lowest number of false positives with a
weight of 15 — the number of false negatives was not signifi-
cantly affected. Similarly, we varied the batch size from 2 to
40, and obtained the fewest false positives with a batch size
of 5. For the F1 score, the classifier is so certain of its results
that varying the threshold had no impact on the performance;
we kept the default threshold of 0.5. For each setting, we
trained an ensemble of 100 models.

The final performances, on the validation set, are an F1
score of 0.98 and precision of 0.97. We obtained 438 false
negatives and 3943 false positives, compared to 123 283 total
polynya pixels in the oversampled validation set.

2.4 Filtering via unsupervised detection of the ocean
and MIZ by Gaussian Mixture Models

With our Unet autoencoder, we obtain very few false nega-
tives but a large number of false positives. Rather than modi-
fying the architecture of the network, we filter its daily output
using a second, unsupervised machine learning method: clus-
tering using Gaussian Mixture Models. We use the Scikit-
learn implementation (Pedregosa et al., 2011), with 3 com-
ponents, a tolerance of 0.001, up to 200 iterations, and 3 ini-
tialisations using kmeans.

The setting that had the most dramatic impact of the per-
formances was the number of components, i.e. how many dif-
ferent classes the model should detect. We varied the number
from 3 to the 80 used by Liu et al. (2025). Three was chosen
intuitively, assuming the network would split the data into
open ocean, land, and pack ice classes. We expected the best
performances for 4 or 5 classes, assuming the marginal ice
zone (MIZ) would be a class of its own, but saw that for any
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class number larger than 3, polynyas and MIZ were bundled
together in the same class. We therefore used 3 classes.

The input data was the original 448 x 304 pixel dataset, in
order to maximise the amount of open ocean pixels the net-
work could learn from. Prior to training, we set the SIC lower
than a given threshold to 0, to merge the MIZ and open ocean
into one class. We tested thresholds from 0 % to 60 %, start-
ing from O and increasing by 5 %, feeding the GMM 2 to
10 daily images at a time, and obtained the best agreement
with Wong et al. (2025)’s masks with a threshold of 40 %
for 2d. Two days is the minimum the GMM can take, and
probably yielded the best results because the MIZ changes
very rapidly. The higher the SIC threshold, the better the MIZ
was filtered out; however, for any threshold larger than 40 %
polynyas started being detected as belonging to that open
ocean/MIZ class, which is also why we stopped testing at
60 %. For the modelled data, 40 % yielded satisfactory re-
sults, but owing to model biases, 15 % was the best compro-
mise to remove the MIZ without removing polynyas as well.
When working with monthly modelled data, the GMM was
fed 2 months at a time; for daily modelled data, 2d, as for
the observations.

For each timestep, we ran an ensemble of 10 models. Since
class numbers are randomly assigned (see example on Ap-
pendix Fig. A1), we identify for each ensemble member the
class number corresponding to the middle of the North At-
lantic Ocean (median class number in the white band on
Appendix Fig. Al, approx 48-59 N and 47-10 W). We then
mark each pixel as “open ocean or MIZ” if strictly more than
5 of the 10 ensemble members put it in the open ocean class.
We chose to detect the open ocean class rather than the pack
ice because we noticed while randomly checking individual
timesteps that there were occasions where half of the pack
ice was detected as land. Only the open ocean/MIZ was con-
sistently its own class. Besides, the pack ice class is noisy,
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Table 1. Number of false negatives (missed polynya pixels) and
false positives (pixels incorrectly identified as a polynya) after the
three main steps of the pipeline: Straight out of the supervised
classification (Unet, Sect. 2.3); after applying the Gaussian Mix-
ture Models-produced mask (GMM, Sect. 2.4); and after correcting
the original sea ice concentration mask by merging it with the sea
ice thickness one (SIT). For comparison, there are 107 578 polynya
pixels in the dataset after combining the sea ice concentration and
thickness masks, and just over 269 million pixels in total (all pixels
x all time steps).

Metric Unetonly +GMM  +SIT mask
False negatives 12776 10048 6271
False positives 1475630 601633 630011

detecting “ice” off the southeast coast of England for exam-
ple on Fig. Al.

Any pixel that our Unet autoencoder said was a polynya
but was found to be in this open ocean/MIZ class was set to
0 or “not a polynya”. The effect of this filtering is quantified
in the next section.

3 Results and Discussion

3.1 Detection of Arctic winter polynyas in sea ice
concentration observations

After training, we fit the best model to the original 7300 daily
sea ice concentration images and compare the model’s clas-
sification to the SIC polynya mask of Wong et al. (2025). The
performances (Table 1, first column) are obviously less im-
pressive than on the validation, oversampled set: We obtain
1.4 million false positive pixels, which is 5 times the num-
ber of true positive pixels in the dataset (262 067). After ap-
plying the GMM-produced open ocean/MIZ filter (Table 1,
second column), the number of false positives is more than
halved and the already-low number of false negatives further
decreases to just over 10 000.

A visual inspection of our results made us suspect noise
in the masks as the main reason for the number of false neg-
atives. To reduce this noise, we combine the SIC and SIT
masks of Wong et al. (2025) from 2012 onwards, i.e. when
SIT became widely available in the Arctic. The effect is strik-
ing: The number of false negatives drops to near-zero after
2012 (Fig. 3a).

The number of false positives in contrast seems to have
an increasing trend with time, even after applying the filter
(Fig. 3b). In fact, we do identify a trend significant at 99 %
of +277 false positive pixels per year, which corresponds to
412763 pixels over our 46 year time series. Visual inspec-
tion of the sea ice maps further suggested that the years with
a reduced ice cover coincided with the years with most false
positives. This is confirmed by a correlation analysis: with
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99 % significance, the daily number of false positives and the
daily sea ice area (SIA)/sea ice extent (SIE) are strongly anti-
correlated (R = —0.76/—0.71), i.e. the less sea ice, the more
false positives. Fitting a regression line through this result,
this gives —50/—57 false positive pixels per million km? of
Arctic sea ice. As pictured on Fig. 3b, the correlation holds
with yearly values too, reaching —0.78/—0.80 between the
yearly false positives and the yearly (winter only) minimum
SIA/SIE.

Could this trend rather mean that the GMM is becoming
less efficient at filtering out the MIZ? To investigate this, we
split the false positive series in the distinct Arctic regions as
defined on Fig. 1, and in 2 month periods that cover the possi-
ble processes at play: potential late freeze-up in November—
December, near-certain consolidated pack ice in January—
February, and potential early-melt in March—April (Fig. 4).
The freeze-up period November—December dominates the
distribution and has the largest trend (Appendix Table Al)
in three regions: the Beaufort, Chukchi, and Kara seas. In
these three regions, admittedly, the false positives may be
the result of unfiltered MIZ. Two more regions are dom-
inated by the potential early-melt period March—April: the
East Siberian and Laptev seas. Despite the increased season-
ality of sea ice in these regions (e.g. Onarheim et al., 2018),
such a widespread early-melt seems unlikely. These regions
are known hotspots of polynya activity (e.g. PreuBer et al.,
2016); the false positives may rather indicate a lengthening
of the polynya season, a result also found by Wong et al.
(2025). Finally, the decreasing trends in false positive pix-
els (Appendix Table Al) in the Barents and East Greenland
Sea will be addressed in the next subsection, and the largest
number of false positives for most regions in the consolidated
ice January—February period (Fig. 4) is the topic of the next
paragraph.

A visual inspection also shows that many of these false
positives seem correct. We show two examples on Fig. 5,
and first discuss the areas circled in green. For both dates,
although our method (magenta) correctly identifies the same
polynyas as in the labelled masked (green, hereafter referred
to as the traditional method), the polynyas detected by our
method are larger. When visually comparing to the original
sea ice concentration data, we agree more with our method
than with the traditional one. The area circled in blue on
Fig. 5b is a special case: it was also detected as a polynya by
Wong et al. (2025) but has been removed during their post-
processing since it is in a river. Hence technically, our two
methods agree there as well. Moving to the areas where the
traditional method found no polynya at all, circled in black
on Fig. 5, our visual inspection reveals that these could qual-
ify as polynyas, if one defines a polynya as an area where sea
ice concentration is significantly less than the surrounding
ice. We do acknowledge that our method is not perfect: the
MIZ mask filters out some polynya pixels whose surrounding
ice also has relatively low ice concentration, while in some
complex MIZ regions, the MIZ mask fails to filter out some
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Figure 3. (a) False negatives and (b) false positives for each year, in number of pixels. Note the different y axes. The orange arrow on
(a) highlights the beginning of reliable sea ice thickness observations, and therefore the effect of merging the SIC and SIT labelled datasets.
The red and blue lines on (b) are the minimum sea ice area and extent, respectively (winter months only), flipped vertically to highlight the
correlation. Note that the 2023 data stop in April, hence the higher sea ice areas and extents.

false positives. Nonetheless, our results highlight the limi-
tation of the traditional way of detecting polynyas using a
fixed threshold, and probably explains why so many differ-
ent sea ice concentration thresholds are used in the literature
(30 to more than 60 % in e.g. Tamura and Ohshima, 2011;
Campbell et al., 2019; Mohrmann et al., 2021; Zhou et al.,
2022; Bennett et al., 2024). Since convolutional neural net-
works detect shapes and gradients, they are better suited to
this pattern recognition exercise. The increase of not-that-
false positives with increasing climate change also suggests
that as sea ice has entered a new regime (Stroeve and Notz,
2018; Sumata et al., 2023) and become more variable (Dorr
et al., 2023), polynyas become harder to detect with tradi-
tional methods whereas the machine learning methods are
not affected: the processes causing polynyas are still happen-
ing, albeit from a shifted baseline that may fall below the
fixed thresholds.

Admittedly, Arctic polynyas are more often detected using
sea ice thickness since they can be covered with a thin layer
of high concentration ice (e.g. Martin et al., 2004; Smedsrud
et al., 2006; Tamura and Ohshima, 2011; Adams et al., 2013;
PreuBler et al., 2016; Ren et al., 2022). Since adequate sea
ice thickness data are only available since 2010s and that we
have to combine images to create the oversampled training
dataset, we could not train our model on SIT without grossly
overfitting it. It should however be possible to perform trans-
fer learning with minimum retraining, by min-max normal-
ising the SIT so that it too has values between 0 and 1, and
most crucially finding an adequate threshold for Unet and
the GMM. Similarly, we used a low spatial resolution SIC
product for its time coverage. Transferring to higher reso-
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lution products should be straightforward and only require
that one changes the size of the Unet input layer; the GMM
can be directly applied as is, although computing times in-
crease rapidly with resolution. It should also be easy to mod-
ify the input layer so that it takes the brightness temperature
or the ratio of several frequencies rather than the derived SIC,
to obtain results more directly comparable to e.g. Markus
and Burns (1995). Finally, we limited our study to winter
polynyas because the labelled data were only available for
the months November to April, but we see no reason why our
method would not function to detect summer polynyas from
SIC as well, potentially after minor retraining or threshold
adjustment for the GMM.

3.2 Validation: Variability in observed winter Arctic
polynyas

Spatial and temporal variabilities and trends of winter Arc-
tic polynyas are the topic of Wong et al. (2025)’s study. To
further validate our results, and in particular quantify the im-
pact of our larger polynya areas, we here briefly look at some
aspects of the temporal variability in polynya activity, and
compare our results to those of Wong et al. (2025). We here
combine our true positives and false positives, since we ar-
gued in the previous subsection that most of the false posi-
tives are actually polynya pixels.

We first focus on the decadal variability (Fig. 6a—d). The
frequency of polynya activity (Fig. 6a), i.e. how many years
out of the 10 in the decade has each pixel had at least once
a polynya, highlights the same high-activity regions as pre-
vious studies (see Introduction); the high activities east of
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Figure 4. Mean number of false positive pixels per 2 month period: freeze-up in November—December (darkest), consolidated ice in January—
February (greyish blue), and potential early melt in March—April (lightest), for each of the nine regions as defined in the NSIDC Arctic

regional mask (Meier and Stewart, 2023, same numbers as on Fig. 1).

Greenland and west/south of Svalbard are probably due to
unfiltered MIZ. Comparing each decade to the previous one
reveals different variabilities in different regions. The Pacific
side for example has an increased activity in the 1990s (red
on Fig. 6b), a paused change in the 2000s (pale colours on
Fig. 6¢), and an increase again in the 2010s (red on Fig. 6d).
On the Atlantic side in contrast, polynya activity is constantly
moving out of the Barents Sea (blue colours), either north
into the Central Arctic or east into the Kara Sea (red colours),
consistent with the all-season retreat of the sea ice edge. Sim-
ilarly east of Greenland experiences a decrease in the 1990s
and 2000s and little change in the 2010s, because the sea ice
edge has already retreated. We suspect that this is the main
reason for our reduced number of false positives in these re-
gions with time (Fig. 4): no polynya can be detected if there
is no surrounding pack ice. Two other regions with known
polynya activity are west of Greenland and the Siberian Arc-
tic, and they also have different rates of increased activity de-
pending on the decade (Fig. 6a—d). These results are in agree-
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ment with Wong et al. (2025), albeit with a different region
definition: although the overall pan-Arctic trend is towards
an increased polynya area, the different regions increase at
different rhythms because of their respective forcing mech-
anisms (notably changes in the wind and air temperature).
Explaining those would be beyond the scope of this paper.
We also compare Wong et al. (2025)’s pan-Arctic trend
to those obtained with our method (Fig. 6e and f). As in
Wong et al. (2025), we distinguish each year’s “total” and
“cumulative” polynya areas. The total area is the area of the
Arctic that has had at least 1d with a polynya over the en-
tire winter; the cumulative area is the sum of the daily pan-
Arctic such areas, and is therefore larger. As expected from
our large number of false positives, i.e. pixels that were not
detected as polynya in the labelled training set created by
Wong et al. (2025), the areas produced with our method (ma-
genta lines) are larger than theirs (black), about consistently
three times as much. The trends are similar, although ours
also reflects our increasing trends in false positives and are

The Cryosphere, 19, 6043-6058, 2025
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SIC + polynya masks
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Figure 5. Two example results, on (a) 30 March 2012 (top) and (b) 3 November 2022 (bottom), of the original daily sea ice concentration
data (left), with superimposed the resulting GMM-produced open ocean/MIZ mask (middle, orange asterisks) or the polynya masks (right,
green and magenta). Green dots are the polynyas detected with a traditional threshold method, i.e. the labelled dataset we used for training,
and magenta dots are the polynyas detected with our method. Green circles highlight areas where the two methods agree. Black circles

highlight areas with false positives that we argue are correct, while the blue circle on (b) is a special case, see text.

therefore slightly larger: for the total area, 23 000 km? yr—!

with our method, 17000 with theirs over the entire period;
for the cumulative area, 106 000 km?2 ylr_1 with our method,
97 000 with theirs for years after the large jump of 1988, syn-
chronous in both series (198 000 and 120 000 respectively for
the entire series). We suspect that the reason for this jump is
the change of program that year, from SMMR Nimbus-7 to
SSM/I DMSP, but this is beyond the scope of this paper. The
series are also strongly and significantly correlated: 0.90 for
the the total area, 0.89 for the cumulative area over the entire
period.

In summary, as found in the previous subsection, our
method detects larger polynya areas than the fixed 50 %
threshold method. This larger area does not significantly af-
fect the geographical patterns of polynya activity and only
slightly increases the temporal trends. The correlation be-
tween the methods is very strong.

The Cryosphere, 19, 6043-6058, 2025

3.3 Application: Detection of winter Arctic polynyas in
the global coupled model MIROC6

The ultimate objective of this exercise was for us to de-
velop a method for automatically and rapidly detecting Arc-
tic polynyas in modelled sea ice concentration output. We
therefore test our scripts on one global coupled model which
we know has winter Arctic polynyas: MIROC6. We do not
have any labelled data for it, so the assessment is based on
visual inspection and comparison to fixed-threshold meth-
ods. We visually inspected every single monthly result, and
a random quarter of the daily ones. As exemplified on Fig. 7
and Appendix Fig. A2, our model performs well, and equally
well on the two temporal resolutions. As with the observa-
tions, the occasional false positive pixel still exists in the
open ocean/MIZ filtering, but polynyas big and small are
successfully detected. The fact that it works so well even
on monthly data is surprising, given that both the brief and
extensive studies of Heuzé et al. (2023) and Mohrmann et
al. (2021), respectively, concluded that polynya detection on
monthly modelled data is not recommended.
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Figure 6. Variability exhibited by our results: Combining our true and false positives, for each pixel (a) frequency in polynya opening in the
1980s, i.e. out of the 10 winters of that decade, how many had a polynya (only > 0 shown); (b—d) difference in polynya opening between
two consecutive decades; (e) total and (f) cumulative polynya area of each winter in our results (magenta) and in Wong et al. (2025) (black)
for the entire Arctic, along with the corresponding linear trends. See text for definition of each area.

If anything, our visual inspection reveals that our results
(magenta dots on Fig. 7) are somewhat conservative; we
would have considered flagging as polynya the regions on the
Siberian shelf with reduced SIC of around 70 %. We there-
fore now focus on the Siberian shelf, more specifically the
known “real world” polynya regions of the Laptev and Kara
seas (see locations on Fig. 1). We compare the polynya area
we obtained with our method to that from the range of SIC
thresholds used in the literature (Fig. 8, green lines). Special
attention is given to the 50 % threshold that was used in the
labelled observations the model was trained on (plain bright
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green). In the Laptev Sea, our method returns larger areas
than the highest threshold of 60 % for 21 out of the 30 years;
in the Kara Sea, only 3 times. Those are small differences of
the order of 10 pixels, and only when the total area is small
(of the order of 100000 km? in the Laptev Sea, Fig. 8a). In
both regions, for the larger events, our method returns an area
between those of the 50 % and 60 % thresholds. The daily ar-
eas confirm this picture: most of the values sit close to the
unit line, but for both regions, the higher values are lower
with a fixed 50 % threshold than with our method (top-right
corners of Fig. 8b and d). Regardless of the threshold, region,
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Figure 7. Two example results, on (a) 14 April 1994 (top) and (b) 18 February 2003 (bottom), of the model MIROCG6’s daily sea ice
concentration data (left), with superimposed the resulting GMM-produced open ocean/MIZ mask (middle, orange asterisks) or the polynya

mask (right, magenta).

or whether we consider the cumulative or total areas, the cor-
relations are very high between the series (often exceeding
0.9, Appendix Table A2), proving that our method captures
well the variability in polynya activity.

Admittedly, one source of error of our method is that to
directly apply our trained model, we had to interpolate the
modelled data onto the NSIDC polar stereographic grid. We
clearly introduced some interpolation artefacts (see the top
left corner of all the panels, Figs. 7 and A2). One alterna-
tive could be to use only the unsupervised GMM to detect
the open ocean/MIZ on the model’s native grid, instead of
the tedious traditional flood-fill, and then detect polynyas us-
ing a standard threshold method. This could be particularly
advantageous if working with many models, since they have
different sea ice concentration biases (Notz and Community,
2020). One inconvenience is the computing time: it takes less
than a minute to apply the already-trained Unet to 30 years
of daily data, but more than 15h on our supercomputer to
obtain the classes from the GMM. The fastest approach of
them all would then be to do the opposite and use only our
trained Unet, and minimise the false positives by analysing
pre-determined sub-regions in the pack ice, away from the

The Cryosphere, 19, 6043-6058, 2025

MIZ, as done on observations by e.g. Tamura and Ohshima
(2011) or PreuBler et al. (2016).

We acknowledge that MIROC6 has one of the highest
resolutions of all models that participated in the Climate
Model Intercomparison Project phase 6 (CMIP6, Eyring et
al., 2016), and has been identified in the all-model assess-
ments of monthly and daily Arctic sea ice concentration of
Athanase et al. (2025) and Heuzé and Jahn (2024), respec-
tively, as among the most accurate CMIP6 models. Our re-
sults should be taken as a proof of concept: had our method
not worked on MIROCS6, it would not have worked on the
other CMIP6 models, but one will probably need to exercise
caution if working with less accurate models. Daily sea ice
thickness was not widely available in CMIP6; this is another
reason why we developed our method on concentration in-
stead. As with the observations, if daily thickness becomes
routinely available for CMIP7 or if one wants to work with
CMIP6 monthly thickness, we argue that our method can be
used with minimum adjustment, provided one finds the suit-
able corresponding thresholds.
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Figure 8. Polynyas in the Laptev (a, b) and Kara seas (¢, d) in MIROC6 daily data. (a, ¢) Comparison of the cumulative winter polynya area
retrieved by our method (magenta) and several commonly used fixed sea ice concentration thresholds (green). (b, d) Comparison of all the
daily polynya areas between our method and the 50 % threshold it was trained on; black line is the x = y unit line.

4 Conclusions

We successfully trained a hybrid supervised-unsupervised
machine learning model to automatically detect polynyas in
the Arctic from daily satellite images of sea ice concentra-
tion, despite polynyas occupying barely 0.1 % of the image.
The supervised network is a Unet autoencoder, trained on
the labelled polynya masks of Wong et al. (2025). It returns
many false positives in the marginal ice zone, so we filter
its results using an unsupervised Gaussian Mixture Model
classifier that detects the open ocean/MIZ on each image.
By combining the labelled sea ice concentration and thick-
ness masks over the period where they are both available
(since 2012), we reduce their individual noise and show that
we have virtually no false negatives, i.e. all polynyas are de-
tected. Our large number of false positives is to a small ex-
tent caused by the occasional complex unfiltered pattern in
the MIZ, but is primarily due to the standard definition of a
polynya. Our model detects areas with reduced sea ice cover
surrounded by more compact ice, which we argue meet the
criteria of a polynya, whereas traditional methods use fixed
concentration thresholds for detection (e.g. Smedsrud et al.,
2006; Tamura and Ohshima, 2011; Campbell et al., 2019).
These not-that-false positives significantly increase with time
(4277 yr=!) and are significantly anticorrelated to the Arctic
sea ice area and extent (R = —0.76 and —0.71 for daily val-
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ues), suggesting that as climate change continues impacting
the sea ice cover (Stroeve and Notz, 2018), traditional defini-
tions become less adapted, while the more flexible machine
learning approaches can still successfully detect shapes and
gradients in an icescape with shifted values.

As proof-of-concept, we applied our method to detect
polynyas in one CMIP6 global coupled model, MIROCS6. It
indeed works, successfully removing the MIZ and detecting
polynyas large and small on both daily and monthly modelled
sea ice concentration. In the Laptev and Kara seas where we
conducted more in-depth analyses, our method returned ar-
eas comparable to those with fixed thresholds between 50 %
to 60 %, but the offset between the values is not constant
— our method is more flexible. The correlation between the
time series is very high regardless of the threshold used — our
method preserves the variability, a result we also found when
comparing to the observation results of Wong et al. (2025).
This model has a high resolution, comparable to that of the
observational product (Tatebe et al., 2019), and a somewhat
realistic sea ice cover (Heuzé and Jahn, 2024); further stud-
ies will have to determine whether adjustments are necessary
for coarser and/or more biased models. Similarly, we limited
this study to sea ice concentration as observational sea ice
thickness datasets (Patilea et al., 2019) are not long enough
yet to deal with such high-class-imbalance classification ex-
ercise, and to winter only since the labelled data covered only
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November to April each year (Wong et al., 2025). Nonethe-
less, this study paves the way for automatic detection at a
somewhat low computing cost of Arctic polynyas, small fea-
tures with such a large role for the Earth System (e.g. Smith
and Barber, 2007; Else et al., 2013; Moore et al., 2023).

Appendix A: Appendix figures and tables

Figure A1l. Two runs of the GMM unsupervised classification on the same random timestep (29 April 1984), illustrating that classes at the
same location can randomly be assigned different numbers: Here classes 1 (dark blue) and 2 (green) are swapped. The white band over the
North Atlantic is that used to detect the open ocean/MIZ class number.
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Figure A2. Same as Fig. 7 but using the model’s monthly mean sea ice concentration.

Table Al. Trend in false positives, in pixel per year, for the nine Table A2. Correlation coefficient R between the cumulative (cu-
regions and three time periods shown on Fig. 4. Only trends signif- mul.) or daily polynya areas in MIROCG6 obtained using a fixed
icant at 95 % are shown. See also region definition on Fig. 1. sea ice concentration threshold and that using our method, for the

Laptev and Kara seas.

Nov-Dec  Jan-Feb Mar—Apr

1. Central Arctic Ocean 0.15 0.25 0.13 SIC threshold Laptev Sea ‘ Kara Sea
2. Beaufort Sea 0.35 - - cumul. daily ‘ cumul. daily
3. Chukchl Sga 0.19 0.08 0.17 30 095 0095 093 086
4. East Siberian Sea 0.15 - -

50 097 0098 097 092
5. Laptev Sea 0.05 0.02 0.04 60 098 096 099 0095
6. Kara Sea 0.40 0.30 0.19 ’ ) ) i
7. Barents Sea —0.28 —0.20 -
8. East Greenland Sea —0.17 —-0.72 —0.52
9. Baffin Bay 0.18 0.18 0.25
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Code and data availability. The scripts used in this manuscript
and the best model we generated are available on Github at
https://github.com/cheuze/Polynya_ CNN2D_GMM (last access:
6 November 2025); the scripts are now published on Zenodo,
https://doi.org/10.5281/zenodo.17540456. The observed sea ice
concentration data from the National Snow and Ice Data Cen-
tre (dataset DOI https://doi.org/10.5067/MPYG15WAA4WX,
DiGirolamo et al., 2022) are freely available at https:
/Insidc.org/data/nsidc-0051/versions/2  (last access: S5 May
2025). The polynya masks produced by Wong et al.
(2025) are publicly available on PANGAEA (Wong and
Heuzé, 2025), https://doi.org/10.1594/PANGAEA.987383.
The modelled sea ice concentration data from MIROC6
(dataset DOI https://doi.org/10.22033/ESGF/CMIP6.5603,
Tatebe and Watanabe, 2018) are freely available on any
of the Earth System Grid Federation portals; we used the
French one: https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
(last access: 5 May 2025). The regional mask from
the National Snow and Ice Data Centre (dataset DOI
https://doi.org/10.5067/CYW30O8ZUNIWC, subset “North,
Polar Stereographic PS, 25km”, Meier and Stewart, 2023) is
freely available at https://nsidc.org/data/nsidc-0780/versions/1 (last
access: 5 August 2025).
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