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Abstract. Snow density is a crucial parameter for sea ice
modelling at the physical process level. The seasonal evo-
lution of surface (top 3 cm) and bulk (entire layer) snow
densities observed during the MOSAiC expedition was in-
vestigated and used to assess four snow density schemes.
A numerical snow and sea ice model was applied to
simulate the sensitivity of sea ice to snow density and
snow precipitation during the period when snow was dry.
Snow densities of 348, 308, and 487 kg m−3 were de-
rived from linear regression of snow water equivalent (SWE)
against snow depth, using samples collected during three
distinct periods: the entire MOSAiC period, the winter-
spring period (October–May), and the summer-autumn pe-
riod (June–September), respectively. The examined snow
density schemes produced mean snow densities consistent
with MOSAiC observations; however, none of the schemes
adequately captured the observed temporal variability in
snow density. The modelled mean snow surface temperature
and ice thickness showed a linear relationship with snow den-
sity, whereas the modelled mean in-snow and in-ice temper-
atures showed an inverse linear relationship with snow den-
sity. The impacts of a time-dependent snow density on snow
and ice thermodynamic regimes were stronger than in the
model runs using a constant snow density during the model
period. Model sensitivity experiments showed that a higher
snow density reduces snow and ice temperatures, promot-
ing ice growth, whereas increased snow precipitation has the

opposite effect. However, excessive snow accumulation can
thicken the ice due to snow-ice formation.

1 Introduction

Snow on top of sea ice is an important component of the
marine Arctic climate system. Snow is a strong reflector of
solar radiation, with a surface albedo much higher than that
for bare ice (Perovich and Polashenski, 2012). This keeps
the surface temperatures lower in spring and autumn and re-
duces the melt in late spring and early summer. Snow is a
good insulator, having a heat conductivity of only approx-
imately 10 %–20 % of that of sea ice (Sturm et al., 2002a;
Macfarlane et al., 2023a). Hence, in winter, the heat flux from
the relatively warm ocean to the cold atmosphere is much
smaller when sea ice is covered by snow, resulting in a re-
duction in the ice growth rate (Merkouriadi et al., 2017). On
the contrary, snow has a positive contribution to ice thickness
via snow-to-ice transformation. This occurs when the ice sur-
face is flooded under a heavy snowpack and slush freezes to
form snow ice (Provost et al., 2017) or when meltwater or
rain percolates to the snow-ice interface and refreezes there
to form superimposed ice (Cheng et al., 2003). A surface
scattering layer (SSL) forms in summer and persists beyond
it, buried below new accumulated snow. SSL visually looks
like a snow layer. The isotopic signature of SSL is purely
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from sea ice. The meltwater drains to melt ponds and leads,
leaving the SSL relatively dry. As the top SSL melts, there
is a simultaneous transformation of the underlying bare ice
to the SSL. Thus, the thickness of the SSL remains almost
stable throughout the summer, and its density increases with
depth (Macfarlane et al., 2023b). SSL reveals a porous struc-
ture that resembles snow (Smith et al., 2022). In winter, the
densities of snow and the SSL affect the thermal properties
of the snowpack (Macfarlane et al., 2023b).

Previous studies have shown that snow density and its po-
tential to be eroded by wind are correlated: the lower the
snow density, the weaker the wind required for erosion and
drifting (He and Ohara, 2017). Drifting snow can enhance
sublimation (Sigmund et al., 2022) and act as a source of
fine-mode salt aerosols, which serve as cloud condensation
nuclei (Gong et al., 2023). In satellite retrievals of sea ice
thickness, snow density is critically important because verti-
cal gradients in snow density and/or volume scattering in the
snow influence the radar signal (Kern et al., 2015).

After snowfall, snow density begins to evolve due to
mechanical compaction and snow metamorphism, generally
leading to densification of snow (Bormann et al., 2013; Hel-
fricht et al., 2018; Judson and Doesken, 2000). Snow meta-
morphism is controlled by dynamic and thermodynamic fac-
tors. The dynamic factors are wind (decomposition, erosion
and redeposition) and snowfall (weight). Wind-driven pro-
cesses result in the breaking of the snow structure and gen-
erally leading to increased snow density (King et al., 2020).
New snow usually has lower density than old snow (Sturm
and Holmgren, 1998), reducing the bulk density of the snow-
pack. The major challenge in quantifying the role of snow-
fall in snow metamorphism, snow depth, and ice mass bal-
ance beneath the snow layer is that the temporal and spatial
variations of snowfall are often poorly understood. Measure-
ments of the total local seasonal snowfall tend to differ from
each other, depending on the instrument used (Matrosov et
al., 2022). The rearrangement of snow microstructure during
snow metamorphism affects snowpack density. Sublimation
and deposition of water vapour under a temperature gradient
can drive kinetic growth of faceted crystals, which may in-
hibit compaction, whereas other metamorphic processes can
enhance bonding and increase snow density (Jafari et al.,
2020; Nicolaus et al., 2022).

Significant advancement has been made in the represen-
tation of the microscale physics controlling snow density
(Keenan et al., 2021); however, major challenges remain in
representing snow processes in climate models. Those can
only resolve bulk properties of the snowpack, such as its
depth and temperature. Various snow-density parameterisa-
tions have been developed (e.g., Essery et al., 2013; Keenan
et al., 2021). In most climate models involved in the Snow
Model Intercomparison Project (SNOW-MIP), snow density
is either constant or depends on mechanical compaction and
snow age (Menard et al., 2021). However, limited and sparse
data availability from the central Arctic has hindered a com-

prehensive assessment of the snow density on sea ice and its
dependence on variables resolved by climate models.

In this study, we investigate the seasonal evolution of snow
density during the Multidisciplinary Drifting Observatory for
the Study of Arctic Climate (MOSAiC) expedition. We ad-
dress snow density for the surface snow layer (defined by the
sampling resolution of a density cutter, here the top 3 cm)
and the bulk snowpack (entire snow layer). The surface snow
layer is characterised by new snow deposition. It is highly
sensitive to atmospheric influences, responds more rapidly
to variations in the surface energy balance than deeper lay-
ers, and influences the surface energy balance through its ra-
diative properties and surface roughness. The bulk snowpack
density is critical for sea ice mass balance. Our objectives are
to find out (1) how snow density is affected by air tempera-
ture during the MOSAiC expedition, (2) how snow density is
affected by wind during the winter-spring period, (3) how the
simulated thermal evolution of snow and ice is affected by
application of different snow density schemes, and (4) how
snowfall impacts the thermal evolution of the previously de-
posited snow and underlying sea ice.

To fulfil the objectives, we analyse MOSAiC snow density
and weather observations, evaluate snow density schemes,
and model snow and sea ice thermodynamics. In modelling,
we focus on the winter-spring (October–May) period, when
the MOSAiC ice camp drifted along a continuous trajectory
(MOSAiC legs 1–3).

2 Data and methods

The MOSAiC expedition to the central Arctic started in Oc-
tober 2019 and lasted until September 2020. The MOSAiC
ice camp (R/V Polarstern) drift started from the marginal
ice zone (MIZ) in the eastern Amundsen Basin and ended in
the Fram Strait (Fig. 1). The expedition was divided into five
legs. Legs 1 to 3 were operated along a continuous ice camp
(central observatory 1, CO1) between late October 2019 and
mid-May 2020. Leg 4 took place between June and August
2020 (Central Observatory 2, CO2). Leg 5 was set up af-
ter a complete relocation of R/V Polarstern back up to the
central high-Arctic (central observatory 3, CO3). The entire
MOSAiC drift trajectory is given in Fig. 1.

2.1 Weather data

Meteorological variables were measured at the Central Ob-
servatory Met City at approximately 500 m distance from
R/V Polarstern (Shupe et al., 2022), where a 10 m-high
weather mast was installed. We use 2 m air temperature and
10 m wind speed to investigate their impact on snow den-
sity since those are fundamental meteorological variables af-
fecting snow metamorphism (Sommerfeld and LaChapelle,
1970; Domine et al., 2007). Precipitation measurements were
taken using different sensors located onboard the R/V Po-
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Figure 1. (a) The MOSAiC ice camp drift trajectory during legs 1, 2, and 3. (b) Evolution of observed mean bulk snow density with respect
to time and latitude. The colour bar illustrates the density values in both (a) and (b). Note that observations were also taken out of the ice
camp trajectory at temporary stations (individual dots in both plots) established after the MOSAiC expedition ended on 17 September 2020.

larstern and at Met City site on the sea ice (Shupe et al.,
2022). The snow precipitation measurements suffered from
different artefacts, some of the onboard measurements being
more affected by the ship superstructure, while on-ice obser-
vations were more influenced by blowing snow. Intercom-
parison studies concluded that the most reliable and consis-
tent observations were obtained from the vertically pointing
35 GHz Doppler radar and the optical disdrometer onboard
the R/V Polarstern (Matrosov et al., 2022; Wagner et al.,
2022). However, in this study, we utilised the monthly cu-
mulative precipitation measurements presented by Matrosov
et al. (2022) to assess the sensitivity of modelled snow and
ice parameters to precipitation uncertainty. For modelling,
we used the hourly ERA5 reanalysis products (Hersbach et
al., 2020) of wind speed (Va), air temperature (Ta), rela-
tive humidity (RH), precipitation rate (P ), as well as short-
wave (Qs) and longwave (Ql) radiative fluxes, extracted from
the grid cells closest to the drift track coordinates of the
R/V Polarstern. The comparison between in situ observa-
tions and ERA5 reanalysis products is given in Fig. S1 and
Table S1 in the Supplement. These model inputs represent
averaged values over the selected ERA5 grid cells of about
31 km× 31 km. ERA5 Ta is on average positively biased dur-
ing cold and clear-sky conditions, due to a positive bias in
snow/ice surface temperature up to 4 °C (Herrmannsdörfer
et al., 2023, Fig. S1b). This Ta positive bias is associated
with a moist bias (Fig. S1c). Other reported discrepancies
in the ERA5 reanalysis are the underrepresentation of liq-
uid water clouds, with impact on Qs and Ql (Fig. S1d, e),
and a mismatch in the seasonal variation of wind speed (Xi
et al., 2024, Fig. S1a). Wagner et al. (2022) estimated total

snow accumulation of 98–114 mm in snow water equivalent
(SWE) from late October 2019 to early May 2020, which
is in line with the ERA5 reanalysis product (115 mm) dur-
ing the same period (Fig. S1f). Despite these discrepancies
with the MOSAiC observations, ERA5 reanalyses were pre-
ferred to observations to force the HIGHSTI model because
data gaps exist among in-situ measurements, in particular the
longwave and shortwave radiative fluxes (Fig. S1d, e).

2.2 Snow data

During MOSAiC, comprehensive sea ice and snow observa-
tions were carried out (Nicolaus et al., 2022). Snow pit mea-
surements were taken at least weekly but often on several
days per week, and occasionally more than once a day. Most
measurements were taken within the central observatories in
designated clean, undisturbed snow fields. Snow pits were
dug at various locations on undeformed first-year ice (107,
142), multi-year ice (20, 76), and places close to open leads
(16, 17), ponds (5, 2), and pressure ridges (61, 35). The num-
bers in parentheses indicate the sample counts for surface and
bulk snow, respectively. More than half of the surface and
bulk snow samples (51 % and 52 %) were collected over the
first-year ice (FYI). In this study, we only use snow density
measurements collected with the 100 cm3 density cutter and
the ETH SWE tube. MOSAiC ice floe was snow-free from
late June to early July 2020 (Itkin and Liston, 2025), when
observations were interrupted due to logistical constraints.
The SSL observed over bare ice during the melting season
was included among the snow observations.
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2.2.1 Surface snow density and density profile

The vertical profile of snow density was determined by sam-
pling snow from the vertical wall of snow pits using a 3 cm-
high density cutter box, resulting in a vertical resolution of
3 cm for the snow density profiles. Snow density was calcu-
lated as the ratio of the weight to the volume of the snow sam-
ples. Our analysis mainly focused on the uppermost density
measurement in each profile, i.e. the surface snow density
(ρsfc). A total of 209 surface snow density samples were col-
lected during the entire MOSAiC, with most samples taken
on undeformed sea ice. The uncertainty in these density mea-
surements is about ±5 %–9 % with a tendency to overesti-
mate (underestimate) densities below (above) a threshold be-
tween 296 and 350 kg m−3 (Proksch et al., 2016).

2.2.2 Bulk snow density

The bulk snow density (ρb) can be derived by integrating
the measured densities along the vertical profile. However,
downscaling high-resolution data to coarser resolution may
introduce errors (Fowler et al., 2007). We therefore derived
the bulk snow density based on snow depth (hs) and snow
water equivalent (SWE) measurements taken once for each
snow pit visit using the ETH-SWE cylinder snow sampler
(Macfarlane et al., 2023c). The ETH-SWE tube has a scale
on the side to measure snow depth. The bulk snow density ρb
is calculated as ρb = (SWE× ρw)/hs, where ρw is the density
of fresh water (1000 kg m−3). We analysed 272 bulk snow
density samples from snow depth and SWE measurements.
The uncertainty associated with density measurement us-
ing the SWE tube is approximately±4 % (Beaudoin-Galaise
and Jutras, 2022). A quality control procedure (Sturm et al.,
2002b) was applied to the snow density data. Measurements
exceeding 700 kg m−3 across the entire dataset, as well as
those above 500 kg m−3 recorded from October to May, were
excluded.

2.3 Snow density parameterisations

In climate models, snow density is either prescribed as a con-
stant or parameterised as bulk values (McCreight and Small,
2014). The parameterisation of bulk snow density is often
derived based on a large set of in-situ snow density observa-
tions using multiple empirical regression techniques involv-
ing a set of proxy variables, such as air temperature, wind
speed, snow depth, and age of the snow cover (Pistocchi,
2016; Mizukami and Perica, 2008). In this study, we assess
three bulk snow density parameterisations and one prognos-
tic snow density equation (Table 1).

2.4 Snow and ice model

A single-column high-resolution thermodynamic snow and
ice model (HIGHTSI) is used to simulate the sensitivity of
snow density on the thermal regime and mass balance of

snow and ice during the winter-spring period (28 October
2019–6 May 2020) when the air temperature was below zero
degrees and snow was dry. HIGHTSI computes the energy
and mass balances at the snow surface, at the snow/ice in-
terface, within the snow and ice layers, and at the ice bot-
tom (Launiainen and Cheng, 1998). The snow-to-ice trans-
formation is calculated in terms of ice mass balance. The
refreezing of slush to snow ice due to ice surface flooding
and the refreezing of melted snow to superimposed ice at
the snow–ice interface is considered in the model (Cheng
et al., 2003, 2008). Internal melting within snow and ice
can be modelled (Zhao et al., 2022). HIGHTSI uses time-
dependent snow density (scheme E4) and snow heat conduc-
tivity (Sturm et al., 1997). The thermal properties (density,
specific heat, and thermal conductivity) of sea ice are param-
eterised according to Yen (1981) and Pringle et al., (2007).
In this study, we incorporate a time series of MOSAiC sur-
face (ρsfc) and bulk (ρb) snow density, along with snow den-
sity schemes (E1–E4), into the HIGHTSI model to investi-
gate how snow density affects the thermal regime of snow
and sea ice (Group 1 of model experiments). The time series
of ρsfc and ρb are presented as 10 d moving averages with
temporal standard deviations (cf. Sect. 3.4). For E1–E3 sim-
ulations, the baseline snow density was 250 kg m−3. The E4
simulations, which use specified initial snow densities, are
labelled as E4(150), E4(250), and E4(320), respectively. For
comparison, we performed another group of model experi-
ments (Group 2) using constant snow density values of 180,
200, 220, 250, 270, 300, and 320 kg m−3. The initial snow
depth and ice thickness were assumed to be 0.1 and 0.36 m,
respectively, representing the mean values for undeformed
FYI in the MOSAiC Distributed Network (DN) at the start of
the MOSAiC ice camp (Lei et al., 2021). The applied model
parameters are summarised in Table S2. Precipitation is one
of the most important input variables for snow and ice mod-
elling. The snow precipitation (expressed in SWE) needs to
be converted to snow depth (m) as model input. A density
of 340 kg m−3 (denoted as ρs0 in Table S2) was used for the
conversion based on mass conservation. For the snow layer
on sea ice, snow density is either derived from MOSAiC ob-
servations or parameterised.

3 Results

3.1 MOSAiC observed snow density statistics

Throughout the MOSAiC expedition, snow density exhib-
ited substantial variability. The values ranged from 82 to
498 kg m−3 for surface snow and 83 to 690 kg m−3 for
bulk snow. The mean and standard deviation values were
311 kg m−3

± 94 and 291± 106 kg m−3 for surface and bulk
snow, respectively. In the winter-spring period, the surface
snow and the bulk snow exhibited the same range of snow
density variability (from 82 to 432 kg m−3 for surface snow
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Table 1. Bulk snow density parameterisation schemes.

Sources Snow density scheme

Sturm et al. (2010)
Parameters

ρb = ρ0+ (ρm− ρ0)×
[
1− exp(−k1×hs− k2×DOY)

]
(E1)

k1 = 1.0× 10−3 and k2 = 3.8× 10−3 in this scheme are the fitting parameters, hs (cm) is
snow depth, DOY is day-of-year. ρ0 (250 kg m−3) and ρm (500 kg m−3) are the fitted baseline
and maximum snow densities, respectively, for this study.

Bruland et al. (2015)
Parameters

ρb = ρ0+ (ρm− ρ0)×
[
1− exp

(
−k1×hs− k2× z− k3× Td− k4×V

∗
)]

(E2)

k1 = 5.03× 10−3,k2 = 1.8× 10−4,k3 = 4.77× 10−3,k4 = 4.2× 10−4
;hs (cm) is snow

depth, z (m) is the elevation or the height above sea level of the location of the measurement;
Td (°C-days) is accumulated positive degree-day; V ∗ (m s−1-days) is wind days when
T < 0 °C and wind speed V > 2 m s−1.

Szeitz and Moore
(2023) Parameters

ρb = ρo+ (ρm− ρ0)×
(
k2×DOY2

− exp(−k1×hs− k3× Td− k4× Tmin− k5×P)
)

(E3)

k1 = 2.26×10−1,k2 = 2.29×10−5,k3 = 1.11×10−2,k4 = 3.23×10−4,k5 = 1.96×10−2,hs
(cm) is snow depth; Td (°C-days) is accumulated positive degree-day; Tmin (°C) is the
minimum air temperature, P (mm) is the daily total precipitation.

Anderson (1976)
Parameters

1
ρb
×
∂ρb
∂t
= C1× exp

[
−d × (Tf− T )

]
×Ws× exp(−C2× ρb) (E4)

Tf is the freezing temperature (273.15 K); T is the air temperature (K); Ws (m) is the total
snow water equivalent; C1 = 5 cm−1 h−1; C2 = 21 m3 Mg−1 and d = 0.08 K−1.

and 83 to 433 kg m−3 for bulk snow), but on average, snow
was denser at the surface, with mean± standard deviation
values of 283 kg m−3

± 77 kg m−3 and 253± 59 kg m−3 for
surface and bulk snow, respectively.

Figure 2 presents the frequency distribution of both sur-
face and bulk snow densities. In the winter-spring period,
surface snow density peaks at 240 and 310 kg m−3 (Fig. 2a).
After snowfall, surface snow undergoes densification due
to gravity, wind-induced processes, and temperature-driven
metamorphism. The wind exerts a strong effect on the surface
snow layer, leading to the formation of wind slab snow (Dou-
glas, 1936) with densities varying from 350 to 500 kg m−3

(Derksen et al., 2014; Domine et al., 2007). For the en-
tire MOSAiC period, the surface snow density distribution
(blue line in Fig. 2a) resembles that observed during the
winter-spring period. However, the peak is somewhat less
pronounced, and the distribution includes a much higher oc-
currence of large snow densities due to the presence of SSL
during the melting period, which had a large weight on the
density average (113 surface density samples out of 209 were
collected between July and September, when SSL was dom-
inant, Fig. 4e). Most bulk snow density values observed over
the winter-spring and the entire MOSAiC periods (Fig. 2b)
are around 250 kg m−3 (the mode being 235 and 276 kg m−3

for the winter-spring and entire MOSAiC periods, respec-
tively), in line with the baseline snow density applied in snow
density schemes (Table 1). The larger right tail of the bulk

snow density distribution compared to the surface snow den-
sity distribution is caused by the large summer SSL density
values measured close to the ice interface.

The relationship between SWE (mm) and snow depth
(m) is illustrated in Fig. 3. The regression slopes represent
mean snow densities for each period: 348 kg m−3 (entire
MOSAiC campaign), 308 kg m−3 (winter-spring period), and
487 kg m−3 (MOSAiC legs 4 and 5). These values likely re-
flect the characteristic snow or surface scattering layer den-
sities at a specified period.

3.2 Snow density evolution over the annual cycle

The time series of observed surface snow density (ρsfc), bulk
snow density (ρb), air temperature, wind speed, snow depth,
sampling distribution, and monthly accumulated precipita-
tion are shown in Fig. 4. According to the annual cycle of air
temperature, we categorise the periods into four stages. The
cold season (defined as Stage I) starts from the beginning of
the observations and lasts until 18 February. During this pe-
riod, the mean air temperature was −25 °C, ranging between
−7 and −38°C. The warming period (Stage II) lasts from
19 February to 10 May. Within this period, the air tempera-
ture increases from−40 to−10 °C. The temperature fluctua-
tion between 16 February and 3 March (Fig. 4b) is associated
with cyclone passages (Aue et al., 2023). For clarity, we ul-
timately divided Stages I and II to align with MOSAiC legs
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Figure 2. Frequency (%) distribution of surface snow density (a) and bulk snow density (b). The blue and red colours represent the distribu-
tion for the entire MOSAiC period and the winter-spring period, respectively. N is the sample number. Density bins of 21 and 32 kg m−3 are
used in (a) and (b), respectively.

Figure 3. Scatterplot of SWE versus snow depth. The slopes of the
linear regression lines correspond to the bulk snow densities for the
entire MOSAiC period (blue), the winter-spring period (red), and
the MOSAiC legs 4 and 5 (black).

2 and 3. This separation of Stages I and II did not impact
our data analyses. The melting period (Stage III) lasts from
13 June until the end of August, with a mean air tempera-
ture of 0.1 °C. The re-freezing season (Stage IV) starts from

2 September and lasts until the end of the MOSAiC ice camp.
During this period, the mean air temperature was −3.1 °C.

During Stage I, both surface and bulk snow densities
range between 150 and 400 kg m−3, with mean values of
252 kg m−3 for surface snow density and 247 kg m−3 for
bulk snow density. In Stage II, the rise in air temperature af-
fects the surface snow density, resulting in a higher surface
snow density compared to bulk density. Stage III is charac-
terized by substantial snow and ice melt. During Stage IV,
air temperatures dropped below 0 °C. This phase is marked
by the refreezing of melt ponds and the onset of new snow-
fall, signalling the beginning of the next winter season. The
average wind speed during the study period was 5.9 m s−1,
with the highest and lowest daily mean values of 13.8 and
1.3 m s−1, respectively. The snow depth exhibited significant
temporospatial variations (Fig. 4d). The mean snow depth
obtained from snow pit observations during the entire MO-
SAiC period was 0.16 m, with the thickest and thinnest snow-
packs measuring 0.49 and 0.05 m, respectively. This agrees
with snow depth observations made with Magnaprobe over
several transects in the MOSAiC Central Observatory (Itkin
et al., 2023). Snow sampling during the MOSAiC expedition
was not evenly distributed in time (as seen by the temporal
spread of data points in Figs. 4e and S2) due to logistical
challenges and limited manpower (Itkin et al., 2025), which
impacts the snow depth and density distributions.

Figure 5 illustrates the relationship between the bulk snow
density and surface snow density across four temperature-
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Figure 4. Time series of (a) observed snow density (kg m−3) for surface snow (red) and bulk snow (black); Observed daily average (b) 2 m
air temperature (°C) and (c) 10 m wind speed (m s−1). The coloured horizontal bars in (a) refer to the MOSAiC legs 1–5. The coloured
horizontal bars in (b) represent the four stages (dark red: I; green: II; blue: III; and black: IV). (d) Snow depth observations from snow
pits. (e) total number of samples per month for bulk snow (black bars) and surface snow (red bars), and (f) observed monthly accumulated
precipitation. The values between October and May were measured using vertically pointing 35 GHz Doppler radar (range gate height of
0.23 km), and the rest were observed by a laser disdrometer onboard R/V Polarstern. (Matrosov et al., 2022).

based stages (I-IV). The bulk and surface snow density sam-
ples are collected simultaneously for comparison. The scatter
plot displays stage-specific distributions, with ellipses repre-
senting correlation patterns. Marginal histograms provide the
corresponding frequency distributions. In Stage I and Stage
II, a positive relationship exists between bulk and surface
snow densities. The ellipse for Stage II is the most flattened,
indicating the strongest correlation, whereas Stage I exhibits
a weaker correlation with a less flattened ellipse. The slope
of the major axis is less than 1, indicating that surface snow
density varies more than bulk density. Frequency distribu-
tions reveal that bulk snow density is more concentrated, in-
dicating greater uniformity in deeper snow layers. In Stage
III, the weakest correlation was observed, with a nearly cir-
cular ellipse and a negative slope, indicating a more indepen-
dent relationship between the bulk and surface densities. The
larger uniformity of the snow samples and smaller spread
of the density values in the melting stage, compared to the
other stages, probably contributed to this weak relationship,
as only melting, heavily metamorphosed snow crystals were

observed. In Stage IV, the ellipse is less elongated, and the
slope exceeds 1, indicating that bulk snow density varies
more than surface snow density. This is coherent with the fact
that this stage was characterised by strong spatial variability
in snow density, with drifting fresh snow accumulating more
in depressions than over dunes. As a result, the frequency
distribution shows a broader spread in the bulk than in the
surface density.

The normalised mean vertical profile of snow density is
shown in Fig. 6. Normalisation was necessary because the
snow depths at each snow pit differed from one another. Dur-
ing Stage I, the mean snow density gradually increases with
depth, rising from 265 kg m−3 at the surface to 310 kg m−3

at the bottom. This is likely because the high-density SSL
(snow/ice layer), formed during the melting, remains buried
under the new snow at the bottom of the snowpack during
the freeze-up. During Stage II, the density distribution re-
versed compared to Stage I. The snow density gradually de-
creases with depth, from 310 kg m−3 at the surface layer to
270 kg m−3 at the snow/ice interface. The increase in surface
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Figure 5. Simultaneous surface and bulk snow densities extracted from data samples (Fig. 4) during the four stages. The asterisks in-
dicate the mean snow densities (Stage I: ρsfc = 252 kg m−3, ρb= 247 kg m−3; Stage II: ρsfc = 319 kg m−3, ρb = 280 kg m−3; Stage III:
ρsfc = 384 kg m−3, ρb = 503 kg m−3, and Stage IV: ρsfc = 271 kg m−3, ρb = 316 kg m−3). The ellipse shadings represent bivariate Gaus-
sian ellipses in terms of the 95 % confidence intervals for each stage. Bar plots on the top and right side depict the absolute frequency (counts)
of the observed surface snow density and bulk snow density.

snow density during Stage II compared to Stage I could be at-
tributed to wind compaction (Leeuw et al., 2023), while the
decrease in snow density at the snow/ice interface is likely a
result of the metamorphism of snow crystals into larger and
looser depth hoar (King et al., 2020). At the end of April,
inverse temperature gradients occurred in the snowpack (sur-
face temperature became warmer than deeper layer temper-
atures) associated with warm-air intrusions (Svensson et al.,
2023). Density maxima below the surface layer could be a
result of fresh snow and an underlying wind-packed layer in
some samples.

During the melting in Stage III, two key processes occur
that influence the measured density profiles. First, the snow-
pack becomes saturated with water, resulting in wet, melt-

ing snow with a high liquid water content and increased den-
sity, especially at the snow-ice interface. Once this wet snow
has almost fully melted and surface water is drained away
into the ice interior or to neighbouring melt ponds, the sec-
ond phase begins: the formation of the SSL. The SSL forms
through the melting of preferential ice crystal boundaries.
This phase also has its highest density near the ice-SSL inter-
face, gradually decreasing toward the surface where melting
is more advanced. Hence, while the snow during Stage III is
indeed denser than the snow present in earlier stages, it is im-
portant to recognise that this density profile develops in two
stages, initially from saturated, dense snow, and later from
the emerging SSL with its vertical density gradient. During
the sea-ice refreezing in Stage IV, the density profile includes
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Figure 6. Normalised mean snow density profiles during each stage. The mean snow depths were 0.15, 0.18, 0.15 m, and 0.06 in Stage I, II,
III, and IV, respectively.

the SSL at the bottom and successively accumulated snow
layers on the top. Hence, the density profile shows a linear
increase with depth, similar to the vertical profile in Stage I.
As a result, the observed snow density at each vertical level
exhibits distinct spatial variability (Fig. S3).

The mean density profiles shown in Fig. 6 were based on
snow samples collected by horizontally pushing the snow
cutter in the snow pit wall. The mean bulk density obtained
from these profiles (274, 302, 421, and 287 kg m−3 during
stage I, II, III, and IV, respectively) should be comparable
to the mean bulk density obtained from the SWE tube data
(247, 280, 503, and 316 kg m−3 during stage I, II, III, and IV,
respectively) presented in Figs. 2–5. For stages I, II and IV,
the difference between the mean densities based on the snow
cutter and the SWE tube is at the limit of the uncertainty
margin. However, during stage III, when liquid water and,
later, SSL were present, the difference is more substantial,
as the snow cutter data provide a density value that is 20 %
lower than the data based on the SWE tube. We argue that,
in the presence of liquid water at the snow-ice interface, the
snow samples collected with the box cutter only reached the
top of the water-saturated snow layer, while the SWE tube
penetrated through the water-saturated snow layer. Hence, in
these conditions, the bulk snow density measured with the
box cutter only includes the upper and less dense portion of
the snow column sampled with the SWE tube.

3.3 Impact of wind on snow density

Wind compacts the snowpack, increasing its density. Strong
winds can also cause drifting and blowing snow, leading to
significant spatial variability in snow depth, which in turn

affects snow density. To quantify wind-induced snow com-
paction, linear regressions were performed using cumulative
wind speed as the predictor. Cumulative wind speed was de-
fined as the sum of daily mean wind speeds (in m s−1) over
a specified number of consecutive days, analogous to the
concept of degree-days used for temperature. The analysis
focused on the sensitivity of regression coefficients to the
length of the cumulative time window, which ranged from
3 to 30 d.

Although the correlation values are low, all regression co-
efficients presented in Fig. 7 are statistically significant at
the 95 % confidence level, with those corresponding to the
3 d accumulation period also significant at the 99 % level.
The regression coefficient for surface snow density decreases
from 1.5 for a 3 d accumulation window to 0.7 at 20 d, re-
maining nearly constant thereafter (Fig. 7a). This indicates
that the sensitivity of surface snow density to cumulative
wind speed is highest over short periods but diminishes as
the accumulation period increases. In contrast, the regres-
sion coefficients for bulk snow density are consistently lower
than those for surface snow density, ranging from 1.0 for a
3 d window to 0.2 for a 30 d window (Fig. 7a, b). This dif-
ference is expected, as wind-induced momentum flux most
efficiently deforms snow crystals at the snowpack surface.

The observed decrease in regression coefficients with
longer accumulation periods (Fig. 7a) may be interpreted as
follows. After a snowfall event, wind can rapidly deform
newly deposited snow through mechanical processes such
as particle impact, shear stress, and saltation. The loosely
bonded, fragile crystals at the snowpack surface are particu-
larly susceptible to breakage under wind-induced momentum
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Figure 7. (a) Linear regression coefficients for the dependence of the surface (red) and bulk (black) snow density on accumulated wind
speed, with the accumulation time window ranging from 3 to 30 d. The standard error of each regression coefficient is marked by an error
bar. (b) Example for 3 d wind speed accumulation versus surface(red) and bulk(black) snow densities. The solid lines represent the ordinary
least squares linear regression fits.

flux, resulting in a rapid increase in snow density (Schmidt,
1980). However, as these weak crystal structures are com-
pacted and broken down, the surface layer becomes denser
and more cohesive, reducing its liability to further mechani-
cal deformation. Consequently, the rate of wind-induced den-
sification slows over time, and thermally driven metamor-
phism begins to play a more dominant role in snowpack evo-
lution (Sturm and Benson, 2004).

3.4 Evaluation of snow density parameterisations

Figure 8 shows the observed 10 d moving average and pa-
rameterised snow densities. In November, the variations in

surface and bulk snow densities are opposite. From Decem-
ber to April, both surface and bulk snow densities increased.
Overall, the correlation between the surface and bulk densi-
ties is 0.73, and the surface snow density has a larger standard
deviation than the bulk snow density. In late April to early
May, the surface snow density revealed a large drop from
320 to 190 kg m−3 with a standard deviation of 48 kg m−3.
This change may be attributed to the abundant precipitation
during spring months (Matrosov et al., 2022). E1 scheme,
which considers both snow depth and the number of win-
ter days (DOY) as influencing factors, shows a gradual in-
crease in snow density over time. The simulated values agree
with the observed densities in the lower to mid-range. How-
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ever, scheme E1 struggles to represent the response of den-
sity to large changes in snow depth. For instance, the effects
of heavy snowfall events in November and February (visible
in Fig. 4d) are characterised by short-term rapid increases
in snow depth, as seen in the observed bulk density changes
(Figs. 4a and 8), which are not reflected in the E1 param-
eterisation. Consequently, E1 produces overly smooth snow
density evolution, missing the pronounced effects of snowfall
events.

In comparison, scheme E2, which considers the effects of
snow depth, positive degree days, and wind speed days, re-
produces density changes in response to snow depth changes
in November and February. However, E2 consistently over-
estimates the bulk snow density relative to the observations.

Scheme E3, which depends on snow depth, temperature,
accumulated positive degree-days, minimum air temperature,
and precipitation, accounts for both mechanical and thermo-
dynamic processes that influence snow structure and density.
However, in November, E3 shows an excessively strong in-
crease in snow density compared to the observations, and it
simulates a too slow increase of snow density until March.
This indicates that, in E3, snow depth plays a crucial role in
controlling snow density early in the season, but other fac-
tors, such as the duration of winter, may become more influ-
ential later in the season. For E1–E3, initial densities were
set below baseline values due to environmental temperature
and day of year (DOY) effects.

The snow density scheme E4 is the most complex one out
of the four schemes evaluated here, and it is widely used in
the sea ice research community (e.g., Essery et al., 2013).
The scheme uses a prognostic equation that considers fac-
tors such as compaction due to overlying snow layers and
metamorphic processes driven by temperature gradients. The
initial snow density needs to be specified depending on the
application. Here, we select three categories of initial snow
density to represent fresh new snow (150 kg m−3), interme-
diate snow (250 kg m−3), and average snow on Arctic sea ice
(320 kg m−3) (King et al., 2020). The E4 simulations high-
light the strong impact of initial snow density on snowpack
evolution, especially early in the season. The lowest initial
snow density results in the lowest predicted snow density
throughout the season and provides a lower-bound estimate
for snow density. It agrees with the observed lower values of
density, especially early in Stage I. The intermediate initial
condition gives a moderate estimate of snow density, gener-
ally following the observed evolution, but staying below the
highest observed density values. Those can only be simulated
with the highest initial density values. Although there is an
obvious difference between the three different initial snow
densities (range of 170 kg m−3), the final difference in den-
sity at the end of the winter is relatively small (in the order
of 15 to 20 kg m−3).

The root-mean-squared error (RMSE), mean absolute er-
ror (MAE), and mean bias of the parameterised daily mean
snow densities are presented in Table 2. All parameterisa-

tions (E1–E4) have a positive mean bias of calculated bulk
snow density compared to the observations. E2 and E4(320)
exhibit the largest RMSE and MAE compared with the ob-
servations. E1 and E3 show lower RMSE and MAE, suggest-
ing improved performance in capturing the observed snow
density evolution compared to E2. It is important to note
that the comparison with observations is based on the daily
mean bulk snow density, which may obscure some of the
dynamic aspects of the snow density evolution, such as the
spatially heterogeneous snow compaction and redistribution
driven by the interaction between wind and surface rough-
ness. Daily averaging may reduce the short-term variability
in snow density data and diminish the ability to capture short-
term changes and localised events within the snowpack. The
results of the E4 scheme highlight the importance of the
snowpack conditions at the beginning of the season. The ini-
tial snow density significantly influences the evolution of the
snowpack. The lowest RMSE and MAE are obtained with an
initial snow density of 150 kg m−3. None of the snow den-
sity schemes can capture the short-term temporal variability
of the observed snow density.

3.5 Model experiments

3.5.1 Sensitivity of sea ice to snow density

The modelled mean temperatures of the snow surface (Tsfc),
snow layer (Tsnow), and ice layer (Tice), as well as the net
increase in ice thickness (Hice) during the simulation period
(from 28 October 2019 to 6 May 2020), are presented in re-
lation to the mean snow density (Ds) used in each modelling
experiment (Table 3). The mean ρsfc is 24 kg m−3 larger than
ρb. The mean standard deviations of ρsfc and ρb are 47 and
28 kg m−3, respectively. The mean bulk snow density (ρb) of
the E1–E4 simulations is 294 kg m−3 with a standard devia-
tion of 41 kg m−3. The Ds values calculated applying E1, E3,
E4(150) and E4(250) fall within the ρsfc observation range
[231–325 kg m−3], with the E1 yielding the closest match to
the observed mean ρsfc (279 vs. 278 kg m−3). On the other
hand, the Ds calculated applying E1, E3, and E4(150) fall
within the ρb observation range [226–282 kg m−3], with the
E4(150) scheme yielding the closest match to the observed
mean ρb (265 vs. 254 kg m−3).

In response to the Ds range of 226–347 kg m−3, the mod-
elled mean surface temperature fluctuated by 0.4 °C, show-
ing a weak dependence on the applied snow density scheme
(Fig. 9a). The corresponding Tsnow and Tice exhibited ranges
of approximately 2.5 and 2.3 °C, respectively, showing a
stronger response to snow density compared to the snow sur-
face temperature (note the different vertical axes in Fig. 9a,
b, and c). The modelled net increase in ice thickness (Hice)
was 1.01± 0.12 m, with a variation range of 0.36 m. Differ-
ent snow density schemes resulted in variations in the mod-
elled net increase in ice thickness, with a standard deviation
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Figure 8. Temporal evolution of 10 d moving average bulk (black) and surface (orange) measured snow densities, along with their standard
deviations (dark and light shaded areas for bulk and surface densities, respectively), as well as the time series of four snow density parame-
terisation schemes E1–E4 (coloured lines). E4 (magenta lines) was initialized with three different densities (150, 250, and 320 kg m−3). All
simulations are for the winter-spring period (from October to May), covering stages I (red line at the bottom) and II (blue line at the bottom).

Table 2. Root-mean-squared error (RMSE), mean absolute error (MAE), and mean bias between observed and parameterised (E1–E4) daily
mean bulk snow density. The number in parentheses represents the baseline snow density for E1–E3 and the initial snow density for E4.

Daily mean bulk snow density (kg m−3)

E1 (250) E2 (250) E3 (250) E4 (150) E4 (250) E4 (320)

RMSE 39 75 31 33 55 96
MAE 29 72 25 24 51 94
Mean bias 22 72 9 9 51 93

of 0.12 m, representing approximately 12 % of the modelled
net ice growth.

Linearity of Tsfc,Tsnow,Tice, and Hice with mean Ds is ob-
served in two clusters of model experiments and observa-
tions (cluster 1 including E1, E2 and E3, and cluster 2 in-
cluding mean ρsfc, mean ρb, and the three E4s). The linear-
ity indicates that the modelled Hice increases with increas-
ing snow density, while the modelled Tsnow and Tice decrease
with increasing snow density. A higher snow density results
in higher thermal conductivity and volumetric heat capacity,
enhancing the conductive heat flux and allowing more heat
to be transferred toward the snow surface. This enhanced
heat transfer, associated with higher snow density, also ac-
counts for the thicker ice and slightly warmer surface tem-
perature. It is noteworthy that the differences in the modelled
Tsfc, Tsnow, Tice, and Hice may be attributed not merely to the
differences in snow density alone, but also to other parame-
ters associated with snow density, such as thermal conductiv-
ity and volumetric heat capacity. This is because HIGHTSI

applies time-dependent snow thermal conductivity, parame-
terised as a function of snow density (Sturm et al., 1997).
This may explain why the Ds values of the time series for
ρsfc and E1 are nearly identical, while the calculated snow
and ice variables differ (Table 3). When a constant snow den-
sity is applied in HIGHTSI, the linear relationship between
snow density and the thermodynamic state of snow and ice
becomes more pronounced and aligns with that of cluster 1
model experiments (E1–E3). Tsfc and Hice increase linearly
by 0.27 °C and 0.23 m, respectively, while Tsnow and Tice de-
crease linearly by 1.48 and 1.34 °C, respectively, in response
to an increase in snow density from 180 to 320 kg m−3 (“+”
connected lines in Fig. 9).

3.5.2 Sensitivity of sea ice to snow precipitation

To investigate the sensitivity of the modelled sea ice to the
uncertainty in the snow precipitation, the cumulative precip-
itation of each month (taken from Table 1 in Matrosov et al.,
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Table 3. The mean snow density (Ds) and modelled mean values of surface temperature (Tsfc), snow temperature (Tsnow), ice temperature
(Tice), and net increase in ice thickness (Hice) using the 10 d moving average of observed surface (ρsfc) and bulk (ρb) snow density, as well
as snow density schemes E1–E4 with different initial snow densities. All values represent averages for the period from October to May. The
± values indicate the results incorporating the standard deviations of ρsfc and ρb, respectively.

Mean values during ρsfc ρb E1 E2 E3 E4 (with different initial
simulation period snow density kg m−3)

10 d moving average ρ0 = 250 kg m−3 E4(150) E4(250) E4(320)

Ds (kg m−3) 278± 47 254± 28 279 329 239 265 305 347
Tsfc (°C) −24.6± 0.03 −24.6± 0.03 −24.8 −24.7 −24.9 −24.6 −24.6 −24.5
Tsnow (°C) −18.0± 0.4 −17.8± 0.3 −16.6 −17.2 −16.1 −17.8 −18.2 −18.6
Tice (°C) −7.3± 0.4 −7.0± 0.2 −5.9 −6.5 −5.5 −7.1 −7.4 −7.8
Hice (m) 1.08± 0.4 1.05± 0.03 0.87 0.97 0.80 1.06 1.10 1.16

Figure 9. Modelled (a) mean snow surface temperature (Tsfc), (b) averaged in-snow (Tsnow) and (c) in-ice (Tice) temperatures and (d) mean
net increase in ice thickness (Hice) as a function of the mean snow density (Ds). The symbols presented in the picture represent results of
modelling group1 using different snow density schemes (E3:©, ρb: �, E4(150): �, ρsfc: 1, E1: ∇, E4(250): , E2:× and E4(320): ). The
“+” connected lines represent values obtained from modelling group 2 experiments applying constant snow density values of 180, 200, 220,
250, 270, 300, and 320 kg m−3.

2021) during the winter-spring period was evenly distributed
to hourly intervals within the month. This even distribution
will retain the observed month-to-month precipitation vari-
ability but not the day-to-day variability, which we consider
not crucial for our sensitivity study. For each of the six pre-
cipitation datasets, a model experiment was conducted, num-
bered according to the order of the precipitation measure-
ment methods listed in Table 1 of Matrosov et al. (2022).
The model experiments were carried out in the same man-
ner as in the case of snow density (ERA5 weather forcing,
same assessed model parameters). The results are presented
in Fig. 10 and Table 4.

The modelled surface temperature was not sensitive to the
uncertainty in the total snow accumulation, as shown by the

small standard deviation (0.13 °C, calculated based on Ta-
ble 4) between the mean values obtained applying different
precipitation data. The standard deviation of the modelled
mean in-snow and in-ice temperatures (both 0.6 °C, calcu-
lated from Table 4) reveals that the modelled temperature
response to uncertainties in snow precipitation is somewhat
weaker than the response to the uncertainty in parameterised
snow density (std values of 1.0 and 0.9 °C for Tsnow and Tice,
respectively, calculated from Table 3). The modelled Tsnow
and Tice both vary within a range of 2.0 °C for different pre-
cipitation forcing (Fig. 10b, c, Table 4), which is slightly less
than the range of Tsnow and Tice variations with respect to
different snow density parameterisations (within 2.5 °C). The
sensitivity of modelled Hice to the applied precipitation forc-
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Figure 10. Modelled (a) mean snow surface temperature (Tsfc), (b) averaged in-snow (Tsnow) and (c) in-ice (Tice) temperatures, and (d)
net increase in ice thickness (Hice) as a function of the measured total accumulated precipitation (expressed in SWE) obtained from the six
measurement methods applied in Table 4.

Table 4. Modelled mean snow and ice thermodynamic parameters using snow precipitation (SWE) accumulated during the modelling period.
Model runs P1–P6 were carried out using the monthly snow accumulation data listed in Table 1 of Matrosov et al. (2022), which were obtained
with different sensors: the vertically pointing 35-GHz Doppler radar (KAZR) with a range gate height of 0.17 km AGL onboard the R/V
Polarstern (Run P1), the Present Weather Detector (PWD) onboard the R/V Polarstern (Run P2), the PWD at the CO ice camp (Run P3), the
Pluvio precipitation gauge at the CO ice camp (Run P4), the Particle Size and Velocity (PARSIVEL-2) optical disdrometer onboard the R/V
Polarstern (Run P5), and the KAZR with a range gate height of 0.23 km AGL onboard the R/V Polarstern (Run P6).

Run P1 Run P2 Run P3 Run P4 Run P5 Run P6

SWE (mm) 96 81 160 218 53 108
Tsfc (°C) −24.9 −24.9 −25.1 −24.9 −24.7 −24.9
Tsnow (°C) −15.8 −16.1 −15.2 −15.6 −17.1 −15.7
Tice(°C) −5.3 −5.6 −4.6 −5.0 −6.4 −5.1
Hsnow (m) 0.30 0.25 0.43 0.54 0.16 0.34
Hice (m) 0.76 0.81 0.64 0.71 0.96 0.73

ing (standard deviation of 0.11 m calculated from Table 4)
was close to the model sensitivity to the snow density pa-
rameterisation applied (standard deviation 0.14 m calculated
from Table 3).

The modelled snow and ice temperatures, as well as the
snow and ice thicknesses, show a nonlinear relationship to
SWE during the modelling period. More snow accumula-
tion leads to a thicker snowpack and a stronger insulation
effect. As a result, the in-snow and in-ice temperatures in-
crease, resulting in thinner ice. The response of the modelled
parameters (Fig. 10) to increased SWE is opposite to their
response to increased snow density. However, a further in-
crease in snow accumulation would reverse the above pro-
cesses due to snow-to-ice transformation. For example, runs
P3 and P4 yielded a net of 0.08 and 0.15 m snow-ice, respec-

tively, because the initial ice thickness was relatively thin
(see Table S2) and the accumulated precipitation was large
(see Table 4), the net increase in ice thickness (run P4) began
to increase (Fig. 10d).

4 Discussion

The mean surface/bulk snow densities are comparable dur-
ing stages I (252/247 kg m−3), II (319/280 kg m−3) and IV
(271/316 kg m−3), as the bulk snow density primarily re-
flects the cumulative effect of overlapping surface snow
layers. These values are also consistent with Northern
Canadian Arctic snow densities, which range from 250 to
350 kg m−3 (Bilello, 1967; Zhao, et al., 2023), indicating
a long-term consistency in snow properties across the Arc-
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tic over decades. The SWE-snow depth regression using
all data samples yielded an overall mean snow density of
348± 9.6 kg m−3. This value agrees well with the mean bulk
snow density (340 kg m−3) observed during the SHEBA ex-
pedition (Sturm et al., 2002b) and is comparable to the mean
snow density of 339 kg m−3 observed over the Antarctic sea-
ice (Massom et al., 2001), and specifically to the mean den-
sities of 282 and 356 kg m−3 observed in the Weddell Sea
over first-year and second-year ice, respectively (Nicolaus et
al., 2009). During the melting season (III), the bulk snow
(SSL) density exceeds the surface snow (SSL) density by
158± 150 kg m−3. Before the meltwater drainage, the bot-
tom layer of the snowpack densifies by becoming soaked
with meltwater. After the drainage, the intense surface melt-
ing and sublimation reduce near-surface SSL density, while
at deeper layers, the ice disintegration into SSL is less ad-
vanced and the density of the SSL is closer to the density of
the ice from which it originates (Macfarlane et al., 2023c). As
a result, SSL density increases almost monotonically from
the surface to the bottom.

During winter, wind enhances spatial heterogeneity in
snow depth and density through interactions with surface
topography. At the MOSAiC Central Observatory, Itkin et
al. (2023) demonstrated that the interaction between drifting
snow and sea ice roughness explains up to 85 % of the ob-
served snow depth variability over both level and deformed
ice. In the Canadian Arctic, Iacozza and Barber (1999) ob-
served that the wind direction during depositional storm
events impacts the distribution of snow dunes. During the
MOSAiC winter-spring period, the signature of the wind-
snow interaction is seen in the peak of the surface and bulk
snow density distributions around 250 kg m−3 (red dotted
line in Fig. 2a and b). The distribution of surface snow den-
sity during the entire MOSAiC period shows a larger fraction
of dense snow, likely due to the contribution of wet snow and
the summer SSL.

The mean vertical profile of snow density exhibited dis-
tinct patterns at each stage, with temporal variations in
snow density being more pronounced than vertical variations
(Fig. 6). Both surface and bulk snow densities exhibited a
non-monotonic increase during the winter and a decrease by
the end of spring (Fig. 8). The increase in snow density dur-
ing winter aligns with Arctic snow climatology (Warren et
al., 1999). However, the decrease in snow density during the
melting in May is consistent with what has been observed
also over Antarctic sea-ice (Nicolaus et al., 2009). Warren
et al. (1999) concluded that the average Arctic snow density
could reach 320 kg m−3 in May after autumn and winter set-
tling and wind packing.

Finding a robust relationship between bulk snow den-
sity samples and air temperature using MOSAiC data re-
mains challenging because snow density is affected by wind-
driven compaction and wind interaction with surface topog-
raphy. Snow melting induces simultaneous density increases
and decreases at different depths in the snpwpack. Simi-

lar difficulties in observing a relationship between air tem-
perature and snow density were reported in previous stud-
ies conducted in mountainous regions, in the terrestrial Arc-
tic, and over the Greenland ice sheet (Zhao et al., 2023;
Howat, 2022). On the other hand, air temperature demon-
strates a positive correlation with fresh snow density (Sturm
and Holmgren, 1998; Judson and Doesken, 2000). In case of
dry snow, air temperature influences the evolution of snow
density by the densification process, as it governs the ver-
tical temperature gradients within the snowpack (Zhao et
al., 2023). However, in the different stages outlined in this
study, the impact of air temperature on snow density be-
comes evident. In Stage III, when temperatures approached
0 °C, the mean SSL bulk density reached 503 kg m−3, show-
ing an increasing density from the surface to the bottom of
the SSL layer. This contrasts with the bulk snow density of
316 kg m−3 observed during other stages, when air tempera-
tures were significantly lower.

Snow density increases with increasing accumulated wind
speed. Qualitatively similar relationships were detected in
previous campaigns over the Arctic Ocean, Greenland, and
the Tibetan Plateau (Zhao et al, 2022, 2023; Howat, 2022).
Furthermore, the differential sensitivity of surface and bulk
snow densities to accumulated wind speed underscores the
importance of temporal scales when considering wind-snow
interactions. The effect of wind on surface snow density is
more direct than the effect of wind to bulk snow density,
which agrees with previous work (Meister, 1989; Sokratov
and Sato, 2001; Walter et al., 2024).

Snow density schemes simulated the gradual increase
in snow density during the winter-spring period (Fig. 8).
However, none of the snow density parameterisations ade-
quately captured the observed temporal variability in April–
May. The temporal evolution of snow density influences the
thermal conductivity and volumetric heat capacity of snow,
which in turn affects the thermal inertia and mass balance of
sea ice. Some results from the parameterisation schemes fell
within the range of the observed values and aligned with the
snow density climatology of Warren et al. (1999), suggesting
their general applicability for sea ice and climate models.

During the winter-spring period, the mean spatial standard
deviation of the surface snow density (77 kg m−3) was larger
than that of the bulk snow density (59 kg m−3). This illus-
trates the strong spatial variability of the surface snow prop-
erties (Fig. 8). King et al. (2020) observed that snow density
is highest in thin snow layers over undeformed ice and lowest
in thicker snow layers over older and deformed ice. Higher
densities over thin snow layers are due to the stronger wind
compaction over smooth ice, while thicker snow is less dense
because of the loose depth hoar bottom (Wagner et al., 2022).
This depth hoar is caused by metamorphism occurring when
the snowpack is exposed to temperature gradients (King et
al., 2020).

The analysis of the sensitivity of sea-ice to snow density
showed that the modelled mean surface temperature (Tsfc),
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snow temperature (Tsnow), ice temperature (Tice), and ice
thickness (Hice) exhibited linearity with mean snow density
when applying snow density schemes E1, E2, and E3 with
the same initial snow density (Fig. 9). Scheme E4, with dif-
ferent initial snow densities and time series of surface and
bulk snow densities, produced a distinct linear trend in these
modelled parameters, with a smaller coefficient of the re-
gression slope. The temperature and ice thickness differences
originating from differences in modelled parameters reached
0.2 °C for Tsfc, 1.4 °C for Tsnow and Tice, and 0.21 m for Hice
when applying snow density scheme E1 and ρsfc, despite
having the same average snow density (symbols 1 and ∇
in Fig. 9). The analysis of the sensitivity of sea-ice to snow
precipitation, on the other hand, revealed nonlinearity in the
modelled snow and ice parameters in response to different
monthly cumulative snow precipitation forcings.

During autumn, winter, and spring, rain-on-snow (ROS)
events can form hard ice crusts on the snow surface (Rennert
et al., 2009). During the MOSAiC campaign, a few melting
events associated to warm-air intrusions and ROS occurred
in September (Leg 5), increasing surface snow density from
150 to 350 kg m−3 within two days (Stroeve et al., 2022). Be-
tween 12–22 April, two warm-air intrusion episodes raised
near-surface temperatures to near-melting conditions (Svens-
son et al., 2023), causing an inversion in the snowpack tem-
perature gradients, although no snowpack liquid water was
documented during this period.

MOSAiC snow density observations are constrained to a
single drift trajectory and the specific environmental condi-
tions of the studied ice floe. However, snow density along the
MOSAiC drift trajectory captured both temporal (October–
August) and spatial (distributed sampling sites) variability
throughout the campaign. The Lagrangian approach – track-
ing the same ice floe over a period – allowed us to isolate
the temporal evolution of snow density under observed me-
teorological forcing. However, we should not overemphasise
the representativeness of the MOSAiC drift trajectory. To un-
derstand the overall snow density evolution along the Trans-
polar Drift Stream, more in-situ observations are needed.

5 Conclusion and outlook

Snow density measurements obtained using both the den-
sity cutter and ETH SWE tube during the MOSAiC ex-
pedition were investigated. The sample mean (± std) sur-
face and bulk snow densities over the entire MOSAiC pe-
riod were 311± 94 and 291± 106 kg m−3, respectively. Dur-
ing the winter-spring period, the corresponding values were
282± 77 and 253± 59 kg m−3, respectively. The total sam-
ple averages for surface and bulk snow density were 311± 94
and 291± 106 kg m−3, respectively. SWE-depth regression
yielded snow densities of 348 kg m−3 (entire MOSAiC),
308 kg m−3 (winter–spring), and 487 kg m−3 (melting sea-
son; primarily SSL density). Unlike density sample statis-

tics, these values reflect the integrated physical relationship
between SWE and snow depth. Cumulative wind exposure
increased both surface and bulk snow densities. This wind
compaction effect was most pronounced during the initial 3–
5 d following snowfall events. The modelled mean snow den-
sity and temperature were inversely related, i.e. the higher
the mean density was, the lower the mean snow and ice
temperatures were. Higher snow density leads to a larger
snow thermal conductivity, which enhances heat transfer be-
tween the atmosphere and underlying sea ice. The model
runs using a constant snow density showed strong linearity
in the modelled snow and ice parameters as snow density
increased. This linearity was consistent with that observed
using schemes E1–E3. The response of the modelled snow
and ice parameters to the increase in SWE was opposite to
their response to the increase in snow density. Based on er-
ror statistics, snow density parameterisations E3 and E4 per-
formed better than the others and are recommended for mod-
elling applications.

Retaining a realistic representation of the small-scale spa-
tial variability of snow properties is, however, important for
the simulation of the surface energy budget and the ice thick-
ness: our sensitivity tests demonstrated that the modelled ice
thickness varied up to 0.14 and 0.11 m in response to changes
in snow density parameterisation and precipitation input, re-
spectively. Therefore, to improve the HIGHTSI representa-
tion of snow spatial variability, the snow surface roughness
and the effect of drifting snow on snow depth distribution
need to be accounted for. This will enable the model to simu-
late snow depth and density through probability density func-
tions, which represent their spatial variability, rather than
through single values for each time step.

In this study, modelling was conducted exclusively for the
winter-spring period because HIGHTSI does not simulate the
formation of the surface scattering layer (SSL), which was
observed during the MOSAiC melting season. The SSL is
a common and widespread feature of Arctic sea ice during
the melting season (Smith et al., 2022), but it is currently not
represented in any existing sea ice models or is simulated
merely as a persistent snow layer at the top of the ice surface.
This omission or misrepresentation can potentially lead to
significant errors in the ice surface energy and mass budgets.
To fully understand the formation and melting of the SSL, as
well as the associated erosion of the ice surface, a dedicated
SSL modelling component should be developed.

Data availability. The ERA5 reanalysis products are
available through the Copernicus Climate Data Store
portal (https://doi.org/10.24381/cds.adbb2d47, Hers-
bach et al., 2020). Snow observations available through
https://doi.org/10.1594/PANGAEA.935934 (Macfarlane et
al., 2021, last access: 10 October 2025); The precipi-
tation data is publicly available online from the ARM:
https://adc.arm.gov/discovery/#/results (Shupe et al., 2021,
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