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Abstract. Glacier evolution models based on temperature-
index approaches are commonly used to assess hydrological
impacts of glacier changes. However, current model calibra-
tion frameworks cannot efficiently transfer information from
sparse high-resolution observations across glaciers. This lim-
its their ability to resolve seasonal mass changes on unmon-
itored glaciers in large-scale applications. Machine learning
approaches can potentially address this limitation by learn-
ing relationships from sparse data that are transferable in
space and time, including to unmonitored glaciers. Here, we
present the Mass Balance Machine (MBM), a data-driven
mass balance model based on the XGBoost architecture, de-
signed to provide accurate and high spatio-temporal resolu-
tion regional-scale reconstructions of glacier mass balance.
We trained and tested MBM using a dataset of approximately
4000 seasonal and annual point mass balance measurements
from 32 glaciers across heterogeneous climate settings in
mainland Norway, spanning from 1962 to 2021. To assess
the advantage of MBM’s generalisation capabilities, we com-
pared its predictions on independent test glaciers at various
spatio-temporal scales with those of regional-scale simula-

tions from three glacier evolution models. MBM successfully
predicted annual and seasonal point mass balance on the test
glaciers (RMSE of 0.59-1.00mw.e. and bias of —0.01 to
0.04 m w.e.). On seasonal mass balance, MBM outperformed
the other models across spatial scales, reducing RMSE by up
to 46 % and 25 % on glacier-wide winter and summer mass
balance, respectively. Our results demonstrate the capability
of machine learning models to generalise across glaciers and
climatic settings from relatively sparse mass balance data,
highlighting their potential for a wide range of applications.

1 Introduction

Glaciers around the world are losing mass and retreating due
to atmospheric warming (IPCC, 2019), with numerous im-
pacts on nature and society (Schaub et al., 2013; Huss et al.,
2017; Milner et al., 2017; Varnajot and Saarinen, 2021; Em-
mer et al.,, 2022; Bosson et al., 2023). Glaciers represent
significant freshwater reservoirs that modulate downstream
freshwater availability throughout the year. Climate change

Published by Copernicus Publications on behalf of the European Geosciences Union.



5802 K. H. Sjursen et al.: Machine learning improves seasonal mass balance prediction

alters the timing and magnitude of glacier runoff (Bliss et al.,
2014; Huss and Hock, 2018; Wimberly et al., 2025), which
subsequently affects the hydrology of glacierised catchments
(Nie et al., 2021; Ultee et al., 2022). The influence of climatic
forcing is reflected in the glacier surface mass balance, which
refers to the change in mass at the surface of a glacier, or a
part of a glacier, over a given period (Cogley et al., 2011),
usually a year (annual mass balance) or a season (winter or
summer mass balance for mid-latitude glaciers). Quantify-
ing glacier runoff requires reliable mass balance estimates
at high spatio-temporal resolution (i.e. individual glaciers,
monthly to seasonal estimates). Such detailed assessments
are essential for societies to adapt effectively to the impacts
of climate change on the hydrological system.

Glacier mass balance models are valuable tools for quan-
tifying glacier mass changes (Radi¢ and Hock, 2011; Bliss
et al., 2014; Huss and Hock, 2015, 2018; Marzeion et al.,
2012; Maussion et al., 2019; Shannon et al., 2019; Zekol-
lari et al., 2019; Rounce et al., 2023). Most large-scale
glacier evolution models estimate glacier mass balance us-
ing temperature-index approaches that parametrise the rela-
tionship between surface melt and temperature (Hock et al.,
2019; Marzeion et al., 2020). To ensure that mass changes
and climate sensitivities are accurately captured at the scale
of individual glaciers, model parameters (e.g. precipitation
bias-correction factors and degree-day factors that relate the
amount of ice, snow, or firn melt to temperature) must be
calibrated using glacier-specific mass balance observations
(Rounce et al., 2020b; Schuster et al., 2023; Zekollari et al.,
2024). Traditionally, such observations have been limited to
in situ surveys using the glaciological method, where sur-
face mass balance measurements are performed at a network
of mass balance stakes (point mass balance), and seasonal
and annual components are interpolated over the glacier area
(glacier-wide mass balance; @strem and Brugman, 1991).
However, since in situ mass balance observations are chal-
lenging and resource intensive, their availability is extremely
limited on a global scale (around 0.02% of the worlds
glaciers; WGMS, 2023). The scarcity of glacier-specific ob-
servations has historically posed a major challenge in cali-
brating temperature-index approaches (e.g. Radi¢ and Hock,
2014). Significant efforts have been made to develop suit-
able calibration techniques using limited data (e.g. Radi¢ and
Hock, 2011; Huss and Hock, 2015). However, large-scale
models still suffer from transferability issues: they lack ef-
ficient frameworks to leverage sparse in situ observations for
quantifying mass changes on unmonitored glaciers.

The increasing availability of geodetic mass balance ob-
servations has recently alleviated the shortage of glacier-
specific observations. These observations assess glacier sur-
face elevation changes from time series of satellite-derived
digital elevation models (DEMs) over decadal time scales
(e.g. Dussaillant et al., 2019; Shean et al., 2020; Hugonnet
et al., 2021). Most large-scale glacier evolution models today
perform glacier-specific parameter calibration using (multi-
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year) satellite-derived geodetic mass balance observations
(e.g. Rounce et al., 2020a, 2023; Caro et al., 2024; Kang
et al., 2024; Zekollari et al., 2024) due to their worldwide
coverage (2000-2019; Hugonnet et al., 2021). However,
satellite-derived geodetic observations do not provide suffi-
cient constraints to quantify seasonal mass changes (Rounce
et al., 2020b; Sjursen et al., 2023). This results in equifinal-
ity (Beven, 2006); multiple parameter sets, and thus combi-
nations of accumulation and melt, can accurately reproduce
the observed net mass changes. Consequently, the sparsity of
in situ seasonal observations and transferability issues fac-
ing current large-scale glacier evolution models still hamper
their ability to produce reliable estimates of seasonal runoff
magnitudes for unmonitored glaciers.

In recent years, the use of machine learning (ML) to model
glacier mass balance has emerged as a promising approach
to address some of the limitations of temperature-index ap-
proaches (Steiner et al., 2005; Bolibar et al., 2020, 2022;
Anilkumar et al., 2023; Guidicelli et al., 2023; Diaconu and
Gottschling, 2024; van der Meer et al., 2025). ML mod-
els generalise patterns from training data and apply them
to make accurate inferences on new, independent data. They
can thus learn statistical relationships between mass balance
components and topographical and meteorological variables
that are transferable across space and time (e.g. Guidicelli
et al., 2023). This means that ML models can leverage sparse
in situ data, such as annual and seasonal glaciological mea-
surements, to provide high spatio-temporal resolution mass
balance estimates of unmonitored glaciers across a larger re-
gion. They thus have the potential to improve the accuracy of
such predictions, compared to temperature-index approaches
that rely on glacier-specific calibration to multi-year geodetic
observations.

A promising avenue of ML in large-scale glacier mass
balance modelling is the spatio-temporal generalisation of
high-resolution information from seasonal and annual mass
balance observations at the point scale. Point mass balance
measurements from glaciological surveys represent the most
direct and high-quality observations of glacier surface mass
balance. These measurements offer a level of precision that
surpasses glacier-wide surface mass balance, which relies on
inter- and extrapolating data to unmeasured areas. To our
knowledge, only two studies have trained ML models on
point mass balance measurements. van der Meer et al. (2025)
presented an ML approach for reconstruction of annual mass
balance at specific sites on glaciers in Switzerland by train-
ing one model for each individual stake using temporal ag-
gregations of temperature and precipitation as input features.
Anilkumar et al. (2023) used annual point mass balance data
from glaciers in the European Alps to compare the perfor-
mance of various ML architectures. However, their use of
random train-test splits on spatially correlated data means
that a robust assessment of the ability of ML models to gener-
alise across different locations is still lacking. Moreover, the
use of seasonal data is still largely unexplored and limited
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to using elevation-band winter mass balance to assess pre-
cipitation biases in climate reanalysis products (Guidicelli
et al., 2023). Generalising from seasonal and annual point
mass balance measurements offers the potential to provide
high temporal resolution distributed mass balance predic-
tions on unmonitored glaciers, ultimately improving runoff
predictions from glacierised catchments. Moreover, the ad-
vantages and limitations of ML methods in this context com-
pared to traditional modelling approaches remain unclear.
Such a comparison would clarify how ML-based mass bal-
ance models could serve as a useful and complementary tool
to enhance the accuracy of glacier mass balance predictions.

This study aims to evaluate the ability of an ML model
to generalise spatio-temporal information across glaciers us-
ing seasonal and annual point mass balance measurements,
with the goal of providing accurate, high-resolution pre-
dictions of surface mass balance on unmonitored glaciers
in regional-scale applications. We present the Mass Bal-
ance Machine (MBM), a data-driven mass balance model
based on eXtreme Gradient Boosting (XGBoost; Chen and
Guestrin, 2016), capable of reconstructing surface mass bal-
ance up to a point scale and monthly temporal resolution
for independent glaciers with diverse configurations and cli-
matic settings across Norway. Herein, we demonstrate how
MBM can incorporate observations at different temporal
scales (seasonal and annual) in training and be customised
to generate predictions at an even finer (monthly) tempo-
ral resolution. To assess the potential of MBM to improve
glacier mass balance estimates on unmonitored glaciers,
we compare its performance with state-of-the-art large-scale
glacier evolution models that rely on temperature index ap-
proaches to estimate melt and are calibrated using existing
frameworks and satellite-derived geodetic mass balance: the
Global Glacier Evolution Model (GloGEM; Huss and Hock,
2015), the Open Global Glacier Model (OGGM; Maus-
sion et al., 2019) and the Python Glacier Evolution Model
(PyGEM; Rounce et al., 2023). Modelled mass balances are
compared to observations at point to glacier-wide spatial
scales and seasonal-to-decadal scale resolution. In addition,
we benchmark monthly predictions across all models (with-
out observations). In light of our findings, we discuss the po-
tential applications of MBM, as well as future perspectives
on ML-based mass balance models.

2 Mass balance dataset and study area

We used a dataset of annual and seasonal glaciological point
mass balance measurements from glaciers in mainland Nor-
way (Elvehgy et al., 2025; Fig. 1), collected by the Norwe-
gian Water Resources and Energy Directorate (NVE) (e.g.
Kjgllmoen et al., 2024), to train MBM. The dataset contains
measurements at 4170 stakes (unique combinations of lo-
cations and years) on 32 individual glaciers on the Norwe-
gian mainland (3082/1088 stakes on 22/10 glaciers in south-
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ern/northern Norway; Fig. 1). Each of the 4170 stakes has
between one and three readings (annual, summer and/or win-
ter), totalling 3910 annual, 3929 summer and 3751 winter
point mass balance measurements (over the period 1962—
2021; Fig. 2). In all, the 32 glaciers correspond to an area
of 343km?, or ~15 % of the total glacierised area in Nor-
way (2328km? in the 2018/2019 glacier inventory; An-
dreassen et al., 2022). Norwegian glaciers provide a good
case study for our investigation due to their diverse character-
istics and heterogeneous climatic settings. In southern Nor-
way, glaciers exhibit a strong longitudinal gradient in mass
turnover with the transition from the maritime climate of the
west coast to the drier interior mountain ranges (Andreassen
et al., 2005). Glaciers in northern Norway have a lower equi-
librium line altitude, reflecting the increasing latitude toward
the Arctic. Measurements in this region also reveal a de-
crease in mass turnover with distance to the coast, but within
a smaller range of values compared to southern Norway.

The dataset constitutes a good representation of the spatio-
temporal variability in the characteristics of glaciers in Nor-
way. It includes observations from the main climatic settings
(Fig. 1), from the maritime glaciers of northern Norway (e.g.
Langfjordjgkelen at 70°10'N, 21°45’'E and Engabreen at
66°40’' N, 13°45’ E), to glaciers along the west-east maritime
to continental climate gradient in southern Norway (e.g. Al-
fotbreen at 61°45'N, 5°40'E to Grasubreen at 61°39'N,
8°37"E). A wide elevation range is covered (minimum
190 m a.s.l. to maximum 2212 m a.s.l.; Fig. 2c) reflecting that
in northern Norway, the lowest glacier tongues extend almost
to sea level, while the highest altitude glaciers in southern
Norway reside above 2000 m a.s.l. The dataset has a continu-
ous coverage of the time period 1962-2021 (Fig. 2b). During
this period, glaciological records show temporal variations
in mass balance, with periods of mass gain and loss (An-
dreassen et al., 2005, 2020).

3 The Mass Balance Machine (MBM)

The goal of MBM is to predict surface mass balance
on glaciers in Norway at high spatio-temporal resolution,
based on established relationships between mass balance
and glacier characteristics and climatic forcing. This sec-
tion introduces (1) the chosen ML approach (architecture) for
MBM, (2) selection of relevant features (predictors used by
MBM) and (3) our strategy for training and testing of MBM,
including the design of an independent test dataset for the
final performance evaluation of the trained model.

3.1 Architecture

MBM is based on the gradient-boosted ensemble deci-
sion tree-based method XGBoost (Chen and Guestrin,
2016). Decision trees resemble tree-like structures similar
to flowcharts, with nodes, branches and leaves representing
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Figure 1. Geographical distribution of in situ point mass balance observations in the dataset. Climatic regions are indicated by coloured
circles on the main map: purple for northern Norway (N) including Finnmark (FIN), Skjomen (SKJ), Blamannsisen (BLA) and Svartisen
(SVA), blue for the most maritime glaciers in western Norway (W-MAR) in the Alfotbreen (ALF) region, orange for western Norway (W)
including Jostedalsbreen and Breheimen (JOB), Hardangerjgkulen (HAR) and Folgefonna (FOL) and green for the easternmost glaciers in
Jotunheimen (JOT) in southern Norway (E). The size of the circles indicates the number of stakes in the dataset for each region. Insets (a)—(e)
show location of glaciers used for training (black points) and test (red points). Glacierised areas are shown in dark grey.

possible decision points, partitions and outcomes (numerical
targets). A well-known problem with decision tree learners is
that they can result in over-complex trees that tend to overfit,
i.e. they do not generalise well beyond their training domain.
Ensemble models attempt to overcome this issue by build-
ing a strong learner from an ensemble of weak learners (rel-
atively simple trees), which both reduces bias and variance
in predictions. XGBoost is based on the ensemble method
of boosting, where weak learners are trained iteratively with
the goal of developing new trees that improve predictions of
previous trees. In XGBoost, the sequential development of
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weak learners is based on reducing the model error by fitting
the residuals of the current ensemble of trees.

On medium-sized (< 10 000 entries) tabular data, such as
ours (Fig. 4), gradient-boosted ensemble tree models have
been shown to outperform several other ML approaches, in-
cluding neural networks, on a variety of regression problems
(Grinsztajn et al., 2022). XGBoost has shown outstanding
results on both classification and regression tasks in various
scientific fields, including Earth sciences (e.g. Huang et al.,
2021; Stanley et al., 2021; Li et al., 2022). In mass balance
applications, ensemble tree-based models have demonstrated
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Figure 2. Characteristics of the point mass balance dataset, in terms
of (a) distribution of observations of annual (black), winter (blue)
and summer (red) mass balance, (b) number of observations per
year, and distribution of topographical features associated with each
stake: (c) elevation, (d) aspect and (e) slope.

excellent performance (Guidicelli et al., 2023; van der Meer
et al., 2025), also in comparison to other ML approaches
(Anilkumar et al., 2023). Compared to neural networks, these
models are relatively fast and easy to train and are robust
to uninformative features (Grinsztajn et al., 2022). We built
MBM using the XGBoost library (version 2.0.3) for Python
(version 3.10.9) and utilised the functionality provided by the
scikit-learn library (version 1.4.0; Pedregosa et al., 2011) for
training MBM.

3.2 Model targets and features

The target data for MBM training were annual and sea-
sonal point mass balance measurements of glaciers in Nor-
way (Sect. 2). Each point mass balance measurement is de-
scribed by several attributes, including the geographical co-
ordinates and elevation of the stake and the measurement’s
start and end dates. To ensure that only measurements with
reliable attributes were used for model training and testing,
a thorough cleaning of the dataset was performed prior to
training (see Appendix A).

In ML, features refer to the predictors (input) of a model.
These features represent the characteristics used by the
model to generate predictions (output). MBM employs to-
pographical and meteorological features that characterise
the stake location of each point mass balance measurement
(Fig. 3). Meteorological features, in the form of monthly me-
teorological variables, were extracted from the ERAS5-Land
climate reanalysis dataset (Mufioz Sabater et al., 2021) ap-
plying a nearest-neighbour approach using the coordinates
and year of each point mass balance measurement. ERAS-
Land was used due to its relatively high horizontal resolu-
tion (9 km) and global coverage, which facilitates compari-
son with other modelling studies and allows easier upscaling
and retraining of the ML model to other regions. Monthly
mean values of the following meteorological variables were
used as features in MBM: 2 m air temperature, total precip-
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Figure 3. Features used by the Mass Balance Machine. Meteorolog-
ical features are retrieved from the ERA5-Land grid cell closest to
the location of a point surface mass balance (SMB) measurement,
while topographical features are extracted from the nearest Digi-
tal Elevation Model (DEM) grid cell (Copernicus DEM GLO-90 at
90 m resolution). The resolution of the ERA5-Land and DEM grid
cells in the figure are not to scale.

itation, downward surface solar radiation, forecast albedo,
surface sensible and latent heat fluxes and net surface ther-
mal radiation (further discussed in Appendix B). As topo-
graphical features, which are time-invariant, we used the as-
pect and slope of stake locations (based on geographical co-
ordinates), retrieved using the OGGM pipeline (Randolph
Glacier Inventory (RGI 6.0); RGI Consortium (2017); Coper-
nicus DEM GLO-90). The elevation difference between the
ERAS5-Land cell and the glacier surface was used as a fea-
ture to assist downscaling of meteorological data to specific
points at the glacier surface (Fig. 3). Topographic shading
at point locations was accounted for as the fraction of visi-
ble sky, termed the skyview factor. It was computed for the
Copernicus DEM GLO-90 using the r#v Python package (Za-
kSek et al., 2011; Kokalj et al., 2011; Kokalj and Somrak,
2019) and retrieved for each point from the nearest cell.
Following feature extraction, every seasonal and annual
point mass balance measurement (target) was associated with
four topographical features and a set of monthly meteorolog-
ical features represented by an 7 x m matrix (Fig. 4a). Here,
m represents the set of months that contribute to a given point
mass balance measurement, and the number 7 refers to the
set of seven monthly meteorological features (topographical
features are kept constant across months). Each point mass
balance measurement is described by start and end dates that
may vary from year to year. For simplicity, each annual point
mass balance measurement was associated with the given hy-
drological year (m = 12 months; October—September), and
the winter and summer seasons were defined as October—
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April (m = 7 months) and May—September (m = 5 months).
For MBM to make mass balance predictions at a monthly
resolution, the data is restructured such that each target is as-
sociated with a set of m monthly predictions based on the
set of four topographical features and seven meteorological
features corresponding to the respective months (Fig. 4b).
Finally, the set of m monthly predictions is aggregated and
evaluated on the time scale (seasonal or annual) of each tar-
get (Fig. 4c, see details in Sect. 3.3.2).

3.3 Model training and testing

In training and testing of MBM, we adhered to the general
procedure in ML modelling, which can be summarised as
follows: (1) splitting the dataset into training and test parti-
tions where the test dataset is withheld during model train-
ing, (2) tuning of the model hyperparameters using the train-
ing dataset, preferably by employing a cross-validation tech-
nique where the model is iteratively trained and validated
on subsets (or folds) of the training dataset and (3) final
evaluation of the performance of the trained model on the
test dataset. Step 3 serves as an assessment of the predictive
power of the model on new unseen data. In the following
sections, we detail our strategies for the design of the inde-
pendent test dataset, tuning of MBM hyperparameters and
performance evaluation.

3.3.1 Test dataset

The test dataset used for ML model performance evaluation
must be carefully selected with respect to the modelling ob-
jective, such that the model’s performance on the test dataset
accurately reflects its ability to fulfil this objective. In ad-
dition, an underlying assumption of this performance evalua-
tion is that the data used for model training and testing are in-
dependent (e.g. Hastie et al., 2009, Chap. 7). Point mass bal-
ance data, however, exhibit spatial correlation, meaning that
measurements taken at one location will be similar to those
at nearby locations. Random train-test data splits, which are
commonly used in ML, do not ensure independence between
the training and test datasets in the presence of spatial corre-
lation. In such cases, a random split may result in leakage of
information between training and test datasets, leading to un-
reliable performance measures that may not be representative
of the model’s true performance on independent data (e.g.
Roberts et al., 2017; Schratz et al., 2019; Kattenborn et al.,
2022). Thus, when independence may be compromised, as
with spatially correlated point mass balance measurements,
the train-test split should be designed to minimise autocorre-
lation between training and test data, for example, by using
spatial blocking strategies (Roberts et al., 2017).
Considering these criteria, all point mass balance measure-
ments for 14 glaciers in the dataset were withheld for testing.
The test glaciers were chosen from each region in Fig. 1, such
that the distributions of targets and features in the test dataset
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are similar to those of the training dataset. We avoided se-
lecting adjacent glaciers to ensure independence between the
training and test data to the best of our ability. The perfor-
mance evaluation of MBM on the test dataset thus reflects
the model’s ability to predict mass balance on glaciers with-
out mass balance observations. We consider the test glaciers
to be representative of the population of Norwegian glaciers,
both in terms of climatic settings, topography and mass bal-
ance distributions. In total, 1065, 999 and 1028 annual, win-
ter and summer mass balance measurements were withheld
for testing, respectively (corresponding to 27 %, 27 % and
26 % of the total number of measurements).

3.3.2 Model training and hyperparameter tuning

During training, MBM learns the structure of the training
data by iteratively building trees to minimise a loss func-
tion. We employed the commonly used Mean Squared Error
(MSE):

1< .
MSE = —Z(bi —b)?, (1)
i3

where b; is the target point mass balance and b; is the pre-
dicted point mass balance corresponding to each of the n tar-
gets. Before evaluating the MSE loss, monthly point mass
balance predictions from MBM are aggregated over the time
period associated with each target point mass balance (sea-
sonal or annual, Fig. 4). Thus, a seasonal or annual point
mass balance prediction b; is the sum of m monthly predic-
tions l%:

m
bi=Y b, )
t=1

where m equals 12, 7 and 5 for an annual, winter and summer
point mass balance prediction, respectively (see Sect. 3.2).
Hyperparameters refer to the parameters of an ML model
that are configured before training and control the learning
process. We performed a hyperparameter grid search using
five-fold cross-validation to identify the optimal hyperparam-
eter configuration (e.g. Hastie et al., 2009, Chap. 7). This in-
volved splitting the training dataset (the remaining training
data after the train-test split) into five subsets (folds), repeat-
edly training the model on four of the five folds, and eval-
uating the model performance (validation) on the remaining
fold. Thus, all folds are used once for validation for each
hyperparameter combination. Ideally, the split of training
and validation subsets would follow the same spatial block-
ing strategy as the train/test split to ensure that the choice
of model hyperparameters is based on a validation perfor-
mance that reflects the expected test performance. However,
this is not always feasible within the limitations of the data
(Roberts et al., 2017). The point mass balance dataset in-
cludes a limited number of glaciers. Using a strict spatial

https://doi.org/10.5194/tc-19-5801-2025
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Figure 4. Illustration of the set-up and training of MBM showing (a) the structure of the tabular dataset with features and targets for each
seasonal or annual point mass balance measurement (ID), (b) monthly restructuring of features to facilitate monthly predictions for each ID,
and (c) aggregation of monthly predictions to seasonal and annual values for evaluation (MSE loss) against the corresponding targets.

blocking strategy in the train/validation split would create
unbalanced folds. This introduces unnecessary high demands
of the model to extrapolate and hampers learning. As a com-
promise, we assigned every fifth mass-balance year in the
training dataset to a different fold. This train/validation split
strategy yields balanced folds (between 518 and 624 annual,
winter and summer mass balance measurements per fold),
which facilitates learning while forcing the model to perform
some extrapolation in time. Importantly, the strategy avoids
a random split that would give unreliable validation scores.

During the hyperparameter grid search, different combina-
tions of four XGBoost hyperparameters were used (Table 1):
the learning rate, number of estimators, maximum tree depth
and the minimum number of samples required to split a node.
Other hyperparameter configurations were also investigated
but did not have notable effects on the model validation per-
formance. Therefore, the remaining hyperparameters were
kept to default values. We selected the hyperparameter com-
bination that minimised the mean MSE of the five validation
folds (Table 1).

3.3.3 Model performance evaluation on test dataset

Once the optimal model hyperparameters were chosen,
MBM was retrained on the full training dataset. Then, we
assessed the performance of MBM on the test dataset of
annual and seasonal point mass balance measurements de-
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Table 1. Overview of hyperparameter combinations used in Mass
Balance Machine hyperparameter tuning and selected hyperparam-
eter combination during cross-validation. n_estimators refers to the
number of trees, max_depth refers to the maximum tree depth and
min_child_weight refers to the minimum number of samples re-
quired to split a node.

Hyperparameter Grid search ~ Selected
learning_rate [0.01,0.05,0.10,0.15,0.20] 0.05
n_estimators [100, 200, 300, 400, 500] 300
max_depth [3,4,5,6,7] 5
min_child_weight [0,5,10] 0

scribed in Sect. 3.3.1 (1065, 999 and 1028 annual, winter and
summer point mass balance measurements on 14 glaciers be-
tween 1962-2021). For the performance evaluation, MBM’s
monthly predictions were aggregated to seasonal or annual
resolution as done in training (Eq. 2 and Fig. 4c). We as-
sessed the performance of MBM using the following met-
rics: Root Mean Squared Error (RMSE), Mean Absolute Er-
ror (MAE), mean bias and R? metric.
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4 Mass balance model comparison
4.1 Model comparison set-up

MBM predictions were compared at different spatio-
temporal scales against those of established global glacier
evolution models using temperature-index approaches: Glo-
GEM (Huss and Hock, 2015, with minor updates), OGGM
(Maussion et al,, 2019) and PyGEM (Rounce et al.,
2020b, 2023) (henceforth referred to as glacier evolution
models). There are two objectives to this comparison: (1) to
compare the performance of MBM to the glacier evolution
models using available glacier mass balance observations
(glaciological point and glacier-wide mass balance observa-
tions (Kjgllmoen et al., 2024), as well as geodetic mass bal-
ance observations from different sources, Andreassen et al.,
2016, 2020; Hugonnet et al., 2021) and (2) to benchmark
MBM’s monthly mass balance predictions against those of
the glacier evolution models since no mass balance observa-
tions are available on this time scale. We thus compared pre-
dictions from MBM and the glacier evolution models across
a wide range of spatial scales, from the point/elevation-
band scale, over mass balance gradients with elevation to the
glacier wide scale, as well as temporal scales, from monthly,
seasonal and annual to decadal time periods.

The model comparison was conducted on the same
glaciers as in MBM'’s test dataset (Sect. 3.3.1), but using
available observations for the common modelling period
1980-2019 (Table 2). Over this period, glaciological obser-
vations (point and glacier-wide) are available for 11 of the 14
glaciers in the test dataset (three glaciers only have measure-
ments from the 1960s and 70s). We chose to compare the
models on the test glaciers since they provide independent
and rigorous performance measures for MBM, i.e. no data
from these glaciers have been used for MBM training. For all
models, annual, winter and summer mass balance predictions
were computed by aggregating monthly mass balances over
the hydrological year (October—September), winter months
(October—April) and summer months (May—September), re-
spectively. With regards to comparison with point measure-
ments, it should be noted that the glacier evolution models
provide mass balance averaged over elevation bands rather
than in grid cells. GloGEM and OGGM have fixed eleva-
tion band intervals, and we extracted the modelled mass bal-
ance from the elevation band corresponding to the elevation
of each point mass balance measurement. PyGEM results are
given in fixed distances along the glacier flowline such that
steeper parts of the glacier cover a wider elevation interval.

4.2 Glacier evolution models
The three glacier evolution models were all run for RGI re-
gion 8 (Scandinavia) using RGI 6.0 outlines and a constant

glacier area (no glacier dynamics). The RGI 6.0 outlines
for Norway are derived from 1999-2006 satellite imagery

The Cryosphere, 19, 5801-5826, 2025

K. H. Sjursen et al.: Machine learning improves seasonal mass balance prediction

(Andreassen et al., 2012). Mass balance was predicted on a
monthly time scale and for bins along flowlines or in eleva-
tion bands, using between one and three degree-day factors
to simulate melt on the glacier surface (Table 2). As climate
forcing, GloGEM and PyGEM uses ERAS (Hersbach et al.,
2020), while OGGM uses WS5ES (bias-corrected ERAS over
land; Lange et al., 2021). Parameter values were calibrated at
the individual glacier scale using geodetic mass balance for
the period 2000-2019 (Hugonnet et al., 2021). Depending on
the model, three to four free parameters were calibrated. The
set-up of each model is detailed in Table 2.

4.3 Glacier-wide predictions using MBM

Glacier-wide predictions were produced for MBM with the
same set of features as described in Sect. 3.2. For each test
glacier, a DEM (Copernicus DEM GLO-90, ~ 90 m resolu-
tion) and RGI 6.0 outline were retrieved using the OGGM
pipeline. Then, for each DEM grid cell, monthly meteorolog-
ical features were obtained from the nearest ERA5-Land cell
for 1962-2021. MBM was then run for each glacier to predict
the monthly mass balance in every DEM grid cell over the
whole time period based on the topographical and monthly
meteorological features. Glacier-wide monthly mass balance
predictions were produced by intersecting the DEM with the
RGI 6.0 glacier outline and aggregating predictions over the
glacierised area.

5 Results

In this section, we present the performance evaluation of
MBM on the test dataset and the comparison of MBM
and the glacier evolution models (GloGEM, OGGM and
PyGEM). In Sect. 5.1 we focus on the performance of
MBM on the full test dataset of seasonal and annual point
mass balance measurements (14 glaciers, 1962-2021) de-
scribed in Sect. 3.3.1. Section 5.2 compares the performance
of MBM and glacier evolution models at various spatio-
temporal scales using available glaciological and geodetic
observations for the test glaciers (1980-2019).

5.1 Performance of MBM on test dataset

The performance of MBM is assessed using the full test
dataset from 14 glaciers with in situ mass balance obser-
vations. It consists of seasonal and annual point mass bal-
ance measurements over the period 1962-2021. MBM shows
good performance in predicting both seasonal and annual
point mass balances in this test dataset (Figs. 5 and D2, per-
formance on training dataset shown in Fig. D1). Winter mass
balance is modelled particularly well, with the lowest RMSE
and MAE (0.59 and 0.46 mw.e.; Fig. 5a and b). Summer
mass balance is also well captured, and here MBM shows
good performance in terms of R? (explained variance, 0.72;
Fig. 5¢). MBM shows somewhat lower performance for an-

https://doi.org/10.5194/tc-19-5801-2025



K. H. Sjursen et al.: Machine learning improves seasonal mass balance prediction

5809

Table 2. Overview of the set-up of glacier evolution model simulations used for model intercomparison. All models use RGI 6.0 and
constant area over the simulation period. Calibration is performed for each glacier individually, using geodetic mass balance for 2000-2019
from Hugonnet et al. (2021). The time period refers to mass-balance years (October—September) covered by the simulations. DDFs refers to
degree day factors, and Pcorr and Teopr refer to precipitation and temperature bias correction, respectively.

Model Time Spatial Climate  Temperature Precipitation DDFs Parameters Reference
period resolution  forcing  downscaling downscaling calibrated
GloGEM 1980-2019 10m? ERA5°  Monthly lapse Vertical Separate DDF Peorrs chorr, Huss and Hock
rate for each gradient for snow, ice, DDFsnow, (2015)
reanalysis grid 0.025 % m™! firn® DDFj¢e
celld
OGGM  1961-2019  30m? WS5E5¢  Lapse rate None Single DDF Peorrs Teorrs Maussion et al.
6.5Kkm™! DDF (2019);
Zekollari et al.
(2024)
PyGEM 1961-2022 30 mP ERA5°  Monthly lapse Vertical Separate DDF Peorr, Tcorr, Rounce et al.
rate for each gradient for snow, ice, DDF§nOW (2023)
elevation bind 0.01 % m™! firn®

2 Vertical resolution, mass balance is provided in elevation bands. b Horizontal resolution, mass balance is provided along flowlines. © Monthly temperature and precipitation. d Derived from
ERAS pressure levels. € DDFy, is average of DDFgnow and DDFyce. | Only included if no match is found with other parameters within predefined bounds. € DDFjc, set to 0.7 DDFsnow-

nual mass balance in terms of RMSE and MAE (1.00 and
0.77mw.e.; Fig. 5c), compared to seasonal mass balances,
but still with a minimal overall bias (—0.01 m w.e.; Fig. 5d).
Overall, the performance of MBM over time is relatively sta-
ble, with mean annual and seasonal biases centred around
zero (—0.01 to +0.04 m w.e.; Fig. 5b, d and f). The second
half of the 1970s and 1980s displays some positive bias, but
the test dataset contains few measurements in this time pe-
riod.

Considering point mass balance for glaciers individually
(Fig. D2), modelled and observed point mass balances are
generally in good agreement, but the performance of MBM
varies somewhat between glaciers. It is difficult to compare
metrics across glaciers directly due to the different number of
point measurements available and varying time periods cov-
ered. However, the results do not indicate any particular is-
sues related to climatic region (e.g. continentality in southern
Norway or northern versus southern glaciers). Therefore, we
are confident that MBM is well suited to capture seasonal
and annual point mass balance on glaciers in a wide range of
geographical settings in Norway.

5.2 Model comparison on different spatio-temporal
scales

We compare predictions from all models (MBM, GloGEM,
OGGM and PyGEM) to available glaciological and geodetic
mass balance observations for glaciers in the test dataset over
the common modelling period 1980-2019. In Sect. 5.2.1 and
5.2.2, we respectively consider point/elevation-band mass
balance and mass balance gradients, on seasonal and an-
nual time scales. Glacier-wide mass balances are compared
in Sect. 5.2.3 on monthly to decadal time scales. We evalu-
ate seasonal and annual predictions using observations from
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glaciological records (Kjgllmoen et al., 2024), and decadal
predictions using glaciological and geodetic (Andreassen
et al., 2016, 2020; Hugonnet et al., 2021) observations. Over
the common modelling period 1980-2019, glaciological ob-
servations (point and glacier-wide) are available for 11 of
14 test glaciers with partial temporal coverage. Geodetic ob-
servations are available for all 14 glaciers over the period
2000-2019 (Hugonnet et al., 2021), and six sub-periods for
four glaciers between 1980-2020 (with an additional six sub-
periods and four glaciers back to the 1960s for comparison
to MBM only; Andreassen et al., 2016, 2020).

5.2.1 Point/elevation-band mass balance

Of all models, MBM shows the best performance
with respect to winter and summer point mass bal-
ance across all metrics (Fig. 6). Notably, MBM shows
very low biases in seasonal mass balance (—0.05 and
+0.10mw.e. for winter and summer, respectively) com-
pared to the glacier evolution models, which show consid-
erable positive or negative biases (+0.26/—0.35/4-0.59 and
—0.27/40.29/-0.27mw.e. for OGGM/GloGEM/PyGEM
for winter and summer, respectively). Large positive win-
ter mass balances (> around 2 m w.e.) are particularly well-
captured by MBM (Fig. 6a), whereas these are underesti-
mated for GloGEM (Fig. 6¢) and overestimated by OGGM
and PyGEM (Fig. 6b and d).

GloGEM and OGGM show the overall best perfor-
mance on annual point mass balance (RMSE of 0.91 and
0.93mw.e., respectively), but differences between models
are relatively small (RMSE of 0.97 and 1.05 m w.e. for MBM
and PyGEM, respectively). MBM, GloGEM and OGGM all
show low biases (between —0.02 and 4+-0.02 m w.e.), whereas
PyGEM displays a relatively large bias in annual point mass

The Cryosphere, 19, 5801-5826, 2025
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Figure 5. Performance of the Mass Balance Machine on the test dataset of glaciological point mass balance (14 glaciers, 1962-2021), in
terms of histograms of errors and temporal biases, respectively, in modelled (a, b) winter, (¢, d) summer and (e, f) annual point mass balance.
Notations by, bs, and b, refer to winter, summer and annual point mass balance, respectively. Points and shaded areas in panels (b), (d), and
(f) represent the mean and spread of the bias for each year, respectively. Metrics RMSE and MAE in panels (a), (¢) and (d) are in m w.e., and

n in panels refers to the number of point measurements.

balance (4+0.36 m w.e.). It should be noted here that MBM is
the only model that provides predictions at the point scale,
while the other models simulate elevation-band mass bal-
ance.

5.2.2 Mass balance gradients

MBM captures mass balance gradients across test glaciers
in various climatic settings, from northern Norway
(Fig. 7a and b) to the west-east transect in southern
Norway (Fig. 7c—f). Mass balance gradients are reproduced
particularly well for glaciers in northern and western Nor-
way (Fig. 7a—d). For the most maritime and continental
glaciers, modelled mass balance gradients show somewhat
larger discrepancy with respect to glaciological observa-
tions, for example, positive biases in annual and summer
mass balance for high elevations on Hansebreen (Fig. 7e)
and in winter mass balance for Hellstugubreen (Fig. 7f).
However, it should be noted that for Hellstugubreen, mean
elevation-band mass balances are based on only 14 stake
measurements over a total of five years, and there are no in
situ observations available to investigate model performance
at high elevations.

Overall, MBM better captures the relationship between
mass balance and elevation than the glacier evolution models
over the common period 1980-2019. Again, MBM performs
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particularly better for seasonal mass balances compared
to the glacier evolution models (RMSE/bias of 0.41/40.1
and 0.60/0.00mw.e. for MBM for winter and summer,
respectively, and best combined scores of 0.56/—0.2 and
0.65/—0.18 m w.e. across other models), while the agreement
for annual mass balance gradients is more variable (RM-
SE/bias of 0.83/4-0.08 m w.e. for MBM, and best scores of
0.86/4+0.14 m w.e. for other models combined). In general,
the glacier evolution models exhibit more linear mass bal-
ance gradients than MBM, which in some cases prevents
them from capturing the variability in mass balance with el-
evation (e.g. Svelgjabreen; Fig. 7d).

5.2.3 Glacier-wide mass balance

All models show similar performance in predicting glacier-
wide annual mass balance over the common modelling pe-
riod 1980-2019 (Fig. 8), with MBM performing slightly bet-
ter in terms of RMSE and R%? (RMSE of 0.54 mw.e. and
R? of 0.75; Fig. 8a) and OGGM showing the lowest bias
(+0.02mw.e.; Fig. 8b). There are notable differences in
model performance on glacier-wide seasonal mass balance,
with MBM outperforming the other models for all metrics
and showing particularly better performance for extreme val-
ues (high magnitudes). Overall, glacier-wide winter and sum-
mer mass balances are overestimated by OGGM and PyGEM
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Figure 6. Modelled point (Mass Balance Machine) or elevation-
band (other models) mass balance versus observed point mass bal-
ance for the test glaciers for (a) Mass Balance Machine, (b) OGGM,
(¢) GloGEM and (d) PyGEM, using all available in situ point mass
balance observations (n =561/517/516 for annual/winter/summer)
over the common model time period 1980-2019. Subscripts a, w
and s in legend and metrics refer to annual, winter and summer mass
balance, respectively.

(positive and negative bias for winter and summer, respec-
tively; Fig. 8b and d) and underestimated by GloGEM (neg-
ative and positive bias for winter and summer, respectively;
Fig. 8c).

We evaluate model performances for different regions by
aggregating area-weighted glacier-wide mass balance predic-
tions and available glaciological observations over the period
1980-2019 (Fig. D3). Here, we focus on regions North (N)
and West (W) (five and six glaciers, respectively; Fig. D3a
and c), since an assessment of model performance on re-
gional mass balance is difficult for the most maritime (W-
MAR) and continental (E) regions, where glaciological mea-
surements are limited to one and two glaciers in each re-
gion, respectively (Fig. D3b and d). All models show rela-
tively good agreement with annual mass balance for region
West, where the mass balance rate from glaciological obser-
vations over the period 1988-2019 is —0.38 m w.e. a~!, com-
pared to —0.35 mw.e. for MBM, —0.31 mw.e. a~! for Glo-
GEM, —046mw.c.a! for OGGM and —0.22mw.e.a™!
for PyGEM (Fig. D3c). The same is true for region North,
with MBM displaying the best correspondence to glacio-
logical observations over the consecutive period 1996—
2019 (—0.97 mw.e. a~!, versus —0.93 mw.e. a1 for MBM,
—0.59mw.e.a”! for GloGEM, —0.80 m w.e.a~! for OGGM
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Figure 7. Modelled mean annual (black), winter (blue) and sum-
mer (red) mass balance gradients for the Mass Balance Machine
(solid lines, with shaded areas showing minimum and maximum
predicted elevation-band mass balance between 1980-2019), Glo-
GEM (dashed-dotted lines), OGGM (dashed lines) and PyGEM
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over the common period 1980-2019. Circles represent the mean
measured mass balance in each 100 m elevation band from available
observations over the period. Numbers in subplot titles refer to the
last five digits of the RGI 6.0 ID, and abbreviations refer to glacier
regions (FIN: Finnmark, BLA: Blamannsisen, JOB: Jostedalsbreen,
FOL: Folgefonna, ALF: Alfotbreen and JOT: Jotunheimen).

and —0.62mw.e.a~! for PyGEM; Fig. D3a). However, all
models show a tendency to underestimate annual mass bal-
ance around the 2000s in this region, mostly due to too pos-
itive summer mass balance. Considering seasonal mass bal-
ance, OGGM and PyGEM show a clear tendency to over-
estimate magnitudes of winter and summer mass balance in
region West, while MBM and GloGEM show good agree-
ment with observations. For region North, all models show
decent correspondence with winter mass balance. GloGEM
shows a tendency to underestimate summer mass balance in
the 1990s and 2000s in this region, but better agreement with
observations in the 2010s compared to the other models.
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Figure 8. Modelled versus observed glacier-wide seasonal and an-
nual mass balance for the test glaciers for (a) the Mass Balance
Machine, (b) OGGM, (c¢) GloGEM and (d) PyGEM, using all avail-
able glaciological observations over the common model time period
1980-2019 (180 mass-balance years on 11 glaciers). Subscripts a,
w and s in legend and metrics refer to annual, winter and summer
mass balance, respectively.

We compare monthly glacier-wide mass balance predic-
tions from the four models over the mass balance years
1980-2019 (Fig. 9). Since there are no available mass bal-
ance observations at this temporal resolution, we compare
monthly glacier-wide predictions for all 32 glaciers in the
dataset (15 360 predictions per model). For most months, the
models show similar mass balance distributions with mostly
positive mass balances in November—April, negative mass
balances in June—August, and both positive and negative
mass balances in the transition months May and September.
This similarity is strongest for January—April and October—
December. For the summer months, MBM and GloGEM dis-
play more moderate mass losses compared to OGGM and
PyGEM. MBM’s predictions differ somewhat from the other
models in the transition months (May and September), with
a larger number of negative mass balances (see further dis-
cussion in Sect. 6.1).

Predicted decadal mass balance rates from MBM show
good agreement with decadal rates from glaciological
records for most decades (RMSE of 0.26 m w.e.a~! and bias
of —0.1mw.e.a~! for four glaciers covering 13 decades in
total between 1970-2019; Fig. 10a, f, h and m, 1970-1979
not shown for Hellstugubreen, RGI60-08.00449). In gen-
eral, MBM and the glacier evolution models show similar
mass balance rates for many glaciers and decades. However,
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Figure 9. Distributions of glacier-wide monthly mass balance for all
32 training and test glaciers for each month and model over the com-
mon time period 1980-2019 (mass-balance years; 15360 monthly
predictions per model).

MBM shows consistently lower mass balance rates for some
glaciers, e.g. Langfjordjgkelen, Trollbergdalsbreen and Svar-
tisheibreen (all in northern Norway; Fig. 10a, d and e, re-
spectively), and slightly more positive mass balance rates
than the glacier evolution models for others, e.g. Bondhus-
brea and Blomstglskardsbreen (Folgefonna; Fig. 10i and 1,
respectively).

In general, glacier evolution models show a better corre-
spondence with decadal geodetic mass balance rates from
satellite-derived DEMs (Hugonnet et al., 2021), which is
unsurprising given that each test glacier is calibrated us-
ing these observations (not independent data). Specifically,
MBM overestimates geodetic mass balance for Bondhus-
brea, Mgsevassbrea and Blomstglskardsbreen (Fig. 10i, k
and 1, respectively) and underestimates for Langfjordjgkelen
and Trollbergdalsbreen (Fig. 10a and d, respectively) when
comparing to satellite-borne geodetic mass balance (predic-
tion outside uncertainty bounds for both decades). However,
considering geodetic mass balances based on photogramme-
try and laser scanning (Andreassen et al., 2016, 2020), MBM
shows good correspondence for Langfjordjgkelen (1994—
2008; Fig. D4). Overall, all models show decent agree-
ment with geodetic mass balance for Austdalsbreen (re-
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Figure 10. Modelled decadal glacier-wide mass balance rates for
each test glacier and model over decadal periods (80s: 1980—
1989, 90s: 1990-1999, 00s: 2000-2009, 10s: 2010-2019). Decadal
geodetic mass-balance rates with reported error estimates from
Hugonnet et al. (2021) are shown as black dots with error bars
for the periods 2000-2009 and 2010-2019. Decadal mass balance
rates from glaciological records are shown as purple triangles where
available. The upper right corner of each panel provide the last five
digits of the RGI 6.0 glacier ID and the climatic (N: north, W-MAR:
west-maritime, W: west, E: east) and glacier (FIN: Finnmark, SKJ:
Skjomen, BLA: Blamannsisen, SVA: Svartisen, ALF: Alfotbreen,
JOB: Jostedalsbreen, FOL: Folgefonna, JOT: Jotunheimen) regions.
Glaciers are ordered from north to south and maritime to continen-
tal.

gion W; 1988-2009) and Hellstugubreen (region E; 1980-
1997 and 1997-2009), but variable performance on Hanse-
breen (region W-MAR; 1988-1997 and 1997-2010). In ad-
dition, MBM shows good agreement for four of six extended
periods, including Hellstugubreen (1968-1980), Svarthei-
isbreen (region N; 1968-2016), Tunsbergdalsbreen (region
W; 1964-2013) and Austre Memurubreen (region E; 1966—
2009).

https://doi.org/10.5194/tc-19-5801-2025

6 Discussion

6.1 Performance of MBM and glacier evolution models
across spatio-temporal scales

6.1.1 Generalisation through spatio-temporal
analogues and downscaling

The ability of MBM to reconstruct glacier mass balance on
various spatial and temporal scales demonstrates that ML ap-
proaches have the capacity to generalise from mass balance
observations at high spatio-temporal resolution and transfer
the established relationships to independent (unmonitored)
glaciers. We believe that the success of MBM is due to its
ability to learn from spatio-temporal analogues in training,
i.e. similar glacier configurations and/or meteorological con-
ditions across space and time. For example, an abnormally
wet winter season on a glacier in northern Norway may be
similar to average conditions on a glacier on the west coast
of southern Norway, or when a large valley glacier retreats
under climate change, its topo-climatic conditions may re-
semble those of current small, high-altitude glaciers. Using
these spatio-temporal analogues, MBM can learn relation-
ships between mass balance and meteorological conditions
across diverse climatic settings from relatively sparse data.

The performance of MBM on point mass balance and
the apparent importance of the elevation difference feature
(see feature importance analysis in Appendix C) suggests
that MBM implicitly downscales and bias-corrects relatively
coarse meteorological data to the point scale. In addition
to the spatio-temporal transfer of mass balance information
across glaciers, MBM’s apparent downscaling capacity is
crucial for generating accurate high-resolution predictions.
For instance, MBM’s strong performance in reconstructing
winter mass balance at the stake level (Fig. 5a and b), to-
gether with a high importance of precipitation and eleva-
tion difference features in winter months (Fig. C2a— and
k-1), suggests that it is able to downscale precipitation lo-
cally. The same is true for temperature in the summer months
(Fig. C2e-i). The key to this downscaling capacity lies in us-
ing the elevation difference between the stake and the climate
model as a feature (Fig. 3), enabling MBM to effectively map
the relationship between climate and elevation.

6.1.2 Model evaluation at different spatio-temporal
resolutions

The comparison of monthly mass balance (Fig. 9) highlights
MBM’s ability to make meaningful predictions at a finer tem-
poral resolution than its training data. The largest discrep-
ancy between MBM and the glacier evolution models is ob-
served in May and September, where MBM predicts more
negative mass balances. MBM’s predictions in these months
may be influenced by the definitions of winter and summer
seasons, which are based on the median day of the year of
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the point mass balance measurements in the dataset (5 May
and 31 September for winter and annual mass balance mea-
surements, respectively). However, this definition varies in its
alignment with the actual measurement dates, which differs
across glaciers and years, potentially leading MBM to com-
pensate with more or less melt or accumulation in the tran-
sition months. Improving MBM’s monthly predictions could
involve using variable season lengths and mass-balance years
based on the specific measurement dates in the training data.
Nevertheless, when monthly mass balances are aggregated
on seasonal scales, MBM shows superior capability in cap-
turing winter and summer mass balance compared to the
glacier evolution models across all spatial scales (Figs. 6, 7,
8 and D3).

The ability of MBM to reconstruct winter and summer
mass balance on independent glaciers highlights a major ad-
vantage compared to the glacier evolution models: MBM
does not rely on glacier-specific data and can therefore lever-
age seasonal mass balance observations to derive relation-
ships that can be transferred to unmonitored glaciers. The
glacier evolution models, on the other hand, do not currently
use sparse in situ data in their calibration. On annual mass
balance the models show similar performance, likely because
all models are informed by annual or multi-annual mass bal-
ance observations. However, it is important to note that for
the glacier evolution models the test glaciers cannot be con-
sidered independent in the same respect as for MBM (each
test glacier is individually calibrated). Meanwhile, for MBM,
the test glaciers serve as independent performance measures
across all spatio-temporal scales. Consequently, MBM’s per-
formance solely reflects its capacity to generalise to unmon-
itored glaciers across varying conditions.

Given that the glacier evolution models calibrate param-
eters for each test glaciers with decadal geodetic mass bal-
ance rates from Hugonnet et al. (2021), it is unsurprising
that their correspondence to these observations is better than
MBM (Fig. 10), which has not employed data from any
of these glaciers. However, caution should be taken in in-
terpreting results of this comparison for specific glaciers,
since elevation-change rates from Hugonnet et al. (2021)
have been found to be substantially lower than those from
repeat airborne laser scanning (LiDAR) surveys in Norway
(two glaciers, one of which is Austdalsbreen; Fig. 10h; An-
dreassen et al., 2023). The quality of these geodetic observa-
tions, therefore, likely varies between glaciers. For example,
for Trollbergdalsbreen (Fig. 10d) MBM shows good perfor-
mance on point mass balance (Fig. D2d), suggesting that the
discrepancy between models may be due to a positive bias in
geodetic mass balance from Hugonnet et al. (2021). On the
other hand, for Svartisheibreen (Fig. 10e), MBM likely un-
derestimates decadal mass balance rates, as indicated by its
relatively strong negative bias on point mass balance for this
glacier (Fig. D2e, respectively). Considering Langfjordjgke-
len, the performance of MBM seemingly varies over time,
since comparisons show both underestimation for some peri-
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ods and good agreement for others (Figs. 10a, D4 and D2a).
However, in decadal comparisons it should be noted that
glaciological and geodetic mass balances are not directly
comparable, since the latter also include contributions from
internal and basal processes that are not accounted for by the
models (Zemp et al., 2013; Andreassen et al., 2016, 2023).
In addition, when comparing model results to geodetic mass
balance from (Andreassen et al., 2016, 2020), predictions are
not exactly aligned with survey dates, but aggregated based
on the nearest month. For example, for Hansebreen this dis-
crepancy may result in 14d of more or less melt from the
survey date in August 1997, which could be significant con-
sidering the high mass turnover of this glacier. This may ex-
plain why most models show underestimation and overesti-
mation of the geodetic mass balance rates for 1988—1997 and
1997-2010, respectively (Fig. D4).

6.2 MBM design choices and limitations
6.2.1 Quality of training data

The quality of ML model predictions is strongly dependent
on the quality of the training data, both targets (discussed in
Appendix A) and features. While MBM apparently performs
well in bias-correcting and downscaling meteorological vari-
ables to the elevation of the stakes, it is not always able to per-
form this downscaling seamlessly for glaciers that span sev-
eral ERAS-Land grid cells. For example, Tunsbergdalsbreen
(RGI60-08.00434), Norway’s largest outlet glacier (46.2 km?
in 2019; Andreassen et al., 2022), is covered by multiple grid
cells (Fig. 11d and e), resulting in visible artefacts in the mass
balance distribution in some years due to transitions between
the uppermost cells (winter and annual mass balance in year
2000; Fig. 11a and b, respectively). These artefacts may oc-
cur due to elevation differences not being well represented in
the training data, possibly in combination with special mete-
orological conditions (e.g. decreasing precipitation amounts
with elevation, Fig. 11d and f). The relatively coarse resolu-
tion of ERAS-Land compared to the extent of most glaciers
in our dataset also means that the spatial distribution of mass
balance is largely influenced by the higher-resolution topo-
graphical information that can resolve smaller-scale varia-
tions. Artefacts in the topographical features may therefore
influence predictions. For example, MBM predicts high sum-
mer melt rates along the eastern border of the tongue of Tuns-
bergdalsbreen (Fig. 11c). We believe this is due to the com-
bination of steep and south-west facing slopes (Fig. 11g and
h). However, these steep, south-west facing slopes are likely
topographical artefacts. They result from the surrounding ter-
rain influencing the calculation of these variables from the
DEM, specifically a steep, south-west facing wall that bor-
ders the glacier tongue. The issues outlined here may be mit-
igated by extracting meteorological variables from a single
ERAS-Land cell closest to the glacier centre. Another op-
tion would be to train MBM using higher-resolution meteo-
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rological data, which may also elucidate MBM’s downscal-
ing capabilities. Regardless of these challenges, our results
show that MBM excels in reconstructing local winter mass
balance, which indicates implicit downscaling and bias cor-
rection of meteorological variables (Figs. 6 and 7). This sug-
gests, in line with other findings (Guidicelli et al., 2023), that
ML models are valuable tools to assess spatio-temporal bi-
ases in precipitation estimates in mountain regions.

6.2.2 Design of test dataset

In addition to the quality of the data used in model train-
ing, the predictions and performance evaluation of MBM will
be affected by our design of the test dataset and the cross-
validation strategy. Although we have attempted to design
our test dataset as a reliable measure of our modelling goal,
it is not without flaws. For example, the independence be-
tween the test and training dataset can be questioned for some
glaciers, e.g. for glaciers in the maritime western region of
Norway (W-MAR, Fig. 1d). There are only two glaciers from
this (small) region in our dataset, of which Alfotbreen is in
the training dataset and Hansebreen (Fig. D2f) is in the test
dataset. These glaciers are adjacent, and the spatial correla-
tion between measurements likely extends beyond the ice di-
vide. However, the current configuration is necessary to both
train MBM and evaluate its performance in this climatic re-
gion. Overall, we did not find any correlation between model
performance on the test glaciers and the distance to the near-
est training glacier. This is illustrated by the four glaciers in
the Folgefonna region (Fig. D2i-1), where the test glacier
closest to a training glacier (around 4 km, Fig. D2i) shows
worse performance than the glaciers located farther away (up
to 12 km, Fig. D2j-1). We encourage future studies using ML
approaches to carefully design test datasets using domain
knowledge such that performance estimates align with the
modelling objectives. However, as illustrated by our exam-
ple, limitations in the dataset will inevitably require compro-
mises in test dataset design (Roberts et al., 2017).

6.2.3 MBM architecture

MBM was designed using the XGBoost architecture due
to its excellent performance on tabular datasets (Grinsztajn
et al., 2022). However, a known issue with regression tree-
based models is that they tend to perform poorly at extrapola-
tion, making them unreliable in accurately capturing extreme
conditions beyond their training data (e.g. van der Meer et al.,
2025). In the design of the train-test split, we ensure that the
training dataset includes years of both high melt and accu-
mulation across a variety of glaciers and climatic settings.
As such, MBM is explicitly designed for interpolation rather
than extrapolation. Consequently, MBM shows good perfor-
mance on high magnitudes of winter and summer balances
in the test dataset (Figs. 6 and 8). While this approach is
appropriate for mass balance reconstruction, making future
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predictions under potentially unprecedented conditions may
require a different ML architecture with better extrapolation
capabilities, such as a neural network (e.g. Bolibar et al.,
2022).

6.3 Future outlook on ML in large-scale mass balance
modelling

6.3.1 Applications of MBM

The ability of MBM to accurately predict seasonal mass bal-
ance on unmonitored glaciers makes it particularly suitable
for hydrological applications, especially in glacierised catch-
ments where seasonal observations for glacier-specific cali-
bration of other models are lacking. Another promising ap-
plication of MBM is to generate distributed mass balance
predictions as input to ice flow models. MBM’s predictions
can account for a changing surface topography simply by up-
dating the topographical features prior to a new prediction.
The differentiability of many ML approaches also presents
a promising scientific venue in terms of building physics-
informed ML glacier models. The MBM architecture could
be replaced by a neural network, which would provide differ-
entiability, enabling synchronised calibration and inversion
of both glacier ice flow dynamics and surface mass balance.
Moreover, the spatial resolution of MBM’s predictions is
adaptable and determined only by the resolution of the DEM
used to extract topographical features. The temporal resolu-
tion of MBM is also customizable and can be adapted to pro-
duce, for example, weekly or seasonal predictions depending
on the desired resolution and computational resources. In our
study, we have focused on training MBM for a larger region,
leveraging the capacity of ML models to generalise mass
balance information to unobserved glaciers. However, MBM
can also be tailored to estimate glacier-wide mass balance
from glaciological surveys at the individual glacier scale.
This may improve glacier-wide glaciological mass balance
estimates compared to traditional methods used to interpo-
late and extrapolate point measurements (e.g. altitude-profile
method used in glaciological surveys in Norway; Kjgllmoen
et al., 2024).

6.3.2 Reconciling glacier mass balance by learning
from diverse datasets

MBM is a scalable model with the potential to be extended
to larger regions. We have demonstrated that MBM can cap-
ture the spatio-temporal heterogeneity in mass balance for
glaciers across climatically diverse regions in Norway. No-
tably, MBM’s current design does not use explicit informa-
tion about space or time, such that it can essentially be ap-
plied at any location and period. However, since the model is
trained on meteorological conditions specific to Norway and
designed for interpolation within this context, we expect its
performance be limited in regions with significantly differ-
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ent climates. Future research into the transferability of ML
approaches could clarify the extent of such limitations, for
example by testing MBM on glaciers in other regions. For
larger, or climatically different regions, we expect MBM to
benefit from additional training data. Since in situ observa-
tions are not readily available for many regions, the diversity
of spatio-temporal analogues and extent of MBM’s generali-
sation capabilities on larger scales remain to be investigated.

On the other hand, the purely data-driven nature of ML
approaches makes them uniquely suited to take advantage
of the increasing availability of remote sensing-based mass
balance datasets (e.g., Belart et al., 2017; Pelto et al., 2019;
Hugonnet et al., 2021; Falaschi et al., 2023). This could
both alleviate the scarcity of in situ training data and im-
prove model predictions. Additional data could likewise
benefit temperature index approaches. However, within the
current glacier-specific model calibration frameworks, such
data requires regional/global spatial coverage to be readily
adopted for calibration in large-scale modelling. In this re-
spect, ML approaches present novel tools for reconciling
mass balance estimates from the growing archive of glacier
observations, since their flexibility allows for integration of
datasets at different spatio-temporal scales in training. We
have demonstrated one such approach that leverages obser-
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vations at different temporal resolutions by training MBM
to fit aggregations of monthly mass balance to seasonal and
annual targets. Similarly, geodetic mass balance observa-
tions (e.g. Hugonnet et al., 2021), could be incorporated into
MBM’s training by aggregating predictions on glacier-wide
and decadal scales. Moreover, model training can account for
the reliability of the data by weighing the observations in the
loss function according to their confidence levels or using
uncertainty-aware learning (Diaconu and Gottschling, 2024).
Incorporating diverse and complementary datasets could pro-
vide reconciled estimates of glacier mass balance across mul-
tiple observational datasets.

Our findings show that ML-based mass balance models
have significant potential for unmonitored glaciers due to
their flexibility and capacity to generalise from sparse mea-
surements across diverse glaciers, capabilities that comple-
ment existing models. As demonstrated here, ML approaches
show promise in overcoming some of the limitations of cur-
rent temperature-index approaches and existing calibration
frameworks in large-scale modelling. ML approaches are
posed to leverage both existing data as well as growing obser-
vational resources from satellite remote sensing to enhance
glacier mass balance estimates. In light of our findings, we
argue that ML models have significant unexplored potential
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in glacier mass balance modelling that warrants further in-
vestigation.

7 Conclusions

This study presented the Mass Balance Machine (MBM), an
ML model designed for regional reconstruction of glacier
mass balance up to a point scale and with monthly tempo-
ral resolution using topographical and meteorological fea-
tures. MBM was trained on seasonal and annual glaciological
point mass balance measurements from glaciers in various
climatic settings in Norway, covering the period 1962-2021.
MBM showed good performance in reconstructing glacier
mass balance on point to glacier-wide scales for independent
glaciers in Norway, demonstrating its ability to generalise
spatio-temporal information from sparse data to unmonitored
glaciers.

The predictions of MBM were compared to established
large-scale glacier evolution models GloGEM, OGGM and
PyGEM applied at a regional scale and using current state
of the art calibration frameworks. MBM was superior in pre-
dicting seasonal mass balance both at point and glacier-wide
scales. This success can be attributed to MBM’s ability to ef-
fectively transfer information from relatively sparse seasonal
point mass balance observations to unmonitored glaciers,
while current large-scale evolution models do not include
these sparse seasonal measurements in model calibration.
The glacier evolution models, which rely on multi-year
geodetic mass balance for each individual glacier, showed
similar performance to MBM on annual and decadal mass
balance. The main advantage of MBM is thus that it does not
rely on glacier-specific observations and can therefore lever-
age sparse seasonal data to improve seasonal mass balance
predictions across glaciers. The accuracy of MBM’s seasonal
predictions suggests that it can improve predictions of sea-
sonal glacier runoff on unmonitored glaciers and thus en-
hance hydrological modelling in glacierised regions without
in situ observations.

The flexibility of ML approaches and their data-driven na-
ture make them uniquely posed to reconcile glacier mass
balance from both existing and novel satellite-derived ob-
servational datasets at different spatio-temporal scales. We
demonstrated that ML models can be adapted to utilise ob-
servations at different temporal resolutions by training MBM
to fit aggregations of monthly mass balance to seasonal and
annual targets. However, there is still significant untapped
potential to improve MBM’s predictions by incorporating ad-
ditional data, such as geodetic mass balance observations, in
its training.

The ability of ML approaches to learn statistical rela-
tionships that are transferable in space and time from high-
quality observational datasets provides opportunities to im-
prove mass balance estimates for unmonitored glaciers. Our
findings reveal the promise of these approaches in address-
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ing some of the limitations of existing large-scale mass bal-
ance models. We advocate for further exploration and devel-
opment of ML-based mass balance models in order to clarify
their contribution to improving glacier mass balance predic-
tions.

Appendix A: Data quality and cleaning

The target data for MBM comes from the glaciologi-
cal records in Norway, many of which have been reanal-
ysed in recent years (Andreassen et al., 2016; Kjgllmoen,
2017, 2022a, b), including comprehensive uncertainty as-
sessments. Uncertainties in stake measurements originate
from various sources, such as probing to the previous year’s
summer surface, displacement and tilting of stakes and er-
rors in snow and firn densities (Zemp et al., 2013). The total
contribution of such uncertainties has been quantified 0.08—
0.26mw.e.a~! for five of the glaciers in our dataset (An-
dreassen et al., 2016), and are considered to be of the same
order of magnitude for others (Kjgllmoen, 2017). Although
errors may occur, glaciological point mass balance records
are considered to be of good quality for most glaciers such
that we can be confident that MBM is trained on reliable tar-
get data.

To ensure the quality of MBM’s training data, we per-
formed a thorough cleaning and quality check of the raw
point mass balance dataset (4201 entries, NVE database ac-
cessed on 12 October 2022) prior to training MBM. This con-
sisted of removing erroneous values and points with missing
locations, and verifying stake locations. For each of the point
mass balance measurements, the raw data provided an exact
and/or approximate stake location (geographical coordinates
and elevation). The approximate location is based on the es-
timated position and elevation of a given stake ID, whereas
the exact location is the actual position and elevation of the
stake at the time of measurement (e.g. measured using GPS).
Position accuracy can vary, in particular for some of the older
data.

Seven entries missing both exact and approximate el-
evations and 23 entries missing both exact and approxi-
mate geographical coordinates were removed from the train-
ing dataset. For measurements where only the exact lo-
cation was unavailable, we used the provided approxi-
mate locations (329 instances of coordinates and 37 in-
stances of elevation). We estimated the accuracy of the ap-
proximate locations based on the 3723/4156 entries where
both exact and approximate coordinates/elevations were
given. The mean =+ standard deviation of the absolute dif-
ference between the exact and approximate coordinates is
166 + 498 mm, while for elevations, it is 24 =71 m. Thus,
for the relatively few measurements missing exact location,
we are confident that the approximate coordinates and eleva-
tions provide decent estimates of their actual locations. Fi-
nally, we converted geographical coordinates from UTM to
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latitude and longitude format for compatibility with the fea-
ture datasets.

For stakes where both summer, winter, and annual mass
balance measurements were available for a given year, we
corrected for rounding errors where these were present by
replacing annual mass balance values by the sum of sea-
sonal values (magnitudes between 0.01-0.03 m w.e.; 255 in-
stances). One measurement with erroneous winter mass bal-
ance (unrealistically high; 9.99 m w.e.) was removed. The to-
tal number of annual, summer and winter point mass balance
observations after cleaning was 3910, 3929 and 3751, respec-
tively, at a total of 4170 stakes.

Appendix B: Feature selection

Our choice of meteorological features is based on two con-
siderations: firstly, to include variables that are relevant for
glacier mass balance (accumulation and ablation), and sec-
ondly, limiting the number of (confounding) features to en-
sure explainable results (see Appendix C). Therefore, we se-
lected the main components of the energy balance and other
meteorological variables that are considered the main drivers
of mass balance in Norway (e.g. precipitation and tempera-
ture for modelling accumulation). We intentionally refrained
from using high-level variables that are derived from mete-
orological conditions, such as snow depth, snow cover and
snow melt. The reason behind this is that many meteorolog-
ical variables in ERAS-Land are highly correlated and mask
the underlying meteorological drivers. For example, snow
depth and snow melt are highly correlated with total precip-
itation and 2 m air temperature, respectively. We found that
when including snow depth as a feature, total precipitation
becomes redundant, although it is an important driver of the
evolution of the snow pack. In addition, we did not see a no-
ticeable difference in performance when using a larger set
of derived variables or additional meteorological variables
(such as wind speed components). Therefore, we opted not
to use them both for clarity and simplicity.

We deliberately avoided using explicit temporal and spa-
tial information (e.g. year and geographical coordinates)
as features in MBM. Since climate and space are corre-
lated, spatial predictors may mask underlying meteorological
drivers (Roberts et al., 2017). In addition, the use of geoloca-
tion data may lead to over-fitting to spatial location (Roberts
etal., 2017; Meyer et al., 2019), thus deteriorating model pre-
dictions outside of the spatial domain on which it is trained.
Moreover, we believe that explicit information about time
and space (e.g. year and geographical coordinates) should be
irrelevant if the model is able to capture mass changes from
meteorological features. In contrast to other ML studies us-
ing high spatial resolution mass balance data across multiple
glaciers (Anilkumar et al., 2023; Guidicelli et al., 2023), we
employ a relatively small set of features (e.g. seven compared
to the fourteen used by Anilkumar et al., 2023).
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Appendix C: Feature importance
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Figure C1. Feature importance on trained model in terms of (a)
weight and (b) gain (t2m: 2m air temperature, sshf: surface sen-
sible heat flux, slhf: surface latent heat flux, ssrd: downward sur-
face solar radiation, fal: forecast albedo, str: net surface thermal
radiation, tp: total precipitation, elev_diff: elevation difference be-
tween climate model and stake, svf: skyview factor). Weight repre-
sents the total number of times a feature is used to split the data,
summed over all trees. Gain represents the average improvement
in model performance (sum of loss change for each split over all
trees) in splits which use the given feature. Shaded grey, white and
blue background indicates meteorological features, topographical
features and elevation difference feature, respectively.

We performed a feature importance analysis on MBM to
investigate the importance of different variables on MBM’s
performance. Since feature importance is complex to inter-
pret and is not adequately represented by any single metric,
we based our assessment on different metrics. We calculated
weight and gain scores, which represent the total number of
times a feature is used in splitting the data in a node and
the average improvement in model performance (sum of loss
change for each split) in splits where a feature is used, respec-
tively. To complement this analysis, we computed monthly
permutation importance for each feature. This involves con-
secutively permuting (shuffling) the values of each feature,
breaking the relationship between the feature and prediction,
and assessing the resulting change in model performance.
For a given feature and month, the performance change thus
represents the effect of feature permutation on the seasonal
and annual predictions.

Temperature is overall the most frequently used feature in
the trained model (t2m; Fig. Cla). It also scores highest in
terms of gain, followed by elevation difference and down-
ward surface solar radiation (elev_diff and ssrd, respectively;
Fig. C1b). The importance of temperature according to the
weight and gain scores is not surprising given that both ac-
cumulation and melt are strongly influenced by this variable.
The combination of lower gain but relatively similar weight
of the remaining features may suggest that these are gener-
ally used at lower levels of the tree structures, e.g. to distin-
guish between smaller variability in mass balance for points
on the same glacier.
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Figure C2. Monthly permutation feature importance on the test dataset (t2m: 2m air temperature, sshf: surface sensible heat flux, slhf:
surface latent heat flux, ssrd: downward surface solar radiation, fal: forecast albedo, str: net surface thermal radiation, tp: total precipitation,
elev_diff: elevation difference between climate model and stake, svf: skyview factor). Each feature is permuted on a monthly basis and the
resulting change in model performance is computed with respect to the seasonal and annual targets. Shaded grey, white and blue background
indicates meteorological features, topographical features and elevation difference feature, respectively.

Considering monthly permutation feature importance, el-
evation difference is an important feature in all months
(Fig. C2). In mid-winter (December—March) total precipita-
tion is the most important feature (tp; Fig. C21 and a—c) and
also relatively important compared to other meteorological
variables in the transition months April, October and Novem-
ber (Fig. C2d, j and k, respectively). This aligns with the
fact that solid precipitation is the main contribution to ac-
cumulation on glaciers in Norway. In addition, precipitation
is likely a key variable in explaining the substantial differ-
ences in winter mass balance rates across climatic regions in
Norway.

https://doi.org/10.5194/tc-19-5801-2025

Temperature is the main influence on model performance
in the summer season (May—September; Fig. C2e—i). In ad-
dition, downward solar radiation and forecast albedo are
important in May and June (Fig. C2e and f, respectively),
which is consistent with the onset of snowmelt and subse-
quent changes in albedo. Although albedo is coarsely re-
solved, it may provide larger-scale geographical information
about changes in snow cover, which may be why it is also
considered somewhat important in mid-winter months. The
transition months April and October show less clear impor-
tance between meteorological variables (Fig. C2d and j, re-
spectively). This may be because the timing of transitions
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5820 K. H. Sjursen et al.: Machine learning improves seasonal mass balance prediction

between seasons varies with latitude, e.g. glaciers in north-
ern Norway may receive a fair amount of snow in April and
October.

We caution against placing too much emphasis on the spe-
cific details of the feature importance analysis. For exam-
ple, when assessing permutation importance, correlated fea-
tures (i.e. skyview factor and slope) may appear to be less
important since, even if one feature is permuted, the model
can rely on a second correlated feature. However, the high
weight of the skyview factor (Fig. Cla), in combination with
a slight decrease in performance for many months with per-
mutation of this feature (e.g., Fig. C2a—e), may indicate some
overfitting. Although the effect seems to be minimal in this
case, it highlights the need for careful feature optimization
when using correlated features. Overall, the main findings of
the feature importance analysis presented here are consistent
across metrics and physically meaningful with respect to the
main meteorological drivers of mass balance on Norwegian
glaciers.

Appendix D: Additional figures
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Figure D1. Performance of the Mass Balance Machine on the train-
ing dataset of glaciological point mass balance (18 glaciers, 1962—
2021), in terms of histograms of errors and temporal biases, respec-
tively, in modelled (a, b) winter, (¢, d) summer and (e, f) annual
point mass balance. Notations by, bs, and b, refer to winter, sum-
mer and annual point mass balance, respectively. Points and shaded
areas in panels (b), (d), and (f) represent the mean and spread of the
bias for each year, respectively. Metrics RMSE and MAE in panels
(a), (¢) and (d) are in mw.e., and » in panels refers to the number
of point measurements.
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Figure D2. Performance of the Mass Balance Machine on individ-
ual glaciers in the test dataset of glaciological point mass balance
(14 glaciers, 1962-2021), in terms of modelled versus measured
point mass balance. Subscripts a, w and s in Root Mean Squared
Error (RMSE) refer to annual, winter and summer mass balance, re-
spectively. The upper right corner of each panel provide the last five
digits of the RGI 6.0 glacier ID and the climatic (N: north, W-MAR:
west-maritime, W: west, E: east) and glacier (FIN: Finnmark, SKJ:
Skjomen, BLA: Blamannsisen, SVA: Svartisen, ALF: Alfotbreen,
JOB: Jostedalsbreen, FOL: Folgefonna, JOT: Jotunheimen) regions.
Glaciers are ordered from north (FIN) to south (FOL) and maritime
(ALF) to continental (JOT).
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Figure D3. Time series of area-weighted glacier-wide annual (Bj,; grey), winter (By; blue) and summer (Bs; red) mass balance for different
models (Mass Balance Machine; solid, OGGM; dashed, GloGEM; dashed-dotted and PyGEM; dotted lines) and regions (a—d). The number
of glaciers per region is indicated by n. Area-weighted glacier-wide mass balances from glaciological observations (black solid lines with
dots) are shown where observations are available for all glaciers in the region.
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Figure D4. Difference between modelled glacier-wide mass balance rates and geodetic mass balance rates for test glaciers and periods with
available data (Andreassen et al., 2016, 2020) between 1960-2021 (Mass Balance Machine) and 1980-2019 (all models). Shaded areas
show reported uncertainty in geodetic mass balance rates. Modelled mass balance rates are computed between nearest months to geodetic
survey dates. Abbreviated names of glaciers (Lan: Langfjordjgkelen, Run: Rundvassbreen, Sva: Svartisheibreen, Han: Hansebreen, Tun:
Tunsbergdalsbreen, Aus: Austdalsbreen, Hel: Helstugubreen, Mem: Austre Memurubreen) and subperiod covered (e.g. 66-08 is 1966-2008).
Top axis shows the last five digits of the RGI 6.0 glacier ID and the climatic (N: north, W-MAR: west-maritime, W: west, E: east) and glacier
(FIN: Finnmark, SKJ: Skjomen, SVA: Svartisen, ALF: Alfotbreen, JOB: Jostedalsbreen, JOT: Jotunheimen) regions. Glaciers are ordered
from north to south and maritime to continental.
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Appendix E: Additional tables

Table E1. Summary of model performance metrics on point, mean elevation-band and glacier-wide mass balance using available glacio-
logical data for the test glaciers over the common modelling period 1980-2019 (corresponding to Figs. 6 and 8, for point and glacier-wide,
respectively). Performance metrics are Root Mean Squared Error (RMSE; mw.e.), bias (m w.e.) and explained variance (Rz; —), and n is
the number of data points. Model metrics are highlighted in bold for the best performing models when the performance metric represents
an improvement of 5 % or more with respect to the next best performing model for RMSE and R? or an absolute reduction of 0.1 mw.e. or
more for bias. Mean mass balance in elevation bands is calculated for 100 m bands from available point mass-balance observations, which
varies between 6—130 per glacier, giving a total of 55, 55 and 56 mean elevation-band values for annual, summer and winter, respectively.

Spatial Temporal n Metric MBM GloGEM OGGM PyGEM

RMSE  0.55 0.65 0.82 0.87

Winter 517 Bias —0.05 —0.35 0.26 0.59

R? 0.68 0.55 0.26 0.17

Point RMSE  0.70 0.79 0.89 0.93

Summer 516 Bias 0.10 0.29 —-0.27 —0.27

R? 0.68 0.60 0.49 0.44

RMSE  0.97 0.91 0.93 1.05

Annual 516 Bias 0.01 —0.02 0.02 0.36

R? 0.64 0.69 0.68 0.59

RMSE 041 0.56 0.84 0.91

Winter 180 Bias 0.10 —0.20 0.33 0.71

R? 0.80 0.62 0.15 —0.01

. RMSE  0.60 0.65 0.73 0.72
Elevation-band .

Summer 180 Bias 0.00 0.35 —0.18 —0.25

R? 0.67 0.61 0.51 0.52

RMSE  0.83 0.90 0.86 0.92

Annual 180 Bias 0.08 0.14 0.14 0.45

R? 0.72 0.68 0.71 0.66

RMSE  0.39 0.42 0.67 0.72

Winter 56 Bias 0.03 —0.23 0.25 0.50

R? 0.84 0.81 0.53 0.45

. RMSE  0.55 0.71 0.70 0.73
Glacier-wide .

Summer 55 Bias —0.16 —0.23 —0.25 —0.22

R? 0.73 0.55 0.56 0.53

RMSE  0.54 0.56 0.58 0.66

Annual 55 Bias —0.12 0.20 0.02 0.28

R? 0.75 0.73 0.71 0.62

Glacier-wide mass balances from glaciological investigations in
Norway can be found at https://glacier.nve.no/Glacier/viewer/Cl/

Code and data availability. Includes material ©CCME 2024, pro-
vided under COPERNICUS by the European Union and ESA,

all rights reserved. The Copernicus DEM GLO 90 is available
through the Open Global Glacier Model (OGGM) and online at
https://doi.org/10.5270/ESA-c5d3d65 (Copernicus, 2024). Monthly
averaged reanalysis data from ERA5-Land (Muiioz Sabater et al.,
2021) is available at https://doi.org/10.24381/cds.68d2bb30 (Coper-
nicus Climate Change Service, 2022). The cleaned version of the
point mass balance dataset for Norway used in this study (Elvehgy
et al., 2025) is available at https://doi.org/10.58059/sjse-6w92.
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en/, last access: 17 August 2024 (NVE, 2024). This study uses
a prototype version of the Mass Balance Machine (MBM) for
which the source code and data is available in the GitHub repos-
itory https://github.com/khsjursen/ML_MB_Norway.git (v.1.0.0
release: https://doi.org/10.5281/zenodo.15021796, Sjursen, 2025).
For users interested in the application or further development
of MBM, we recommend the official and most recent version
at https://github.com/ODINN-SciML/MassBalanceMachine
(last access: 10 November 2025) (v.0.1.0 release:
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https://doi.org/10.5281/zenodo.17571540, van der Meer et al.,
2025).
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