Supplement of The Cryosphere, 19, 5719-5761, 2025
https://doi.org/10.5194/tc-19-5719-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

The Greenland-Ice-Sheet evolution over the last 24 000 years:
insights from model simulations evaluated
against ice-extent markers

Tancrede P. M. Leger et al.

Correspondence to: Tancreéde P. M. Leger (tancrede.leger @unil.ch)

The copyright of individual parts of the supplement might differ from the article licence.



Mean-annual sea surface salinity
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Figure S1. Time series of mean annual sea-surface salinity extracted from our two-dimensional input
forcing fields, for six distinct locations taken from different ocean basins offshore the present-day GrIS
(as shown by the inset map). The data are derived from iCESM transient and equilibrium time slice
simulations (see methods section), with linear interpolation used to bridge temporal gaps between
periods covered by these simulations.




Modelled bed isostatic depression during local LGM (relative to present-day)
for the 5 best-fit simulations at local LGM extent test
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Figure S2. Modelled bed isostatic depression during the local LGM (timing is simulation-dependent),
relative to the present-day bed topography, for the 5 best-scoring ensemble simulations at the loca/
LGM extent test.
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Figure S3. 2 kyr ice thickness difference maps between 24 - 22 and 4 - 2 kyr BP for one of the 5 overall
best-fit simulations (which passes all sieves); simulation number 26. Note that the ice-thickness-
difference colorbar minimum and maximum values are different between panels a - ¢ (range: +1000 ; -
1000), and panels f - k (range: +500 ; -500).
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Annual change in GrlS areal extent (grounded ice)
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b) Annual change in GrlIS areal extent (grounded ice)
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Figure S4. Ensemble time series (thin grey lines) of modelled annual change in GrIS-wide grounded
ice areal extent, with best-scoring simulations at both the deglacial extent test (panel a) and the local-
LGM extent test (panel b) highlighted with thick coloured time series.



a) Simulation 31: ~4.9 kyr BP
Holocene Thermal Maximum

b) Simulation 31: ~4.9 kyr BP
Holocene Thermal Maximum
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Figure S5. Modelled ice thickness (panel a) and ice-surface velocities (panel b) at approximately 5 kyr
BP, during minimum Holocene ice extent, for the best-scoring ensemble simulation at the PI-extent test,
i.e. simulation 31. This figure highlights the magnitude of retreat of modelled GrIS margins following
the Holocene Thermal Maximum, in some regions reaching behind the present-day GrIS margin (in
white (panel a) or bright green (panel b)). On both panels, contour lines are 200 m ice-surface elevation
contour intervals.



Ice thickness difference between modelled Pl (1850 AD) and present-day GrIS

a) Model (sim 31) vs present-day b) Model (sim 71) vs present-day C) Model (sim 78) vs present-day
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Figure S6. GrIS thickness difference between modelled PI states (1850 AD) versus the reconstructed
present-day GrlIS ice thickness (BedMachine v4: Morlighem et al., 2017) for the 5 best-scoring
simulations at the P/ extent test.
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Figure S7. Modelled ice-surface velocity difference between modelled PI state (1850 AD) for the best-
scoring simulation at the PI extent test (i.e. simulation 31) versus observed present-day ice surface
velocities of the GrIS (Joughin et al., 2018).
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Figure S8. Pressure-adjusted modelled basal ice temperature of grounded ice for one of our ensemble’s
overall best-fit simulations (which passes all sieves: simulation number 26). The model output data is
shown for timeslices every 2 kyr, between 24 and 2 kyr BP. ‘PMP’ stands for ‘pressure-melting point’.



Grounded basal ice temperatures for best-scoring simulations at local LGM extent test

a) Simulation 37: ~16.8 kyr BP b) Simulation 68: ~16.7 kyr BP
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Figure S9. Modelled basal ice temperatures for grounded ice during the local LGM (timing is
simulation-dependent) for the 5 best-scoring ensemble simulations at the local LGM extent test. ‘PMP’

stands for ‘pressure-melting point’.



a) Simulation ranks at local LGM extent vs deglacial extent tests b) Simulation ranks at deglacial extent vs Pl extent tests
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Figure S10. Linear regressions between ensemble simulation relative ranks at one of our three model-
data comparison tests (e.g. Pl extent test) versus another. A high rank (e.g. 1) is equivalent to the best-
scoring simulation, while a low rank (e.g. 100) represents the worse-scoring simulation. Ensemble
simulations that score well at the local LGM extent test also tend to score well at the deglacial extent
test (R = 0.74) (panel a), for instance, while a negative correlation (R* = 0.65) can be observed between
local LGM extent test ranks and PI extent test ranks (panel c).



a) GrlS ice accumulation rate b) GrlS ice accumulation rate
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Figure S11: Ensemble time series of modelled GrIS-wide integrated ice accumulation rate. The best-
scoring simulations at each of our three model-data comparison tests (panels a — c), and for the five
overall best-fit simulations (which pass all sieves; panel d) highlighted in thick coloured time series.
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Figure S12: Ensemble time series (thin grey lines) of modelled annual change in GrIS-wide grounded
ice area for each of the seven main GrlS regions (whose location are shown in panel b). The 5 overall
best-fit simulations (which pass all sieves) are highlighted with thick coloured times series.
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GrlS surface elevation profiles for 5 best-scoring simulations at "Pl extent" test
a) Pl elevation profiles through NEEM ice core b) Pl elevation profiles through NGRIP ice core
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Figure S13: Modelled ice surface and bed elevations during the PI (1850 AD) extracted across five
different transects for our five best-scoring simulations at the P/ extent test (thicker coloured lines), and
for the present-day GrIS (dashed grey lines). The four transects were drawn following modelled ice
flow lines while ensuring to cross the NEEM (panel a), NGRIP (panel b), GISP 2 and GRIP (panel c),
and the DYE-3 (panel d) ice core locations, as shown by the black lines in the inset maps. The transect

drawn through the southernmost GrIS (panel ) was not drawn to cross any specific ice core locations,
however.
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Figure S14: Three-dimensional views (panels a, b, and d) of bed topography (BedMachine v4 merged
with GEBCO data) and cross elevation profiles (panel e) along a transect drawn across the Kangerluk
Kejser Franz Joseph fjord (73.2°N; 23.2°W; black line in panel a). Elevation profiles are shown for
three different grid resolutions (5 km, 1 km, and 150 m). While average slopes over such a terrain



decreases by 10% between 150 m and 1 km resolution grids, it decreases by around 40% between 150
m and 5 km resolution grid, 5 km being the model resolution of this study. For more details regarding
the bed topography used in this modelling study, the reader is referred to Figure 1 and its caption.

Further discussion on the topographic analysis:

We note that the CE and NE GrIS regions, where the greatest model-data misfits with
PaleoGrIS 1.0 are found (Figs. 18, 22, 23), also present the highest concentration of high and
steep topographies (1500 - 3000 m a.s.l.) in Greenland (Morlighem et al., 2017). We
hypothesise that coarse model resolution may be a factor contributing to the higher relative ice-
extent misfits observed in these regions during the Late-Glacial and Holocene deglaciation.
Indeed, a large portion of the Eastern Greenland coast features the steepest and highest
mountain ranges of the continent, stretching from 67 °N (Schweizerland Alps) to 77 °N (Halle
range), and dissected by a complex network of overdeepened valleys. This topographic setting
leads to the highest concentration of deglaciated and relatively long (>100 km), narrow (<15
km), deep and steep-sided fjords in Greenland (Swift et al., 2008). These major fjord systems
include the Kangertittivaq (Scoresby Sund), Kangerluk Kong Oscar, Kangerluk Kejser Franz
Joseph (Figure S14), Gael Hamke Bay, Shannon Bay and Dove Bay (76°N) complexes.
According to geochronological reconstructions, the retreat of GrIS outlet glaciers from the
outer mouths of these CE and NE Greenland fjords to near their present-day positions occurred
mainly between ~12 and ~8.5 kyr BP (e.g. Marienfeld, 1990; Bennike et al., 1999; Hékansson
etal., 2007; Leger et al., 2024). However, the majority of this retreat is missing in our ensemble
simulations.

A 5 x 5 km horizontal resolution may not be fine enough to capture the complexity of GrIS
margin retreat into the complex network of over-deepened fjords and steep valleys of these
regions. By drawing topographic elevation profiles across one the region’s main fjords
(Kangerluk Kejser Franz Joseph, 73.2°N; 23.2°W), we find that even for one of the widest NE
Greenland fjords (~20 km), formerly acting as the main topographic conduit for the
Waltershausen Glacier, the topography is heavily flattened at 5 km resolution (Figure S14).
Across the profile, summit elevations of fjord-side mountains are underestimated by 30 - 50%,
and average slope along the transect is 40% and 35% lower than for 150 m and 1 km resolution
grids, respectively (Figure S14). Thus, at 5 x 5 km resolution, the modelled GrIS is less
topographically constrained than it should be during deglacial margin retreat and thinning
(Figure S14). A better resolved topography (e.g. 1 x 1 km or lower) would likely lead to both
higher ice flux rates within narrow valleys, due to higher summits, steeper bed slopes, and
greater ice flow convergence, but also to deeper fjords enabling more water ingress as modelled
tidewater glaciers retreat. Both mechanisms, unlikely to be captured at 5 x 5 km, would together
enhance modelled GrIS thinning and retreat rates during the Late-Glacial and early-to-mid
Holocene in these regions. In such steep terrain, higher-resolution modelling may lead to better
model-data fit for a given parameter configuration (Leger et al., 2025). This was in part shown
by Aschwanden et al. (2016) who, using PISM, found that observed flow velocities of main
present-day GrlS outlet glaciers (e.g. Nuussuup Sermia, Sermeq Kujalleq) were better matched
using resolutions of 600 and 1500 m, relative to 3600 and 4500 m, with the latter causing



maximum flow velocities to be underestimated by factors of 4 - 7. Therefore, while the inability
to resolve fine topographies generates biases across the domain, we argue its negative impact
on model-data fit is likely to be greater in CE and NE Greenland, relative to other regions, due
to the greater concentration of steep and high-relief topographies.
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Figure S15: GrIS thickness difference between modelled PI states versus the reconstructed present-
day GrlIS ice thickness (BedMachine v4) for one of the 5 overall best-fit ensemble simulations (which
passes all sieves), i.e. simulation 45.
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