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Abstract. Lidar is an effective tool to measure snow depth
over key watersheds across the United States. Lidar-derived
snow depth observations from airborne platforms have
demonstrated centimeter-level accuracy at high spatial reso-
lution. However, ground-based and airborne lidar surveys are
costly and limited in space and time. In recent years, there
has been an emerging interest in using spaceborne lidar to
estimate snow depth. Preliminary results from spaceborne li-
dar altimeters such as the NASA Ice, Cloud, and Land Ele-
vation Satellite-2 (ICESat-2) can provide routine snow depth
retrievals over watersheds, though further research on accu-
racy, coverage, and operational potential is needed. In this
review, we outline the current status of research using space-
borne lidar to derive snow depth. We focus on the currently
operational ICESat-2 mission, with a summary of snow ob-
servations gathered from previous studies. An example snow
depth retrieval using ICESat-2 is also given over the Alaskan
tundra. We also outline best practices for spaceborne lidar
snow depth retrieval, based on findings from recent stud-
ies. We conclude with a discussion of ongoing challenges
for spaceborne lidar, with suggestions for future studies and
requirements for future mission concepts.

1 Introduction

Seasonal snow is a critical factor in Earth’s climatological,
ecological, and hydrological processes. Annually, seasonal
snow covers a maximum extent of approximately 36 % of
the Earth’s Northern Hemisphere (Estilow et al., 2015; Wrze-
sien et al., 2019), reflecting a significant portion of the in-
coming solar radiation and helping to cool the planet. Snow
plays an integral role in the well-being of many high-latitude
wildlife species and ecosystems, including the boreal for-
est, the largest terrestrial ecosystem (Boelman et al., 2019;
Reinking et al., 2022). Melt water from seasonal snow ac-
counts for approximately one-sixth of the world’s freshwa-
ter supply and supports numerous hydrologic applications
including hydropower, agriculture, and recreation (Barnett
et al., 2005; Li et al., 2017). For these reasons, snow is listed
as a future research need in a recent report by the Intergov-
ernmental Panel on Climate Change (IPCC, 2022). Snow wa-
ter equivalent (SWE) and depth are also identified as Essen-
tial Climate Variables needed to better understand our chang-
ing climate by the Global Climate Observing System Imple-
mentation Plan (GCOS, 2022) and the 2017 Decadal Survey
for earth science (NASEM, 2018).

As snow is highly variable over space and time (Sturm
et al., 2010), it is especially important to capture SWE het-
erogeneity at basin-wide scales to accurately reproduce ob-
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served snowmelt, runoff, and streamflow in models (Brauchli
et al.,, 2017; DeBeer and Pomeroy, 2017; Kiewiet et al.,
2022). Frequent, high-resolution, spatially-distributed obser-
vations are needed to characterize this important component
of the water and energy cycle. The observational require-
ments for SWE and snow depth stated in the GCOS Im-
plementation Plan and the 2017 Decadal Survey suggest a
spatial resolution of 500 m to 1km, with higher resolution
(100m) needed in the mountains. Additional requirements
include a temporal frequency of 1-5d and an accuracy of
10 %-20 %.

Many properties of snow are currently observable globally
by satellites, including snow extent and albedo. Spaceborne
technologies, notably multispectral imagers, have been most
successful at mapping snow cover on the global scale. Cur-
rently, methods exist for mapping snow cover with the Land-
sat collection (Dozier, 1989; Gascoin et al., 2019), Sentinel-
2 (Gascoin et al., 2019), the Moderate Resolution Imag-
ing Spectroradiometer (MODIS; Hall et al., 2002), and the
Visible Infrared Imaging Radiometer Suite (VIIRS; Riggs
et al.,, 2017). Methods also exist for retrieving the albedo
and optical grain size of snow using MODIS and Sentinel-
3 (Kokhanovsky et al., 2019; Painter et al., 2009). Retrieval
methods for snow depth and SWE are documented for sen-
sors such as the Advanced Microwave Scanning Radiometer
2 (AMSR-2; Tedesco and Jeyaratnam, 2019) and Sentinel-
1A (Oveisgharan et al., 2024). While these approaches offer
valuable snow information at global and regional scales, they
are challenged by multiple factors, including snow condi-
tions (e.g., dry, wet, deep, or shallow snow), vegetation, and
topography. Because of these challenges, we lack informa-
tion about snow depth and SWE at the recommended scales
needed to inform climate and water resource applications.

Recent studies have shown that it is possible to measure
snow depth and fill gaps in global snow measurement capa-
bilities from space using lidar altimetry. This is an appealing
alternative to in-situ and airborne lidar methods because of
its potential for global-scale observations. Spaceborne lidar
derives snow depth using methods established with airborne
lidar, including differential altimetry, and unique methods
(Sect. 3). Spaceborne lidar altimeters, such as the Ice, Cloud,
and Land Elevation Satellite-2 (ICESat-2; Markus et al.,
2017) and the Global Ecosystem Dynamics Investigation
(GEDI; Dubayah et al., 2020), provide accurate elevation ob-
servations, with centimeter-level accuracy for ICESat-2 over
ice sheets and decimeter-level accuracy for both GEDI and
ICESat-2 over forests (Adam et al., 2020; Brunt et al., 2021).
Although current spaceborne platforms have relatively long
revisit times and coarse across-track sampling, satellite al-
timetry could theoretically be used for routine measurements
of snow depth over key watersheds, such as the Tuolumne
River Basin in California, USA or the European Alps.

In this paper, we review the current status of research us-
ing spaceborne lidar, and evaluate its potential to derive snow
depth to meet the research and operational needs to accu-
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rately derive SWE. Our review is based on an extensive lit-
erature search using SciSpace, Web of Science, and research
previously published by the authors. Based on our literature
search, we determined that existing research on the subject
concentrates on the currently operational ICESat-2 mission.
We summarize published studies and present a case study
over the tundra of Alaska to demonstrate accuracy and un-
certainty estimates for several current methods. We also doc-
ument challenges for current measurement approaches, with
suggestions for future studies. We focus on terrestrial snow
in this paper, but we acknowledge that snow depth retrievals
have also been attempted over land ice (Enderlin et al., 2022;
Huetal.,2022b; Lu et al., 2022) and sea ice (Hu et al., 2022b;
Kwok et al., 2020; Lu et al., 2022). Snow depth measure-
ments over ice masses have different challenges that are out-
side the scope of this review.

2 Spaceborne Lidar Missions

Spaceborne lidar systems follow similar principles to their
airborne and ground-based counterparts. A detailed review
of airborne and ground-based lidar is provided by Deems
et al. (2013) for interested readers. For a given instrument,
key observation parameters include the footprint size, along-
track resolution, and across-track resolution. A graphic out-
lining these terms is shown in Fig. 1. The footprint size rep-
resents the diameter of individual laser pulses at the surface.
The footprint size is typically small — for instance, ICESat-2
has a footprint size of 11 m. Along-track resolution is deter-
mined by the pulse repetition rate of the instrument, and it de-
fines the spacing between consecutive observations along the
satellite track. For example, the base-level ICESat-2 product
has an along-track resolution of 0.7 m. Across-track resolu-
tion describes effective width of a lidar swath, which can
span kilometers for multi-beam systems like ICESat-2 and
GEDI. However, these multi-beam configurations create data
gaps between individual beams within the swath.

A full list of known spaceborne lidar platforms and their
operational periods may be found in Fig. 2. The space-
based lidar instruments listed have two primary measurement
modality: waveform-based and photon-counting. Waveform
lidar systems record the change in amplitude, or signal
strength of the return, over time. The shape of the received
waveform is sensitive to terrain characteristics such as sur-
face roughness, which may cause centimeter-to-decimeter
levels of bias in the final elevation measurement (Dong and
Chen, 2017). Photon-counting lidar systems offer an alter-
native by time-tagging and geolocating received photons
relative to a transmitted signal (Luthcke et al., 2021). Re-
ceived photons are distinguished as signal or noise using
automatic classification algorithms that are based on either
histograms of detected photons (Neumann et al., 2019) or
more complex algorithms using iterative nearest-neighbor
filters (Neuenschwander and Pitts, 2019) or photon-density
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Figure 1. Sample lidar swath (orange) to demonstrate along-track
resolution, across-track resolution, and footprint size. In this ex-
ample, the swath width (across-track resolution) is approximately
120 m, the footprint size is 10 m, and the along-track resolution is
50 m. Note that these values do not reflect any active or proposed
spaceborne lidar mission, and they were arbitrarily selected for vi-
sualization purposes.

approaches (Herzfeld et al., 2017). While these systems pro-
vide improved along-track spatial resolution compared to
waveform-based platforms, their lower transmitted energy
results in greater attenuation through surface with low re-
flectance, which may limit measurement coverage.

In the following subsections, we describe the individual
spaceborne lidar missions that have been used for snow stud-
ies: ICESat, GEDI, and ICESat-2. A summary of the techni-
cal specifications for each spaceborne lidar is given in Ta-
ble 1. We recognize retired and future missions shown in
Fig. 2 that include spaceborne lidar technology. The Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) mission included the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) as part of its scientific
payload (Winker et al., 2009). The CALIOP instrument used
polarized lidar backscatter to generate vertical profiles of
clouds and aerosols in the atmosphere. Similarly, the Cloud-
Aerosol Transport System (CATS) was a lidar onboard the
International Space Station with similar science objectives to
CALIPSO (McGill et al., 2015). However, both CALIPSO
and CATS lacked surface elevation data products, and along-
track resolution at the surface was compromised in favor of
fine vertical resolution. Because of these limitations, the only
snow application for CALIPSO known by the authors is the
blowing snow product (Palm et al., 2017), and CATS has no
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known snow applications. Hence, we do not provide further
discussion on CALIPSO or CATS in this paper. The Earth
Dynamics Geodetic Explorer (EDGE) and the Surface To-
pography and Vegetation (STV) mission concepts are pro-
posed spaceborne platforms that may include lidar as part of
their respective payloads. If launched, both missions would
become operational in the 2030s (Fig. 2). More information
about these missions may be found in Sect. 6.5.

2.1 ICESat

The original ICESat mission was launched in early 2002 with
the goal of measuring interannual changes in ice elevation.
Its sole onboard instrument, the Geoscience Laser Altime-
ter System (GLAS), primarily operated at 1064 nm, but it
also included a photon-counting-based 532 nm channel to de-
tect clouds and aerosols. The laser fired at a rate of 40 Hz
with a 70 m footprint, with each measurement separated by
170 m along-track (Schutz et al., 2005). ICESat was origi-
nally conceived to operate continuously, but an engineering
flaw in the three lasers required a change in the operation of
GLAS to maximize laser lifetime (Abshire et al., 2005). ICE-
Sat performed a total of 18 33 d campaigns before ceasing
operations in late 2009 (https://nsidc.org/sites/default/files/
laseroperationalperiods.pdf, last access: 15 October 2024).

The main altimetry products from ICESat are the
GLAS/ICESat Level-2 products (GLAH12-15). Of these, the
Global Land Surface Altimetry product (GLAHI14) is de-
signed for land-based elevation observations, so it is the pre-
ferred ICESat product for calculating the difference in ele-
vation between snow-on and snow-free conditions to infer
snow depth (Treichler and Kiéb, 2017). However, there is
approximately 70 km cross-track spacing at the mid-latitudes
as a consequence of the limited observation strategy, so the
coverage of ICESat is notably less comprehensive than other
platforms over mid-latitude watersheds (Fig. 3a).

2.2 GEDI

The GEDI mission was designed to measure canopy height
and structure from space (Dubayah et al., 2020). GEDI was
launched and added to the International Space Station (ISS)
in December 2018 with a planned operational period of
2 years. The instrument operated continuously until it was
temporarily placed in storage in March 2023 and returned to
service in April 2024. GEDI is a full waveform lidar with a
1064 nm wavelength, similar to ICESat. The structure of the
received waveform is used to distinguish between the ground
and the canopy, and changes in the waveform amplitude and
shape relative to the transmit pulse are used to derive canopy
metrics. The GEDI footprint is 25 m in diameter, with 60 m
along-track sampling from 8 beams that are spaced 600 m
apart in the cross-track direction (https://gedi.umd.edu, last
access: 15 October 2024). The GEDI product relevant for
snow depth is the Level-2A product, which provides along-
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Figure 2. A timeline of known spaceborne lidar missions for Earth Observation from 2000—present. Bars are colored by the primary wave-
length(s) for each platform: orange for 1064 nm and green for 532 nm. The “Operational” section includes currently active missions, whereas
the “Retired” section denotes missions that are no longer active. The “Future” section indicates missions that are expected to include lidar.
GEDI was placed in temporary storage aboard the International Space Station from March 2023 to April 2024. The proposed EDGE mission
concept has a notional 2 year duration, but it could be extended as GEDI and ICESat-2 have been.

Table 1. Instrument specifications for the spaceborne lidar platforms discussed in detail in this study. The recommendations given by the

2017 Decadal Survey (DS17) and GCOS are included for comparison.

ICESat GEDI ICESat-2 DS17/GCOS

Sensor Type Waveform Waveform  Photon-counting —
Wavelength 1064 nm 1064 nm 532nm -

Footprint diameter 70m 25m 11m -

Number of ground tracks 1 8 6 -

Repeat time 2-3 times per year 3d 91d 3-5d

Max. Latitude 86° 51.6° 88° 88° (global)
Along-track resolution 172m 60m 0.7m 100 m
Cross-track spacing - 600 m 3.3km 100 m

track ground elevation and canopy height estimates. Cover-
age and sampling density is limited by the ISS orbit inclina-
tion of 51.6°, though dense spatial coverage is available in
the mid-latitudes (Fig. 3c).

2.3 ICESat-2

The ICESat-2 mission was launched in September 2018 to
continue measurements of surface height of ice sheets and
sea ice, as begun by ICESat, as well as vegetation height.
Like ICESat, it carries a single instrument, the Advanced To-
pographic Laser Altimeter System (ATLAS; Neumann et al.,
2019). ATLAS is a photon-counting lidar that assigns a time
and location (latitude and longitude) to each received pho-
ton. A single laser is split into 6 beams, with 3 beam pairs
spaced by 3.3 km in the across-track direction and 90 m sep-
aration between beams within each pair. Each beam pair in-
cludes a strong beam and a weak beam to obtain sufficient
coverage of high reflectivity (weak beam) and low reflec-
tivity (strong beam) targets. The beams have an along-track
sampling distance of 0.7 m, and each beam has a footprint
of 11 m (Magruder et al., 2021), which allows for signifi-
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cant footprint overlap. The satellite is in a polar orbit with
an altitude of 500km and a 91d repeat cycle. The ICESat-
2 orbit provides dense coverage near the poles that becomes
sparser in the mid-latitudes (Fig. 3b), with cross-track spac-
ing of 2.5 and 22km at 80 and 40°N, respectively. In the
polar regions, data are collected along repeat ground tracks
every 91d cycle, while systematic and user-requested off-
pointing at lower latitudes improve spatial coverage for veg-
etation mapping and for regions of interest. In the past year,
the mission has pointed to prior data collections (repeat track
pointing) to enable snow applications.

ICESat-2 currently has 22 data products designed for anal-
ysis of ice sheets, vegetation, sea ice, and inland water. Of
these products, three have been used in studies evaluating the
potential for seasonal snow depth measurements: the Global
Geolocated Photon Data product (ATLO03); the Land Ice El-
evation product (ATL06); and the Land, Water, and Vege-
tation Elevation product (ATLO8). ATLO3 is the base-level
ICESat-2 product that is used to produce all higher-level
products (Neumann et al., 2019). It provides the highest in-
track sampling at 0.7 m, but also has the least noise filter-
ing applied. ATLO6 estimates surface height by aggregat-
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Figure 3. Observed satellite laser altimetry maps of the Tuolumne
River Basin, CA (highlighted in orange), with Landsat imagery mo-
saics used as a basemap. The blue lines represent the total coverage
of each lidar satellite for a single winter (mid-December to mid-
March) season: (a) ICESat in Winter 2008, (b) ICESat-2 in Winter
2022, and (c¢) GEDI in Winter 2022.

ing ATLO3 photons into 40 m segments that overlap by 20 m
(Smith et al., 2019). A windowed median is used to filter pho-
tons by quality and generate refined aggregations of surface
height (Smith et al., 2018). The ATLOS product is designed
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to process ATLO3 photons and discriminate between ground
photons, noise, and several layers of tree canopies (Neuen-
schwander and Pitts, 2019). A median-based filtering algo-
rithm known as the Differential, Regressive, and Gaussian
Adaptive Nearest Neighbor (DRAGANN) method is used
to aggregate ground and canopy photons in 100 m segments
with no overlap.

A recent development in the ICESat-2 community is Slid-
eRule Earth, an open-source software package and an on-
demand service to efficiently process ICESat-2 data in the
cloud (Shean et al., 2023). In addition to facilitating standard
ICESat-2 data product subsetting and delivery, SlideRule
allows users to generate customizable ICESat-2 products
using streamlined, parallel implementations of the ATL06
and ATLOS algorithms. Additional user controls allow for
ATLO3 photon filtering based on signal confidence and the
native ATL0O3, ATLOS8, and the Yet Another Photon Classi-
fier (YAPC) photon classification approaches (Sutterley and
Gibbons, 2021). It also includes support for efficient server-
side sampling of large cloud-hosted DEM (e.g., ArcticDEM
and REMA, 3DEP) archives, such as ArcticDEM, the Ref-
erence Elevation Model of Antarctica (REMA), and the 3-D
Elevation Program (3DEP) (Porter et al., 2023; Stoker and
Miller, 2022; Howat et al., 2022), as well as support for mul-
tiple GEDI products.

3 Deriving Snow Depth from Lidar Products

A list of existing studies using spaceborne lidar for snow ap-
plications is given in Table 2, with the locations or regions
of interest shown in Fig. 4. The listed studies perform snow
depth accuracy assessments for ICESat, GEDI (waveform-
based) and ICESat-2 (photon-counting) data products, with
evaluation of land cover classification and terrain character-
istics. The NASA SnowEx campaigns in 2020, 2021, and
2023 also included targeted ICESat-2 off-pointing to col-
lect data over field sites in Colorado (2020/2021) and Alaska
(2023), with the goal of an assessment of ICESat-2 snow
depths in mountainous terrain, boreal forests, and tundra
(Vuyovich et al., 2024). Most of the featured studies derive
snow depth using differential altimetry, though other meth-
ods have been proposed by the community for ICESat-2.
When discussing the listed studies, bias refers to the differ-
ence, or residual, between spaceborne snow depths and val-
idation depths, whereas uncertainty is a statistical range of
depth values observed by a spaceborne platform. We also use
the terms “accuracy” and “bias” interchangeably. We outline
these approaches and findings from relevant scientific litera-
ture in the following subsections.

3.1 Differential Laser Altimetry

The most common method to derive snow depth from lidar
is to compare two elevation datasets — one acquired when

The Cryosphere, 19, 5671-5691, 2025
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Huetal.,
(2022a)

Figure 4. Maps of the study sites listed in Table 2, using a basemap derived from Landsat imagery. The maps zoom in to specific regions
of interest, including the western United States and Alaska (a) and Europe and Asia (b). The relevant study is given for each location. The
SnowEXx 2023 field sites in Alaska are also shown, as extensive ICESat-2 tasking was performed for these sites and evaluation is ongoing. Lu
et al. (2022) utilized ICESat-2 granules that spanned hundreds of kilometers, so only the midpoint of these granules is shown here.
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Figure 5. A simple example showing how snow depth is calculated using differential altimetry, with ICESat-2 used as an analogue. A snow-
off elevation measurement is first obtained (a), then a snow-on measurement is taken over the same location (b). The snow depth is taken
as the difference between the two height measurements. Imagery is obtained from NASA SnowEx time-lapse cameras in Bonanza Creek
Experimental Forest, Alaska on 14 October 2022 (a) and 22 December 2022 (b).

the surface was snow-free, and one acquired when the sur-
face was snow-covered. Snow depth is assumed to be the
elevation difference between the two datasets, with com-
bined measurement uncertainty from both. This approach is
known as “differential altimetry”, and studies have applied
this method to airborne/UAV lidar acquisitions (Deems et al.,
2013; Painter et al., 2016; Harder et al., 2020; Jacobs et al.,
2021) and terrestrial lidar acquisitions (Currier et al., 2019;
Prokop, 2008; Revuelto et al., 2015) to achieve snow depth
measurement accuracy of 6—17 cm, depending on the plat-
form and study region. Figure 5 provides a visual on the
measurements needed to obtain snow depth via differential
altimetry. The example in Fig. 5 is on sloped terrain with
low-lying vegetation, which may introduce uncertainties to a
depth retrieval (Sect. 5).

The differential method may also be used between space-
borne lidar observations and a reference snow-off DEM. The

The Cryosphere, 19, 5671-5691, 2025

first known study to use spaceborne lidar for differential al-
timetry is Treichler and Kééb (2017), who used ICESat sur-
face heights (GLAH14) and three reference DEMs to esti-
mate snow depth in the forests of Norway. Preliminary work
by Shean et al. (2021) found that GEDI snow depths had
improved mid-latitude spatial coverage compared to ICESat
and ICESat-2, but with larger biases and less temporal fre-
quency. Subsequent work with spaceborne lidar has focused
on ICESat-2. For instance, Enderlin et al. (2022) used the
ICESat-2 ATLO06 and ATLOS8 products alongside airborne li-
dar and Worldview stereo imagery to derive snow depth over
Wolverine Glacier, AK and Reynolds Creek Experimental
Watershed, ID. The Tuolumne River Basin in California has
been assessed by Deschamps-Berger et al. (2023) and Besso
et al. (2024) using ATLO6 and ATLO6-SR (SlideRule) re-
spectively, with the Airborne Snow Observatory (ASO) used
as the primary DEM source. Besso et al. (2024) also exam-

https://doi.org/10.5194/tc-19-5671-2025
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Table 2. List of published studies that used spaceborne lidar for snow depth measurements, with the primary study locations and areal
coverage (in km?, land cover types, and snow depth retrieval method given. The lidar product refers to the spaceborne lidar altimeter of
interest, and the reference elevation(s) are the DEMs used for differencing. Hu et al. (2022b) and Lu et al. (2022) have continental-scale
study domains, so their areal coverage is not given.

Study Domain Land cover Method Lidar product Reference Validation
elevation
Treichler and Hardangervidda, Mountain Altimetry- ICESat SRTM DEM Weather
Kidb (2017) Norway DEM (GLAH14) (45 m) stations
(4500 kmz) differencing Kartverket Airborne lidar
DEM (10 m) DEMs (1 m)
Shean et al. Grand Mesa, Forest Altimetry- ICESat-2 Worldview-3 Weather
(2021) CO (1300 kmz) Mountain DEM (ATLOS, (1 m) 3DEP stations
differencing Sliderule) (1 m) ASO
GEDI (L2A) (Bm)
Hu et al. Northern Bare earth Cross-track ICESat-2 — Weather
(2022b) Xinjiang Grassland differencing (ATLOS) stations
Luetal. (2022) Western US Forest Backscatter ICESat-2 — 4 km reanalysis
Mountain deconvolution (ATLO03) 24 km
reanalysis
Enderlin et al. Reynolds Mountain Altimetry- ICESat-2 Airborne lidar —
(2022) Creek, ID glacier Forest DEM (ATLO6, (0.5m, 1 m)
(239 kmz) differencing ATLO08) Worldview
Wolverine (2m)
Glacier, AK
(15.6km?)
Deschamps- Tuolumne Forest Altimetry- ICESat-2 ASO (15m) ASO (15m)
Berger et al. Basin, CA Mountain DEM (ATLO06) Pléiades (15 m)
(2023) (5000 kmz) differencing Copernicus
(30m)
Besso et al. Tuolumne Forest Altimetry- ICESat-2 ASO (3m) ASO (3m)
(2024) Basin, CA Mountain DEM (SlideRule) Airborne lidar Weather
(5000 kmz) differencing (1 m) stations
Methow Valley,
WA
(1800 km?)
Meyer et al. Hardangervidda, Mountain Altimetry- ICESat-2 Kartverket Sentinel-1
(2025) Norway DEM (ATLO03) DEM (10m) (500 m) In-situ
(4500 kmz) differencing data

ined Methow Valley, WA using SlideRule and airborne lidar
from the USGS 3DEP program (Stoker and Miller, 2022).

3.2 Other Methods

The differential method is the most common and consistent
way to derive snow depth from lidar, but Hu et al. (2022b)
devised a new technique that exploits time delay due to light
penetration into the snowpack (see Sect. 5.4) and ICESat-2
photon counts to infer snow properties. Hu et al. (2022b) and
Lu et al. (2022) deconvolved backscattered ICESat-2 pho-
tons that are reflected from the snow subsurface to derive
path length distributions. These distributions are then used
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to estimate snow depth, assuming that (i) terrestrial snow is
a Lambertian surface and (ii) there is a sufficiently strong
signal return. An uncertainty analysis was performed by Lu
et al. (2022) for both studies. When compared to a daily
4 km resolution snow depth product, the authors found snow
depths with a reported accuracy of 14 cm, with 23 cm in un-
certainty. Hu et al. (2022b) also used ICESat-2 backscatter
to estimate snow albedo and grain size, though the accuracy
of these quantities was unclear due to a lack of validation
data and coarse spatial resolution. Both studies encompassed
a wide range of terrain features, including land ice, sea ice,
and mountainous terrain.
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It is possible to use repeat tracks of GEDI or ICESat-
2 or “crossover” intersections from non-repeating tracks to
perform differential altimetry measurements. Using this ap-
proach, Hu et al. (2022a) derived snow depth using inter-
secting ICESat-2 tracks over grasslands in Xinjiang, China,
with a reported RMSE of 4 cm using ATL08. However, using
cross-tracking spaceborne lidar paths consistently is difficult
in the mid-latitudes due to infrequent repeat coverage, geolo-
cation uncertainty in repeat tracks, and possible attenuation
by clouds.

Based on the existing studies, ICESat-2 has shown the
most promising results for spaceborne lidar snow depth mea-
surements (Table 3), though studies using other platforms are
limited. Generally, snow depth derived from ICESat-2 have
an RMSE of up to 33 cm, as determined by the studies in
Table 2. ICESat is shown to perform slightly worse, with
an RMSE of 47 cm reported by Treichler and Kaib (2017).
GEDI has the largest bias among the three lidar platforms,
with an RMSE of 101 cm over Grand Mesa, CO (Shean et al.,
2021). These platforms are also limited in their revisit fre-
quency (ICESat) or their global coverage (GEDI). However,
it must also be noted that the above assessments occur over
different sites, so direct intercomparison is not possible. Be-
cause ICESat-2 has the most potential for snow depth appli-
cations, particularly over flat terrain, we will primarily focus
on its measurement performance for the remainder of the pa-
per.

4 ICESat-2 Case Study in Tundra Environment

Previous sections outlined the basic principles and stud-
ies for snow depth retrievals with spaceborne lidar. In
this section, we provide a step-by-step example of the
retrieval process over the Alaskan tundra. This sec-
tion and the associated code sourced from the ICESat-2
2023 hackweek (https://icesat-2-2023.hackweek.io/tutorials/
snow-depth/applications-tutorial-snow-depth.html, last ac-
cess: 4 September 2025, Huppenkothen et al., 2018) enable
interested readers to perform simple snow depth calculations
with ICESat-2. These methods are also applicable to the orig-
inal ICESat and GEDI, though different sites may require ex-
amination due to varying spatial coverage.

The Alaskan tundra serves as a useful example site for
multiple reasons. First, the North Slope of Alaska is at a
higher latitude than previous studies, so there are a greater
number of ICESat-2 tracks intersecting the region. Second,
the flat terrain minimizes slope-related errors and issues with
DEM co-registration, thereby simplifying the retrieval pro-
cess. Third, vegetation is limited to shrubs and tussocks.
While low-lying vegetation and permafrost melt may intro-
duce centimeter-to-decimeter uncertainty to snow-off assess-
ments (Sect. 5.3), comparable snow depths should be ob-
served between airborne lidar and ICESat-2 when the snow-
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off lidar track is acquired within a year of the snow-on
ICESat-2 track.

A snow depth retrieval with ICESat-2 requires snow-on
surface elevation data, which is obtainable using either the
icepyx (Scheick et al., 2023) or SlideRule Earth (Shean et al.,
2023) Python packages. The former provides access to pre-
processed ICESat-2 ATLO6 and ATLOS that implement user-
defined spatial and temporal boundaries, while the latter gen-
erates customized ICESat-2 data from the ATLO3 product.
This example uses SlideRule Earth for its customization op-
tions, though the Zenodo code includes a data access routine
for icepyx. SlideRule Earth was configured with a 20 m seg-
ment length (“len” in the code) and a 10 m along-track reso-
lution (“res”) within the region shown in Fig. 6a. ATLO3 pho-
tons within each segment were filtered for high-confidence
photons (“cnf”) originating from the surface (“atl08_class”™).
For simplicity, data were obtained from a single reference
ground track (RGT #1097) that overpassed the region on 4
March 2022. Figure 6b overlays the queried data on snow
depth data from the University of Alaska Fairbanks (UAF,
Larsen, 2024).

The UAF lidar data were obtained over the region of inter-
est on 12 March 2022 (snow-on) and 31 August 2022 (snow-
off), respectively. The data are provided in raster format at
0.5 m resolution, so they must be co-located with ICESat-2
for proper analysis. A simple method to co-locate ICESat-2
and UAF lidar is through a spline interpolant, which approx-
imates surface elevation or snow depth such that:

huar & f (xis2, Yis2) (D

where hyar is UAF lidar surface elevation and xijsp and yig
are the spatial coordinates along the ICESat-2 track. Fig-
ure 7a shows co-located UAF snow-off data with ICESat-2
snow-on data. Although small, there is a clear positive dif-
ference in the ICESat-2 elevations, which is interpreted as
snow depth. If we calculate the difference between the co-
located elevation products, we obtain ICESat-2 snow depth

(dis2):
disZ =Ah= his2,on - hUAF,off (2)

where hig on 1S the snow-on ICESat-2 elevation and hyaFr,off
is the UAF lidar snow-off elevation (units of meters). Fig-
ure 7b compares the calculated ICESat-2 snow depths to
co-located UAF lidar depths. Despite the simple co-location
scheme, there is good agreement between the depth sources.
The median bias and normalized median absolute deviation
(NMAD, see Sect. 6.2) for the ICESat-2 depths are —4 and
+5.7 cm, respectively, indicating high accuracy and low un-
certainty in the derived depths.

The process shown here is applicable to other watersheds,
with ICESat and GEDI elevation data, and with other snow-
offt DEMs/DTMs. However, other environments may intro-
duce factors affecting ICESat-2 retrieval accuracy and un-
certainty, requiring users to experiment with different data
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Table 3. Bias and uncertainties for snow depths derived from the studies in Table 2. The accuracy metrics and lidar altimeters for each study
are also given. Hu et al. (2022b) is omitted from the table because accuracy and uncertainty of the method is given by Lu et al. (2022).

Study Altimeter Bias metric  Bias (cm) % of Median Uncertainty  Uncertainty (cm)
Depth metric

Treichler and ICESat RMSE 9-15 (Western forest) 5 %—8 % NMAD 103
Kaidb (2017) 40-64 (Eastern forest) 34 %-55 %
Shean et al. GEDI RMSE 101 - - -
(2021) ICESat-2 19
Hu et al. ICESat-2 RMSE 4.2 27.6 % - -
(2022a)
Luetal. (2022) ICESat-2 RMSE 14 28 % Standard 9.6

deviation
Enderlin et al. ICESat-2 Residual +20 (slope < 0.5°) 29 % MAD 60
(2022) difference —100 (slope > 20°)
Deschamps- ICESat-2 Residual —35 (ASO, slope < 10°) 12 % NMAD 439 (ASO, slope < 10°)
Berger et al. difference +59 (ASO, slope > 40°) 20 % 4148 (ASO, slope > 40°)
(2023) —53 (Pléiades) 18 % +84 (Pléiades)

+53 (Copernicus) 18 % 4300 (Copernicus)

Besso et al. ICESat-2 Residual —5 (slope < 10°) - Standard 41
(2024) difference —60 (slope > 25°) deviation

M

| UAF Snow Depth [m]

I 1.25

-148.950 -148.800 -148.650 -148.500

70.100 70.100

70.050 70.050

70.000

-148.950 -148.800 -148.650 -148.500

Figure 6. (a) Spatial domain of a SnowEx field site on the Alaskan coastal plain used for the retrieval example. The bottom right image
shows the relative location of the site. (b) Snow depth product over the field site (orange box in a) as derived from UAF airborne lidar, with
ICESat-2 RGT 1097 (4 March 2022) given in green.
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Figure 7. (a) Co-located ICESat-2 (blue) and UAF lidar (orange)
surface elevations over the example site in Northern Alaska. The
ICESat-2 data was obtained from 4 March 2022, and the UAF lidar
data is from 31 August 2022 to emphasize elevation differences in
snow-on and snow-off conditions. (b) Snow depth estimates from
ICESat-2 and UAF lidar over the same track as (a), with the UAF
lidar depths originating from 12 March 2022. ICESat-2 snow depth
is estimated as the difference between the two curves in (a).

products or SlideRule Earth configurations. The following
sections provide greater detail on factors that may impact re-
trievals, as well as methods that may mitigate uncertainties.

5 Common Error Sources

The case study in Sect. 4 demonstrates that accurate snow
depth measurements in the tundra are possible to attain via
ICESat-2. The studies in Table 2 also show that GEDI, ICE-
Sat, and ICESat-2 can retrieve snow depth over several land
classes. However, snow depth accuracy and uncertainty differ
between studies. The lidar platform and the retrieval method
appear to have an influence, but accuracy and uncertainty
also vary even between ICESat-2 studies using differential
altimetry. In this section, we discuss possible sources of un-
certainty for space-based lidar snow depth retrievals, includ-
ing slope and terrain, vegetation, DEM source, and snowpack
penetration. These error sources and the expected biases are
summarized in Table 4.

5.1 Terrain Characteristics

Mountains have characteristic surface relief and roughness
that can introduce horizontal and vertical uncertainty in li-
dar measurements (Deems et al., 2013). Complex topography
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spreads the footprint of a laser pulse non-uniformly, making
precise geolocation of the received signal more difficult. Ini-
tial geolocation error is primarily related to instrument point-
ing errors that are exacerbated over sloped surfaces. Addi-
tional geolocation errors contribute directly to height errors
as the tangent of the surface slope (Sect. 6.2). Pulse spreading
also affects the return time of a received signal, adding un-
certainty to surface elevation estimates. It is therefore critical
to identify roughness- and slope-based errors in both snow
depth validation sources and in snow-free DEMs to quantify
accuracy and uncertainty in lidar snow depth retrievals.

Several studies have quantified errors from surface rough-
ness and slope in ICESat-2 surface heights and snow depths.
Wang et al. (2019) found that ICESat-2 ATLO3 snow-free
data had sub-meter accuracy over flat surfaces, relative to
an airborne lidar over Alaska. Similar results were found
in ICESat-2 ATLO6 and ATLOS depths derived by Hu et al.
(2022a), Enderlin et al. (2022), and Deschamps-Berger et al.
(2023), with 4-20cm in bias in all three studies at slopes
< 10°. This error increases with surface roughness and slope,
with Smith et al. (2019) finding < 0.1 m accuracy in ATL06
over smooth surfaces and < 1 m accuracy for rough surfaces.
Errors in surface elevation also propagate to snow depths,
with Enderlin et al. (2022) finding residuals and MAD val-
ues exceeding 1 m over slopes > 20°. The extent of slope-
/aspect-based uncertainty is noted by Nuth and Kéib (2011),
with the study noting that elevation residuals exceeded 3 m
when using satellite stereo imagery over slopes > 50° and
forest covers > 40 %. Besso et al. (2024) demonstrated that
custom ATLO6 processing of ATLO3 photons (SlideRule)
could be used to improve ICESat-2 snow depths over moun-
tains and dense forest, with a maximum RMSE of 33 cm and
a standard deviation of 105 cm obtained. Over slopes < 10°,
the authors found a median residual of 5 cm that decreased to
I cm at slopes 0-5°. The median residuals increased to 56—
60 cm at slopes > 25°, which indicates general improvement
relative to previous studies.

5.2 DEM Accuracy and Co-Registration

The differential altimetry method to derive snow depth re-
quires co-registration with a snow-off DEM or DTM, with
different DEMs used in each of the studies highlighted above.
However, DEM sources are frequently in different coordi-
nate reference systems, and the reprojections needed prior to
matching DEMs with lidar may produce geolocation uncer-
tainties. Specifically, vertical offsets between elevation data
sets are related to the magnitude of the horizontal correction
and the tangent of the terrain slope angle, so geolocation off-
sets are generally larger over steep slopes and rugged terrain.
Because the accuracy of snow depth measurements depends
on the accuracy of both the snow-off and snow-on altime-
try, previous studies have calculated the most accurate space-
borne lidar snow depths using DEMs derived from airborne
lidar. Deschamps-Berger et al. (2023) noted centimeter- to
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Table 4. A summary of the error sources discussed in Sect. 6. The given biases in the right column represent maximum biases reported in
available literature. Because undergrowth (*) has not been formally assessed for DEM generation, the given value is speculative from the

literature.

Error Source Impact to Lidar

Expected Biases (cm)

Terrain characteristics

Complex topography (surface roughness, slope) makes precise
geolocation of the return signal difficult.

> 100 (ATLO6/ATL08) 60
(ATL06-SR) for slope > 20°

DEM accuracy and

co-registration uncertainties.

Reprojecting to match reference DEMs can cause geolocation

< 10 (lidar DEMs) > 100
(coarse DEMs)

Vegetation

Dense vegetation canopies weaken the return signal.
Undergrowth introduces uncertainties in snow-free DEMs.

~ 60 (forest cover ~ 60%)
~ 100 (heavy undergrowth)*

Lidar penetration in

The lidar signal experiences scattering within a snowpack,

< 10 (Greenland firn)

SNOW increasing the time it takes to return to the detector.

decimeter-scale biases over slopes below 50° even in dense
forest cover when using an airborne lidar DEM, while stere-
ographic imagery performed similarly over flat, unvegetated
sites but worse over steep slopes and dense forest.

The studies in Table 2 adopt a variety of strategies to
align DEMs or digital terrain models (DTMs) with ICESat,
ICESat-2, or GEDI. Although DEM/DTM geolocation off-
sets are generally small across the studies, the varied ap-
proaches highlight the lack of a consistent method to co-
register spaceborne lidar with snow-off DEMs/DTMs. The
use of a DEM with broad spatial coverage, such as the 3DEP
lidar or the Copernicus DEM, may enable spaceborne lidar
snow studies on a regional to global scale. However, the
choice of snow-free DEM/DTMs is also constrained by the
need for a sufficiently high spatial resolution to resolve us-
able snow depths from ICESat-2. For example, Deschamps-
Berger et al. (2023) found snow depth uncertainties greater
than 3 m when using the Copernicus DEM, compared to 0.6—
1.16 m uncertainties when using ASO or Pléiades. Besso
et al. (2024) also found that the quality of the snow-off DEM
was paramount, to obtain meaningful snow depth aggregates.

5.3 Vegetation

Tree canopy has the potential to increase snow depth errors
by decreasing the strength of lidar surface returns or absorb-
ing returns from snow underneath the canopy. Popescu et al.
(2011) compared surface height measurements and canopy
metrics between ICESat and airborne lidar data over the
forests of eastern Texas. They found that ground height re-
trievals generally agreed between the two platforms, though
dense vegetation may spread the returned signal pulse from
ICESat and generate a height return within the tree canopy.
Studies conducted by Feng et al. (2023), Neuenschwander
et al. (2020), and Neuenschwander and Magruder (2019)
assessed the effects of tree canopies on ICESat-2 snow-
on (October—April) and snow-off (May—September) returns
over boreal forests. The three studies found that the ATLO8
product generally had terrain biases of —0.17 to +0.59 m

https://doi.org/10.5194/tc-19-5671-2025

over regions of dense vegetation. Interestingly, surface height
retrievals had lower uncertainty over snow-covered surfaces,
which was attributed to the high reflectance of signal photons
of the optically-bright snow surface. Neuenschwander et al.
(2020) additionally found that ICESat-2 was more likely to
detect the surface under low canopy conditions, particularly
at canopy cover < 10 %. We also expect that dense vegeta-
tion, such as bog understory within boreal forest environ-
ments, may be difficult for lidar signals to penetrate, thereby
increasing uncertainties. However, more research will be
needed over high-latitude forests to verify this claim.

Vegetative undergrowth, such as shrubs and tussocks, can
introduce additional uncertainties in snow depth measure-
ments. Results by Ilangakoon et al. (2018), Simpson et al.
(2017), and Spaete et al. (2011) suggest that undergrowth can
cause meter-level bias in snow-free DEMs, which can in turn
produce negative snow depths in differential methods. Dur-
ing snow-on conditions, regions of dense undergrowth will
have strong snow depth variability at small spatial scales, in-
troducing uncertainty to lidar retrievals with comparatively
large footprints (i.e., ICESat-2). For instance, results from
Deschamps-Berger et al. (2023) suggest that uncertainties in
snow-free DEMs remain mostly constant until forest cover
densities exceed 60 %, with which large snow depth errors
are observed. Besso et al. (2024) found increased uncertain-
ties over Methow Valley, WA relative to the Tuolumne River
Basin, CA, with denser vegetation in the valley thought to
be the cause. Shrubland also proves a challenge for ground-
based snow depth measurements (e.g., probing), introducing
uncertainty in the validation of airborne or spaceborne lidar
snow depths.

5.4 Lidar Penetration in Snow

Snow is weakly absorbing and highly reflective at wave-
lengths in the visible spectrum, resulting in a strong return
signal over snow. However, a laser pulse from ICESat-2 or
another 532 nm lidar may also experience scattering within
a snowpack. This phenomenon, also known as “volumetric
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scattering”, increases the time it takes for a signal to return
to the detector. A modeling study conducted by Smith et al.
(2018) found that volumetric scattering could bias surface el-
evations from 532 nm lidar by up to 50 cm when compared to
1064 nm lidar acquisitions. Observed results from Fair et al.
(2024b) constrain average penetration depths (i.e., bias) in
ICESat-2 data to 4-7cm at the photon level, given optical
grain sizes of 1000 um or more. However, these biases were
quantified over snow and firn layers over a flat region of the
Greenland Ice Sheet, and the authors speculated that it may
be difficult to distinguish light penetration from other bias
sources, such as topography or vegetation. Lu et al. (2022)
tested their snow penetration algorithm over terrestrial snow
and sea ice, and they speculated that it would be effective
for snow depths up to 10 m. Snow reflectance at NIR wave-
lengths is much lower than that of green wavelengths, partic-
ularly as snow ages and melts. As a consequence, volumetric
scattering is not a significant issue for NIR lidar (e.g., ICE-
Sat, GEDI, most airborne lidar), though the lower reflectance
reduces return signal strength (Deems et al., 2013). The case
study in Sect. 4 examines snow prior to the melt season, so
snow grain size and altimetry bias are assumed to be small.

The penetration depth may also be used to estimate snow
depth, with Lu et al. (2022) giving a maximum retriev-
able depth of 10 m using backscatter from within the snow-
pack. This maximum depth was determined using snow from
late winter/early spring over mountainous snow and sea ice.
However, more research will be needed to assess the limits
of the method, as the authors generally found depths within
1 m over their study regions.

6 Suggestions for Future Studies and Applications to
Hydrology

6.1 Uncertainties in Snow Depth Retrievals and SWE
Estimates

Previous snow depth studies using ICESat-2 suggest that
spaceborne lidar generally works well over flat surfaces in
the absence of vegetation. Sloped terrain remains a signifi-
cant challenge for snow depth retrievals, so barring improve-
ments in the absolute geolocation accuracy of spaceborne li-
dar, development of processing and correction algorithms is
essential for spaceborne snow depths over mountainous ter-
rain. For instance, the SlideRule project offers ways to ad-
dress issues related to vegetation and mountains, including
configurable segment length and spatial step size, vegetation
canopy treatment, and photon filtering (Besso et al., 2024).
The choice of retrieval method may also affect accuracy. The
signal convolution method by Hu et al. (2022b) and Lu et al.
(2022) appears to have the best performance over the West-
ern United States, with an RMSE of 14 cm and a standard
deviation of 9.6 cm, though this is achieved by aggregating
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ICESat-2 observations to the resolution of a coarse reanaly-
sis product (4 km).

Further uncertainties may be generated when converting
lidar snow depths to SWE, with snow density having a
strong influence on SWE uncertainty. Bulk snow density is
estimated across a domain using snow pit profiles (Kinar
and Pomeroy, 2015) or empirical, statistical, or physically-
based models (Elder et al., 1998; Sturm et al., 2010; Painter
et al.,, 2016). Snow pits provide direct measurements of
snow density, though observations are subject to observer er-
ror, leading to SWE uncertainties of 10 cm (Proksch et al.,
2016). Simulated snow density varies by model, with Raleigh
and Small (2017) finding an uncertainty range of 0.04—
0.1 gcm™3. The authors also found that snow density uncer-
tainties strongly contributed to SWE errors when observed
snow depths greater than 60cm. Snow depth from these
sources could be combined with ground-penetrating radar
(GPR), physically-based and semi-empirical models, or in-
situ snow densities to better estimate SWE (McGrath et al.,
2022; Meehan et al., 2024; Webb et al., 2018).

6.2 Reported Accuracy Metrics

The studies outlined here generally use the mean or median
difference to quantify biases in snow depths. However, the
metrics used to quantify bias (accuracy) and uncertainty dif-
fer between studies (Table 3). Lu et al. (2022), Treichler and
Kéadb (2017), and Besso et al. (2024) also used the root mean
square error (RMSE) to estimate snow depth errors relative to
validation measurements. Uncertainty metrics are more var-
ied across studies, including the standard deviation (Lu et al.,
2022; Besso et al., 2024), interquartile range (Enderlin et al.,
2022; Treichler and Kiib, 2017), the median absolute devia-
tion (Enderlin et al., 2022), and the normalized median abso-
lute deviation (Deschamps-Berger et al., 2023). Each uncer-
tainty metric assesses snow depth variability differently, so it
is difficult to compare results between studies unless random
error with a normal distribution is assumed.

In our case study (Sect. 4), we selected the median resid-
ual and normalized median absolute deviation (NMAD) to
assess snow depth accuracy and uncertainty. These metrics
can be computed using the following equations:

8d; = dis2,i — duati (3
mgq = median(8d) (@)
NMAD = 1.4826 - median(|8d; — msq|) o)

where 8d is the snow depth residual at point i, mgg is the me-
dian snow depth residual over all points, djs, is the ICESat-2
snow depth, and dy,r is the validation snow depth (UAF lidar
in Sect. 4).

These metrics were used to minimize the influence of out-
liers in the data, which are otherwise common in fine-scale
datasets such as ICESat-2 and the UAF lidar. The NMAD
also has the advantage of being equivalent to the standard de-
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viation if the underlying data has a normal distribution, pro-
vided a sufficiently large number of observations (Hohle and
Hohle, 2009). Due to the frequency of outliers, we recom-
mend using the median bias and NMAD to quantify along-
track spaceborne lidar snow depth error metrics in future
studies. Estimating the percent error compared to total snow
depth will also be useful to compare against 2017 Decadal
Survey requirements.

6.3 Feasibility of Spaceborne Lidar to Support Snow
Hydrology Science and Applications

The snow observation requirements, as reported by the 2017
Decadal Survey and the Global Observing System Essential
Climate Variables (GCOS ECVs), advocate for repeat global
SWE measurements every 1-5d with 10 %—-20 % accuracy
(Table 5). Our literature review and case study demonstrate
that ICESat-2 can provide high-resolution snow depths with
centimeter-level accuracy under ideal conditions. Despite the
shortcomings discussed in Sect. 5, progress has been made
on improving snow depth accuracy from spaceborne lidar.
Kwon et al. (2021) conducted an observing system simula-
tion experiment (OSSE) to determine the assimilated snow
depth accuracy needed to improve snow models. It was found
that an error threshold of 40 cm was needed to provide ben-
eficial improvements to modeled SWE. This level of accu-
racy cannot be achieved through the current methods using
ICESat and GEDI (Table 3). However, ICESat-2 is shown
to perform within 40 cm of error, given (i) the local slope is
less than 20° and (ii) an accurate, high-resolution snow-off
DTM is used (Deschamps-Berger et al., 2023). Besso et al.
(2024) also found that filtering ICESat-2 noise photons using
SlideRule improved accuracy over complex terrain.

Spaceborne lidar is currently unable to fulfill the revisit
times necessary to achieve global SWE observations every
1-5d. Snow evolves throughout the season with accumula-
tion events approximately every 5—7 d, or in strong episodic
events (Pomeroy et al., 1998). Snow melt events occur over a
period of days to months depending on the landscape and
snow depth (Liston, 2004; Musselman et al., 2017). Cap-
turing the timing of snow melt is especially critical to in-
form streamflow forecasting and water management (Anghi-
leri et al., 2016; Gagliano et al., 2023). Spatial coverage of
snow observations is also important for capturing the spatial
variability of the snowpack. Currently, ICESat-2 direct re-
peats are every 91 d, though basin-scale repeats have shorter
revisit times. GEDI has more frequent repeats (~3d), but
only over specific tracks. Kwon et al. (2021) showed that,
with this limited coverage, there was minimal benefit when
assimilating spaceborne lidar even with a hypothetical wide
swath platform, though methods to extrapolate information
from the lidar swath to a wider domain were not used.

A current limitation in achieving global snow depth ob-
servations from spaceborne lidar is the need for an accurate
snow-off DEM when using the differencing approach, ide-
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ally from spaceborne lidar. Deschamps-Berger et al. (2023)
showed that less than 2.5 % of the Tuolumne Basin was cov-
ered by ICESat-2 during the snow-off season across three
years. Additionally, no currently available global DEM prod-
uct has demonstrated the ability to achieve accurate snow
depths when combined with spaceborne snow-on lidar obser-
vations. Until a global DEM product with sufficient accuracy
and resolution is available, the utility of spaceborne lidar for
mid-latitude snow depth observations will be limited to loca-
tions with a high-quality snow-off DEM available.

An important consideration for future hydrologic applica-
tions is data latency. Current spaceborne lidar missions have
a data latency on the order of months (a minimum of 1.5
months for ICESat-2, 4 months for GEDI), which hinders
their utility for operational snow monitoring. To meet data
needs for sea ice and vegetation applications, ICESat-2 pro-
vides expedited “quick look™ data sets for several of its prod-
ucts. These quick look products are released three days after
acquisition and downlink, though they do not include the pre-
processing used to correct ICESat-2 orbital positioning and
pointing. Otherwise, an ideal spaceborne lidar mission would
include a low data latency with pre-processing applied, espe-
cially if regular monitoring of a watershed is desired.

6.4 Combining Spaceborne Lidar Data and Hydrologic
Models

Some of the limitations in snow depth retrievals from space-
borne lidar may be overcome with hydrologic models and
reanalysis products, in particular the limited coverage and
repeat times. Initiatives such as the Earth System Model-
Snow Model Intercomparison Project (ESM-SnowMIP), the
European Center for Medium-Range Weather Forecasts
(ECMWF) operational snow analysis, and the GlobSnow
model have performed assessments of snow observations and
model outputs over the Northern Hemisphere (Drusch et al.,
2004; Krinner et al., 2018; Luojus et al., 2021). In addition,
previous studies have demonstrated that assimilation of air-
borne lidar observations can improve modeled estimates of
snow depth, density, and SWE (Hedrick et al., 2018; Mar-
gulis et al., 2019; Smyth et al., 2019). These studies show
that the greatest model improvement comes from one high-
quality map of snow depth near the peak snowpack, suggest-
ing that within a model framework, temporally continuous
satellite data may not be necessary. However, lidar platforms
with large temporal gaps are unlikely to capture critical snow
evolution periods, such as the time of peak snow. Due to the
low spatial coverage of spaceborne lidar overpasses, snow
depth derived from satellite altimetry will likely be most use-
ful for modeling if the limited extents of snow depth ob-
servations are used to infer snow depth in adjacent pixels
to correct models. Multiple approaches for this application
exist, including multidimensional Kalman filters/smoothers
(Alonso-Gonzalez et al., 2023; Magnusson et al., 2014); sta-
tistical approaches like kriging (Collados-Lara et al., 2017);
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Table 5. A summary of recommended specifications for four snow variables, and the feasibility of spaceborne lidar to fulfill these require-
ments from the 2017 Decadal Survey (DS) and Global Climate Observing System (GCOS). Requirements that have the potential to be
fulfilled, but do not have published literature relevant to spaceborne lidar, are marked as “Needs research”. Caveats for each snow variable
are given in the “Comments” column. The GCOS requirements (*) are in the process of being updated, so the values here are subject to

change.
Snow variable DS Requirement GCOS Requirement™ Does spaceborne lidar Comments
fulfill objective?
Snow depth — 5 km resolution Yes Accuracy is possible
1 d revisit time No over flat terrain.
25 mm uncertainty Yes Other environments
have decimeter accuracy.
Revisit time is
not achievable.
Snow cover 1-10 km resolution 500 m resolution Needs Snow cover metrics
1-2 times per day 1-4 times per day research have been proposed,
but not developed.
Optical imagery
is preferred.
SWE 4 km resolution 5 km resolution Yes Gives snow depth,
100 m resolution - Yes needs density observations
(mountains) 1 d revisit time No or models to derive SWE.
3-5d revisit time 30 % accuracy Yes Resolution is along-track;
10 %-20 % accuracy (mountains) across-track is coarser.
Optical 30 m resolution - Needs Optical property retrievals
properties research have been proposed

but not developed.

interannual snow depth, snow cover, and SWE persistence
patterns (Pflug et al., 2022); and other machine learning
approaches (Cui et al., 2023; Guidicelli et al., 2024; Liu
et al., 2024). For any of these methods, snow depth obser-
vations over multiple elevation regimes, aspects, and land
cover types would contain more information than repeat air-
borne lidar observations over a single region (Margulis et al.,
2019), as they would capture the widest variability in snow
depth, snow density, and snowpack state. Because precipi-
tation biases are responsible for significant errors in snow
models (Henn et al., 2018; Pflug et al., 2021; Smyth et al.,
2020; Wayand et al., 2015), accurate lidar observations dur-
ing peak SWE and prior to melt onset would be useful to
correct over- or under-estimation of snow accumulation. For
instance, Guidicelli et al. (2024) found that assimilation of
snow depth from a single ICESat-2 track from the late ac-
cumulation season improved estimated peak snow amounts.
Assimilation of spaceborne lidar snow depths would also be
beneficial during the melting season, where radar-based re-
trievals are less effective.

Provided a snow-off DEM, an ICESat-2 track can theoreti-
cally be used alongside historic SWE data to determine SWE
over a large watershed of length scale 1-10 km. Assuming
that SWE values are spatially correlated (i.e. all SWE values
are above or below spatial or temporal averages), the broader
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watershed domain can be updated with a single ICESat-2
track. Accurately transforming ICESat-2 snow depth mea-
surements to usable SWE estimates will require snow density
observations, quantification of measurment uncertainty, and
correlations between location-specific depth and domain-
wide depth. Additionally, ensemble-based data assimilation
frameworks, such as those described above, are ideal to ac-
curately assimilate ICESat-2 depths into models. Besso et al.
(2024) demonstrate that the median snow depth has little bias
in the Tuolumne Basin, so even infrequent ICESat-2 snow
depths could be used to accurately infer SWE throughout
the snow season (Margulis et al., 2019). These findings were
supported by Mazzolini et al. (2025), who performed a data
assimilation study to improve reanalysis-derived SWE mea-
surements using ICESat-2 snow depths. The ICESat-2 com-
munity has made data processing tools and workflows readily
available through multiple hackweeks (Arendt et al., 2020),
so the modeling community can easily conduct further data
assimilation studies using ICESat-2 data.

Current SWE reconstruction methods use a combination
of hydrologic models and reanalyses such as the ECMWF
Reanalysis v5 (ERAS) and Modern-Era Retrospective analy-
sis for Research and Applications, v2 (MERRA-2), but this
approach can only be used after the water year has occurred.
Additionally, hydrologic models are improving constantly,
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but biases due to both modeling and forcing errors have sig-
nificant implications on estimates of snow water resources
(Kim et al., 2021; Mudryk et al., 2023; Raleigh et al., 2015).
In many regions with significant snowfall, these modeling
errors are chiefly caused by precipitation biases (Henn et al.,
2018; Hughes et al., 2020; Lundquist et al., 2015; Pflug et al.,
2021). As a consequence, models experience divergence in
simulated snow accumulation, in heat content, and in the
timing of seasonal snowmelt onset and snow disappearance.
However, previous studies have also shown that there is often
repeatability in snow patterns on an interannual scale (Deems
et al., 2008; Pflug et al., 2022, 2021; Pflug and Lundquist,
2020; Schirmer et al., 2011; Schirmer and Lehning, 2011;
Sturm and Wagner, 2010; Premier et al., 2021), so consis-
tent observations near times of peak SWE will ideally bias
correct modeled snow estimates at larger spatial scales.

6.5 Future Satellite Laser Altimetry Missions

The discussion in this paper focuses on currently operational
satellite missions, primarily the ICESat-2 mission. However,
there are future spaceborne lidar altimetry missions that may
provide additional opportunities for snow depth retrievals
upon launch. The first such lidar mission is the proposed
EDGE mission, which is a NASA Earth System Explorer
concept that was selected for Phase A study in May 2024.
EDGE proposes a swath-mapping lidar with < 3 m horizon-
tal geolocation accuracy for low slopes (https://edge.ucsd.
edu/instrument/, last access: 2 December 2024). EDGE will
be a major technological advancement over currently opera-
tional satellite altimetry missions, with 40 beams distributed
across five 8-beam mini-swaths that offer dense sampling in
both the along-track and across-track directions. While the
EDGE concept has been optimized for terrestrial ecosystem
structure and ice elevation measurements, EDGE will also
offer precise seasonal snow depth measurements using the
same methods outlined in earlier sections. EDGE will also
offer improved canopy penetration compared to ICESat-2,
and will capture the spatial variability of snow depth across
multiple relevant spatial length scales. If selected for contin-
ued development, EDGE is slated to launch in ~ 2030.

A second mission concept with a proposed lidar payload
is the Surface Topography and Vegetation (STV) mission,
which was conceived as a set of priority targeted observables
for incubation study by the 2017 Earth Science Decadal Sur-
vey. The initial STV Study Team report (Donnellan et al.,
2021) identified seasonal snow depth as one of 5 priority
observables. Candidate measurement strategies include some
combination of lidar, radar, and stereo photogrammetry, with
candidate architecture including both satellites and airborne
platforms. Multiple next-generation satellite lidar concepts,
such as the Concurrent Artificially-intelligent Spectrometry
and Adaptive Lidar System (CASALS), are under consider-
ation, with ongoing technology maturation efforts underway
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in advance of the upcoming 2027 Decadal Survey. A launch
for an STV observable is targeted for the mid-2030s.

7 Conclusions

With recent trends in climate change, it is becoming in-
creasingly important to monitor available freshwater sources.
Snow is a vital freshwater source for billions of people across
the globe, so methods to monitor snow water equivalent and
snow depth are needed. In-situ and airborne instruments pro-
vide high-quality measurements of snow depth and SWE
at select watersheds, but spaceborne methods will be re-
quired to obtain routine observations at larger spatial scales.
Spaceborne lidar also has the potential to play a role in an
overall global snow observing strategy by providing high-
resolution snow depth observations, particularly during the
season when other snow remote sensing techniques struggle.
Recent developments show that spaceborne lidar provides
useful snow depth data in areas where the local slope is below
20° and bare earth DEMs/DTMs are available. Over regions
with consistent winter snow cover, these constraints are con-
sistent with the Arctic tundra or plateaus/valleys in moun-
tainous regions. Models which can assimilate observations
and fill gaps in space and time are critical to utilizing space-
borne lidar for hydrological applications, though the exact
measurement requirements to add value still need to be de-
termined. There are currently two spaceborne lidar technolo-
gies available for snow applications: GEDI and ICESat-2. Of
the two platforms, ICESat-2 generally offers better accuracy,
greater coverage of high-latitude sites, and more continu-
ous spatial coverage. However, Besso et al. (2024) demon-
strated that customized processing of ICESat-2 products us-
ing SlideRule will be important to minimize uncertainties
across variable terrain and land cover types. We recommend
using median depth and the normalized median absolute de-
viation (NMAD) when assessing snow depth accuracy and
uncertainty to reduce the influence of outliers.

There remain a few science questions that we leave for
future studies. First, global snow depth observations from
spaceborne lidar will not be possible until an accurate, high-
resolution, DEM over regions with seasonal snow is avail-
able. To improve accuracy, a greater understanding of the
geolocation accuracy of reference DEMs, and how said ac-
curacy changes over time, is needed. This limitation high-
lights the need for an open-access, high-resolution global
DEM, as current DEMs are limited in total coverage (Arctic-
DEM) or in spatial resolution (Copernicus DEM). A greater
understanding of acceptable spatial resolution for reference
DEMs is also needed to capture spatial variability in snow
depth. At a regional scale, snow-free acquisitions are infre-
quent, and there is a risk of significant landscape changes oc-
curring between DEM acquisition and spaceborne lidar re-
trieval, particularly in areas with melting permafrost. Sec-
ond, more research is needed to validate spaceborne lidar
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snow depths against in-situ and airborne methods. Airborne
methods such as the ASO campaigns will provide valuable,
high-resolution snow depths for assessment and monitoring
of mid-latitude watersheds. In-situ validation will be espe-
cially important to characterize uncertainties due to vegeta-
tion, which may be difficult to quantify with airborne and
other space-based methods. Finally, more research is needed
to determine how much of a watershed or basin must be sam-
pled to improve modeled estimates. Combining spaceborne
lidar observations with physical and statistical models may
help fill observational gaps in an overall global snow observ-
ing strategy.

Code and data availability. The code used for the case study
in Section 4 may be found at the following Zenodo link:
https://doi.org/10.5281/zenodo.13852000 (Fair et al., 2024a).
Alternatively, it may be found in a more interactive form on
the ICESat-2 hackweek Github: https://icesat-2-2023.hackweek.
io/tutorials/snow-depth/applications-tutorial-snow-depth.html
(last access: 4 September 2025). The UAF lidar data
(https://doi.org/10.5067/BVADSRRU1H7U, Larsen, 2024) and the
ATLO06/ATLOS data products (Smith et al., 2019; Neuenschwander
and Pitts, 2019) were obtained from the National Snow and Ice
Data Center (NSIDC). Documentation and instructions on using
may be found in (Shean et al., 2023). The camera imagery in Fig. 4
was obtained during the SnowEx 2023 campaigns, and is available
on NSIDC (https://doi.org/10.5067/UB3A44RTR6JD, Vas et al.,
2025).
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