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Abstract. This study investigated the influence of sum-
mer climate variability on water isotopes (8 180, §2H, and
deuterium excess[dexc]) in a Hercules Névé ice core from
Antarctica. High-resolution ERAS reanalysis data for the
austral summer (DJF, 1979-2015) were used to assess the
relative contributions of temperature, precipitation, wind pat-
terns (v- and u-winds), ocean condition (sea ice concentra-
tion [SIC] and sea surface temperature [SST]), and large-
scale circulation system (Amundsen Sea Low [ASL] and
Zonal Wave-3 [ZW3]) to isotopic variability. The results
show that higher temperatures and precipitation coincide
with isotopically enriched 8'30, confirming their combined
role in controlling isotopic enrichment. Wind patterns also
contribute meaningfully but in a more complex way: en-
hanced southerly winds (positive v-wind anomalies) tend to
increase 8'80 by transporting relatively warm, moisture-rich
air from lower latitudes, whereas stronger westerly winds
(positive u-wind anomalies) are associated with more de-
pleted isotopic values, likely reflecting colder or more dis-
tant moisture sources. Additionally, the dexc exhibits a posi-
tive correlation with SIC and negative correlations with SST,
providing valuable insights into moisture source processes
in the study region during austral summer. Variations in the
ASL and ZW3 further modulate heat and moisture transport,
reinforcing their role as key atmospheric drivers of isotopic
variability. Taken together, these findings suggest that the
summer isotope record at Hercules Névé reflects not only
local temperature changes but also the broader imprint of
ocean—atmosphere interactions, including sea-ice variability

and large-scale circulation patterns. This study highlights the
potential of coastal Antarctic ice cores to provide improved
constraints on coupled climate processes and to refine paleo-
climate reconstructions for the Ross Sea region.

1 Introduction

Stable water isotopes (8'80 and 8%H) have served as crucial
proxies for paleoclimatic reconstructions due to their system-
atic relationship with temperature, making ice cores invalu-
able archives of past climatic information (Dansgaard, 1964;
Jouzel et al., 1997). Recent advancements, such as refined
surface temperature reconstructions using advanced model-
ing approaches (Markle and Steig, 2022) and analyses of
isotopic diffusion in snow layers for estimating past temper-
atures (Holme et al., 2018), highlight the progression from
observational studies toward sophisticated modeling. Despite
these advancements, accurately interpreting isotopic records
from ice cores remains challenging, particularly due to re-
gional variability in the temperature-isotope relationship. In
polar regions, and especially across Antarctica, local cli-
matic and atmospheric conditions significantly influence this
relationship, creating spatial differences in isotopic signals
(Masson-Delmotte et al., 2008; Sime et al., 2009). Therefore,
regional investigations are essential to bridge these gaps and
improve the interpretation of Antarctic ice-core records.
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Victoria Land in East Antarctica offers unique advan-
tages for understanding climatic processes due to its tran-
sitional position between the high interior plateau and the
coastal regions. Previous research in this area has utilized
ice cores from locations such as Styx Glacier, Talos Dome,
Whitehall Glacier and Hercules Névé to study regional cli-
mate dynamics (Bertler et al., 2011; Emanuelsson et al.,
2023; Masson-Delmotte et al., 2008; Nyamgerel et al., 2024;
Sime et al., 2009; Stenni et al., 1999, 2002; Thomas et al.,
2017). Each site contributes distinct climatic information:
Styx Glacier provides detailed records of local temperature
trends (Nyamgerel et al., 2024; Thomas et al., 2017), while
Talos Dome captures long-term climatic signals influenced
by marine-continental air mass interactions (Frezzotti et al.,
2007). Research at Whitehall Glacier has emphasized its role
in documenting snow accumulation patterns and their re-
lationship to atmospheric dynamics (Sinclair et al., 2012).
These studies have collectively advanced our understanding
of isotopic variability and its relationship to atmospheric pro-
cesses. Among these, Hercules Névé is particularly sensitive
to both coastal and interior atmospheric influences due to
its proximity to the Ross Sea. The high snow accumulation
rates in this region allow for the preservation of detailed iso-
topic records, which are essential for investigating Antarctic
climate variability and its broader global impacts (Masson-
Delmotte et al., 2003; Sinclair et al., 2012).

Isotope-enabled general circulation models demonstrate
that sea ice extent and concentration modify the isotopic
composition of coastal precipitation by altering moisture
source regions and transport pathways (Faber et al., 2017,
Noone and Simmonds, 2004). Reduced sea ice exposes
nearby open ocean areas, enhancing evaporation from local
sources and typically leading to enriched 8'80 values due to
shorter transport distances. Conversely, expanded sea ice dis-
places evaporation sources farther from the continent, length-
ening the distillation pathway and promoting isotopic deple-
tion. However, these relationships vary spatially and season-
ally and are influenced by regional circulation, moisture re-
cycling, and synoptic-scale variability (Song et al., 2023).
The interaction between sea ice and atmospheric circulation
is governed by several major features. The Amundsen Sea
Low (ASL) strongly modulates wind direction and mois-
ture transport in the Ross Sea region (Hosking et al., 2013;
Raphael et al., 2016), while Zonal Wave 3 (ZW3) influences
air-mass distribution and precipitation across coastal Antarc-
tica (Goyal et al., 2022). Regional cyclonic activity also con-
tributes to shaping the isotopic composition of precipitation
in coastal Antarctica. This modulation affects regional pre-
cipitation isotopes and links sea ice variability with broader
atmospheric processes (Emanuelsson et al., 2023; Sinclair et
al., 2013).

The Austral summer months of December, January, and
February (DJF) are particularly suitable for sea ice research
because of the climatic and environmental dynamics ob-
served during this period. For example, Antarctica experi-
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ences higher solar radiation levels during DJF, leading to dy-
namic changes in the extent and structure of sea ice. These
katabatic winds flow downslope from the interior year-round
and generally intensify in winter; they drive offshore advec-
tion/divergence of coastal sea ice and are associated with
coastal polynya formation. In winter such polynyas can en-
hance net sea-ice production through increased heat loss and
subsequent freezing (Dale et al., 2020; Turner et al., 2016).
These polynyas facilitate the exchange of heat and mois-
ture between the ocean and atmosphere, influencing local
and regional climate patterns (Stammerjohn et al., 2015).
These conditions enhance both snowfall frequency and iso-
topic preservation, allowing robust analysis of seasonal vari-
ability.

The primary objective of this study was to analyze how
stable water isotopes in the Hercules Névé region respond to
various climatic drivers during the Austral summer months.
While previous studies have predominantly focused on an-
nual or multi-seasonal isotope—climate relationships across
Antarctica, the present work isolates the summer signal to ex-
amine the processes that shape isotopic variability on shorter
timescales. Given the strong seasonality of accumulation and
the relative clarity of the isotopic signal during austral sum-
mer, this study concentrates on the DJF period. This fo-
cus provides the most consistent basis for linking isotopic
variations to regional climate processes. Specifically, the re-
lationship between isotopic composition and key climatic
variables, such as temperature, precipitation, and u- and v-
wind components, is evaluated to determine the extent to
which isotopic variability reflects both local and synoptic-
scale forcing. By focusing on the DJF period, when coastal
meteorology is strongly influenced by sea-ice retreat and en-
hanced exchange between ocean and atmosphere, this study
investigates whether the summer isotope signals preserved at
Hercules Névé represent solely local temperature variability
or the integrated effects of regional circulation and oceanic
conditions. In particular, the analysis addresses (1) the ex-
tent to which §'80 variability is modulated by precipitation
and circulation in addition to temperature, and (2) whether
dexc can serve as a sensitive tracer of sea-ice concentration
and sea surface temperature. Through this approach, we aim
to advance a process-based understanding of water-isotope
variability in coastal Antarctica. High-resolution water iso-
tope analysis with ERAS reanalysis data, atmospheric circu-
lation indices (ASL and ZW3) and back trajectory modeling.
Correlation and principal component analyses were used to
evaluate the relationships between isotope variability and cli-
matic drivers, thereby linking synoptic-scale circulation and
ocean—atmosphere processes to the isotopic signal preserved
at Hercules Névé.
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Figure 1. (A) Map of the West and East Antarctica regions show-
ing the Ross Ice Shelf, the Ross Sea, and Hercules Névé. (B) To-
pographic map of Northern Victoria Land. The red circles indicate
the location of the Hercules Névé ice core. The maps were created
using Quantarctica 3.2 on QGIS.

2 Materials and methods
2.1 Study Area

The research area is located at Hercules Névé, Victoria Land,
Antarctica, at 73°03" S, 165°25" E (Fig. 1). Situated at an alti-
tude of 2864 m and approximately 80 km inland from the sea,
the climatic conditions of this mountainous area are affected
by its position near the northern edge of the Transantarctic
Mountains, which strongly influence atmospheric circulation
by acting as a barrier to the flow of air masses (Tewari et
al., 2021). Because the interaction between the mountains
and the prevailing winds generates various microclimates at
Hercules Névé, it has become an area of interest for under-
standing the complex interactions between the local geogra-
phy and climate (Maggi and Petit, 1998).

Victoria Land has long been used as a research site to
study the impact of atmospheric and oceanic variability on
snow accumulation and ice core records (Maggi and Petit,
1998; Nardin et al., 2020; Nyamgerel et al., 2024; Yan et
al., 2021; Yang et al., 2018). This region is characterized by
austral summer-dominant precipitation patterns influenced
by easterly winds that bring moist air from the ocean onto
the continent (Scarchilli et al., 2011). Katabatic winds de-
scending from the East Antarctic Plateau are typically cold
and extremely dry. Their dryness enhances sublimation from
the snow surface, which can lead to isotopic modification
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of near-surface layers (Nyamgerel et al., 2024; Vihma et
al., 2011). However, their impact on local temperature and
the surface energy balance is not always unidirectional and
may vary depending on synoptic conditions (Davrinche et al.,
2024). Broader climatic drivers such as the Southern Annu-
lar Mode and sea ice variability also impact regional weather
patterns and precipitation (Yang et al., 2018). Hercules Névé
is thus a useful site for the analysis of how regional climate
variability influences snow deposition and ice core records,
which can be used to reconstruct past climate conditions.
Furthermore, previous studies have reported a high snow-
fall rate in the surrounding area (Maggi and Petit, 1998;
Nyamgerel et al., 2020; Stenni et al., 1999, 2000), making
this region particularly suitable for ice core seasonal analy-
sis.

2.2 Data Acquisition
2.2.1 Sampling and Water Isotope Data

To acquire water isotope data from Hercules Névé in north-
ern Victoria Land, an ice core was drilled between 11 and
15 December 2015, according to the method described by
Han et al. (2015). The ice core was extracted to a depth of
approximately 80 m, was immediately segmented, sealed in
plastic bags, logged, and packaged in insulated containers to
prevent temperature fluctuations during transport to a labo-
ratory at the Korea Polar Research Institute (KOPRI). Af-
ter drilling was completed in December 2015, the Hercules
Névé ice core was transported to the KOPRI, where it was
stored frozen until cutting. In the second half of 2017, the
core was cut into 5 cm segments in a clean laboratory envi-
ronment to ensure seasonal-scale resolution.

In the laboratory, the ice core was carefully segmented into
5 cm sections based on analytical needs to assess seasonal
variability, yielding approximately 2000 segments. This seg-
ment size was selected to ensure data representativeness and
ease of handling by providing a balance between resolution
and sample manageability. Each segment was processed in
a clean environment to prevent contamination. The ice was
melted at room temperature in sealed containers to avoid
isotopic fractionation via physical processes such as evap-
oration and sublimation. The meltwater was filtered through
0.45 um syringe filters to remove particulates and transferred
into 2 mL high-density polyethylene (HDPE) vials with air-
tight caps to prevent isotopic exchange with ambient air.

All samples were stored at temperatures below 4 °C and
were analyzed within 12 months of preparation to ensure
isotopic stability. The liquid samples were analyzed using
a Picarro L2130-i water isotope analyzer, which employs
cavity ring-down spectroscopy (CRDS) for high-precision
measurements. The analyzed water isotope results were ex-
pressed using delta notation, as shown in Eq. (1):

8(%0) = (Rsample/Rsta.ndard - 1) x 1000 (1)
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The secondary parameter deuterium excess (dexc), defined
according to Dansgaard, (1964), was also determined as
shown in Eq. (2):

dexc = 8°H — 8 x §'%0 ()

Measurement precision was £0.07 %o for §'30 and 0.1 %o
for §2H, based on long-term repeated measurements of lab-
oratory standards conducted over multiple years. The mea-
surements were calibrated using the international standards
VSMOW, Greenland Ice Sheet Precipitation (GISP), and
Standard Light Antarctic Precipitation (SLAP), as well as
the laboratory standard RS (—34.69 &+ 0.07 %o for 8180,
—272.4 +0.6%o for §2H). The measurements followed the
internal analytical protocol used at KOPRI, as described in
(Kim et al., 2022). Each sample was injected 12—-15 times,
and the average of the final 5 measurements was used to en-
sure thermal and instrumental stability. International refer-
ence waters (VSMOW, SLAP, GISP) were measured every
~ 100 samples for calibration, and laboratory reference wa-
ters were measured after every 10 unknowns to monitor an-
alytical consistency. This procedure ensured high precision
and long-term stability of the isotope measurements.

2.2.2 Utilization of ERAS5 Data and ZW3 Data

In this study, we utilized ERAS reanalysis data provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWEFE, covered on a 31 km grid) (Hersbach et al., 2020).
ERAS variables used in this analysis include 2m air tem-
perature (T2), 10m u- and v-wind components, mean sea
level pressure (MSLP), sea surface temperature (SST), and
sea ice concentration (SIC). ERAS has been widely validated
for use in Antarctica due to its high temporal and spatial res-
olution and strong correlation with observational data (Tet-
zner et al., 2019). To assess the accuracy of reanalysis data
in representing local atmospheric conditions, an automatic
weather station (AWS) was installed at the Hercules Névé
site during the drilling campaign, recording air temperature,
wind speed, and wind direction over one year. The AWS
dataset was compared with ERAS outputs for the same pe-
riod, focusing on temperature and wind variables (Figs. S1
and S2 in the Supplement). ERAS reproduces general pat-
terns in temperature and wind direction well. However, it
tends to overestimate summer (DJF) temperatures relative to
AWS, as shown by the DJF AWS-ERAS comparison using
a York regression analysis (Fig. SIC; R? = 0.57). Despite
this warm bias, ERAS provides consistent temporal coverage
from 1979 to 2015, making it suitable for evaluating inter-
annual climate—isotope relationships in this remote region.
Wind direction and speed distributions also show notable dif-
ferences between AWS and ERAS (Fig. S2). ERAS indicates
a dominant southerly to southeasterly wind regime during
DIJF, in line with broader synoptic circulation over the Ross
Sea. In contrast, AWS data show more variable wind direc-
tions and stronger speeds, likely reflecting local topographic
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effects and boundary-layer dynamics. For the main analysis,
ERAS fields were extracted at a monthly resolution for the
period 1979-2015. To match the temporal resolution of the
ice core isotope data, we calculated austral summer means
from the monthly data, thereby obtaining one representative
seasonal value per year. These DJF-avearged datasets were
used for spatial correlation and circulation analyses linking
isotopic variability with temperature, precipitation, wind, sea
ice, and oceanic conditions.

In addition, the monthly ZW3 index from Goyal et al.
(2022), which is derived from ERAS sea level pressure fields
was used to represent large-sale wave activity in the Southern
Hemisphere. ZW3 is characterized by three quasi-stationary
ridges and troughs in the mid-latitudes of the Southern Hemi-
sphere that influence atmospheric circulation and sea ice dis-
tribution around Antarctica (Goyal et al., 2022; Raphael,
2007). The inclusion of the new ZW3 data allows for a more
detailed assessment of its impact on the climatic conditions
at Hercules Névé via isotopic signatures.

2.3 Data Processing
2.3.1 Age Dating

Manual layer counting is widely used for the age dating of
ice cores, with the identification of annual layers relying on
variation in proxies such as stable water isotopes (5180, §2H,
and dexc), ion concentrations, dust deposition, and electrical
conductivity method (ECM) (Johnsen et al., 2001; Masson-
Delmotte et al., 2003; Sigl et al., 2016; Sinclair et al., 2012).
Previous studies have demonstrated that, in regions with
abundant snowfall, particularly along coastal areas, water
isotope signals are well-preserved and exhibit clear seasonal
cycles, allowing for the precise manual counting of annual
layers. Seasonal variation in 8180, §2H, and dexc from the
Hercules Névé ice core, characterized by higher §'30 and
8%H values during warmer months and lower values dur-
ing colder periods, were thus used to establish annual layers
for age dating (Fig. 2B-D). This method provides a high-
resolution age model based on stable water isotope variation,
which can be linked to specific years and climatic events. An-
nual layers were identified from the seasonal oscillation in
the isotope profiles (§'80, §2H, and dexc) by visual inspec-
tion of peak—trough cycles. Phase consistency among §'80,
82H, and dxc was required to assign the seasonal transitions.

Radioactive isotopes resulting from atmospheric nuclear
testing, such as plutonium-239 (**°Pu) and tritium, can be
utilized to validate the accuracy of the manual layer count-
ing method (Hwang et al., 2019; Stenni et al., 1999). In this
study, 23°Pu concentrations were measured at various depths
within the Hercules Névé ice core, and 239Pu peaks corre-
sponding to known periods of atmospheric nuclear testing
in the late 1950s and early 1960s were employed as abso-
lute time markers (Fig. 2A). By matching these peaks with
the historical records for nuclear testing, we confirmed the
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Figure 2. Depth profiles of climate indices and isotopic parameters
from the surface to a depth of 26 m from the Hercules Névé ice
core. Panel (A) represents the Amundsen Sea Low (ASL) index de-
rived from principal component analysis (PCA) based on longitude,
latitude, and strength of the ASL defined in Hosking et al. (2013),
specifically displaying PC3, which showed significant correlation
with isotopic data. Panel (B) shows the Zonal Wave 3 (ZW3) in-
dex obtained from Goyal et al. (2022). Panel (C) depicts the 239Pu
concentration profile for the period 1950-1975. Panels (D)—(F) il-
lustrate water isotope measurements (dexc, 82H, and 8]80, respec-
tively) spanning from 1950 to 2016. Data utilized for detailed anal-
ysis in this study (1979-2015) are indicated by the shaded grey re-
gion.

age of specific layers and validated the annual layer counting
method. The uncertainty for the age dating of the ice core
was assumed to be less than a year.

In this study, we successfully determined the ice core
chronology back to the 1950s, reaching a depth of approx-
imately 25m. For isotopic and climate analysis, we used
the top 16 m of the core, which represents roughly 40 years
of accumulation (highlighted in grey in Fig. 2). Clear sea-
sonal cycles in 8'30 and dexc enabled manual annual layer
counting to construct a high-resolution age—depth model.
The estimated mean annual snowfall over this period was
204.5kgm~2yr~! or +£54.5. Within each annually dated
layer, each sample point (typically 5-15 yr~!') was assigned
a fractional year value based on its relative depth position.
To assign calendar months, the 8180 maximum within each
year was used as an anchor point and fixed to January, rep-
resenting the midpoint of the austral summer. All other sam-
ple positions were then linearly interpolated across the year.
Linear interpolation between successive isotope extrema was
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applied to obtain an approximately monthly-resolved series
within each annual layer. The DJF §'80 series derived from
this interpolation was then aligned, year by year, with DJF-
averaged ERAS fields (1979-2015) to ensure temporal con-
sistency for correlation analyses. While this approach as-
sumes that §180 peaks reflect summer accumulation, the
use of DJF averages, centered around the 8180 maximum
and spanning three months, minimizes sensitivity to short-
term variability in peak timing. This interpolation allowed for
monthly-resolved isotope estimates, including months not di-
rectly sampled. From this monthly-interpolated series, DJF
values were extracted and averaged to produce an annual
DJF 830 time series from 1979 to 2015. This time series
was subsequently used in correlation analyses with ERAS-
derived temperature, precipitation, and wind data to interpret
climatic influences on isotopic variability.

2.3.2 Statistical Analysis

We applied several statistical methods to evaluate the rela-
tionship between water isotopes and various climatic drivers
in the Hercules Névé region. All climate variables were ob-
tained from the ERAS reanalysis dataset (Hersbach et al.,
2020) for the period 1979-2015, including 2 m air tempera-
ture (72 m), total precipitation (tp), 10 m u- and v-wind com-
ponents, and sea ice concentration (SIC). ERAS data were
extracted over the sector 70-77° S, 160—-170° E, encompass-
ing the northern Victoria Land region. Monthly fields were
averaged to derive DJF means for each year, matching the
temporal resolution of the isotope record. Spatial correla-
tion analysis was performed between the §'80 time series
and gridded ERAS climate fields to identify dominant spatial
patterns. Pearson correlation coefficients were computed on
a seasonal (DJF) basis to assess spatially coherent relation-
ships (e.g., Sime et al., 2009; Thomas et al., 2017).

To examine large-scale circulation drivers, we used a
monthly Zonal Wave 3 (ZW3) index developed by Goyal
et al. (2022) and the Amundsen Sea Low (ASL) diag-
mostics provided by the British Antarctic Survey (Hosking
et al.,, 2013). The ASL parameters (central pressure, lati-
tude, and longitude) were standardized and subjected to Prin-
cipal Component Analysis (PCA) using a correlation ma-
trix to identify coupled spatial-intensity modes of ASL vari-
ability (Coggins and McDonald, 2015). The resulting PCs
were correlated with §'80 to determine which modes had
the strongest association with isotopic variability. To inves-
tigate broader circulation patterns, we performed Empirical
Orthogonal Function (EOF) analysis of 500 hPa geopoten-
tial height fields for DJF, following standard methods (e.g.,
Raphael et al., 2016; Clem et al., 2017). The corresponding
principal components were used to interpret SAM- and ZW3-
like structures and their association with §'80 variability.

Lastly, to assess atmospheric moisture pathways, we used
the HYSPLIT model (Stein et al., 2015) to compute 7d
backward trajectories arriving at Hercules Névé (73°03'S,
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165°25' E). Trajectories were initialized four times (00:00,
06:00, 12:00, 18:00 UTC) for the DJF period (1979-2015)
using GDAS 1° x 1° meteorological data. fields for the DJF
months from 2006 to 2015. Cluster analysis was conducted
on the ensemble of trajectories for this 10-year period using
the Euclidean distance criterion, and three clusters were se-
lected to represent the dominant moisture-transport regimes.
Composite trajectories were then generated separately for
summers with a strong ASL (2008, 2009, 2015 and 2016)
and weak ASL (2006, 2010, 2013 and 2014), based on the
ASL strength index from Hosking et al. (2013). These com-
posites illustrate the contrasting moisture-source regions and
transport pathways associated with variations in ASL inten-
sity.

To assess the signal-to-noise ratio and test whether the
8180 record contains a preserved seasonal signal, we per-
formed a Lomb-Scargle periodogram analysis. As shown in
Fig. S3, the spectrum exhibits a statistically significant peak
at 1yr~! (p < 0.05), indicating that the time series retains a
robust seasonal (annual) cycle. This result supports the use of
DJF-averaged isotope values for climate correlation analysis
and justifies the seasonal aggregation approach used through-
out this study.

To check whether post-depositional processes bias our
summer signal, we evaluated the DJF 5180—dexc relationship
following Casado et al. (2021). In this framework, negative
relationships imply substantial modification, whereas posi-
tive relationships suggest minimal alteration. For Hercules
Névé, the 8'80—dexc relationship is positive during DJF
(r =0.51), consistent with limited post-depositional modifi-
cation. Although a positive slope generally indicates preser-
vation of the primary isotopic signal (Casado et al., 2021),
recent study from surface snow at EastGRIP show that weak
positive slopes may still arise under conditions of minor post-
depositional alteration (Town et al., 2024). Therefore, while
our data suggest that the summer isotopic signal has been
largely preserved, small-scale re-equilibration effects cannot
be entirely excluded.

3 Results

3.1 Water Isotope Records in the Ice Core from
Hercules Névé

Figure 2 presents the water isotope data from Hercules
Névé for the period 1979-2015. The 880 values ranged
from —42.29 %o to —29.67 %o, with a standard deviation
of 1.69 %o, while those for §2H ranged from —334.5%o to
—226.1 %o, with a standard deviation of 11.75 %.. These val-
ues are comparable to other near-coastal Antarctic sites in
Victoria Land, such as Styx—M, Whitehall Glacier, and Ta-
los Dome, which represent a range of altitudes and moisture
conditions (Table S1 in the Supplement).
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Using the annual mean §'80 and §%H in Hercules Névé
core, we derived a local meteoric water line (LMWL) with a
slope of 8 and an intercept of 8.2 (R? = 0.99). While there
slope and intercept are higher than those of the Antarctica
meteoric water line (AMWL, slope = 7.75 and intercept
= —4.93 Masson-Delmotte et al., 2008), yet similar to the
global meteoric water line (GMWL, slope = 8 and intercept
= 10; Craig, 1961). The similarity suggests that, owing to
its coastal proximity, the Hercules Névé region, experiences
moisture conditions more characteristic of oceanic environ-
ments, resulting in a steeper 8'80—-82H relationship (Fernan-
doy et al., 2010; Goursaud et al., 2018; Nyamgerel et al.,
2024).

Seasonally, the §180-5%H relationship in the Hercules
Névé core range from 8 to 8.3 and 7.8 to 18 (Fig. S4). Dur-
ing the austral summer, the slope (8.0) and the intercept (7.8)
closely match the annual LMWL, indicating that the sum-
mer precipitation is more likely to reflect the temperature—
isotope relationship with minimal post-depositional alter-
ation. ERAS reanalysis data from 1979-2015 show that pre-
cipitation minus evaporation during DJF accounts for ap-
proximately 23 %—40 % (mean 35 %, standard deviation 4 %)
of the annual total. While DJF does not dominate the an-
nual accumulation in terms of volume, it occurs under con-
ditions of relatively frequent snowfall, warmer atmospheric
temperatures, and higher moisture flux from open ocean ar-
eas due to reduced sea ice extent. Such conditions may en-
hance the direct imprint of summer climatic signals into the
isotopic composition of snow, making the DJF season partic-
ularly valuable for interpreting isotope—climate relationships
in coastal Antarctica.

To confirm that this seasonal signal is preserved without
significant isotopic smoothing, we empirically estimated the
diffusion length from the §'80 time series using a spectral
fitting approach (Miinch et al., 2016). The resulting diffu-
sion length of approximately 6 cm, comparable to the 5cm
sampling interval, indicates that seasonal variability is well
resolved at this resolution and that the isotopic cycles retain
their original amplitude.

3.2 Impact of Summer Climate Patterns on Water
Isotope in the Antarctic Hercules Névé

Using ERAS climate reanalysis data for 1979-2015, we ex-
amined how temperature, precipitation, and wind compo-
nents (v- and u-winds) relate to §'30 variability during thre
austral summer (DJF) at Hercules Névé site (Fig. 3). When
using annual mean temperature, 8'30 shows a weak correla-
tion (r = 0.13 likely due to the superposition of several pro-
cess that obscure a direct isotopic—thermal relationship: vary-
ing moisture sources (Masson-Delmotte et al., 2008; Noone
and Simmonds, 2004), strong synoptic variability associ-
ated with the Ross Sea region (Schlosser et al., 2016), sea-
sonal difference in precipitation frequency (Casado et al.,
2018), and post-depositional modifications of the surface
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snow (Casado et al., 2021; Mahalinganathan et al., 2022).
Such effect dilute the annual isotope—temperature signal, un-
derscoring the limitations of paleoclimate reconstructions
based solely on annual mean annual signatures (Laepple et
al., 2025).

By contrast, the austral summer correlation between s180
and temperature is more pronounced (r =0.32, p < 0.05;
slope of 0.59 %0 °C~1). Although slightly lower than the Styx
site (0.66%0°C~!; Nyamgerel et al., 2024), this summer
slope is comparable to other East Antarctic locations such as
Whitehall Glacier (0.62 %o °C~!: Sinclair et al., 2012), Tay-
lor Dome (0.50 %o oc—1, Steig et al., 2000) and Talos Dome
(0.60 %o °C~!: Stenni et al., 2002) (Fig. S5). This consistency
demonstrates that isotope—temperature scaling at Hercules
Névé is regionally coherent despite differences in topogra-
phy and moisture-transport pathways. It also highlights the
necessity of seasonal discrimination, while annual values are
confounded, summer months preserve the most direct tem-
perature signature (Sinclair et al., 2013).

Several factors may account for this stronger summer
correlation: (1) reduced impact of post-depositional process
under high accumulation rates, despite enhanced metamor-
phism under warmer conditions (Town et al., 2008; Wadding-
ton et al., 2002), (2) simplified moisture transport pathways
during summer circulation (Helsen et al., 2005), and (3) a
higher frequency of precipitation events, leading to more
direct incorporation of local climatic signals into the ice
(Steen-Larsen et al., 2011). Together, these mechanisms indi-
cate that §'80 in summer snowfall is more directly coupled to
surface air temperature. These mechanisms imply that 130
in summer snowfall is a more directly associated by surface
air temperature. Precipitation shows positive correlation with
8180 during summer (r = 0.6; Fig. 3B), exceeding its annual
mean correlation (+ = 0.3, not shown). This pattern suggests
that precipitation in coastal Antarctica is often isotopically
enriched during periods of heavy snowfall, reflecting mois-
ture sourced from the nearby ocean (Servettaz et al., 2020
and Jackson et al., 2023).

For wind components, the austral summer v-wind
(southerly) and u-wind (westerly) are generally negative
values, indicating prevailing southerly and westerly winds
flows. A positive correlation was observed between §'30 and
v-wind, suggesting that stronger southerly winds are associ-
ated with isotopically enriched snowfall (Fig. 3C). Although
this relationship may appear counterintuitive, it likely reflects
inland advection of mixed continental-oceanic air masses
with higher isotopic (Clem et al., 2017; Noone and Sim-
monds, 2004). Conversely, §'30 is negatively correlated with
the u-wind (Fig. 3D), indicating that intensified westerlies
transport colder, isotopically depleted air from marine sec-
tors west of the Ross Embayment (Markle et al., 2012). There
findings emphasize that temperature, precipitation, and wind
directions collectively modulated isotopic variability in the
Hercules Névé region.

https://doi.org/10.5194/tc-19-5655-2025

During DJF, the Hercules Névé ice core record shows a
clear co-variation between dexc and local ocean-ice condi-
tions. When SIC is higher, dexc is generally higher, and
when SST is higher, dexc is generally lower (Fig. 4A, B).
Taken together with the §'8O—climate associations described
above, this DJF dexc pattern suggests that summertime iso-
topic variability at Hercules Névé, located near the Ross
Sea, is most closely related to local ocean—ice conditions and
polynya-influenced moisture sources. This highlights that not
only temperature and precipitation but also moisture source
variability has a discernible influence on the isotopic signal,
reinforcing the value of summer snowfall as a recorder of
regional climate (Noone and Simmonds, 2002; Risi et al.,
2010; Uemura et al., 2008).

In summary, the combination of temperature, precipi-
tation, and wind patterns during austral summer exerts a
marked influence on 8'80. These results provide a process-
based framework for interpreting how coastal Antarctic ice
cores can record regional climatic conditions, highlighting
the importance of focusing on the season (DJF) that reflects
a clearer signal of local temperature and marine moisture in-
fluence.

4 Discussion

4.1 Relationship between the dexc and SIC/SST during
the DJF Period

The Hercules Névé record reveals a positive correlation be-
tween summer sea-ice concentration (SIC) in the Ross Sea
and dexc (Fig. 4A). This association can be understood
through the interplay of katabatic winds, sea-ice extent, and
polynya processes (Dale et al., 2020; Turner et al., 2016). Un-
der high SIC conditions, katabatic forcing enhances coastal
divergence, supporting the persistence of coastal polynyas.
These polynyas enhance local evaporation, initially gener-
ating vapor with low dexc values due to kinetic fractiona-
tion (Merlivat and Jouzel, 1979). Subsequent mixing with
continental air masses relatively enriched in dexc (Noone
and Simmonds, 2004) modifies the resultant isotopic com-
position of snowfall. Meanwhile, extensive sea ice coverage
modifies the relative contribution of distant, isotopically de-
pleted oceanic sources (Uemura et al., 2008), enhancing the
relative influence of locally derived moisture. Comparable
mechanisms have been observed in both Antarctic and Arc-
tic regions, where variability in sea-ice extent exerts a strong
control on stable isotope compositions (Kurita, 2011; Steen-
Larsen et al., 2013).

In contrast, low SIC exposes a broader open-ocean surface,
intensifying evaporation under conditions that promote ki-
netic fractionation and resulting in lower dexc values (Bertler
et al., 2018; Kurosaki et al., 2020). This seasonal contrast
highlights the role of sea-ice extent and polynya activity
in modulating the isotopic characteristics of coastal Antarc-
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Figure 3. Spatial correlation analysis of (A) the 2 m temperature (75 ,,), (B) total precipitation (tp), (C) 10m v-wind (v10), and (D) 10 m
u-wind (u10) across Antarctica based on ERAS data with § 180 in HN ice core (black symbol) from 1979 to 2015 during DJF. The p < 0.1

confidence level is indicated by black contours.

tic precipitation by altering both moisture source and atmo-
spheric transport pathways. Overall, these findings indicate
that isotopic variations in coastal Antarctic precipitation are
governed by a combination of sea-ice dynamics, katabatic
wind influence, and continental moisture interactions, rather
than by temperature alone. This complexity underscores the
need to account for source-related processes when interpret-
ing coastal isotope records for paleoclimate applications.

The Cryosphere, 19, 5655-5670, 2025

The relationship between dexc and SST further com-
plicates interpretation. Theory anticipates a positive SST-
dexc linkage based on fractionation dynamics (Gat et al.,
2003; Merlivat and Jouzel, 1979). However, our results re-
veal a negative correlation between dexc and SST (Fig. 4B),
which differs from the expected positive relationship (Merli-
vat and Jouzel, 1979). We hypothesize that complex ocean—
atmosphere interactions in polynya regions, where sea-ice
dynamics, variable SST, and atmospheric circulation con-
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ice concentration (SIC) and (B) sea surface temperature (SST) from ERAS data during DJF for 1979-2015. The p < 0.1 confidence level is

indicated by black contours.

verge, modify the typical SST-d-exc linkage. Further nu-
merical modeling that includes both SST and humidity
variability would be necessary to elucidate these processes
more precisely (Pfahl and Sodemann, 2014; Uemura et al.,
2008). These findings carry two key implications: (1) coastal
Antarctic ice core dexc provides a sensitive proxy for sea-ice
extent and local air—sea coupling rather than open-ocean tem-
perature, and (2) isotope-based reconstructions using dexc
must account for the dominance of polynya processes in re-
gions such as the Ross Sea.

4.2 Influence of the ASL on Water Isotopes and Wind
Patterns

The ASL has a profound impact on both §'30 variability and
local wind dynamics in the Ross Sea and Victoria Land (Cog-
gins and McDonald, 2015; Turner et al., 2013). In this study,
a significant negative correlation was found between ASL-
related mean sea-level pressure and 8'80 values in the Her-
cules Névé region (Fig. SA). When the ASL intensifies (i.e.,
its central pressure drops), cold and dry air from the Antarc-
tic continent tends to intrude into the Hercules Névé region,
which is associated with more deplete §'80 in precipitation
(Emanuelsson et al., 2023). This observation agrees with
prior findings linking a stronger ASL activity to enhanced
cold-air advection and lowered isotopic content of snow-
fall (Hosking et al., 2013; Raphael et al., 2019). Wind pat-
terns also influence the isotopic composition. As discussed in
Sect. 3.2, 5180 exhibits a positive correlation with the v-wind
(southerly) but a negative correlation with the u-wind (west-
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erly), indicating advection of relatively warm, moist versus
cold, dry air masses (Fig. 5C-D; Clem et al., 2017).

To further characterize ASL behavior, we conducted a
PCA using DJF ASL strength (actual central pressure), lat-
itude, and longitude (Hosking et al., 2013). The first three
principal components (PCs) explained all variance in the
dataset (PC1: 57.7 %, PC2: 31.2 %, PC3: 11.2 %) (Fig. 6A).
PC1 reflects a general displacement toward a stronger, pole-
ward, and eastward ASL but is only weakly associated with
s180 (r =0.15). PC2 captures a zonal shift with moder-
ate association (r = 0.27), while PC3, though explaining the
least variance, exhibits the strongest negative correlation
with 8§80 (r =—0.34) (Fig. 6B). Loadings (Table 1) indi-
cate that PC3 is characterized by a southward shift in ASL
position combined with increased central pressure and slight
eastward movement. This coupled ASL pattern appears to be
notably associated with changes in the isotopic signature at
Hercules Névé, possibly reflecting modified moisture trans-
port pathways. Figure 7 presents the results of the HYS-
PLIT back-trajectory clustering for summers with strong
and weak ASL conditions, illustrating contrasting transport
regimes. During intensified ASL phases in DJF (lower cen-
tral pressure over the Amundsen Sea), the trajectories indi-
cate that moisture is primarily transported meridionally from
the Antarctic interior and the Ross Ice Shelf, producing in
longer, more continental air-mass pathways. These condi-
tions correspond to colder, isotopically depleted precipitation
with higher dexc values, consistent with enhanced inland and
shelf-derived moisture contributions. Conversely, during pe-
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Table 1. PCA loadings of ASL parameters (Actual central pressure,
latitude, longitude) from Hosking et al. (2013) datasets. Loadings
show variable contributions to each principal component.

Variable PC1 pPC2 PC3
ActCenPres (strength)  0.52 0.69 0.50
Longitude 0.50 —-0.73 0.47
Latitude 0.69 0.01 —-0.72

riods of a weak ASL phase (higher central pressure), trajec-
tories become more zonal, with increased transport of ma-
rine air masses from the open Ross Sea. This pattern is asso-
ciated with warmer, isotopically enriched precipitation and
lower dexc, reflecting the greater influence of oceanic mois-
ture sources. These contrasting circulation regimes demon-
strate that ASL variability plays a key role in modulating
the origin and isotopic signature of precipitation at Hercules
Névé, linking regional-scale atmospheric dynamics to local
ice-core records.

In contrast, periods of diminished ASL show an increased
proportion of zonal, ocean-originating trajectories, partic-
ularly from the Amundsen Sea sector and lower-latitude
open waters. These pathways favor the transport of rela-
tively warm, isotopically enriched air and lower dexc val-
ues, reflecting a greater contribution of oceanic vapor. This
shift underscores the role of large-scale circulation variabil-
ity in mediating both surface climate and the isotopic imprint
preserved in the Hercules Névé ice core. Collectively, these
findings indicate that ASL variability is statistically associ-
ated with both pressure-related advection and wind-driven
changes in regional circulation. Although PC3 explains only
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11 % of the total variance, its statistically significant nega-
tive correlation with 8180, emphasizes that structural shifts
in ASL circulation importantly influence isotope variability
in coastal Antarctica.

4.3 Relationship between ZW3 and Water Isotopes

A significant positive correlation was identified between the
DJF seasonal mean strength of ZW3 and §'30 (r =0.47,
p <0.01) in the Hercules Névé region based on interan-
nual values from 1979 to 2015. The ZW3 index (Goyal et
al., 2022) represents monthly variability in the hemispheric
wave-3 structure, which we averaged over DJF to align with
the period of isotopic signal accumulation in the snowpack.
To examine the influence of broader atmospheric circula-
tion patterns, we also examined the Southern Annular Mode
(SAM) using principal components from an EOF analysis of
500 hPa geopotential height fields during DJF from ERAS.
The first mode (EOF1), associated with SAM, showed no sig-
nificant relationship with & 180 (r =0.09, p =0.58), whereas
the second mode (EOF2), consistent with ASL-ZW?3 vari-
ability, had a statistically significant negative correlation
(r=—-0.44, p <0.01). These results suggest that regional
wave activity (ZW3) and pressure anomalies (ASL) are more
closely associated with §'30 variability in this region than
hemispheric SAM variability.

ZW3 is linked to changes in meridional airflow patterns;
its intensification enhances the advection of warm, isotopi-
cally enriched air masses toward the Ross Sea, resulting in
higher §'30 values (Raphael, 2007). While the amplitude
of ZW3 strength showed a moderately related to §'30, the
phase of this wave did not exhibit significant influence, indi-
cating that wave amplitude rather than longitudinal displace-
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Figure 7. 7d HYSPLIT back-trajectory clusters arriving at Hercules Névé during (left) the five strongest ASL summers and (right) the five
weakest ASL summers (DJF, 1979-2015). Strong ASL cases show dominant air mass transport from inland Antarctica and the Ross Ice
Shelf, while weak ASL cases are associated with zonal trajectories originating from the Amundsen Sea and lower-latitude ocean sectors.

ment is more relevant for isotope variability at this site. The
interaction between ZW3 and the ASL introduces additional
complexity. Enhanced ZW3 activity coincides with increased
ASL intensity (Cohen et al., 2013), which can coincide with
southward transport of cold, dry continental air, partially off-
setting the warming influence of ZW3. This dynamic inter-
play suggests that §'30 variability at Hercules Névé may rep-
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resent a net balance between warm marine and cold continen-
tal air mass effects, both associated with the coupled ZW3-
ASL system (Hosking et al., 2013; Turner et al., 2013). These
findings highlight the importance of considering regional at-
mospheric wave activity and its coupling with local pressure
systems when interpreting isotopic records. Further investi-
gation into the phase relationships and the relative contribu-
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tions of competing air masses would be essential to clarify
the mechanisms controlling isotope variability in the Ross
Sea sector.

5 Conclusions

This study analyzed a Hercules Névé ice core to examine
the climatic factors influencing water isotope composition in
eastern Antarctica. By investigating the upper 15m of the
80m ice core, we identified distinct seasonal variation in
the isotopic composition, enabling a high-resolution recon-
struction of approximately 40 years of accumulation. This
chronology enabled us to trace changes in climate patterns
during this period. The analysis focused on the austral sum-
mer (DJF), a key period for understanding polynya activ-
ity and associated atmospheric processes. Variations in wa-
ter isotopes, particularly 8'80, are most closely associated
with a combination of temperature, precipitation, and wind
patterns, with additional associations involving atmospheric
pressure systems such as the ASL and ZW3. Southerly winds
were associated with enriched §!30 values, while westerly
winds were linked to relatively depleted 8'80 values. This
pattern highlights the complex relationships between atmo-
spheric dynamics and isotopic composition, where wind di-
rection and intensity may coincide with differences in local
climate conditions.

The dexc record from the ice core was positively associ-
ated with SIC and negatively associated with SST, which is
consistent with katabatic winds and polynya activity along
the Ross Sea coast. The intensity of Antarctic winds and the
extent of SIC were both linked to precipitation character-
istics in the study area, suggesting a connection with local
climate variability. The influences of the ASL and ZW3 are
also evident in their linkages to isotopic variability. Enhanced
ASL activity (lower central pressure) is associated with shifts
in wind direction and colder, isotopically depleted precipi-
tation, whereas stronger ZW3 phases correspond to the ad-
vection of warm, moisture-rich air and isotopically enriched
snowfall. These findings underscore the interconnected na-
ture of regional atmospheric systems and their imprints on
Antarctic ice-core records.

Overall, the isotope variability at Hercules Névé reflects
the integrated response to temperature, precipitation, wind
regimes, and large-scale circulation patterns, rather than
temperature alone. This work provides one of the first
process-based assessments of summer isotope variability in
a coastal Antarctic setting, highlighting how coupled ocean—
atmosphere dynamics shape isotopic records. Although the
analysis is limited to a single site and season, the results
establish a valuable reference framework for interpreting
coastal ice-core records. Future studies that incorporate year-
round monitoring, extended ice-core datasets, and isotope-
enabled atmospheric modeling will further refine our under-
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standing of water-isotope—climate relationships in Antarc-
tica.
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