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Abstract. Developing operational data assimilation sys-
tems for sea-ice models is challenging, especially using a
variational approach due to the absence of adjoint mod-
els. NeXtSIM, a sea-ice model based on a brittle rheology
paradigm, enables high-fidelity simulations of sea-ice dy-
namics at mesoscale resolution (∼ 10 km) but lacks an ad-
joint. By training a neural network as an Arctic-wide emu-
lator for sea-ice thickness based on mesoscale simulations
with neXtSIM, we gain access to an adjoint. Building on this
emulator and its adjoint, we introduce a four-dimensional
variational (4D–Var) data assimilation system to correct the
emulator’s bias and to better position the marginal ice zone
(MIZ). Firstly, we perform twin experiments to demonstrate
the capabilities of this 4D–Var system and to evaluate two
approximations of the background covariance matrix. These
twin experiments demonstrate that the assimilation improves
the positioning of the MIZ and enhances the forecast qual-
ity, achieving an average reduction in sea-ice thickness root-
mean-squared error of 0.8m compared to the free run. Sec-
ondly, we assimilate real CS2SMOS satellite retrievals with
this system. While the assimilation of these rather smooth
retrievals amplifies the loss of small-scale information in our
system, it effectively corrects the forecast bias. The forecasts
of our 4D–Var system achieve a similar performance as the
operational sea-ice forecasting system neXtSIM-F. These re-
sults pave the way to the use of deep learning-based emula-
tors for 4D–Var systems to improve sea-ice modeling.

1 Introduction

Combining observational data with sea-ice models through
data assimilation can significantly improve the accuracy of
sea-ice forecasts for practical applications such as maritime
routing. However, these methods are often computationally
expensive. Deep learning offers a promising alternative by
providing efficient neural network emulators that act as auto-
differentiable surrogates for costly physical models, which
frequently lack an adjoint. This enables the implementation
of four-dimensional variational data assimilation (4D–Var)
systems, potentially enhancing both the accuracy and scala-
bility of sea-ice forecasts.

In this paper, we introduce a 4D–Var system based on the
sea-ice thickness (SIT) emulator developed by Durand et al.
(2024). This emulator is designed to reproduce the evolu-
tion of SIT as modeled by the state-of-the-art sea-ice model
neXtSIM (Rampal et al., 2016; Ólason et al., 2022). We first
demonstrate the feasibility of employing this emulator and its
adjoint within a 4D–Var framework using twin experiments.
We then present promising results obtained by assimilating
real SIT observations from the CS2SMOS product, which
merges CryoSat-2 altimetry with Soil Moisture and Ocean
Salinity (SMOS) radiometry (Ricker et al., 2017). Forecasts
generated by our system are comparable to those of the oper-
ational neXtSIM-F framework (Williams et al., 2021), where
-F denotes “Forecast”.

Arctic SIT is strongly influenced by the rheological for-
mulation of sea-ice models. NeXtSIM is built around brittle
rheologies (Girard et al., 2011; Dansereau et al., 2016) to
better capture small-scale sea-ice processes. At a mesoscale
resolution of approximately 10km, the model successfully
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reproduces the observed scaling and multifractal properties
of sea ice in space and time (Rampal et al., 2019; Bouchat
et al., 2022). Two assimilation systems have been developed
for neXtSIM to date: an ensemble Kalman filter tested for
SIT and concentration (Cheng et al., 2023b), and the oper-
ational neXtSIM-F system, which relies on a simple nudg-
ing technique (Williams et al., 2021). Here, we present the
first application of variational data assimilation methods in
neXtSIM, made possible through a data-driven emulator.

We focus on 4D–Var methods, which rely on minimizing
a cost function that requires model gradients and adjoints.
In the strong-constraint formulation, 4D–Var seeks a model
trajectory that best fits the observations over a specified data
assimilation window (DAW) (Sasaki, 1970; Talagrand and
Courtier, 1987). Gradients are propagated backward in time
through the model adjoint during minimization, allowing the
initial analysis to integrate observational information from
the entire DAW. Adjoint models for sea ice are rarely de-
veloped due to numerical instabilities (Kauker et al., 2009;
Fenty and Heimbach, 2013). While adjoints of simplified
free-drift models exist (Koldunov et al., 2017), they lack real-
ism for full Arctic simulations. Some studies have developed
adjoints within coupled ocean–sea ice frameworks using sim-
plified elasto-visco-plastic rheologies (Usui et al., 2016; Toy-
oda et al., 2015, 2019), but these approaches reduce rhe-
ological complexity. Other operational forecasting systems
implement alternative assimilation techniques, ranging from
ensemble Kalman filters with flow-dependent covariances
(Sakov et al., 2012; Kimmritz et al., 2018) to static covari-
ance methods such as optimal interpolation (Wang et al.,
2013; Ji et al., 2015) or three-dimensional variational assim-
ilation (Hebert et al., 2015; Toyoda et al., 2015; Lemieux
et al., 2015). Initialization by nudging has also been em-
ployed (Lindsay and Zhang, 2006; Tietsche et al., 2013).

Recent advances in deep learning for sea-ice modeling
span a variety of applications: full emulation of SIT (Du-
rand et al., 2024), probabilities of sea-ice coverage (Anders-
son et al., 2021), and sea-ice concentration (Liu et al., 2021);
as well as more specialized tasks such as model error cor-
rection (Finn et al., 2023) and melt-pond emulation (Driscoll
et al., 2024). Neural networks have also been integrated into
data assimilation workflows, for instance to learn increments
for model bias correction (Gregory et al., 2023, 2024a) or to
calibrate sea-ice forecasts (Palerme et al., 2024).

In the present work, we leverage the SIT emulator of Du-
rand et al. (2024) for both forward and adjoint modeling
within a 4D–Var framework. The principle of emulator-based
4D–Var was first introduced by Hatfield et al. (2021) and
demonstrated on Lorenz-63 toy models (Chennault et al.,
2021). More recently, it has been applied to numerical
weather prediction emulators based on ERA5 reanalyses
(Xiao et al., 2023). Our study represents the first 4D–Var data
assimilation system designed around an emulator specifically
tailored to capture sea-ice dynamics and their adjoint.

We explore two experimental setups. First, we perform
twin experiments in which synthetic observations are gener-
ated by perturbing neXtSIM outputs. Second, we assimilate
real satellite observations from CS2SMOS. The paper is or-
ganized as follows: Section 2 introduces the sea-ice model
and external forcings; Sect. 3 describes the emulator; Sect. 4
outlines the 4D–Var framework and evaluation metrics; re-
sults are presented in Sects. 5 and 6; and Sect. 7 provides a
discussion, followed by conclusions in Sect. 8.

2 Physical model simulation and preprocessing of
atmospheric forcings

In this section, we begin by introducing the geophysical sea-
ice model, neXtSIM, which serves as the ground model for
our results. We then present the atmospheric forcings used
as additional inputs for the emulator. NeXtSIM is a state-of-
the-art sea-ice model (Rampal et al., 2016) built around brit-
tle rheologies (Girard et al., 2011; Dansereau et al., 2016). In
the here-used simulations (Boutin et al., 2023), neXtSIM is
employed with the brittle Bingham-Maxwell rheology (Óla-
son et al., 2022) to replicate the observed subgrid-scale be-
havior of sea ice. Originally run on a Lagrangian triangular
mesh, neXtSIM’s outputs are projected onto a Eulerian curvi-
linear grid, forming the basis of our surrogate model (Durand
et al., 2024). Additionally, the sea-ice model is coupled with
the Nucleus for European Modelling of the Ocean (NEMO)
framework’s ocean model, OPA (version 3.6, Madec et al.,
1998; Rousset et al., 2015). For further information about
the numerical model and its setup, we refer to Boutin et al.
(2023).

In this study, we predict the sea-ice thickness with a neural
network which is trained on simulations spanning from 2009
to 2016. The simulations are run on the regional CREG025
mesh configuration (Talandier and Lique, 2021), a regional
subset of the global ORCA025 configuration developed by
the Drakkar consortium (Bernard et al., 2006). The simu-
lated area covers the Arctic and parts of the North Atlantic
down to 27° N latitude, with a nominal horizontal resolution
of 0.25° (' 12km in the Arctic basin). The data is cropped
in lower latitudes and areas in Eastern Europe and America
where no sea ice is present, and then coarse-grained by aver-
aging over a 4× 4 window, resulting in a final resolution of
128× 128 grid-cells. A simulated sea-ice thickness snapshot
is displayed in Fig. 1a).

Let x ∈ R128×128 be the sea-ice thickness. The normalized
sea-ice thickness x̃ is then defined by

x̃=
x−µSIT

σSIT
, (1)

with µSIT the globally averaged sea-ice thickness and σSIT
the global standard deviation, computed over all the coarse-
grained grid-cells in the training dataset (2009 to 2016). The
subtraction and division are pointwise operations. The nor-
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malization of all input fields in the neural network is a com-
mon practice to stabilize and speed up the training (Ioffe and
Szegedy, 2015). Masking land-covered cells within the orig-
inal 128× 128 grid-cells, Nz = 8871 remain unmasked cov-
ered by either open water or sea ice. Hence, the data assimi-
lation is performed on the 1-D state vector x̃1D

∈ RNz which
represents the normalized sea-ice thickness on the unmasked
grid-cells. We will further drop the 1D superscript for the
sake of readability.

Additionally, we also consider the 2m temperature (T2M),
and the atmospheric u- and v-velocities in 10m height (U10
and V10) from the ERA5 reanalysis dataset (Hersbach et al.,
2020). Several atmospheric forcings are added as inputs to
the neural network, as sea-ice thickness dynamics are largely
driven by the atmosphere (Guemas et al., 2014). In particular,
Arctic surface circulation and sea-ice movement are strongly
influenced by atmospheric winds (Serreze et al., 1992), while
surface temperature fluctuations also play a key role in sea-
ice variability (Olonscheck et al., 2019). Interpolated onto
the native Eulerian curvilinear grid with nearest neighbors,
forcings at time t , t+6h and t+12h are then coarse-grained,
normalized and added as predictors to the input of the neural
network, as commonly done in sea-ice forecasting (Grigo-
ryev et al., 2022).

3 Surrogate model

In this section, we describe our surrogate model, which has
the same structure as the emulator previously developed in
Durand et al. (2024), with the only update being that it is
trained to account for the positivity of sea-ice thickness dur-
ing training.

The surrogate model gθ predicts the full sea-ice thickness
x̃t+1t with a 1t = 12h lead time. The neural network fθ
with its weights and biases θ is trained to predict the evolu-
tion of the SIT after1t = 12h based on the initial conditions
x̃t and given atmospheric forcings F, fθ (x̃t ,Ft )≈ x̃t+1t−x̃t .
Added to x̃t , this results in the prediction of the full SIT field
x̃t+1t ,

x̃t+1t = gθ (x̃t ,Ft ) (2a)
= Relu

(
x̃t + fθ (x̃t ,Ft )

)
, (2b)

with the point-wise Rectified Linear Unit (Relu) activation
function, Relu(x̃)=max(SITmin, x̃), limiting the output to
the lower physical bound in the normalized space (SITmin).
Note that fθ is an intermediate emulator. Firstly, with fθ , we
focus on 12 h tendencies rather than predicting the full state
directly, since small changes are harder to capture. The learn-
ing process is then split: we first train the emulator to repro-
duce SIT evolution, and subsequently use transfer learning
so that gθ also respects the positivity constraint thanks to re-
training with Relu as the final activation function.

The neural network is trained with a mean-squared error
loss between the predicted sea-ice thickness and the targeted

sea-ice thickness as simulated by neXtSIM. The main part of
the loss function is defined by a pixel-wise mean-squared er-
ror (MSE) on all Nx×Ny = 128×128 grid-cells, multiplied
by the land-sea mask,

Llocal(x, x̂)=MSE(x, x̂)

=
1

Nx ·Ny

Nx∑
i

Ny∑
j

(xi,j − x̂i,j )
2. (3)

Note that, to simplify the equation, we did not include here
the land-sea mask, which is applied in the numerical imple-
mentation to compute the loss solely on the Nz valid pixels.
To address the systematic bias of the surrogate model and to
mitigate its influence, which is already accounted for in the
MSE loss, we introduce an additional penalty term to the loss
function,

Lglobal(x, x̂)=

 1
Nx ·Ny

Nx∑
i

Ny∑
j

(xi,j − x̂i,j )

2

. (4)

Note in particular that the loss in Eq. (4) is squared after av-
eraging, differing from Eq. (3). The total loss is then given
by

L(x, x̂)= Llocal(x, x̂)+ λLglobal(x, x̂), (5)

with λ weighting the two terms. First, we pre-train the model
fθ using λ= 100, as in Durand et al. (2024). Trained un-
til convergence, we select the best model in the validation
dataset. Secondly, we fine-tune gθ to account for the clip-
ping, thanks to the Relu activation function, with a second
loss. Here, we select λ= 10 as penalty weight, striking a
good balance between Llocal and Lglobal which have a differ-
ent magnitude during second training. Results of the training
and inference of the surrogate are presented in Appendix A.

4 Four-dimensional variational data assimilation

In this section, we describe the experimental setup of our
4D–Var, which is based on the surrogate model and its ad-
joint, as previously discussed in Sect. 3. Note that we are
focusing on full 4D–Var rather than incremental 4D–Var.

4.1 4D–Var setup

The forecast model is our data-driven emulator of neXtSIM.
ỹk represents the observation at time k, x̃b represents the
background state, x̃a represent the analysis and x̃0 the first
guess. B is the background error covariance matrix and its
specific parameterizations will be described below. To ini-
tialize the cycling of the data assimilation, we start with a
field as simulated by neXtSIM for 1 January 2016, which is
contained in our training dataset and which can be seen as
sample from the climatology for the starting day.
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For twin experiments, observations are generated directly
in the model space, requiring no special preprocessing, as
opposed to real observations, as explained in Sect. 6.1. The
observation operator H is simply defined as a diagonal ma-
trix H.

In this study, the 4D–Var is cycled across Ncycle cycles.
The state at the end of each DAW is used as first guess and
background state for the next DA cycle. To evaluate the 4D–
Var system, forecasts are run for 45 d after the end of the
DAW in the twin experiment case, and for 9 d in the real ob-
servations case.

Two types of 4D–Var are considered. 4D–Var-diag, which
corresponds to the use of a diagonal matrix as covariance
matrix of background errors B (see Sect. 4.2), and 4D–Var-
EOF in which the minimization is carried out in the empirical
orthogonal function (EOF) space (see Sect. 4.3).

4.2 4D–Var with diagonal B matrix: 4D–Var-diag

The cost function associated to the 4D–Var minimization
problem is

J (x̃0)= J b
+J o (6a)

=
1
2

∥∥∥x̃0− x̃
b
∥∥∥2

(λ2
infB)−1

+
1
2

K∑
k=1

∥∥ỹk −Hk x̃k
∥∥2

R−1
k
, (6b)

with

x̃k =M0 7−→k·1t (x̃0)= gθ ◦ . . . ◦ gθ︸ ︷︷ ︸
k−times

(x̃0), (7)

and where ‖x‖A =
√

x>Ax is the Mahalanobis norm, and B
is defined by B= σ 2

b I. Through all experiments, σ 2
b = 0.42

(non-dimensional, as x̃ has been normalized). The Rk , de-
fined by Rk = σ 2

obsI with I the identity matrix, are the obser-
vation error covariance matrices, and are all equals. The co-
efficient λinf is a multiplicative inflation term for background
errors, which is set to 1 when no inflation is used and is fur-
ther described in Appendix E. The results of the minimiza-
tion of the cost function is the analysis xa

0.

4.3 4D–Var projected onto the EOFs basis:
4D–Var-EOF

Empirical orthogonal functions (EOFs) are a set of orthog-
onal state vectors derived from data, which form a basis of
the full state space. Details about the computation and the
analysis of the EOFs are given in Appendix B. A reduced
strategy to enhance 4D–Var by projecting onto the EOFs has
been proposed by Robert et al. (2005) for ocean models. The
projection onto the EOFs enables access to cross-covariances
and may improve the numerical conditioning of the mini-
mization of J . The minimization is carried out with respect
to the control variable w ∈ Rm defined by the projection of
the vector x̃ onto the matrix ϕm ∈ RNz×m:

x̃ = x̄+ϕmw, (8)

with x̄ representing the temporal average sea-ice thickness
field over the dataset used to construct the EOFs andm stand-
ing for the truncation index corresponding to the number of
EOFs which are kept in the definition of the minimization
subspace. The goal is to run the 4D–Var minimization in this
affine truncated space spanned by the ϕm.

In this subspace, the cost function reads, at cycle n,

J (w0)=
1

2λ2
inf

∥∥∥w0−w
b
0

∥∥∥2
+

1
2

K∑
k=1

∥∥ỹk
−Hkg

k×Nf
θ (x̄+ϕmw0,F0 7−→k×Nf)

∥∥∥2

R−1
k

. (9)

The details of the 4D–Var cost function computation are pre-
sented in Algorithms C1 and C2. The result of this minimiza-
tion is the control variable at the beginning of the DAW, wa

0.
The value of the truncation index is set to m= 7000 for all
experiments and is further discussed in the Appendix B while
further details on the optimization are given in Appendix C.

4.4 Metrics for the evaluation of the experiments

To evaluate the efficiency of the data assimilation scheme,
we compute the root-mean-squared error (RMSE) between
the predicted state performed by applying the emulator with
the analysis as initial state, xf(t)=M0 7−→t1t (xa

0), and the
truth xt, which corresponds to the neXtSIM simulation in the
twin experiment case, and to CS2SMOS fields in the real ob-
servations case, for each cycle n, at the lead time t , and over
all unmasked pixels i ∈Nz. Inside the DAW (up to 16 d for
the twin experiments case and 8 d for the real observations
case), this corresponds to an analysis RMSE and afterwards
a forecast RMSE. In the case of real observations, the fore-
cast RMSE is computed by comparing our scheme with ob-
servations that have not yet been assimilated.

RMSEn(t)=

√√√√ 1
Nz

Nz∑
i=1
(xf
i,n(t)− x

t
i,n(t))

2. (10)

This RMSE is defined for each cycle of each experiment, and
can then be averaged across all cycles to get the mRMSE,
which becomes a function depending on the lead time t only.

mRMSE(t)=
1

Ncycle

Ncycle∑
n=1

RMSEn(t). (11)

Note that the RMSE and the mRMSE are defined in the phys-
ical space, for an easier interpretation. For the evaluation of
CS2SMOS assimilation, see Sect. 6, we use two additional
metrics, the bias error,

biasn(t)=
1
Nz

Nz∑
i=1

xf
i,n(t)−

1
Nz

Nz∑
i=1

xt
i,n(t), (12)
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and the Ice Integrated Edge Error (IIEESIT), as initially in-
troduced by Goessling et al. (2016), but slightly modified by
using sea-ice thickness instead of sea-ice concentration as the
threshold. Specifically, we define a metric that counts the grid
cells where the surrogate model disagrees with CS2SMOS
on the presence of sea ice. A grid cell is considered to be
covered by sea ice if the thickness exceeds 0.1m (cf. Du-
rand et al., 2024, B1 for the threshold justification), analo-
gous to the sea-ice concentration threshold of 0.15 defined in
Goessling et al. (2016). The IIEESIT is expressed as the total
area (km2) of disagreement between the observations and the
forecast.

5 Twin experiments

In this section, the results from the twin experiments are pre-
sented in Sect. 5.2, after the description of the simulated ob-
servations in Sect. 5.1.

5.1 Simulated observations from neXtSIM

In the first approach, a twin experiment setup is employed,
wherein synthetic observations are generated by adding noise
to neXtSIM simulations from 2017 and 2018. Using the ob-
servation error variance σ 2

obs = 0.42 (non-dimensional), we
define several variants of perturbed observations,

x̃G
t,obs = x̃t+ ε

G, εG
∼N (0,σ 2

obs), (13a)

x̃LN
t,obs =

xt exp(εLN)−µSIT

σSIT
, εLN

∼N
(

0,σobs−
1
2
σ 2

obs,

)
, (13b)

x̃
cond−clipped
t,obs =min

(
x̃t

(
1+ εG

)
,SITmin

)
. (13c)

with exp the exponential function. The Gaussian observation
noise as defined in Eq. (13a), is an idealized case tailored to
the common assumptions of 4D–Var, to test an adaptive in-
flation scheme which will be defined later. Equation (13b)
specifies a log-normal distribution for the noise, as more
commonly encountered in sea-ice observations from satel-
lites (Landy et al., 2020). Furthermore, a variant to log-
normal noise is introduced in Eq. (13c) by adding a fraction
of the sea-ice thickness and incorporating clipping, based on
SITmin, the corresponding 0m thickness in the normalized
space. This noise definition is called cond− clipped in the
following. This approach ensures that the observations re-
main confined within the physical bounds of sea ice, unlike
Gaussian noise, but similarly to log-normal noise. Examples
of the different noises are shown in Fig. 1b–d.

These noise definitions yield different noise magnitudes.
The log-normal noise, defined in Eq. (13b), provides a more
significant spread, especially for thicker ice. In average, the
log-normal noise definition results in a standard deviation
of 0.35m, because of the skewness of the log-normal law,
whereas the conditioned noise, defined in Eq. (13c), results
in a smaller standard deviation of 0.29m.

5.2 Results

The length of the DAW is set to Ndaw = 16 d which corre-
sponds to 32 iterations of the surrogate model. In the twin
experiment setup, observations are acquired every 2 d (ev-
ery Nf = 4 iterations). In all twin experiments, we initial-
ize the first data assimilation cycle with a past neXtSIM SIT
field from the 1st of January 2016. In this section, the mul-
tiplicative inflation coefficient is set to 1. Experiments are
conducted throughout years 2017 and 2018, which are af-
ter the training dataset (years 2009–2016). To compute av-
eraged results, only the year 2018 is used, i.e. 2017 is used
as spin-up. The 4D–Var is run for Ncycle = 45 cycles from
1 January 2017 to 21 December 2018.

As shown in Table 1, the choice of noise distribution –
whether Gaussian, log-normal, or cond-clipped as defined in
Sect. 5.1, influences the efficiency of the assimilation pro-
cess. However, all experiments remained stable, meaning that
there was no divergence in the results. While the assimila-
tion of perfect observations yields the best results, the dif-
ferent noise definitions produce comparable outcomes. Us-
ing the cond-clipped perturbations provide the best RMSE
among the three different types of perturbations. This could
be linked to the lower RMSE of its observations.

As shown in Table 1, projecting the 4D–Var onto the EOFs
yields improvements in all cases, with relative improvements
in the range 15 %–17 % for the different types of noise. This
improvement can be attributed to the non-diagonal terms in
the implied B matrix. This systematic improvement is also
observed in Fig. 2 during forecast. When extending the fore-
cast beyond the DAW, the advantage of the 4D–Var-EOF
over the 4D–Var-diag remains noticeable but diminishes as
the lead time increases. On average, both forecasts show an
improvement of 0.8m over the emulator’s free run (initial-
ized on 1 January 2017) across all lead times. Additionally,
when comparing the 4D–Var-EOF forecast to the emulator
forecast (initialized with perfect conditions at the end of each
DAW, red dashed curve), we observe comparable RMSE,
showing the stability of the forecast produced by the anal-
ysis.

Figure 3 displays fields to illustrate the benefit of data as-
similation over a cycle. The first guess field is smoother be-
cause of the emulator, whereas the analysis is actually noisier
than the truth, because of the observations’ noise. The largest
negative corrections are applied to the MIZ to correct its po-
sition, especially in the Beaufort Sea, Chukchi Sea, and Hud-
son Bay. In the other places, we observe a positive correction,
which is consistent with the negative bias ('−0.015m) of
the surrogate model at the time of the depicted cycle.

As seen in Fig. 4, at the start of each cycle, the initial anal-
ysis RMSE is generally lower than the first guess RMSE,
which corresponds to the end of the previous DAW, indicat-
ing that the analysis improves over the first guess, of 2cm in
average across all cycles. In the specific case on late Febru-
ary 2018 (cycle 26), large differences between the truth and
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Figure 1. Snapshots of neXtSIM SIT (a) and different type of observations (b) Gaussian noise, (c) log-normal noise (LN) and (d) conditioned
noise (cond-clipped). The colorbar for panels (b), (c) and (d) is shared and displayed on the right.

Table 1. Comparison of RMSE for different types of simulated observation noise (cf. Sect. 5.1) for the two types of 4D–Var algorithms
(with diagonal B matrix and with projection onto the EOFs). Results are presented with the mRMSE computed inside the DAW across 2018.
The RMSEs between neXtSIM and the perturbed observations, are outlined in the second column. They correspond to the averaged RMSE
between the observations and their associated non-perturbed SIT field.

mRMSE (m) Observations 4D–Var-diag 4D–Var-EOF

No noise 0.000 0.305 0.256
Gaussian noise 0.638 0.321 0.272
LN noise 0.587 0.333 0.281
Cond-clipped noise 0.527 0.318 0.264

the analysis are located near the Canadian Archipelago, lead-
ing to a higher RMSE compared to the first-guess RMSE,
where such differences do not occur. We hypothesize that, in
order to minimize the RMSE throughout the DAW, the 4D–
Var removes sea ice in this region. This is consistent with the
emulator’s positive bias during this period. Overall, the anal-
ysis from Fig. 4 (top) reveals a strong seasonality in results,
with RMSE peaking in July. The peak aligns with significant

changes in sea-ice extent at this period, with an important
decrease due to the warmer temperatures in the Arctic. This
suggests that 4D–Var possibly struggles more with dynamic
shifts. See additional multi-year results in Appendix D. Ad-
ditionally, the bias error of the emulator (Fig. 4, lower panel),
indicative of model error, shows a similar seasonal pattern,
transitioning from a positive to negative bias around summer
and reverting in December. The key factor affecting assimi-
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Figure 2. Cycle-averaged mRMSE of x̃f over 2018 during fore-
cast stage. The dashed red line represents the free run of the emula-
tor started at the end of each DAW (with perfect initial conditions,
PIC). The mRMSE of the 4D–Var-EOF forecast is shown in purple,
and the 4D–Var-diag forecast is shown using in grey. Cond-clipped
noise is used in both cases. The black dotted line corresponds to the
emulator free run, initialized on 1 January 2017.

lation accuracy appears to be not just the amplitude but also
the seasonal variation of this bias.

An important factor influencing the quality of the assim-
ilation is the frequency of the observations. We denote the
number of observations during one cycle of 16d (32 model
iterations) as Nobs. As shown in Fig. 5, when there are too
few observation times per cycle, no improvement is observed
in the analysis compared to the forecast at the end of the pre-
vious cycle (this is the case for both 2 and 4 observation times
per cycle). Once 8 observation times per cycle are reached,
this divergence disappears, which is why we choose 8 obser-
vation times per cycle in our setup.

6 CS2SMOS assimilation

In this section, the results from the real observations are pre-
sented in Sect. 6.2, after the description of the observations
used in Sect. 6.1.

6.1 Real observations: combined Cryosat2-SMOS
retrieval

The dataset of CS2SMOS (Ricker et al., 2017) retrievals pro-
vides real observations. The retrievals merge observations
from CryoSat-2 (Kurtz and Harbeck, 2017), known for its ac-
curate observations of thick and perennial sea ice, and from
SMOS (Tian-Kunze et al., 2014), used to infer the thick-
ness of thin ice. Merged weekly to account for the different
temporal resolution of CryoSat-2 and SMOS observations,
the retrievals are available as daily moving window average.
Note that the CS2SMOS is the result of Kriging and has been
considerably smoothed in the process, even when compared
to a weekly average of neXtSIM, as illustrated in Fig. 7.

CS2SMOS retrievals are only available on grid-cells cov-
ered by sea ice, and no information is available on grid-cells

with open water. This creates a temporally changing mask,
and we assume that grid-cells without information contain
no sea ice.

Additionally, the CS2SMOS retrievals come with their
own errors and uncertainties (Ricker et al., 2017). Note that
Nab et al. (2025) showed that modifying SIT observation
uncertainties introduces significant sensitivities during SIT
assimilation. Based on the diagnostics of Desroziers et al.
(2005), Xie et al. (2018) proposed an empirical formula
for the observation error variance σ 2

obs,CS2SMOS as an in-
creasing function of ice thickness hice, with the coefficients
0.2,0.02,0.1 in m2, 3 in m and 1.5 without unit.

σ 2
obs,CS2SMOS =

{
min(0.2,0.02e1.8(hice−3)) if hice > 3m,
max(0.02,0.1e−1.5hice ) otherwise.

(14)

This observation error variance is also used in Cheng et al.
(2023a). The graph of the function is displayed in Fig. 6. We
will rely on this assessment to introduce observation error
statistics for the real observation setup. Note that, unlike the
usual approach in data assimilation where the model state is
projected onto the observation space using H, we simplify
the process by doing the other way around. In a preprocess-
ing step, real observations are interpolated onto the model
space, making them retrievals. This is feasible because the
observations are at a higher resolution in their native grid,
and then coarse-grained by a factor 2. Even in their original
resolution, they remain smoother than the forecasts of our
surrogate model.

6.2 Results

In this section, instead of assimilating simulated observa-
tions, we assimilate CS2SMOS retrievals daily (every two
iterations of the emulator) within an 8 d window for Ncycle =

20 cycles. We use the observations for the winter 2020–2021,
since there are no CS2SMOS retrievals during summer. We
compare the forecasts from the 4D–Var analysis (after the
8 d window) with CS2SMOS observations that have not yet
been assimilated, following the standard observation-minus-
background (O–B) approach. To initialize the cycling of the
data assimilation, we start with the CS2SMOS retrieval from
the date of the first assimilation cycle. The observation error
variance used is defined in Eq. (14). Only results performed
with the 4D–Var-EOF are presented in this section. Note that
no multiplicative inflation scheme is used here.

In order to compare the results to a practical fore-
cast benchmark, we use past forecasts from neXtSIM-F
(Williams et al., 2021), a forecasting system that consists
of a stand-alone version of neXtSIM, forced by the TOPAZ
ocean forecast (Sakov et al., 2012) and ECMWF atmospheric
forecasts. The past forecasts have been obtained in 2023,
corresponding to the version of the forecasting system re-
leased in November 2023 (European Union-Copernicus Ma-
rine Service, 2020). In neXtSIM-F, the model is nudged to
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Figure 3. Fields of the SIT at the beginning of the 25th cycle of the DA, corresponding to 5 February 2018, are shown in the 4D–Var-EOF
case. The upper left panel represents the first guess, which is the output of the forecast from the previous minimization. The upper right
panel corresponds to the analysis of the 25th cycle. For comparison, the associated neXtSIM field, considered as the truth, is displayed in the
lower left panel. Note that these three fields share the same colormap and scale. The lower right panel shows the analysis increment, which
represents the analysis minus first guess.

CS2SMOS sea-ice thickness observations weekly. It pro-
duces a 9 d forecast, which we systematically use for numer-
ical comparison with our data assimilation scheme, starting
the neXtSIM-F forecast at the end of each DAW. Both data
assimilation systems are compared directly to CS2SMOS ob-
servations for forecasts beyond the DAW.

The 4D–Var analysis is using atmospheric reanalysis F
from ERA5 as input for the emulator. For the sake of fair-
ness, for the 9 d forecast that is run beyond the DAW, we use
atmospheric forcings from the ECMWF atmospheric model
HRES, which provides 10 d forecasts at a 16km resolution.
By contrast, ERA5 is a reanalysis product that assimilates
observations, making it unsuitable for an operational fore-
casting setup where the aim is to predict the future. There-
fore, following the approach used in neXtSIM-F, we rely
on atmospheric forecasts as forcings of the emulator dur-
ing the forecast period. These forecasts are interpolated onto
the neXtSIM grid and normalized using the same process-

ing method as the ERA5 forcings preparation, replacing them
when applying the emulator during forecast.

As seen in Fig. 8, the assimilation of real data into our
4D–Var works and yields RMSEs similar to those of the
neXtSIM-F forecast. The free run, initialized with a SIT field
from October 2018 (due to the lack of simulation outputs
in 2020), produces a stable trajectory but significantly devi-
ates from the CS2SMOS fields. Assimilating real observation
yields a substantial decrease in RMSE, of −0.49m during
forecast. Results after the 9 d forecast are compared with the
neXtSIM-F 9 d forecast and show similar outcomes. On aver-
age, neXtSIM-F has a 0.34m RMSE while our forecast has a
0.36m RMSE. Initially, neXtSIM-F exhibits lower RMSEs;
however, we see improved results in term of forecast towards
the last cycles of the assimilation. Let us note that the RMSE
metric penalizes the high level of details of the neXtSIM
model more than the emulator that smooths gradually with
time.
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Figure 4. Time evolution of the 4D–Var-EOF analysis RMSE (inside the DAW) in 2018 (upper panel), with cond-clipped simulated noise.
Corresponding bias error of the emulator is represented below, as defined in Eq. (A2) with a 16 d lead time, with a new forecast starting every
6 h, at the given time of the x axis.

Figure 5. 2018 RMSE of 4D–Var-EOF depending on the number of observations in every assimilation cycle in the twin experiment case.
Curves indicated the RMSE of the 4D–Var analysis with regard to neXtSIM SIT, with 2 observations per cycle (purple curve), 4 observations
per cycle (blue curve), 8 observations per cycle (gray curve) and 16 observations per cycle (green curve). The dashed grey line correspond to
the averaged RMSE between log-normal (LN) noise and the truth.

As seen in the twin experiment results, especially with the
Fig. 4, we can infer that our data assimilation system is less
efficient during periods of strong dynamic change. This is
also shown here, with better results after January, at the end
of the refreezing period when comparing the end of each cy-
cle forecast (end of the purple dashed lines) with correspond-
ing neXtSIM-F. Conversely, after the refreezing period, it
faces fewer difficulties in predicting the optimal state. Yet,
the high initial RMSEs could also be linked to the spin-up of
the assimilation.

Similarly, to evaluate our assimilation framework, we use
the bias error and the IIEESIT as defined in Sect. 4.4 in the
same data assimilation cycles, see Fig. 9. The absolute value
of the bias of the emulator free run is generally reduced,
with the exception of December 2020, where the free run
bias is smaller than the forecast bias. At the end of the fore-
cast, the assimilation run brings a bias reduction of 6.7cm
compared to the free run. The average bias of the assimila-
tion run compared to CS2SMOS at the end of the forecast
is −0.22cm, while the bias of neXtSIM-F is −1.5cm. The
biases at the beginning of the DAWs are systematically pos-
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Figure 6. Representation of the function defined in Eq. (14).

itive and then generally decrease. Since the emulator tends
to reduce the amount of sea ice, as indicated by its negative
bias, the analysis overestimates sea ice to compensate for this
loss. NeXtSIM, on which the emulator is trained, has a dif-
ferent SIT distribution than CS2SMOS, which could explain
this phenomenon, as it can be seen with the different order of
magnitude of the bias between the emulator initialized with
neXtSIM fields in Fig. 4b) (around 0.02m) and the emulator
initialized with CS2SMOS (around 0.1m). Additionally, the
IIEESIT serves as a reliable indicator of how accurately the
MIZ is positioned. The IIEE of neXtSIM-F is 469km2 and
is slightly better than that of the assimilation run 522km2.
At the end of each forecast, the assimilation run shows an
improvement of 1400km2 in IIEE compared to the free run,
highlighting a significant enhancement in MIZ positioning
achieved through the 4D–Var-EOF assimilation.

The data assimilation analysis acts as a bias correction
for the emulator. However, it relies on smooth observa-
tions, thereby losing the small-scale information available in
neXtSIM and neXtSIM-F, as illustrated in Fig. 10. In the twin
experiment case, in Fig. 3, we observe that the first guess,
corresponding to the end of the previous cycle forecast, ap-
pears smoother than the truth. This smoothing is linked to the
deterministic nature of the emulator (Durand et al., 2024),
as it optimizes its MSE loss by smoothing fine-scale dy-
namics. While in the twin experiments, the use of observa-
tions closely aligned with neXtSIM could help recover some
small-scale dynamics, smooth observations result in a com-
plete loss of these finer details. Nevertheless, our data as-
similation system effectively acts as a model error correction
mechanism.

7 Discussion

We have demonstrated that using an emulator as a fore-
cast model in a 4D–Var framework for sea-ice forecast-
ing is feasible, thanks to its numerical efficiency and auto-
differentiability. However, this approach raises several im-
portant questions. One key observation is that while replac-

ing the physics-based model with an emulator allows for the
benefits of adjoint optimization in a 4D–Var system, the suc-
cess of the data assimilation is inherently tied to the emula-
tor’s accuracy. As illustrated in Fig. 3, the emulator tends to
smooth SIT during forecasts extending up to 16 d, a behavior
previously noted in Durand et al. (2024).

In the case of real observations, we observe a significant
bias correction in the assimilation run. It is worth noting,
however, that this study does not consider weak-constraint
4D–Var, which incorporates model error into the cost func-
tion minimization. We speculate that improving the emula-
tor’s quality – addressing both bias and smoothing issues –
would result in more accurate 4D–Var analyses.

An analysis comparing the numerical efficiency of the 4D–
Var method between 4D–Var-diag and 4D–Var-EOF is pre-
sented. For twin experiments, all computations were exe-
cuted on a single NVIDIA A100 SXM4 80 GB GPU. On
average, over a full data assimilation run of 45 cycles, 4D–
Var-EOF takes 155s per cycle, while 4D–Var-diag takes
approximately 229s per cycle, making 4D–Var-EOF about
32% faster. Although the gradient computation times differ
slightly between the two methods – 1.66s for 4D–Var-EOF
versus 1.36s for 4D–Var-diag – the forward pass through the
DAW is similar, with times of 578 and 552ms, respectively.
The computation of the gradient involves the emulator ad-
joint evaluation, reshaping the one-dimensional vector of as-
similated grid cells into the two-dimensional field required to
run the emulator, and computing the cost function term gra-
dients. Interestingly, while individual operations are faster in
4D–Var-diag (as expected due to the absence of projections
to and from the EOF basis), the complete cycles are faster
with the EOF-based method. In other words, fewer iterations
of the L-BFGS optimizer are required on average for 4D–
Var-EOF to achieve the analysis at each cycle, indicating bet-
ter conditioning of the minimizations.

A significant reduction in RMSE (16%) was achieved by
projecting the minimization onto the EOF basis. Although
a substantial number of EOFs is retained in the ensemble
to preserve information, it is conceivable that computational
time could be further reduced by decreasing the number of
EOFs. However, the forward pass of the emulator and the
computation of its adjoint are inherently performed in the
physical space (128× 128 grid cells). Consequently, com-
putational time savings from reducing the number of EOFs
may not be substantial. On the other hand, this reduction
might lead to a loss of small-scale information, as observed
in Fig. B2, where the RMSE increases as the truncation index
decreases, down to a certain threshold.

We introduce in Appendix E an inflation scheme to tune
the background cost function term. Two versions are eval-
uated: the more commonly used constant inflation and an
adaptive scheme based on the χ2

p (with p degrees of free-
dom) diagnostic (Michel, 2014). Adaptive background error
inflation can be easily implemented in twin experiment sce-
narios under Gaussian noise simulation. We observe a mod-
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Figure 7. Difference (right) between daily CS2SMOS (left) and neXtSIM SIT (middle). CS2SMOS is interpolated on neXtSIM reduced
grid. neXtSIM SIT is averaged over one week in order to mimic CS2SMOS weekly averaging, centered on 4 January 2018.

Figure 8. RMSE results for CS2SMOS assimilation across several DAWs throughout the full CS2SMOS observation period in 2020–2021
are shown. The black dotted line represents the free run of the emulator through all cycles, initialized with a SIT field from October 2018. The
solid purple line corresponds to the analysis of the 4D–Var over the DAW, while the associated dashed purple lines represent the additional
forecasts using ECMWF atmospheric forecasts for 9 d. The RMSE values from neXtSIM-F, corresponding to a 9 d forecast, are displayed
as blue dots and should be compared with the end of each corresponding dashed line. All RMSE values are computed with CS2SMOS
considered as the truth.

est improvement in the time-averaged RMSE, with most of
the gains occurring at the beginning of each assimilation win-
dow. Interestingly, in both cases, we have to deflate the B-
matrix for an optimal analysis RMSE (around 0.5 to 0.6, with
a seasonal dependency).

A major factor affecting the RMSE is the frequency of
the observations. While most of the results above focus on
a fixed number of observations per cycle, additional exper-
iments with varying frequencies in a twin experiment setup
(Fig. 5) show substantial RMSE improvement when increas-
ing the observation frequency. However, current satellite data
either provide temporally sparse observations with dense
along-track but sparse cross-track coverage (e.g., CryoSat-2),
or smooth, time-averaged full coverage products that intro-
duce inherent correlations between observation errors (e.g.,
CS2SMOS). It is important to note that our comparison with
neXtSIM-F occurs 9 d after the last batch of assimilated ob-
servations, thus falling outside the DAW. Yet, for real ob-
servations, no SIT retrieval dataset currently provides daily,
non-smoothed, and non-time-correlated SIT measurements
for validation. Promisingly, ongoing work is exploring ML-
based approaches to derive complete daily sea-ice freeboard

fields from satellite altimetry at fine spatial resolution (5 km),
by modeling the spatio-temporal covariance of daily fields
rather than relying solely on temporal averaging (Gregory
et al., 2024b; Chen et al., 2024).

It should be noted that neXtSIM, as well as neXtSIM-F,
exhibits more small-scale features than our emulator, which
tends to smooth the fields. By assimilating CS2SMOS ob-
servations, we lose small-scale information. However, since
the observations themselves are extremely smooth, the com-
parison is not entirely fair to neXtSIM-F, which provides
more small-scale dynamics and thus suffers from double
penalty effects. Implementing a stochastic emulator (Finn
et al., 2024a, b) could yield more physically consistent results
by conserving spectral energy. This approach may enhance
model performance within the 4D–Var minimization frame-
work, although it raises questions about the reliability of
the associated gradients and the increased computation time.
Newer satellites will hopefully provide higher-resolution and
more accurate data, but the current trade-off between reso-
lution (altimeters) and coverage (passive microwaves) will
likely remain in the foreseeable future. Another option is to
apply super-resolution algorithms to enhance local-scale dy-
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Figure 9. Bias (upper panel) and IIEESIT (lower panel) results for CS2SMOS assimilation across several DAWs throughout the full
CS2SMOS observation period in 2020–2021 are shown. The black dashed line represents the free run of the emulator through all cycles,
initialized with a SIT field from October 2018. The solid purple line corresponds to the analysis of the 4D–Var over the DAW, while the
associated dotted purple lines represent the additional forecasts using ECMWF atmospheric forecasts for 9 d. The bias errors and IIEE from
neXtSIM-F, corresponding to a 9 d forecast, are displayed as blue dots and should be compared with the end of each corresponding dashed
line. All bias errors and IIEE are computed with CS2SMOS considered as the truth.

namics in the data assimilation system (Barthélémy et al.,
2022). Exploring these possibilities could significantly im-
prove the efficacy of data assimilation with emulators for sea-
ice modeling. An important aspect to monitor is the evolution
of the cost function during minimization, as well as its asso-
ciated gradient. More details are provided in Appendix C. As
shown in Fig. C2, there is more than an order of magnitude
difference in the gradient norm during minimization within a
single cycle. It is worth noting that the only stopping criterion
consistently achieved is related to the tolerance of the cost
function, where its decrease becomes smaller than a given
value. Occasionally, a second criterion related to the gradi-
ent norm may also be considered, which requires that the
maximal gradient value across the field fall below another
specified threshold. However, this gradient criterion is never
met in our case. As shown in Fig. C2, some grid cells, often
located in the MIZ, retain a non-negligible gradient norm.
Nevertheless, at each cycle, the cost function attains a stable
minimum (Fig. C1), indicating that the L-BFGS optimization
worked correctly.

An important point to discuss is the realism of the emula-
tor’s adjoint. In deep learning, the large number of degrees
of freedom often results in noisier gradients (Sitzmann et al.,
2020). In the 4D–Var framework, this issue is mitigated by
the background term, which regularizes the emulator’s po-
tentially noisy gradient. This noise is evident in the analysis
(Figs. 3 and C2), particularly near the MIZ. While a dedi-
cated training procedure for the emulator could potentially
improve this aspect, it does not appear to hinder the current

4D–Var setup. In fact, the successful results achieved with
this system indirectly validate the adjoint of both the emu-
lator and the cost function. Furthermore, correctness checks
for both adjoints are provided in Appendix C4.

Since the emulator provides fast forecasts of SIT dynam-
ics, and given the efficiency of the data assimilation, we can
investigate the possibility of running ensemble data assim-
ilation (EDA) (Raynaud et al., 2008; Isaksen et al., 2010)
by executing an ensemble of 4D–Var runs with perturbations
applied to the observations and the background term. This
ensemble can be used to generate trajectories, but also to im-
prove the flow dependency of the background covariances in
EOF space. Interestingly, this approach also enables compar-
isons with other data assimilation methods using the same
emulator, such as the ensemble Kalman filter. This would
allow for a more straightforward comparison with current
state-of-the-art sea-ice data assimilation methods. However,
the ability of our deterministic surrogate model to generate a
state ensemble in this context requires further discussion.

8 Conclusions

In this paper, we introduce the first 4D–Var system based
on a surrogate model trained to fully emulate the evolution
of sea-ice thickness. This work represents a preliminary step
toward the use of fully emulated models in data assimilation.
Through twin experiments, we first demonstrate the ability of
the surrogate model to leverage its automatic gradients in a
4D–Var minimization. The 4D–Var system can be efficiently
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Figure 10. Visualization of the forecast for 26 March 2021 is shown. The upper left panel displays the neXtSIM-F 9 d forecast, while the
upper right panel shows the 9 d forecast from the 4D–Var. The lower left panel presents the CS2SMOS observations, and the lower right
panel illustrates the difference between the 4D–Var forecast and the CS2SMOS observations.

implemented using EOFs extracted from the model climatol-
ogy. Assimilation in EOF space improves performance com-
pared to using a diagonal background covariance, while in-
flation techniques provide only marginal additional benefits.
In the second part of the study, we investigate the assimi-
lation of real observations with the 4D–Var system. Assim-
ilating real data improves the positioning of the MIZ, act-
ing effectively as a bias correction. This highlights the po-
tential need for weak-constraint 4D–Var to explicitly address
such biases. It also opens opportunities to train a dedicated
bias-correction model or to refine the emulator using analy-
sis increments. With limited resources – emulating only sea-
ice thickness and assimilating CS2SMOS observations – the
developed 4D–Var system performs comparably to the op-
erational neXtSIM-F system. Moreover, the emulator-based
4D–Var system is significantly more computationally effi-
cient than ensemble Kalman filter systems relying on geo-
physical models. Although these results are derived from a
coarse-grained emulator trained on the available neXtSIM
dataset, no major obstacles are anticipated when increasing
the resolution of both the surrogate model and the assimi-

lated observations. The computational cost of this approach
remains well within the standards of current sea-ice data as-
similation systems. Overall, these results are promising and
demonstrate the potential of using model emulators in data
assimilation, particularly when applying classical methods in
real-world forecasting contexts. Future work could also ex-
plore the impact of assimilating multiple variables, such as
SIT and sea-ice concentration, within the emulator frame-
work.

Appendix A: Surrogate modeling

In this section, we present the forecast ability of the emula-
tor. The root-mean-squared error (RMSE) between the pre-
diction xf and the simulation xt is computed over all pixels
(i, j) of the field of size (Nx,Ny), for each sample n of the
validation set containing Ns = 1470 trajectories, initialized
at time tn,

RMSE(k)=
1
Ns

Ns∑
n=1

√√√√ 1
Nx ·Ny

Nx ,Ny∑
i,j

(
xf
i,j (tn + k1t)− x

t
i,j (tn + k1t)

)2
. (A1)
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Figure A1. Left: Training and validation losses of the surrogate model. Right: Training and validation global losses of the surrogate models.
Light blue and light green lines in transparency indicate the validation losses. The green dashed line indicates the experiment where the
weights of fθ are frozen and a linear activation function is applied after the renormalization process. Blue line corresponds to the training of
gθ . The weights of fθ are retrained with the new learning objective, with λ= 10.

Figure A2. Left: Forecast skill (RMSE) of the surrogate model. Right: Bias errors of the surrogate models. The green dashed line indicates
the results for fθ . Blue line corresponds to the training of gθ . The weights of fθ are retrained with the new learning objective, with λ= 10.

In order to quantify systematic errors of the surrogate model,
we compute its mean error (bias). This metric tells about the
ability of the neural network to correctly estimate the total
amount of sea ice in the full domain,

bias(k)=
1
Ns

Ns∑
n=1

1
Nx ·Ny

·

Nx ,Ny∑
i,j

(
xf
i,j (tn+ k1t)− x

t
i,j (tn+ k1t)

)
. (A2)

The code structure of the surrogate model gθ is presented
in Algorithm A1. Let us note that fθ maps x̃t to ỹt+1t =
x̃t+1t − x̃t which corresponds to the normalized difference
in sea-ice thickness over 12 h. The normalization is defined
as in Eq. (1) with µout and σout the associated global mean
and standard deviation of yt+1t = xt+1t−xt , computed over
the training dataset.

Algorithm A1 Full-state surrogate model gθ mapping from
x̃t to x̃t+1t , using the previously trained fθ . This algorithm
describe exactly how the state x̃t+1t is obtained by the ap-
plication of the fine-tuned fθ neural network as defined in
Eq. (2b).

Require: fθ (x̃t ,F,θ), x̃t , F, and normalization values (µSIT, σSIT,
µout, σout)
ỹt+1t ← fθ (x̃t ,F,θ)
yt+1t ← σoutỹt+1t +µout
xt ← σSITx̃t +µSIT
xt+1t ← xt + yt+1t
x̃t+1t ←

xt+1t−µSIT
σSIT

x̃t+1t ← ReLU(x̃t+1t )= gθ (x̃t )
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The training of the emulators are shown in Fig. A1, with
the display of the training losses and the validation losses.
The training loss measures how well the emulator fits the
training data, while the validation loss assesses its perfor-
mance on unseen data to detect overfitting and ensure gener-
alization. The baseline consists of the UNet trained by learn-
ing fθ . By transfer learning, fθ weights are fine-tuned in or-
der to learn gθ , with a constrain (λ= 10) inside the loss func-
tion, see Eq. (5). Results in term of forecast ability of those
emulators are presented in Fig. A2. The forecast skill of gθ
is compared to the one of fθ , as well as to persistence, which
consists of taking the initial condition as the constant state of
the system. We can see that in terms of RMSE, gθ is slightly
worse than the baseline, but in terms of bias, the fine-tuned
constrained emulator display a smaller bias error compared
to fθ .

Appendix B: Empirical Orthogonal Functions

B1 EOFs definition

We build an ensemble of perturbations using neXtSIM simu-
lation outputs, X of size RNt×Nz , withNz = 8871 the number
of unmasked pixels and Nt the number of state in the ensem-
ble, this number depends on the number of years taken to
compute the ensemble and varies from 1500 to 11 000. After
the removal of the temporal mean x̄ from this ensemble:

X̃= X− x̄, (B1)

we can compute the singular value decomposition of X̃,

X̃= U6V>, (B2)

with U an orthogonal matrix of size (Nt ×Nt ), 6 a diagonal
matrix of size (Nt ×Nz) containing the Nt singular values
of X̃ and V an orthogonal matrix of size (Nz×Nz). We then
define the EOFs ϕ as the columns of V.

One advantage of using EOFs is the ability to reduce the
dimensionality of the minimization space by projecting the
state vector onto a truncated set of EOFs. We denote this
truncation by ϕm, where m represents the truncation index.
In practice, this involves limiting the projection of the or-
thonormal matrix to the first m EOFs, ordered by explained
variance, thereby reducing the computational burden while
retaining the most significant modes of variability.

The four predominant EOFs are displayed in Fig. B1, as
well as their associated variance.

B2 Choice of the truncation index m

In order to validate the best truncation index, we run an ex-
periment with 4D–Var-EOF, in the twin experiment setup,
with a value of m ranging from 10 to 8871. We then com-
pute the total RMSE over all cycles. Results are presented
in Fig. B2. We observe that for m> 5000, the RMSE has

reached a minimum. Let us note that using a smaller value
of m reduces the minimization time, as it is reducing the di-
mension of the minimization space.

Based on these results, and while we wanted to maintain
a good reconstruction capacity, we chose to maintain m=
7000 for all experiments.
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Figure B1. Four predominant EOFs of SIT, at the top left of each EOF is indicated the associated explained variance.

Figure B2. Average of the RMSE between xa and xt across all cy-
cles and all timesteps for different values of k with Gaussian noise
for the observations, in twin experiments and in the 4D–Var-EOF
case.
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Appendix C: 4D–Var optimization

C1 4D–Var algorithms

We present here the algorithms for the computation of the
4D–Var optimization, in the 4D–Var-EOF case. The compu-
tation of the cost function, for a given cycle, is shown in
Algorithm C1. The state w0 (projected onto the EOFs) is
mapped back to the physical space, forecasted throughout the
DAW using the emulator, where the observation term of the
cost function is computed and then transformed back into the
affine space of the EOFs. The total computation across all cy-
cles is presented in Algorithm C2.

The L-BFGS-B (Broyden, 1967; Liu and Nocedal, 1989)
algorithm is used to minimize the cost function J , defined
in Algorithm C1. The optimization is constrained by bounds
defined over all the variables of x̃ with a minimal value set to
SITmin as defined previously, in the case of the 4D–Var-diag.
Two criteria are used to stop the minimization: ftol, which
corresponds to a threshold below which the cost function
improvement is considered sufficient, and a gradient norm
threshold gtol, below which the norm of the gradient must
fall. Note that we did not define a maximal number of iter-
ations of the L-BFGS-B and the criteria ftol was systemati-
cally reached.

In practice, in our case the only stopping criterion used
is ftol, as the gradient is significantly decreasing, yet, some
instabilities at each iteration, especially on the MIZ are still
observed, see Fig. C2.

C2 Cost function diagnostics

The value of the cost function J as defined in Eq. (6b) or (9)
and minimized with a L-BFGS-B can be followed across all
cycles, as shown in Fig. C1. The RMSE increase observed
in Fig. 4 can also be observed in the cost function. The in-
crease in May comes after 9–10 cycles, which corresponds to
2 cycles before the time where the observation cost function
decreases and the background cost function increases and be-
comes predominant. Based on this observed seasonality, we
introduce an adaptive background-error strategy to offer an
estimation of the order of magnitude of the background cost
function. This implementation is further described in Ap-
pendix E.

C3 Gradient analysis

We can also investigate the gradient of the cost function, and
its evolution between the beginning and the end of the cycle,
as shown in Fig. C2. We can observe a global decrease of the
gradient across the full Arctic. Yet, some grid-cells keep a
strong gradient, especially on the MIZ.

Algorithm C1 Cost function (J ) computation for the 4D–
Var-EOF.

Require: gθ , w0, ỹk:1,...,K , the number of application of the em-
ulator between two observations Nf, K, σobs, λinf, H, ϕm, F

Jb =
1

2λ2
inf
(w0−wb

0)
>(w0−wb

0)

Jo = 0
x̃0 = x̄+ϕmw0
for i in range (1, . . .,K) do
x̃i = g

Nf
θ (x̃i−1,Fi−1→i)

Jo = Jo+
1

2σ 2
obs
‖ỹi −Hx̃i‖2

end for
J = Jo+Jb

Algorithm C2 Wrapper for cycling the 4D–Var-EOF, using
the loss (J ) defined in Algorithm C1.

Require: gθ (x̃t,F), ỹk:1,...,K , Nf, Ncycle, K, w0, DOF, λinf, ϕm
for n in range (1, . . .,Ncycle) do

wa
0,n = L−BFGS(w0,n, loss(w0,n, ỹk:1,...,K ))

x̃a0,n = x̄+ϕmwa
0,n

x̃a
Nf(n→n+1) = gθ (x̃

a
0,n,Fn→n+1)

x̃b
n, x̃

0
n = x̃

a
Nf(n+1)

w0,n+1 = ϕ
>
m(x̃

0
n− x̄)

n← n+ 1
end for

C4 Tests of the emulator and the cost function
gradients

First of all, we test the gradient of the cost function. With
Taylor’s expansion

J (x+ εh)= J (x)+ εJ ′(x) ·h+O
(
‖ε‖2

)
, (C1)

we look at the ratio

I(ε)=
〈∣∣∣∣J (x+ εh)−J (x− εh)

2εJ ′(x) ·h

∣∣∣∣〉
‖h‖=1

, (C2)

with x a state on the trajectory of the emulator. Note that we
have

J (x+ εh)= J (x)+ εJ ′(x) ·h+O
(
‖ε‖2

)
(C3a)

J (x− εh)= J (x)− εJ ′(x) ·h+O
(
‖ε‖2

)
. (C3b)

By making the difference of those two equations we obtain

J (x+ εh)−J (x− εh)= 2εJ ′(x) ·h+O
(
‖ε‖2

)
. (C4)

By averaging, we expect

I(ε)' 1+O
(
‖ε‖

)
. (C5)
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Figure C1. Cost function minimization with L-BFGS optimizer across all cycles for 4D–Var-EOF with log-normal noise, the total cost
function is shown in blue, this term can be decomposed with the background loss term (green term) and the observation loss term (orange
curve). Note that the y axis is in log scale.

Figure C2. Evolution of the gradient during the 4D–Var-diag minimization. The left panel shows the gradient at the end of the first mini-
mization of one cycle (cycle 31), while the right panel displays the gradient at the end of the last minimization of the same cycle, when the
minimization criterion is reached. In this case, the synthetic observations are perfect observations (no noise addition).

Figure C3. Logarithm of the absolute value of I(ε) for several val-
ues of ε. Black line corresponds to the choice of a random perturba-
tion of the cost function, with 10 experiments performed. Red line
corresponds to a perturbation inside the Central Arctic region, with
5 experiments performed. Green line corresponds to a perturbation
in the MIZ, with 5 experiments performed. Blue line corresponds to
the identity O

(
‖ε‖

)
.

Figure C4. Logarithm of the absolute value of I(ε) for several val-
ues of ε. Blue line corresponds to the choice of a random perturba-
tion of the cost function, with 10 experiments performed. Orange
line corresponds to a perturbation inside the Central Arctic region,
with 5 experiments performed. Green line corresponds to a pertur-
bation in the MIZ, with 5 experiments performed. Red line corre-
sponds to the identity O

(
‖ε‖

)
.
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In practice, we take for the trajectory the full 2 years free run
without assimilation, with the same parameters as defined in
Sect. 5, with observations perturbed with cond-clipped noise.
We evaluate several values h, including canonic vectors to fo-
cus only on single pixel, especially in the MIZ, and in Central
Arctic. We define the canonic vectors hzone ∈ R8871 as

hzone = (0, · · ·,0,1,0, · · ·,0), (C6)

with the 1 at the position corresponding to the chosen area.
We select 5 pixels for the MIZ and 5 pixels for Central Arctic.
The results are shown in Fig. C3. While the residual errors
remain small, they increase for ε < 10−7. Above the ε value,
we observe the expected behavior, but the residual errors are
slightly noisy. Interestingly, we obtain similar behavior for
the different values of h.

To test the gradient of the emulator, we evaluate the test
function

L(z,x)= z>gθ (x,F), (C7)

whose Taylor’s expansion in x is

L(z,x+ εh)= z>gθ (x+ εh,F) (C8a)

= L(z,x)+ εz>g′θ (x,F) ·h+O
(
‖ε‖2

)
(C8b)

We study the ratio

Iz(ε)=
〈∣∣∣∣L(z,x+ εh)−L(z,x− εh)

2εz>g′θ (x) ·h

∣∣∣∣〉
‖h‖=1

, (C9)

with x in the trajectory of the emulator. We expect the same
behavior as for I(ε). In this case, we look at several values
for z, defined exactly as the previous h. The emulator is eval-
uated onto the full 2017–2018 dataset. Results are presented
in Fig. C4. We obtain satisfying results, with a divergence of
the residual for ε < 10−8. The curves for all different z vec-
tors depict similar behavior, following the expected evolution
in O

(
‖ε‖

)
. The displacement in the MIZ and in Central Arc-

tic yields lower residual results than with a random z vector.
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Appendix D: Multi-year experiment

In this section, we present additional results showing the
full two-year assimilation, including the one year spin-up
cycles which are not included in the metrics computation.
This shows the seasonality of the analysis RMSE, with in-
crease during highly thermodynamics-driven period (spring
melting and winter refreezing). The second part of the curve
corresponds exactly to the RMSE shown in Fig. 4a), where
the spring RMSE increase is also evident in 2017, confirm-
ing this recurrent behavior during periods of intense thermo-
dynamic change. In addition, we note a pronounced peak in
November 2017, coinciding with the refreezing period.

Figure D1. 2017 and 2018 RMSE of 4D–Var-EOF in the twin experiment case, with cond-clipped perturbations. The curve represents the
RMSE of the 4D–Var analysis with regard to neXtSIM SIT.

Appendix E: Background inflation

We adopt an adaptive multiplicative inflation scheme on the
background error term, materialized by λinf,n and which is
evaluated on each cycle n. It can be decomposed in two
terms:

λinf,n = λm× λa,n. (E1)

λm corresponds to the inflation term associated with the
model error. It is constant throughout the experiments. In or-
der to test the consistency of the solution of the innovation
vector, we perform the χ2

p test. Under Gaussian assumption,
the minimum value of the cost function has a χ2

p distribu-
tion with p the number of observations assimilated (Michel,
2014). It means that the average of the cost function mini-
mum should stay around p, in our case 8871×Nobs/2, with
Nobs the number of observations per window. Yet, with the
different noise investigated in our study, this test does not
work under other assumptions.

Following the χ2 assumption, for each cycle, the minimal
value of the cost function J should in average be equal to the
number of degree of freedom (DOF), which is equal to p. In
practice, we define for each cycle n,

λa,n+1 =

√
J n

b
|DOF−J n

o |
, (E2)

where J n
b corresponds to the background term of the cost

function at cycle n and J n
o corresponds to the observation

term of the cost function at cycle n; with, for the initial cycle,
a value of 1 for λa,0.The multiplication of the two terms λm
and λa,n gives us the total inflation λinf,n in the adaptive case.

In order to help the optimization of the 4D–Var, we inves-
tigate the use of inflation scheme as defined in Eq. (E2). Two
schemes are evaluated, a constant inflation, only modeled by
λm and an adaptive inflation scheme with the multiplication
of λa based on the χ2 estimation of J and λm. Only Gaus-
sian noise for the observations are considered and the value
of λm ranges between 0.6 and 3. Results with the mRMSE
are outlined in Fig. E1. As observed before we can see that
4D–Var-EOF is clearly better than 4D–Var-diag, but both in-
flation schemes have similar behavior in both cases. Using
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Figure E1. mRMSE of xa for both 4D–Var-EOF (dark blue lines)
and 4D–Var-diag (green lines), for the two types on background in-
flation proposed, the constant inflation (dashed lines) and the adap-
tive inflation (solid lines). The results are plotted as a function of
the model inflation λm. In the case of the constant inflation, λa is
automatically set to 1 whereas in the adaptive case, it is defined as
per Eq. (E2).

Figure E2. Evaluation of the gain from the adaptive inflation,
compared to no inflation, for both 4D–Var-EOF (dark blue lines)
and 4D–Var-diag (green lines). The ratio between the RMSE of
xa,inflation and xa,no inflation is plotted with respect to time. The dot-
ted red line indicates the position where there is no gain from the in-
flation. A value of this ratio below 1 means a gain from the adaptive
scheme whereas a value above 1 corresponds to a loss in RMSEs.

an inflation scheme (λinf 6= 1) yields better results in terms
of mRMSE in both cases if we correctly tune λm. Interest-
ingly, in the case of constant inflation, the mRMSE increases
almost linearly with λm. This indicates that, when using con-
stant inflation, emphasizing the Jo term tends to undermine
the performance of the 4D–Var. Conversely, in the adaptive
case, assigning a significant value to λm while still optimiz-
ing the ratio between Jb and Jo results in improved mRMSE.

As shown in Fig. E2, in which is plotted the ratio between
the two analysis xa,inflation and xa,no inflation, with xa,inflation
the analysis with the adaptive inflation scheme with λm set
to 3 and xa,no inflation the analysis of the run with Gaussian
noise without any inflation scheme, in 2018, we can see that
the benefit from inflation is primarily observed at the start
of the DAW and more prominently at the beginning of the

year. On average, the gain from the adaptive inflation is mit-
igated, as some end of cycle ratio are above 1. By using the
inflation, we favor the improvement at the beginning of the
DAW to the detriment of the end of the DAW. Let us also
note that the major gain from the inflation come from March
to July, which corresponds to the period where the RMSE of
the analysis xa is higher.

To conclude, adaptive background inflation can be eas-
ily implemented in twin experiment scenarios. We observe
a modest improvement in the total average RMSE, with most
of the gains occurring at the beginning of the assimilation
windows. In the case of adaptive inflation, the inflation val-
ues fluctuate around 0.5, exhibiting a seasonal pattern.

Code and data availability. The outputs of neXtSIM
model used here (Boutin et al., 2022) are available at
https://doi.org/10.5281/zenodo.7277523. Forcings data from
ERA5 are publicly available in the Copernicus Data Store
(https://doi.org/10.24381/cds.adbb2d47; Copernicus Climate
Change Service, Climate Data Store, 2018). All the codes to
build the datasets, train the emulator and build the 4D–Var
system are provided, the jupyter-notebook used to create the
figures, as well as the post-processed datasets and neural net-
work weights (https://doi.org/10.5281/zenodo.14418068; Durand,
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