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Abstract. The spatiotemporal evolution of snowmelt is fun-
damental for water resources management and risk mitiga-
tion in mountain catchments. Synthetic aperture radar (SAR)
images acquired by satellite systems such as Sentinel-1 (S1)
are promising for monitoring wet snow due to their high
sensitivity to liquid water content (LWC) and ability to pro-
vide spatially distributed data at a high temporal resolution.
While recent studies have linked multitemporal S1 backscat-
ter to snowmelt phases, a correlation with detailed snow-
pack properties is still missing. To address this, we collected
the first dataset of comprehensive wet-snow properties tai-
lored for SAR applications over two consecutive snow sea-
sons at the Weissfluhjoch field site near Davos, Switzerland.
First, we tested previous methods which use multitemporal
S1 backscatter to characterize melting phases and demon-
strated that the observed monotonous increase in backscatter
following the local minimum is due to the development of
surface roughness. Then, we used the measured snow prop-
erties as input to the Snow Microwave Radiative Transfer
(SMRT) model to reproduce S1 backscatter signals. Our sim-
ulations showed that rather than melting phases, time series
of backscatter identify regimes dominated by either LWC,
early in the season, or surface roughness, later on. The re-
sults also highlight several key challenges for reconciling S1
signals with radiative transfer simulations of wet snow: (i)
the discrepancy in spatiotemporal variability of LWC as seen
by the satellite and validation measurements, (ii) the lack
of fully validated permittivity, microstructure and roughness

models for wet snow in the C-band, and (iii) the difficulty of
capturing wet-snow features potentially generating stronger
scattering effects on a large scale — such as internal snow-
pack structures, soil features in case of low LWC and surface
roughness — which are not necessarily captured by pointwise
measurements.

1 Introduction

Seasonal snowpack in mountain catchments is one of the
most important water resources, as it accumulates and stores
water during winter and releases it consistently in the form
of runoff during the melting period (Viviroli and Weingart-
ner, 2004). In alpine streams, discharge is largely dominated
by snowmelt from May to July, and more than one-sixth
of the world’s population relies on meltwater released from
higher altitudes for drinking water, crop irrigation and hy-
dropower production (Beniston et al., 2018). However, melt-
ing snow can also cause wet- and glide-snow avalanches
(Bellaire et al., 2017; Fromm et al., 2018), which pose signif-
icant threats to human life and infrastructures. Additionally,
rain-on-snow events on already wet snowpacks are linked
to increased runoff and shorter time lags between precipi-
tation onset and the resulting runoff (Wiirzer et al., 2016).
These events can have catastrophic consequences, and their
occurrence is supposed to increase in response to sustained
warming (Beniston and Stoffel, 2016). Therefore, informa-
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tion about the spatiotemporal evolution of snowmelt is ben-
eficial for both the management of water resources and risk
mitigation.

Identifying wet snow is complex when using both manual
measurements or automatic instruments and physics-based
snow models. Datasets of manual measurements of snow wa-
ter equivalent (SWE) and liquid water content (LWC here-
after) at high temporal resolution are generally rare due to the
time, effort and resources required for their collection. There
have been considerable advances in technologies that use the
dielectric properties of snow in the microwave range to es-
timate LWC in a non-destructive way (Schmid et al., 2014;
Koch et al., 2014). However, the application of these methods
is limited to one single point without the possibility of captur-
ing the spatial variability of the processes. Additionally, their
installation and maintenance are often complicated and ex-
pensive, and the extraction of the physical parameters is usu-
ally hindered by noise. Physics-based layered snow models
like the SNOWPACK-Alpine3D model chain (Bartelt and
Lehning, 2002; Lehning et al., 2006) or GEOtop (Endrizzi
et al., 2014) are used to overcome these challenges, as they
can simulate LWC and SWE at high spatial and temporal
resolutions based on meteorological forcings. However, me-
teorological forcings also represent a major source of uncer-
tainty — especially when needed at high spatial resolution —
affecting the accuracy of the results (Raleigh et al., 2015).
This is in addition to the uncertainties related to the number
and type of parametrizations used (Giinther et al., 2019).

In this context, a valuable opportunity to identify wet snow
is offered by synthetic aperture radar (SAR hereafter) sys-
tems. SAR measurements are highly sensitive to the free lig-
uid water contained in wet snow (Nagler and Rott, 2000).
At certain frequencies, the increase in liquid water gener-
ates high dielectric losses and increased absorption coeffi-
cients (Denoth et al., 1984; Sihvola and Tiuri, 1986; Miit-
zler, 1987; Ulaby et al., 2014). Therefore, the radar backscat-
ter drops to lower intensities with respect to winter averages
(Ulaby et al., 1987; Strozzi et al., 1997; Strozzi and Mat-
zler, 1998; Nagler and Rott, 2000; Ulaby et al., 2014; Na-
gler et al., 2016; Lin et al., 2016). This raises the question
of whether different types of snow cover could be classified
based on their response to active microwave signals. This
challenge has been addressed with various approaches over
the years. Between 1993 and 1995, at the field site of Weiss-
fluhjoch in the Swiss Alps, Strozzi et al. (1997) and Strozzi
and Matzler (1998) conducted tower-based C-band radiomet-
ric measurements at all polarizations across a wide range of
incidence angles. Simultaneously, they carried out monthly
measurements of snow physical properties. These measure-
ments were used to classify the observed snow cover types
into categories ranging from dry snowpacks to thin moist lay-
ers overlying dry snow to wet snowpacks with either smooth
or rough surfaces. Relying on a tower-based radiometer, the
experiments were highly controlled, allowing detailed inves-
tigation of radar responses to each snow condition. Never-
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theless, significant sources of uncertainty remained — espe-
cially the influence of surface roughness on wet-snow sur-
faces, which was not quantitatively measured but only quali-
tatively assessed. These detailed studies, along with the work
of Kendra et al. (1998), raised questions about the theoretical
foundations and systematic reliability of LWC retrieval al-
gorithms based on C-band fully polarimetric SAR imagery,
which had been developed shortly before (Shi et al., 1993;
Shi and Dozier, 1995). In particular, the scattering mecha-
nisms assumed in these retrievals may have been biased by
a combination of conditions that strongly favoured surface
scattering. Extending the prior knowledge to a spatial and
multitemporal context, Nagler and Rott (2000) developed an
algorithm based on repeat-pass SAR images to map wet snow
in mountainous areas, defining a backscatter drop of 3dB to
distinguish wet snow from other surfaces. Comparisons with
snow maps from different sources showed generally good
agreement above the snow line but consistent biases in areas
with fragmented snow cover.

After a progress freeze due to the scarcity of SAR data in
past and simultaneous field measurements, research interest
in the topic was renewed after the launch of the Sentinel-1
(S1 hereafter) joint mission of the European Space Agency
(ESA) and the European Commission in 2014. At alpine lat-
itudes, S1 acquires C-band SAR imagery in the early morn-
ing and late afternoon, regardless of the weather, with a re-
visit time of 6 calendar days. The SAR imagery is avail-
able free of charge. Marin et al. (2020) used these images
for the first time to develop a correlation between the mul-
titemporal S1 SAR backscatter and the snowmelt dynamics.
Over 5 different alpine sites, the authors found that the mul-
titemporal S1 SAR acquisitions allow the detection of the
melting phases, i.e. moistening, ripening and runoff (Ding-
man, 2015), with good agreement with in situ observations
and layered, physics-based snow models. In particular, the
backscatter decreased as soon as liquid water appeared in the
snowpack and increased progressively and simultaneously
with the runoff release. Deriving and applying a set of identi-
fication rules, the authors could define the melting phases for
the test sites with relatively small lag errors with respect to
the revisit time of S1. Consequently, local minima in S1 mul-
titemporal backscatter time series and sharp increases there-
after were associated with snowpack saturation, the onset of
runoff and snow ablation (Darychuk et al., 2023; Gagliano
etal., 2023).

These approaches hold great potential for monitoring the
temporal evolution of the melting dynamics, particularly over
wide and scarcely instrumented areas. However, to fully use
the multitemporal information provided by S1 for snowmelt
monitoring, a deeper understanding of the underlying scat-
tering mechanisms — especially the role of surface roughness
(Marin et al., 2020) — is still required. Specifically, knowing
the time window in which different scattering effects domi-
nate and under which conditions the C-band radar backscat-
ter is fully absorbed by the melting snowpack would en-
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able us to extract as much information as possible from S1
time series. To date, the only effort in this direction has been
made by Brangers et al. (2024) using tower-based C-band
measurements. However, this study lacks high-temporal-
resolution ground-truth validation with measured snow prop-
erties. Moreover, comparisons with S1 were hindered by sev-
eral factors, including sensor calibration issues and the small
footprint size — which likely introduced speckle noise, and
they failed to capture larger-scale scattering processes.

Overall, the main limitation to improving the understand-
ing of the interaction of S1 backscatter signals with melting
snow cover is the lack of reference ground data. Over alpine
snowpacks, it is common to observe the formation of ice lay-
ers either at the surface (Quéno et al., 2018) or at deeper
snowpack depths (Pfeffer and Humphrey, 1998). Moreover,
in temperate alpine areas characterized by high snow ac-
cumulation and intense solar radiation, suncups may form
spontaneously on the snow surface during the ablation season
(Post and LaChapelle, 2000; Mitchell and Tiedje, 2010), in-
creasing the surface roughness significantly (Fassnacht et al.,
2009). These phenomena are known to impact the radar re-
sponse to wet snow (Shi and Dozier, 1995; Strozzi and Mat-
zler, 1998; Kendra et al., 1998; Nagler and Rott, 2000; Yueh
et al., 2009).

However, high-resolution and detailed snow measure-
ments alone are insufficient to address this issue. It is equally
important to rely on a method to interpret them from a
radar perspective. A promising and increasingly adopted ap-
proach involves the use of state-of-the-art radiative transfer
(RT hereafter) models. Picard et al. (2018) developed the
Snow Microwave Radiative Transfer (SMRT) model, a ver-
satile model that can be used in active and passive mode to
compute backscatter and brightness temperature from multi-
layered media such as snowpacks or ice sheets overlying re-
flective surfaces, e.g. ground, ice, or water. SMRT responds
to the need of a modular and flexible approach to unify
and compare the wide range of pre-existing representations
of microstructure, electromagnetic theories, soil models and
permittivity formulations. While wet snow holds significant
importance for various applications, both SMRT and other
similar models were primarily developed and validated for
dry snow conditions in Arctic and Antarctic snowpacks or
ice sheets (Proksch et al., 2015; Rott et al., 2021; Soriot
et al., 2022; Meloche et al., 2022; Husman et al., 2023).
Both the vertical structure and the surface of these types of
snowpack are often less complex than those of a seasonal
alpine snowpack. To date, the above-mentioned ensemble of
complex melting snowpack processes has scarcely been in-
vestigated by means of radiative transfer models due to the
lack of ground reference data (Shi and Dozier, 1995; Strozzi
et al., 1997; Kendra et al., 1998; Nagler and Rott, 2000; Ma-
gagi and Bernier, 2003; Lodigiani et al., 2025). Murfitt et al.
(2024) recently used SMRT to explore, for the first time, the
temporal evolution of the interaction between wet snow and
radar waves in a study on lake ice melt. However, the ra-
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diative transfer modelling of wet snow still lacks dedicated
effort and validation.

The objective of this work is to collect the first ground
reference dataset on melting snow tailored for SAR appli-
cations and to use it together with SMRT to better under-
stand the key processes governing the backscatter signatures
recorded by S1. Previously, only Lund et al. (2022) had car-
ried out a similarly extensive snow pit campaign in coordina-
tion with S1 passages. While this study helped advance the
interpretation of S1 backscatter responses to diurnal snow-
pack variations, important scattering properties such as the
optical diameter and the surface roughness were not mea-
sured. As a result, interpreting these measurements from the
radar perspective — and consequently comparing them with
S1 acquisitions — was not possible. In our work, we focus on
the co-polarized vertical backscattering only, due to its high
signal-to-noise ratio for wet snow (Naderpour et al., 2022)
and to the fact that, because of the partial implementation
of some of the key processes, it is not possible to simulate
accurate cross-polarized backscattering responses with the
current version of SMRT. To our knowledge, this is the first
attempt to translate ground measurements — specifically de-
signed for RT modelling, including wetness and roughness —
into radar signals using SMRT to reproduce and interpret S1
acquisitions over a wet, multilayered alpine snowpack. This
research provides valuable insights in two main areas. First,
it advances the understanding of the interaction between S1
radar backscatter and wet snow. Specifically, it reveals the
effects of spatiotemporal variability of LWC within the S1
footprint occurring between satellite and measurement ac-
quisitions. It also describes the impact of surface roughness
on backscatter signatures and highlights challenges in cap-
turing key wet snow conditions that likely generate scatter-
ing at wider scales. These include internal snowpack struc-
tures, large-scale surface roughness and interactions with the
wet-soil interface when the snowpack is only slightly wet.
Second, the study addresses the RT modelling of melting,
layered snowpacks, highlighting the current lack of fully val-
idated permittivity and roughness models for wet snow at C-
band frequencies. With ground reference data and adequate
process understanding and modelling, RT models like SMRT
may evolve in terms of tools to interpret the information con-
tained in multitemporal SAR backscatter and translate it into
valuable input for snow-hydrological modelling.

2 Campaign overview

This work builds upon a dataset of 85 snow pits collected
during a two-season campaign (2022-2023 and 2023-2024)
at the high-altitude Weissfluhjoch Versuchsfeld (WFJ) field
site, located in the Rhaetian Alps near Davos, Switzerland.
The measurement field lies at an altitude of 2536 ma.s.l. on
a relatively flat area embedded in a south-east-facing valley.
The site is partially wind sheltered by a small hill situated to
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the south-east — however, the dominant wind blows from the
north-west, in addition to katabatic wind. For this measure-
ment campaign, we secured a protected field covering ap-
proximately 2 times the footprint area of S1, i.e. 20 x 20 m.
However, only a portion of this field was effectively used for
measurements, while the remaining area was consistently left
undisturbed. The secured field has a light-slope value of be-
tween 2 % and 7 %. The flatness of the terrain is fundamental
for the study of the interaction between wet snow and the
C-band co-polarized vertical backscatter signal (O'OV V here-
after). On the one hand, a(}] V is less sensitive to changes in
snow wetness at low incidence angles (Nagler et al., 2016);
on the other hand, on steep slopes, the liquid water is redis-
tributed laterally, at least partially (Wever et al., 2016). The
field site of WFJ is equipped with advanced meteorological
sensors recording meteorological forcings at sub-hourly res-
olutions, and moreover, with the first snow observations dat-
ing back to 1936, it holds one of the longest recorded time
series of snow measurements for a high-altitude research sta-
tion (Marty and Meister, 2012). The site is ideal for inten-
sive measurement campaigns, as it is easily accessible and
protected from avalanche danger and the two huts provide
shelter, storage space for instruments, power and an internet
connection.

The objective of the measurement campaign was to build
a dataset of ground-truth reference for the interpretation of
S1 a(}] V' to monitor snowmelt processes. Therefore, the mea-
surements targeted the main scattering properties of snow:
temperature, density, specific surface area (SSA), liquid wa-
ter content (LWC) and surface roughness. These properties
needed to be measured at a high vertical and temporal reso-
lution to track the progression of the wetting front within the
snowpack and possibly concomitantly with S1 acquisitions.
Additionally, we measured snow water equivalent (SWE), a
key variable for snowmelt monitoring. The resulting dataset
is a time series of manually measured snow profiles describ-
ing the evolution of snow scattering properties at unprece-
dented vertical and temporal resolutions. The dataset con-
sists of 38 snow profiles for the season of 2022—-2023 (start-
ing in February and ending in June) and 47 for the season
of 2023-2024 (starting in November and ending in July). In
dry snow conditions, measurements were carried out once
per week. In the first season, once the snowpack reached the
full isothermal state, measurements were carried out regu-
larly every second working day for a total of three times per
week. In the following season, the regularity of the measure-
ments was partially given up in favour of better synchroniza-
tion with S1 acquisitions. To get the fullest possible picture
to interpret the melt dynamics, manual measurements are ac-
companied by automatically recorded time series of runoff
and SWE.
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2.1 Manual measurements
2.1.1 Temperature

Snow temperature serves to monitor the progression of the
snowpack to the isothermal state, which allows the presence
of liquid water. Profiles of snow temperature were sampled
from the surface to the bottom with a vertical resolution of
10 cm in snow season 2022-2023 and of 5cm in snow sea-
son 2023-2024 using a batch of HI98501 Checktemp instru-
ments from Hanna (Hannalnstrumentslnc.). According to the
instrument specifications, the uncertainty range is +0.2 °C.
Each temperature reading was marked down after waiting for
an adequate amount of time for measurement stabilization.

2.1.2 Density

In dry snow conditions, snow density controls (i) the proba-
bility of scattering events, as denser snow has more grains per
unit volume, and (ii) the real part of the effective permittivity
(see Sect. 3.2), which increases with the increased fraction
of ice relative to air, typical of denser snow. Profiles of snow
density were sampled from the surface to the bottom with
a vertical resolution of 3 cm using a box density cutter and
a digital scale. The box cutter used for this campaign has a
volume of 100 cm>. The uncertainty range of this instrument
is between 5 % and 10 %, with the main sources being the
presence of ice layers, the compaction of light snow while
collecting the sample, or losing fractions of it in conditions
of fragile snow such as facets or depth hoar (Conger and Mc-
Clung, 2009; Proksch et al., 2016).

2.1.3 Specific surface area

Snow specific surface area (SSA) expresses the surface area
of snow grains per unit mass and is related to the grain size
and structure. Smaller grains give higher values of SSA —
meaning that the number of scattering centres is increased
but that the effect of each one is weakened. Therefore,
when grains are too small, the total backscatter can decrease.
Larger grains, on the other hand, give lower values of SSA —
meaning that scatterers are fewer but stronger and more effi-
cient. Therefore, with enhanced volume scattering, the over-
all backscatter increases. Profiles of SSA were sampled from
the surface to the bottom with a vertical resolution of 4 cm
using the InfraSnow sensor from FPGA (FPGA Company;
Wolfsperger et al., 2022). This non-destructive method builds
upon the principle of diffuse near-infrared reflectance mea-
surements using a compact integrating sphere setup to derive
optical equivalent grain diameter (OED) and therefore SSA
(Gergely et al., 2014). To compute OED, snow density is re-
quired as an input parameter and, for this we use the mea-
sured density profile. With a relative error of RMSE =15 %
(Wolfsperger et al., 2022) when compared to w-CT, this in-
strument seems to be slightly less accurate than others com-
monly used such as the IceCube (Zuanon, 2013); however,

https://doi.org/10.5194/tc-19-5579-2025



F. Carletti et al.: Multitemporal Sentinel-1 backscatter during snowmelt 5583

6 E 9°E 10°E

© Map: https://map.geo.admin.ch

Figure 1. Location of the Weissfluhjoch field site with respect to Swiss national borders (a) and the town of Davos (b). The designated area
for snow profiles is shown in (¢) under semi-snow-free conditions (picture taken in September 2024, camera oriented towards the north-east),
enclosed by a flagged fence. It is worth noting that only a portion of this fenced area was effectively used for snow profiles. Panel (d) shows

the typical snow pit measurement setup.

this bias is more pronounced for high values of SSA typical
of dry snow, which is not the main object of our study. More-
over, the use of the InfraSnow sensor is especially practical
and portable for field applications.

2.1.4 Liquid water content

The formation of liquid water content (LWC) in the snow-
pack enhances its dielectric constant, leading to higher ab-
sorption losses and significant reduction in radar penetration
depth. These concepts will be addressed in more detail in
Sect. 3.2. Profiles of LWC were sampled from the surface
to the bottom with a vertical resolution of 2, 5 or 10cm,
depending on the method. We used dielectric sensors cou-
pled with melting calorimetry to corroborate measurements
in conditions of high LWC at later stages of the melting pro-
cess. To our knowledge, this is the first time series of LWC
snow profiles measured at such high vertical and temporal
resolution. In the first campaign year, we used the Denoth
capacitive sensor (Denoth, 1994) (“Denothmeter” hereafter).
It consists of a flat capacitance probe with an estimated mea-
surement surface of 176 cm? (Techel and Pielmeier, 2011).
The probe operates at a frequency of 20 MHz and measures
the real part of the permittivity of snow, and a separate mea-
surement of density is required to obtain the imaginary part
(Denoth et al., 1984; Denoth, 1989) — here, similarly to for
SSA, we used the measured density profile. The Denothme-
ter has been widely used in field studies to monitor the evo-
lution of snowpack wetness (Fierz and Fohn, 1994; Kattel-
mann and Dozier, 1999; Techel and Pielmeier, 2011), alone
or in comparison with other techniques, e.g. in Koch et al.
(2014), Wolfsperger et al. (2023) and Barella et al. (2024).
In the second campaign year, we adopted the new capaci-
tive snow sensor (NCS hereafter) developed at the Institute
for Snow and Avalanche Research SLF (Wolfsperger et al.,
2023) and produced in batch series by FPGA Company. The
use of the Denothmeter was discontinued because it is not
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commercially available, and only two units were available to
us, risking measurement continuity if damaged during inten-
sive use. The NCS works in the same way as the Denoth-
meter, operates at the same frequency and measures over a
slightly larger surface of 202 cm?. The NCS was compared
against the Denothmeter in both field and laboratory settings,
and the agreement was generally good; however, in isolated
cases of very wet layers, the measured permittivity tended to
deviate towards higher values (Wolfsperger et al., 2023). A
good element of consistency is that the comparison between
NCS and Denothmeter was carried out within this campaign,
in the snow season 2022-2023. The absolute error associ-
ated with dielectric measurements was estimated at around
1% in volume (Sihvola and Tiuri, 1986; Fierz and Fo6hn,
1994). To our knowledge, a systematic study on the errors
associated with the Denothmeter has never been carried out.
However, similar studies are available for the Finnish Snow
Fork (Sihvola and Tiuri, 1986), which directly measures both
real and imaginary parts of snow permittivity. The error as-
sociated with the Snow Fork in measuring LWC is between
4+0.5 % (Sihvola and Tiuri, 1986) and +0.3 % (Moldestad,
2005). Techel and Pielmeier (2011) used both the Denoth-
meter and the Snow Fork in their study, reporting differences
of around 1 % between the two instruments. Additional un-
certainties for dielectric measurements derive from interfer-
ence with solar radiation near the surface (Lundberg, 2010),
which we tried to minimize throughout the campaign.
Because dielectric devices may lose accuracy for high
LWC values (Perla and Banner, 1988; Techel and Pielmeier,
2011), for both snow seasons, in conditions of ripe snow,
Denothmeter and NCS measurements were backed up with
melting calorimetry following the revised field protocol re-
cently described in Barella et al. (2024) and partially carried
out within the same measurement campaign described here.
This field protocol is tailored to reduce the higher uncer-
tainty ranges previously associated with melting calorimetry
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(Kawashima et al., 1998; Kinar and Pomeroy, 2015; Avanzi
et al., 2016). It proposes a revised formulation of the calori-
metric uncertainty that incorporates the calorimetric constant
and the propagation of uncertainties coming from instrument,
operational and environmental conditions. The uncertainty
range associated with the new protocol for melting calorime-
try is 0.5 %, and the absolute error compared with Denoth-
meter measurements is ~ 1 % in volume.

2.1.5 Surface roughness

Snow surface roughness controls the scattering behaviour
of the snowpack surface, with smooth surfaces exhibiting
a dominant specular reflection and rough surfaces behaving
more similarly to a diffuse scatterer. Snow surface roughness
is typically expressed using three parameters: the root mean
square of the heights (RMSH), the correlation length (CL)
and the autocorrelation function (Williams and Gallagher,
1987; Nagler and Rott, 2000; Manninen et al., 2012; Anttila
et al., 2014). These parameters can be obtained from a dig-
itized snow transect. A proven and robust system involves
inserting a panel into the snow and capturing images of the
snow surface with a digital camera (Manninen et al., 2012;
Anttila et al., 2014). For this campaign, we used the method
described in Barella et al. (2021) and refined in Barella et al.
(2025), which builds upon these concepts, and it is particu-
larly suited for field applications. The panel we used is made
of black Forex, 70.5 cm wide and 47 cm tall. These dimen-
sions are a trade-off between the ease of transport and the
length of the snow transect, covering at least 10 times the C-
band wavelength A = 5.5 cm as suggested in Manninen et al.
(2012). The panel can be photographed by means of any dig-
ital camera. To attain a representative snow transect, 9 pic-
tures were taken on each measurement day: 3 along one di-
rection, 3 along the perpendicular direction and 3 at a 45°
angle between them. The resulting roughness profile is av-
eraged among all usable pictures, i.e. those not affected by
excessive shadowing or an unclean panel surface. To our
knowledge, a time series of snow surface roughness prop-
erties has never been measured before.

2.1.6 Snow water equivalent

Profiles of snow water equivalent (SWE) were sampled from
the surface to the bottom with a cylinder cutter of inner diam-
eter 9.44 cm and length 55 cm. The snowpack was sampled
in sections from the surface to the ground, and the total SWE
was obtained by weighting each sample and summing all the
values. The uncertainty range of this instrument is around
10 %, with the main uncertainty source being caused by the
presence of ice layers (Proksch et al., 2016).
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2.2 Automatic measurements
2.2.1 Runoff

Runoff was automatically measured at a sub-hourly resolu-
tion by a lysimeter. Unfortunately, the instrument was dis-
covered to be clogged when the runoff started in 2023. The
instrument was repaired only in late May 2023. Therefore,
the time series for that year starts with a peak (see Fig. 8d),
although we hypothesize that runoff may have started as
early as the end of April 2023. To avoid similar issues, in
the following season the lysimeter was inspected in a timely
manner and assessed to be fully functional.

2.2.2 Snow water equivalent

Manual snow water equivalent (SWE) measurements are
complemented by an automatically recorded time series at
sub-hourly intervals, using the SSG1000 snow scale perma-
nently installed at the WFJ site and manufactured by Som-
mer Messtechnik, Austria. The system consists of a weighing
platform and load cells, which directly measure the weight of
the snowpack on the platform and convert it into SWE. This
instrument has a measurement range of 0 to 1000 mm of wa-
ter equivalent. During the 2023-2024 snow season, the upper
capacity was reached due to above-average snow depths. In
comparison to manual measurements, Smith et al. (2017) es-
timated an error of 10 %.

2.3 Sentinel-1 acquisitions

S1 is designed as a constellation of two sun-synchronous
polar-orbiting satellites, acquiring dual polarimetric C-band
(frequency of 5.405 GHz, wavelength of 5.5cm) SAR im-
ages with a nominal resolution up to 3.5m x 22 m in Inter-
ferometric Wide swath mode (IW) and a revisit time of 6
calendar days. Acquisitions in IW have a swat of approx-
imately 250km. This, together with the overlapping orbit
paths, allows for the acquisition of multiple tracks at middle
latitudes such as the Alps. For this reason, within the time
window of 6 calendar days, more acquisitions of the same
area may be available. Unfortunately, Sentinel-1B failed at
the end of 2021, and with only Sentinel-1A in orbit, repeat
cycles halved from 6 to 12 calendar days. Since then, the
overall data acquisition capability has reduced by ~ 50 %
in most regions, including our Weissfluhjoch field site. Data
from four relative orbits are available for this site: two as-
cending (afternoon) and two descending (morning) passes.
Figure 2 shows the overall range of local incidence angles
across the field site, which vary from a minimum of 27°
to a maximum of 47°. These maps highlight domains with
stronger and weaker dependence on the incidence angle — an
east-facing back slope and a flat area, respectively.

The SAR images can be downloaded, free of charge, from
the Copernicus data hub (Copernicus). To account for the
complex topography and to reduce the speckle noise of SAR
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Figure 2. Overall range of local incidence angles across the study area for all the four relative orbits — morning/descending (M) and
afternoon/ascending (A1). Each S1 cell is identified by its centroid and a number.

acquisitions, a tailored preprocessing procedure was applied
to all data. The processing procedure involves a combination
of tools, some of which are available in SNAP (Sentinel Ap-
plication Platform) version 6.0, while others are customized
and developed in Python. The full workflow is described in
Marin et al. (2020); however, in this study, the gamma-MAP
filter was not applied. The final spatial resolution of the post-
processed S1 images is 20 x 20 m.

The nominal radiometric uncertainty of S1 falls in the
range of 30 = 1.0dB, as indicated in several ESA validation
campaigns (Torres et al., 2012; Miranda et al., 2015; Schw-
erdt et al., 2017; Benninga et al., 2020). However, the overall
radiometric accuracy is also affected by a number of prepro-
cessing steps, including (but not limited to) the application of
despeckle filters, terrain correction and radiometric normal-
ization (particularly challenging in mountain regions with
complex topography), and thermal noise removal (important
in conditions of high absorption, such as wet snow). In such
conditions, a detailed specification becomes extremely com-
plex and falls beyond the scope of this paper. Nonetheless,
since this study explores the multitemporal behaviour of GOV v
over a target cell, it is relevant to mention speckle denoising.
We used the filter proposed by Quegan and Yu (2001) — a
powerful yet relatively simple one to denoise multitempo-
ral stacks, with an 11 x 11 pixel window. Similarly to local
spatial multi-looking, its implementation involves local aver-
ages of intensity values for each date. Intuitively, this could
potentially blur strong targets and edges, ultimately leading
to a loss of resolution and impacting the overall multitem-
poral result. However, in conditions of dry snow, the snow
cover and the position of the scatterers are stable, snow tem-
peratures are well below 0 °C and the soil should be mostly
frozen, implying constrained variations in soil moisture. Un-
der these conditions, the pixels we considered in our study
exhibited an overall stable behaviour. The same stability was
observed during dry periods in summer. In these two cases,
the standard deviation was within 1.0 dB, which aligns with
the nominal radiometric uncertainty of S1. During the melt-
ing period, the primary source of radiometric uncertainty
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originates from the formation of LWC within the snowpack.
As a consequence, the radar return signal from the same tar-
get cell changes over time, resulting in reduced temporal co-
herence and larger deviations in multitemporal statistics. As
will be shown in the course of this study, LWC potentially
exhibits high heterogeneity across a single resolution cell.
Under such conditions, the estimation of radiometric uncer-
tainty becomes particularly challenging. Without a precise
reference for LWC, rigorous uncertainty quantification is in-
herently difficult and lies beyond the scope of this work.

2.4 Campaign design

Measurements were carried out within freshly dug snow pits,
starting at 08:00 (UTC+1) approximately. The start of the
measurement procedure depended on the number of employ-
ees available on a specific day, on the amount of snow, on
snow density and on the weather conditions — generally, be-
tween 1 and 2 h later. The measurement procedure was gen-
erally finished around 12:00 (UTC+1), and the snow pit was
refilled; however, on isolated days, there were several hours
of delay because of the above-mentioned reasons. In the first
snow season, the snow temperature was generally measured
first and the melting calorimetry last, with the remaining
measurements being carried out in between with an order
that also varied as a function of the above-mentioned fac-
tors. In the second snow season, we improved the campaign
design with a more rigorous measurement order: tempera-
ture first, SSA and dielectric LWC either simultaneously or
one after the other, density, SWE, and melting calorimetry
coupled with a second simultaneous dielectric LWC profile
taken at the same vertical location. This has specific impor-
tance for the LWC profiles. In the first season, the time lag
between the dielectric and calorimetric LWC profiles was 2
or 3h, at a horizontal distance of 50cm to 1 m. In the sec-
ond season, we measured a first dielectric LWC profile and
an adjacent, simultaneous one using melting calorimetry. In
Sect. 4.2, we will refer to the first setup as “co-located” and
to the second one as “simultaneous”.
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In both seasons, before starting the measurement proce-
dure, the profile wall was made as smooth as possible. A
near-infrared picture was taken for qualitative comparison.
Outside of the snow pit, in an undisturbed area, the surface
roughness panel pictures were taken. On days where the ra-
diation (from the sun or diffuse) was particularly intense,
shading was necessary for every surface measurement that
might have been affected. The temperature profiles were al-
ways measured in the shaded corner area of the snow pit.
Overall, each measurement series would need a total hor-
izontal space of 1.5-1.8m, and the single-variable profiles
were measured at a reasonable horizontal distance from each
other. In both seasons, snow profiles were carried out within
the same designated area. The area was divided into corridors
approximately 2m wide. Throughout the season, measure-
ments were carried out, moving continuously forward along
the corridor until the slope was hit. The next snow profile
would be dug onto the next corridor. A minimum distance of
30 cm was secured between 2 consecutive measurement days
to avoid disturbances from the previous measurement set.

Data cleaning and homogenization procedures were per-
formed before providing the measured snow properties as RT
inputs. In particular, since sampling resolutions were differ-
ent (see Sect. 2.1), all measured properties were linearly in-
terpolated to a common vertical resolution of 1 cm. Positive
LWC values recorded at temperatures below 0 °C were cor-
rected to 0 %. 0.04 % and 0.4 % of the measured LWC values
were above or equal to 15 % for the 2 years, respectively. For
both dielectric instruments, these values are likely not accu-
rate. Since these values likely represent areas of high snow
wetness, they were not excluded from the analysis but their
LWC value was set to 15 %, similarly to Techel and Pielmeier
(2011). Additionally, instances of very low LWC measure-
ments from thin layers just above the ground in dry snow
conditions were discarded, as we could not rule out poten-
tial instrument disturbances from the ground in these cases.
Given the accuracy range of the thermometer (see Sect. 2.1),
temperature oscillations up to 0.2 °C below 0 °C were set to
0 °C from the first measured fully isothermal profile onwards.
Since the snow properties were measured at a certain lateral
distance from each other, the profiles of density and SSA
were slightly shifted with a simple algorithm to maximize
the correlation with the profile of LWC. Finally, we had to
discard the last 3 snow pit measurements of 2023 because
the measured RMSH value there was too high to ensure the
conditions of validity of the interface model (see Sect. 3.2).

3 Methods and model
3.1 Selection of the Sentinel-1 reference cell
The selection of the reference S1 cell required some consid-

eration. The WFJ field site is ideal for continuous measure-
ments due to its proximity to structures and sensors; however,
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Figure 3. Aerial view of the WFJ measurement station. Each of the
56 points represents the centroid of each S1 cell. Each centroid is
split in two, the left part indicating the interquartile range (IQR) of
the winter 08/ v signal for the snow season of 2022-2023 and the
right part that for the snow season of 2023-2024. Contour lines in-
dicate the surrounding slopes. The yellow rectangle indicates the
fenced measurement area where snow profiles were carried out in
both seasons. Cell 40, i.e. the selected S1 cell for this study, is high-
lighted in red.

these features may interfere with radar waves, thus disrupting
the backscatter from natural terrain. Most of the structures
within the field site are metallic and may act as additional
reflecting sources in addition to the snowpack.

To select the reference cell, we extracted 08’ V values for
both years over a grid of 56 points covering the whole exten-
sion of the field site and the immediate surroundings (Fig. 3).
For each cell and for each different year, we isolated the time
frame, starting at the beginning of the meteorological win-
ter (1 December) and ending when the first liquid water was
measured in the snowpack. Over these time frames, for each
year and for each cell, we computed the variability in aOV v
acquired by the 4 different tracks (see Table 1). We assume
that lower variabilities between different tracks over a dry
snowpack may indicate a minimal interference with other
non-natural elements in the field, as their backscatter would
typically exhibit strong angular dependence (i.e. anisotropy).

The results of this analysis are shown in Fig. 3, where
the variability is mapped over the field using the interquar-
tile range (IQR). In general, the IQR does not vary signif-
icantly between the two snow seasons, suggesting that this
kind of approach might be adequate to select a reference cell
with the least possible artificial disturbance. Outliers — i.e.
cells 15, 22, 23,27, 52, 54, and 55 — are likely influenced by
localized field conditions. These include double-bounce ef-
fects typically associated with human-made structures (e.g.
cell 27), surfacing boulders (cells 52, 54, 55), or small varia-
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Figure 4. Variability in 08/ Vin dry snow conditions for all relative orbits overlooking cells 25, 32, 38, 39, and 40, i.e. the flat-terrain cells

with likely similar snow properties to the measured ones (a—b). Multitemporal 08] v signal of the selected cell 40 compared to the ensemble
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Table 1. S1 tracks overlooking the selected cell 40, with times of acquisition, direction of orbit and local incidence angles.

similar cells — morning/descending (M) and afternoon/ascending (A1) (c—f).

Track # Time of acquisition (UTC+1) Direction of orbit  Local incidence angle
015 ~17:30 Ascending 41°
117 ~17:30 Ascending 32°
066 ~05:30 Descending 33°
168 ~05:30 Descending 42°
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tions in soil moisture, which could account for the observed
year-to-year variability. The highest IQR values are clustered
around the large hut (for double-bounce effects) and where
the slopes start to become steeper (when the backscatter has
its strongest dependence on the incidence angle). Interest-
ingly, the IQR values for cell 25 and 32 are among the lowest
for both snow seasons, suggesting that smaller metallic sen-
sors might not represent a significant disturbance for radar
waves.

Ideally, the target cell should coincide with the location
of in situ measurements to ensure that the observed snow
properties accurately represent those detected by the radar.
Although the S1 footprint is large relative to the area dis-
turbed by a single snow pit, excavating multiple consecu-
tive snow profiles across a broader area can ultimately al-
ter snow conditions across the entire cell — particularly un-
der moist or wet snow conditions. This would introduce an
uncontrolled degree of uncertainty. Therefore, the target cell
should rather be selected from among the surrounding undis-
turbed cells with similar slopes and aspect. Figure 4a—b show
the dry-snow a(}] V variability for a set of cells with such fea-
tures, i.e. cells 25, 38, 39, and 40. Among these, cell 40
shows a distinguished dependence on each incidence angle
and orbit direction, along with relatively low variability in
oa/ V- across tracks. An exception occurs for track #117 dur-
ing 2023-2024, where the variability is relatively high with
respect to the year before. This increased variability is also
noticeable for cell 25 and 39. Given the lower variabilities
recorded in the prior year, interference from non-natural el-
ements can be ruled out. The most plausible explanation is
a certain degree of heterogeneity in soil moisture across the
field. Unfortunately, we are unable to verify this hypothesis,
as soil moisture measurements were not included in our field
campaign. Additionally, cell 40 lies in the immediate vicin-
ity of the measurement site, and the snow surface remains
undisturbed due to the operation of a LiDAR laser scanner
continuously monitoring the snow surface. Figure 4c—f illus-
trate the multitemporal 08/ V signal from cell 40 in compari-
son to that of the other candidate cells. The average standard
deviation of the 08/ V ensemble across these cells is approxi-
mately 3 dB for all tracks. Interestingly, the lowest standard
deviation is consistently observed at the time of the backscat-
ter drop caused by wet snow, with the exception of track #117
in 2024. Notably, during the melting season, the signal from
cell 40 lies at the lower end of the backscatter range across all
years and tracks — aside from track #117 in 2022-2023. Po-
tentially, this behaviour is desirable for wet-snow detectabil-
ity. For these reasons, the a(}/ V' recorded over cell 40 is se-
lected as the reference time series for this work.

The impact of the incidence angle was not a primary fo-
cus of this study, as it has already been extensively addressed
in previous research (Mitzler, 1987; Shi and Dozier, 1992;
Strozzi et al., 1997; Strozzi and Matzler, 1998) that strongly
relied on tower-based instruments, allowing greater control
than satellite-based radar systems. In our case, the most rep-
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resentative area for the measured snow properties is rela-
tively small and flat, resulting in a limited range of local inci-
dence angles available for analysis (see Fig. 2). Furthermore,
the high spatial variability of LWC would require dedicated
reference measurements for each incidence angle and cell,
which was not feasible given the time and resources already
involved in conducting the campaign at a single location.

3.2 Snow Microwave Radiative Transfer (SMRT)
model: description and simulation setup

SMRT is a model that simulates the active—passive mi-
crowave response from layered snowpacks (Picard et al.,
2018). The model is written and run in a Python environ-
ment and has a modular and flexible structure, allowing the
user to set model runs by choosing from among a wide set
of electromagnetic, microstructure and permittivity models.
The reflectivity and transmissivity associated with roughness
can also be described according to different models. The user
has to specify a set of snowpack properties to parametrize
the microstructure and the electromagnetic model. In partic-
ular, the roughness can be set either at the snow—air inter-
face only or for each defined snow layer. Once these nec-
essary parametrizations have been declared in the prelimi-
nary components of the model, SMRT uses the discrete or-
dinate and eigenvalue (DORT) method to solve the radiative
transfer equation. The user can either customize a virtual sen-
sor with specific frequency, incidence angle and polarization
or directly choose from a list of already available sensors,
among which S1 is included. The backscatter intensities can
be obtained for all polarizations — this study focuses on the
co-polarized vertical signal because cross-polarizations are
currently only partially implemented within the current ver-
sion of the module used for the parametrization of surface
and interface scattering (Murfitt et al., 2024).

This study uses the symmetrized strong-contrast expan-
sion (SymSCE) (Picard et al., 2022b) as the electromag-
netic model with two different permittivity parametrizations.
Measurements of density and SSA were used to compute
the Porod length (¢p) (Porod, 1951). The microwave grain
size ({Mw) is computed as the product of £p and the poly-
dispersity k, a parameter describing the variability in the
length scales with respect to the microstructure (Picard et al.,
2022c¢). k was set to 0.75: this empirical value was estimated
from p-CT scans of a wide variety of alpine snow samples
with convex grains, among which were rounded grains and
melt forms (Picard et al., 2022c). For this study, snow mi-
crostructure was parametrized using the exponential model.
For frequencies in the X- and Ku-bands (10-17 GHz), ex-
ponential autocorrelation functions have been shown to be
too simplistic for representing snow microstructure. Their
fast decay fails to capture long-range spatial correlations,
and their inadequacy in modelling densely clustered media
results in an underestimation of forward-scattering effects
(Chang et al., 2016). However, Picard et al. (2022c) show
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how £yw can be computed analytically for various forms of
autocorrelation functions, including the exponential. These
analytical expressions of £yw allow for direct comparison
between different representations of snow microstructure.
Most importantly, when the same value of £yrw is used as in-
put, all microstructure models give the same scattering am-
plitude in the low-frequency limit. Therefore, according to
these findings, the choice of the best representation of snow
microstructure becomes a secondary problem with respect to
measuring ¢pw in order to predict snow scattering in the C-
band.

The permittivity of a material is a complex number com-
posed of a real part (i.e. the dielectric constant) and an imag-
inary part. The contribution of the real part is related to the
material’s ability to store electrical energy, whereas the con-
tribution of the imaginary part is associated with dielectric
losses. Snow is a three-component mixture of ice, air and wa-
ter — therefore, the effective permittivity of snow (¢5) depends
on the relative proportions of these elements. The presence of
liquid water significantly alters both the real and the imagi-
nary parts of €, affecting how microwaves interact with the
snowpack. Henceforth, accurate estimates of €5 are crucial
for interpreting the microwave response of wet snow. Despite
extensive research, particularly in the 1980s, a universally
accepted model for snow permittivity has not yet been estab-
lished (Picard et al., 2022a). For this study, we selected two
formulations: (i) the Microwave Emission Model for Layered
Snowpacks (Wiesmann and Mitzler, 1999) in its third ver-
sion (MEMLSv3 hereafter), which is based on the Maxwell
Garnett mixing theory of dry snow and prolate water inclu-
sions, and (ii) the Debye-like model modified by Hallikainen
et al. (1986) (H-86 hereafter), which uses a mixing formula
based on volume fractions and refractive indices, calibrated
against field data. These models were selected because they
were validated against real-world C-band data. Specifically,
in Hallikainen et al. (1986) and earlier works, the authors
present what is, to our knowledge, the only available dataset
of wet-snow permittivity measurements at 6 GHz for varying
LWC values, measured using freezing calorimetry. Interest-
ingly, MEMLSv3 fails to accurately reproduce this dataset.
However, Kendra et al. (1998) observed that the dielectric
constant provided by H-86 appears to be too low, an obser-
vation that is supported by data from Achammer and De-
noth (1994), collected in the range between 8 and 12 GHz.
However, these data appear to favour H-86 over MEMLSv3
when considering the imaginary part of €. While H-86 has
been criticized, some aspects appear to have been overlooked
(e.g. the recent corrigendum in Picard et al., 2022a). Figure 5
shows the real and imaginary parts of the €5 as a function of
the frequency for a nominal density value and varying values
of LWC according to both MEMLSv3 and H-86 permittiv-
ity formulations. For higher values of LWC (see Fig. 5b, c),
the €; values obtained from both formulations display a fre-
quency dependence and curve shape closely resembling that
of pure water. In both cases, the real part of €5 decreases with
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frequency, whereas the imaginary part increases of up to the
relaxation frequency and decreases thereafter. However, in
the C-band, the two formulations diverge significantly, espe-
cially in their prediction of the imaginary part, which governs
absorption losses. This difference becomes more pronounced
for increasing values of LWC. For instance, at LWC =4 %,
MEMLSvV3 predicts an imaginary part of €; approximately
twice that of the H-86 at the nominal frequency of S1 (see
Fig. 5b). Since we cannot definitively determine the fitness
of one model over the other, both formulations will be used
in SMRT for this study. Given the different behaviour of the
two formulations, we expect a lower and upper bound for
S1 backscatter simulations. It is clear that further research is
needed to accurately characterize wet-snow permittivity, but
this is out of the scope of this paper.

RT modelling of snow comes with the additional difficulty
of quantifying the dense medium effects, i.e. the electro-
magnetic interactions occurring between snow grains that are
closely packed together. At C-band frequencies, these effects
become significant as the scattering regime changes due to
the presence of liquid water — through changes both in snow
grain interactions and in bulk dielectric properties. In H-86,
dense medium effects are not accounted for. In MEMLSvV3,
these effects are accounted for through a semi-empirical
parametrization involving, among other parameters, corre-
lation length, density-dependent corrections and — as men-
tioned above — mixing formulas. Correlation lengths are used
to represent the effective grain size and spatial correlation of
the ice matrix and to capture the degree of interaction be-
tween dense grains. Despite the range of correlation lengths
being limited in MEMLSv3, the ones that are represented
are derived from structures observed at Weissfluhjoch during
two snow seasons (Wiesmann and Mitzler, 1999). Therefore,
they are likely suitable to describe the dense medium effects
on the snowpack structures observed and measured in this
study. Snow density is used as a proxy to determine how
closely grains are packed; and as density increases, scatter-
ing is reduced and absorption increases. Such corrections are
embedded into the extinction term, i.e. the sum of scattering
and absorption coefficients.

The chosen interface model (between snow and air and
between snow layers) is the integral equation model (IEM)
(Brogioni et al., 2010), since it is one of the most used models
to describe the roughness. However, any other model could
be used, provided the roughness characteristics are within
the validity range. The IEM is valid under the conditions
w-RMSH < 2 and w? -RMSH - CL < J/€i, where w is the
wavenumber (which depends on the medium) and ¢; is the
ratio between the media permittivities at the interface (Fung
et al., 1992).

Using the functions available in SMRT, we modelled
the substrate as a reflecting surface with a given value of
backscatter. In dry snow conditions, on days when manual
measurements and satellite overlooks coincided, we assigned
the S1 recorded backscatter value to the substrate, assum-
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Figure 5. Real and imaginary parts of the effective permittivity (€5) of wet snow as a function of frequency (f) for a nominal density value
of 400kg m~3 and varying LWC of 1% (a), 4 % (b) and 8 % (c) according to the MEMLSv3 and H-86 permittivity models. Dotted grey
lines underline differences between the formulations at the nominal frequency of S1, i.e. 5.405 GHz.

ing that dry snow is transparent to radar waves at C-band
and that therefore the soil is the only contribution to the to-
tal backscatter. In wet snow conditions (or in dry snow con-
ditions when there was no concomitance between measure-
ments and satellite overlooks), we assigned a fixed value of
backscatter to the substrate, which we computed as the aver-
age value in dry snow conditions of each individual track (in-
cidence angle). Notably, SMRT offers the possibility of com-
puting the backscatter from the soil; however, it requires a
series of detailed information that is spatially heterogeneous
and would have been nearly impossible to retrieve contin-
uously over the course of our campaign. These properties
include the soil moisture, the relative sand content, the rel-
ative clay content, the soil content in dry matter, and other
geometrical parameters such as the roughness and the corre-
lation length.

Under these configurations, the model takes as inputs
the following snowpack properties: temperature, density,
volumetric liquid water, SSA and surface roughness. For
the snow-air interface, we used the measured values of
RMSH and correlation length. For layer interfaces, we set
RMSH)ayers = 1 mm and CLjayers = 30 mm (i.e. the average
winter value from our field measurements). When measure-
ments and S1 overpasses coincided, the simulation was per-
formed using the incidence angle of S1. On days without
simultaneous overpasses, the simulation was performed us-
ing the incidence angle from the closest previous or subse-
quent S1 pass. All modelling choices described above have
been designed and motivated to be optimal to describe wet
snow starting from measured properties. However, it is im-
portant to remark that the choice of such parametrizations
remains highly arbitrary, as further research is still needed to
validate permittivity, roughness and microstructure models
specifically for wet snow in the C-band.

Another practical challenge was to design a way to repli-
cate the often complex snowpack layering observed in the
field within a radiative transfer model which is not specif-
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ically made to deal with a high number of layers thinner
than the wavelength (Sandells et al., 2022). As a matter of
fact, this increases the number of dielectrical discontinu-
ities (Leduc-Leballeur et al., 2015), generating (artificially)
higher scattering. Resampling high-resolution field measure-
ments to the wavelength or its multiples is an option; how-
ever, this does not necessarily reflect the physical snowpack
structure. As an example, in the moistening phase, liquid wa-
ter appears in thin layers in the upper part of the snowpack.
These layers can have thicknesses of a smaller size than the
C-band wavelength — the effect of such layers on the total
backscatter is unclear and represents a potential source of
errors when using layering defined by the resolution of the
field measurements. As the wetting front progresses through
the snowpack during the ripening phase, liquid water be-
comes more homogeneous over layers with thickness com-
parable to the C-band wavelength. During this stage, using
high-resolution discretizations (e.g. on the order of the C-
band wavelength) may seem appropriate to closely replicate
the liquid water layering observed in the field. However, av-
eraging over such scales can merge distinct wet and dry lay-
ers, blur important contrasts, and potentially lead to biased
backscatter estimates. On the other hand, intuitively, lower-
resolution discretizations (e.g. multiples of the C-band wave-
length) dissipate the scattering effect of thinner (>~ 6 cm) wet
layers. To reduce the aforementioned sources of uncertainty,
we chose to model the snowpack structure by stacking lay-
ers with a minimum thickness corresponding to the C-band
wavelength, ensuring each layer had consistent average phys-
ical properties. These physically similar layers were identi-
fied automatically by means of a simple algorithm and then
refined manually, with particular emphasis placed on LWC
over the other variables. An example is provided in Fig. 6,
where snow properties are shown at the field-measured ver-
tical resolution in (a) and averaged into physically consis-
tent layers for SMRT input in (b). Figure 7 shows that the
number of layers used for each SMRT simulation varied be-
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Figure 6. (a) Vertical profiles of snowpack properties measured in the field on 14 May 2024: temperature (dark red), density (dark yellow),
liquid water content (LWC; light blue) and specific surface area (SSA; dark blue). The vertical spacing of the points connected by the lines
reflects the measurement resolution for each profile: 5 cm for temperature, 3 cm for density, 2 cm for LWC and 4 cm for SSA. (b) Repre-
sentation of the same profiles averaged according to the physically consistent snow layers (indicated by grey horizontal lines). The layered
profiles as in (b) form the input snowpack for the SMRT model, combined with surface roughness parameters measured on the same day

(RMSH =2.7 mm; CL =48.5 mm).

tween 1 and 14, with a marked dependence on the stage of
the melting process and on the campaign year. In dry snow
conditions, the densely measured snow properties are prac-
tically always averaged into one single layer, given the ab-
sence of liquid water. As the snowpack starts moistening, the
number of distinct layers increases, as a function of the first
formation of liquid water within the snowpack. The highest
number of layers required in SMRT to model the snowpack
is used during the ripening phase, as the LWC layering is at
its most heterogeneous state during this phase, as a conse-

https://doi.org/10.5194/tc-19-5579-2025

quence of the progression of the wetting front. Later in the
runoff stage, with the snowpack being fully saturated, the
number of SMRT layers used decreases again, as a conse-
quence of a more homogeneously moist snowpack. On the
other hand, Fig. 7 shows that during the ripening phase, the
first campaign year has been modelled using ~ 30 % fewer
layers than the second, on average. The presence of ice lenses
helped to homogenize the distribution of liquid water within
the snowpack, resulting in more uniformly wet layers near
the surface and consistently drier sections towards the bot-

The Cryosphere, 19, 5579-5612, 2025
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Figure 7. Variability in the number of modelling layers in SMRT
used for each simulation day as a function of the melting phase and
the campaign year.

tom. Without ice lenses, in 2024, the progression of liquid
water into the snowpack was more heterogeneous, there-
fore requiring more layers in the model to remain as true
as possible to the conditions observed in the field. Despite
the efforts to find a reasonable compromise between all the
above-mentioned constraints, the optimal way to model a
radar-equivalent snowpack from field measurements and/or
detailed multilayer physical model outputs remains an open
question in the field of radiative transfer modelling of snow,
only recently addressed by Meloche et al. (2025), albeit for
dry snow only.

4 Results

4.1 Identification and redefinition of melting phases
from multitemporal Sentinel-1 backscatter and
field measurements

Figures 8-9 show the evolution of the multitemporal S1 SAR
backscatter together with the time series of measured prop-
erties: snow temperature, LWC, air temperature, total wa-
ter content (TWC), runoff, snow water equivalent (SWE)
and surface roughness indices (RMSH and CL). The melting
phases identified with the method proposed by Marin et al.
(2020) are reported for each time series for later validation.
We will refer to the snow seasons of 2022-2023 and 2023—
2024 as the 2023 and 2024 seasons, respectively.

Our roughness measurements show clear differences for
different snow surfaces (Fig. 10). Smooth surfaces typ-
ical of new/dry snow have RMSH values around 1mm
(Fig. 10a). Thereafter, roughness increases with increasing
surface degradation due to melt-refreeze cycles and subli-
mation (Fig. 10b). The values of RMSH measured in these
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conditions, which are the most persistent throughout the melt
season, lie within approximately 3 and 10 mm. Fully formed
suncups are associated with values of RMSH around 10—
15mm (Fig. 10c). Deep suncups appear like craters on the
snow surface (Fig. 10d), some reaching widths of 20 cm and
depths of 10 cm. In these conditions, we measured values of
roughness RMSH equal to or higher than 20 mm.

In 2023, the first liquid water was measured on 10 April
(Fig. 8b). On this date, our data show that the temperature
of the top ~5cm of the snowpack was 0°C (Fig. 8b). The
air temperature reached 0 °C as well on this day (Fig. 8d).
The snowpack reached the full isothermal state 20 calendar
days later. Ice layers formed throughout the season, likely
as a consequence of repeated melt-refreeze cycles and the
succession of several warm and cold spells (Fig. 8d). Ice lay-
ers were observed regularly during the measurement cam-
paign; their presence is highlighted by locally higher val-
ues of LWC due to ponding at approximately 100cm from
the ground. The presence of ice layers probably withheld the
meltwater in the upper section of the snowpack, partially hin-
dering the progression of the wetting front. LWC profiles in
Fig. 8c highlight ponding above ice layers consistently un-
til 15 May. The ponding is no longer detected over the next
consecutive 5 snow profiles and becomes visible again from
26 May until early June, when the ice layers likely disin-
tegrated, allowing the meltwater to percolate to the bottom
of the snowpack. The fact that the ponding above ice lay-
ers is not detected on a series of consecutive snow profiles
is probably linked to the partial refreeze of the snowpack
highlighted by the drop in air temperature detected within
this time span (Fig. 8d). However, ice layers could also be
laterally non-homogeneous. Figure 8f shows that the rough-
ness associated with wet snow starts developing shortly af-
ter the snowpack starts moistening, with RMSH increasing
until 9 May. Thereafter, the cold spell brought new snow-
falls, which smoothened the snow surface significantly, and
roughness indices reverted to typically winter values for ap-
proximately 10 calendar days. Fully formed suncups were
observed on the field from 31 May onwards. As explained in
Sect. 2.2, the lysimeter time series for 2023 (Fig. 8e) is not
useful for detecting the runoff start. However, both manual
and automatic measurements indicate the first slight snow
depth (HS) and SWE decrease around 8 May, following a
warm spell that lasted several days. This occurred in the pres-
ence of a fully isothermal snowpack, suggesting that runoff
may have started to be released around this time.

In 2024, the first liquid water on the surface was measured
on 8 April during a warm spell (Fig. 9b—d). From this date
on, the wetting front moved somewhat into the snow before
being interrupted by a cold spell, which caused a partial sur-
face refreeze. The snowpack reached the full isothermal state
on 9 May. Over the course of this season, ice layers were not
observed in the field, the progression of the wetting front was
not hindered and the snowpack reached full saturation earlier
with respect to the previous year. The runoff time series con-
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Figure 8. Data overview for the snow season of 2022-2023. (a) S1 backscatter time series: exact values of 0 v acquisitions (triangles);
range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending (M|, ) and the
afternoon/ascending (A1) acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin
et al. (2020). (b) Manually measured profiles of snow temperature. (¢) Manually measured profiles of snow liquid water content (LWC).
(d) Air temperature at hourly resolution, measured by the automatic sensor at WFJ. (e) Measured total water content (TWC) (light blue);
runoff time series automatically recorded by the lysimeter at WFJ (dark blue); lack of runoff data due to the instrument failure (grey area);
snow water equivalent (SWE) both automatically recorded by the snow scale (black line) and manually measured (white circles). (f) Time

series of measured surface roughness parameters — RMSH and CL.

firms that the snowpack released the first meltwater around
8 April. It should be noted, however, that this early release
represents not the runoff onset but rather the preferential flow
of initial meltwater reaching the bottom of the snowpack.
On this date, the (pointwise) measurements show a largely
isothermal snowpack. Likely, the snowpack was isothermal
over the entire cell (Fig. 9b, c, e). Additionally, significant
amounts of LWC were measured at the ground interface after
8 April, and the manual measurements show a SWE decrease
of ~ 100 mm between 4 and 15 April. Runoff began steadily

https://doi.org/10.5194/tc-19-5579-2025

in early May, when a significant amount of water was mea-
sured at the bottom of the fully isothermal snowpack, along
with decreases in HS and SWE. These observations can val-
idate the hypothesis made for the previous season in the ab-
sence of runoff data due to instrument failure. Our measure-
ments in Fig. 9f show that surface roughness increased rela-
tively late (3 June) with respect to the previous season, with
fully formed suncups being visible on the field from 19 June
onwards.

The Cryosphere, 19, 5579-5612, 2025



5594 F. Carletti et al.: Multitemporal Sentinel-1 backscatter during snowmelt
2023-2024
Dry Moistening Ripening Runoff
(a) S1 Backscattering v i ‘1
—_ v v v vV v V v v
@ -10{V VV.v v v, v v A Y v v v v
I O i T e S S e e e S SR S M. A
¥ -20 A% oA 4 v Ay AVR v
S1range (M!) Slrange (AT) V A Sl recorded values ! A VA VA V
1I82I1 3‘0 é 1'4 1‘9 2‘8 4‘1 1‘1 1‘8 2‘5 Zi. ;3 1‘5 2‘1 2‘9 4‘1 i 1‘4 2‘0 2‘8 éll él‘l 1‘5‘1‘8 2‘3 2‘7 2I 'I9I ll417 21 29 3 il‘O 1‘4 1I92'2 2Ié i li.
Nov Dec Jan Feb Mar Apr May Jun Jul
2023 2024 o
300 (b) Temperature
—_ _ -5
§ 2004 ! | | I G
* | | ' | | e
T 1004 | | | | -10
04— — — —————— - - | | I 15
®l 30 5 1419 28 4 11 18 25 1 8 15 21 2947 14 20 28 4 8111518 2327 2 9 1417 21 29 3 71014 12226 1 4
Nov Dec Jan Feb Mar Apr
2023 2024
15
3001 (c) Liquid Water Content
T 10 _
5,200 9
(%] ls =
T 100
‘ |
0 L |
®l 30 5 1419 28 4 11 18 25 1 8 1521 2947 14 20 28 4 8111518 2327 2 9 141721 29 3 71014 12226 14
Nov Dec Jan Feb Apr May Jun Jul
2023 2024
20 -
(d) Air Temperature
1‘82’1 3‘0 é 1'4 1‘9 2‘8 4‘1 lll 1‘8 2‘5 Ii. é 1‘5 2‘1 2‘9 éll i ll4 2‘0 2‘8 éll él‘l 1I5I1I8 2’3 2‘7 i é‘ 1‘41‘7 2",‘[ 2‘9 é il’o 1‘4 1'92‘2 2‘&‘3 Ii. 21
Nov Dec Jan Feb Mar Apr May Jun Jul
2023 2024
s T T 1500 —
E 1501 (e) Total Water Content, Runoff, SWE | ! TWC €
5E o 0 ®O%; @ o Runoff £
€ < 1004 N 5 o 1 ° F1000 C
E SWE (automatic) o) 5 o o wo
UJF O SWE (manual) ° o o © o o o % r;ﬂ_‘
g 501 o o 500 ¢
F o ! o
= 04 — 1 0 =
11 30 5 14 19 28 4 11 18 25 1 8 15 21 2947 14 20 28 4 8111518 2327 2 9 141721 29 3 71014 192226 14
Nov Dec Jan Feb Mar Apr May Jun Jul
2023 2024
25
(f) Surface roughness [ —_
- 100 20 E
1= E
£ 15 ;
= 50 F10 %
O
F5 <
0 — a— o
11 30 5 14 19 28 4 11 18 25 1 8 15 21 2947 14 20 28 4 8111518 2327 2 9 141721 29 3 71014 192226 14
Nov Dec Jan Feb Mar Apr May Jun Jul
2023 2024

Figure 9. Data overview for the snow season of 2023-2024. (a) S1 backscatter time series: exact values of (70

acquisitions (triangles);

range obtained by connecting the consecutive S1 passages by direction of orbits, i.e. by connecting all the morning/descending and the
afternoon/ascending acquisitions (shaded areas). Each panel is subdivided into the melting phases identified with the method of Marin et al.
(2020). (b) Manually measured profiles of snow temperature. (¢) Manually measured profiles of snow liquid water content (LWC). (d) Air
temperature at hourly resolution, measured by the automatic sensor at WFJ. (e) Measured total water content (TWC) (light blue); runoff time

series automatically recorded by the lysimeter at WFJ (dark blue);

snow water equivalent (SWE) both automatically recorded by the snow

scale (black line) and manually measured (white circles). (e) Time series of measured surface roughness parameters - RMSH and CL.

Coupling the detailed, high-temporal-resolution informa-
tion about the state of the snowpack with the multitemporal
SAR a(}' V recorded by S1 on morning and afternoon over-
passes (Figs. 8-9a) enables the validation of the methodol-
ogy proposed by Marin et al. (2020) to identify the melting
phases. According to the authors, a drop of at least 2 dB with
respect to the winter mean in the afternoon/ascending o, v
identifies the start of the moistening phase, the ripening phase
starts when the morning/descending o, VV signal shows the
same drop of at least 2dB, and the runoff starts when both
morning/descending and afternoon/ascending 00 YV time se-

The Cryosphere, 19, 5579-5612, 2025

ries reach their local minima before the monotonic increase
(the authors propose an average date between the two lo-
cal minima when both the S1 satellites were available). For
the two seasons, we computed the average winter backscat-

ter (o&/ Xry) by averaging all values recorded by each individ-
ual track over the course of the meteorological winter, i.e.
from 1 December to 28 February. The resulting values are
the benchmark needed to identify the melting phases. The
results are listed in Table 2. As noted by Marin et al. (2020),

https://doi.org/10.5194/tc-19-5579-2025
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Figure 10. The panels illustrate some representative surface rough-
ness conditions as qualitatively observed on the field (panoramic
pictures) together with one of the panel measurements performed on
the same day (bottom right of each panel, where the mean roughness
RMSH measured on that day is also reported). (a) Smooth surface
typical of dry snowpack conditions. (b) Early-stage development
of surface roughness deriving from melt-refreeze cycles. (¢) Fully
formed suncups over a homogeneous snow cover, at least at the con-
sidered S1 cell. (d) Fully formed suncups over a patchy snow cover.
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the dependence of 08’ V on incident angles remains as a resid-
ual effect.

Because, for the selected cell, two morning/descending
and afternoon/ascending looks are available, there are two
possible dates for the start of the moistening and ripening
phase, respectively. In 2023, these dates are 22 and 29 April
for the moistening phase and 28 March and 26 April for
the ripening phase. For the start of the moistening phase,
we selected the earliest, i.e. 22 April. For the start of the
ripening phase, the two identified dates are almost 1 month
apart; however, the 08/ V' decrease recorded on 28 March by
track #168 is caused by a warm spell, as the following value
recorded by the same track aligns approximately with the
winter mean again. Therefore, we selected 26 April as the
start of the ripening phase. In 2024, for the moistening phase,

the J(Y V' value recorded on 4 April by track #015 is only
N

1.5dB lower than 00(}] ; however, the next passage of the
same track on 16 April recorded a drop of 7.4 dB already.
Therefore, the moistening start has been placed on 4 April.

On this date, track #117 recorded a drop of 7 dB with respect
to 0&’ (\{[y. For the ripening start, we chose 15 April.

These considerations show that the method of Marin et al.
(2020) is limited by the halved S1 revisit frequency. This be-
comes even more clear for the selection of the runoff start
date, as the wider separation between local minima of o,V
considering all 4 looks is 17 calendar days for 2023 and 16
calendar days for 2024. Using the date in between to deter-
mine the runoff start, as done by Marin et al. (2020), gives
potentially unreliable results in these conditions. This low
temporal resolution makes it difficult to pinpoint precise on-
set dates, especially when minima are separated by such long
periods. Despite the ambiguities, in both seasons, the identi-
fied moistening phase coincides exactly with the first snow-
pack warming and the consequent formation of liquid wa-
ter. The identified ripening phase is also mostly consistent
with the theory, as field measurements show that the snow-
pack transitions to the fully isothermal state with the wet-
ting front progressing to the bottom, although this process
is partially hindered in 2023 by ice layers. In 2024, a sud-
den cold spell at the beginning of the ripening phase caused
the refreezing of the superficial meltwater (Fig. 9b—d). This
generated a sharp increase in both morning and afternoon
O’OV V (Fig. 9a). In 2024, the first instance of measuring a fully
isothermal snowpack coincided precisely with the first after-
noon local minimum of 08’ V. The same cannot be verified for
2023, which instead shows a counterintuitive case where the
local minimum of morning UOV V anticipates the local mini-
mum of afternoon G(Y V (Fig. 8a). Nonetheless, by the time
the morning 08/ V reached its local minimum in 2023, the
snowpack had already been fully isothermal for at least 5
calendar days (Fig. 8a—b). This suggests that the snowpack is
likely to be fully isothermal when the afternoon O’OV V reaches
its local minimum. The runoff time series in 2024 shows that
the snowpack had started to release meltwater as soon as it

The Cryosphere, 19, 5579-5612, 2025



5596

F. Carletti et al.: Multitemporal Sentinel-1 backscatter during snowmelt

Table 2. Overview of the identification of the melting phases based on the multitemporal S1 SAR backscatter as proposed by Marin et al.
(2020). For each season, the table shows the relevant values of a&’ V' and the occurrence dates for each afternoon/ascending (A1) and
morning/descending (M| ) look (and corresponding incidence angle). The selected values for the start of the moistening, ripening and runoff
phases are highlighted in bold. For the runoff start, the selected date according to the method of Marin et al. (2020) is compared against the

data recorded by the lysimeter, when available.

Season 2022-2023 \ 2023-2024

Track 015 (A1) 117(AT) 066 (MJ) 168 (M) | 015(A?T) 117 (A1) 066 M]) 168 (MJ)
Local incidence angle 41° 32° 33° 42° 41° 32° 33¢ 42°

90, dry [4B] -123 —114 -84 -10.0 —12.6 ~115 -8.9 —10.1
Moistening start date 22 April 29 April - - 4-16 April 18 March - -
Moistening start value [dB] —185 —16.3 - - —14.1t0 =20.0 —13.9 - -
Ripening start date - - 26 April 28 March | - - 8 April 15 April
Ripening start value [dB] - - —12.6 —13.3 - - —12.8 —-17.9
0‘8/ 1\1/1i - date 16 May 29 April 8 May 3 May 22 May 17 May 26 May 2 June
Iy r\rl‘in, value [dB] —21.4 —16.3 —19.8 —22.4 —22.6 —23.7 —20.7 —22.8
Runoft start date (Marin et al., 2020) 6 May 24 May

Runoff start date (lysimeter) No data — ~ 29 April (?) ~ 15 April

was in the late moistening phase (Fig. 9¢), in correspondence
to the first local minimum of the afternoon UOV V time series
on 16 April (Fig. 9a). However, as clarified above, this ini-
tial release does not mark the onset of runoff, which begins
consistently in early May.

Marin et al. (2020) proposed three possible explanations
for the monotonic backscatter increase following the local
minima: (i) the increase in surface roughness, (ii) the de-
crease in TWC, and (iii) the snow cover gradually becom-
ing patchy. Our data show that over a high-altitude alpine
snowpack like the study plot at WFJ, roughness develops on
the snow surface well before the snow cover begins to disap-
pear in patches. Therefore, at least for similar altitudes, the
gradual disappearance of the snow cover can be ruled out
as a cause of the increasing backscatter in the late melting
stage. For both seasons, our data indicate that the strongest
correlation with the monotonic increase in 08/ V. after the lo-
cal minimum is observed with the gradual increase in surface
roughness (Figs. 8-9f). Conversely, there seem to be no re-
markable correlations between the increase in 08/ V and the
TWC and/or runoff trends. In fact, Figs. 8-9¢ show that the
decrease in TWC as a consequence of snow ablation is not
monotonous. On the other hand, both automatic and manual
measurements show that by the time SWE started decreasing
sharply and monotonically (around 26 May 2023 and 6 June
2024), the S1 08/ V had already increased again by ~ 6 dB.

4.2 Instrumental uncertainty and variability in field
measurements of liquid water content

Figure 5 shows that liquid water has a strong impact on the
real and imaginary parts of €5 at C-band frequencies. For S1
(T(Y V retrievals from ground measurements, this poses three
major challenges. In the first place, manual measurements
concern a very small area/volume, whereas satellite acquisi-
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tions cover a pixel size of 20 x 20 m. Secondly, the distribu-
tion of liquid water within the snowpack can be highly het-
erogeneous because of a variety of features and processes,
namely capillary barriers, preferential flows and ice layers.
Finally, what is the most accurate methodology for measur-
ing LWC in both lab and field environments remains a de-
bated question in snow science (Barella et al., 2024), and
although the methods used in this paper were designed to
achieve a good level of robustness, they are nevertheless sub-
ject to error. Therefore, all these uncertainty sources need to
be taken into account when comparing satellite a(}' V signa-
tures with retrievals driven by measured data.

In Sect. 2.4, we explained how dielectric measurements
were validated against melting calorimetry in conditions of
ripe snow. We referred to the validation setup of 2023 as “co-
located” only, whereas in 2024 we performed an additional
“simultaneous” validation in addition to the co-located one.
Figure 11 shows the spread between dielectric and calorimet-
ric measurements in co-located and simultaneous setups for
all the LWC validation measurements made over the 2 years.
In 2023, the average maximum bias between co-located mea-
surements is 2.6 % and the average standard deviation is
1.2 %. In 2024, the average maximum bias and the average
standard deviation are 2.6 % and 1.4 % for co-located mea-
surements and 2.3 % and 1.5 % for simultaneous measure-
ments, respectively. Figure 13 shows all the measured ver-
tical profiles in detail. In 2023, there is overall good agree-
ment between dielectric and calorimetric measurements. The
time lag between the measurements is highlighted by often
similar LWC profile shapes, with calorimetry generally mea-
suring higher peak values. Unexpectedly, in 2024, the simul-
taneous measurements resulted in only slightly lower biases
and slightly higher standard deviations. This counterintuitive
result is supported by a number of previous studies. For ex-
ample, Donahue et al. (2022) found an average standard de-
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Figure 11. Bias between LWC measurements with dielectric devices and melting calorimetry for snow seasons of 2023 (a) and 2024 (b). In
2024, direct comparisons between simultaneous (brown) and co-located (light blue) measurements were also performed.

viation of 1% over 10cm wide snow samples with LWC
between 0% and 5 %. The study of Techel and Pielmeier
(2011) confirms the high occurrence of measurement devi-
ations of more than 1 % at short horizontal distances. How-
ever, Techel and Pielmeier (2011) also show that the correla-
tion between measurements at larger horizontal distances is
higher for LWC values lower than 1.3 %. Therefore, the bi-
ases and standard deviations observed in our field measure-
ments may overestimate the instrument uncertainty and/or
variability over larger scales comparable to the footprint of
S1. Based on these considerations, we define the large-scale
LWC variability as &1 %. We use this value to assess the ef-
fect of LWC uncertainty in 08/ V retrievals from ground mea-
surements.

4.3 Interpretation of Sentinel-1 backscatter through
SMRT simulations forced by field measurements

Figure 12 shows the comparison between the time series of
S1 acquisitions and SMRT-modelled a(}/ V forced by snow pit
measurements using the two different permittivity formula-
tions (MEMLSv3 and H-86) and the model setup described
in Sect. 3.2, considering the LWC variability of £1 % es-
timated in Sect. 4.2. In this figure, together with Table 3,
simulation results are categorized into groups, and potential
sources of inconsistencies and/or driving scattering mecha-
nisms are discussed for each group, based on the measured
values of LWC, TWC and surface roughness. All measured
profiles of LWC, along with the corresponding TWC and
RMSH values, are presented in Fig. 13 and Table 5, which
serve as a reference for the following analysis. Table 4 shows
all the root mean squared errors (RMSEs) between S1 acqui-
sitions and simulations, according to the snow season, the
selected permittivity formulation and the melting phase. In
general, both models exhibit a mean negative bias of ~5dB
with respect to S1 recordings over both seasons; however, bi-
ases are more pronounced for 2024 than for 2023, with the
deviation between permittivity models being higher as well
in 2024. H-86 generally gives higher a(}] V values with respect
to MEMLSv3.

https://doi.org/10.5194/tc-19-5579-2025

In 2023, the #066 morning S1 track recorded a backscatter
increase of more than 2dB between 5 and 19 April. Simi-
larly, in 2024, we observe a 2.5dB increase in backscatter
recorded for track #117 from 8 February to 4 March. We can
hypothesize that such increases are driven by the thawing of
the soil. However, our data are insufficient and too uncertain
to prove this because of possible interferences between di-
electric instruments and the ground in mostly dry snow con-
ditions, as mentioned in Sect. 2.1.4. In dry snow conditions,
there were no significant discrepancies between S1 and sim-
ulations; hence Fig. 12 only focuses on the period after the
assumed soil thawing.

Aside from the chosen permittivity formulation, five pri-
mary sources of uncertainty may account for the differences
between simulated and recorded 08/ V. A significant one is
snow transformation and melting between satellite and mea-
surement acquisitions. S1 orbits intersect the field area either
in the early morning or in the late afternoon (see Table 1). As
explained in Sect. 2.4, measurements started at around 10:00
(UTC+1) and would take several hours. Thus, it is likely that
in both cases the LWC during the passage is lower than the
value measured at 10:00 (UTC+1) or later because of daily
melt-refreeze cycles, especially near the snowpack surface.
Moreover, the pointwise LWC measurements are not neces-
sarily representative of the general liquid water distribution
over the entire S1 cell. In 2023, we consistently observed ice
layers over a high number of consecutive snow profiles (see
Figs. 8c and 13). Our consecutive measurements suggest that
ice layers contributed to creating a more spatially homoge-
neous liquid water distribution by acting as a natural drainage
barrier for meltwater. Unlike in 2023, in 2024 ice layers were
not consistently observed in the field. The melting process
was likely more heterogeneous over the S1 cell, and point-
wise measurements are less representative of wider scales in
this season. This explains the fact that days marked by high
variability associated with LWC are more numerous in 2024
than in 2023. In Table 3, we grouped these sources of uncer-
tainties together under the label ‘uncertainty in spatiotem-
poral LWC/TWC”. Potentially, this source of uncertainty af-
fects every S1 retrieval from field data. However, it definitely
carries more weight than other sources of error at early melt
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Figure 12. Comparison between the recorded multitemporal S1 08/ v (triangles and shaded areas) and the time series of 08/ V modelled with
SMRT, for the years 2023 (a) and 2024 (b). Results are shown for both permittivity formulations — MEMLSv3 (dark grey boxplots) and
H-86 (light grey boxplots). The boxplots indicate the variability associated with the LWC uncertainty of +1 % for each layer, as discussed
in Sect. 4.2. The shaded areas of the recorded S1 multitemporal 08/ v represent the range of values obtained by connecting the consecutive
passages by the direction of orbits, i.e. by connecting all the morning/descending and the afternoon/ascending acquisitions. The triangles
represent the exact values of the acquisitions. For clarity, exact values are only shown for days where snow measurements were carried out,
thus allowing direct comparison. Coloured boxes group similar simulation results and are labelled with codes (e.g. 1a, 2a), which refer to
Table 3 for details on the corresponding measured snow properties, dominant scattering mechanisms and potential sources of error. At the top
of each panel, the time series are further segmented into the melting phases identified in Sect. 4.1 — as well as the main scattering regimes,

which are influenced by LWC, surface roughness and buried surface roughness.

stages when the simulation variability associated with LWC
uncertainty is particularly high, i.e. when the TWC is low
(24-26 April 2023, 4 April 2024) and during the cold spells
of both 2023 (17 May) and 2024 (15-23 April), which caused
the partial refreeze of the snowpack (see Figs. 8, 9b—d).
Daily melt-refreeze cycles, however, not only alter the
amount of LWC/TWC in the snowpack, but also drive the
formation of surface structures that can create additional
scattering which is not accounted for in the simulations,
i.e. crusts (Lund et al., 2022; Brangers et al., 2024). In Ta-
ble 3, we labelled this uncertainty source as “scattering from
surface structures (melt-refreeze)”. This uncertainty applies
to the same cases as where “uncertainty in spatiotemporal
LWC/TWC” applies, but it likely holds more weight when
the TWC is slightly higher and the simulation variability ac-

The Cryosphere, 19, 5579-5612, 2025

cording to LWC is lower (8—15 April 2024, 27 April-5 May
2024).

Another cause of significant discrepancy between
recorded and modelled O'OV V in the presence of a mostly
dry snowpack with a smooth surface may be the thawing
of the soil. This process creates a thin layer of liquid water
overlying the natural soil roughness or absorbed into the
basal snow layer (Lombardo et al., 2025). The combination
of snow wetness and roughness, as will be shown later in
the paper, can be responsible for backscatter increases up to
7 dB. In Table 3 we refer to this kind of uncertainty as “wet-
soil scattering”. This uncertainty potentially applies to the
instances when the TWC is relatively low and the variability
associated with LWC is high. Between 4-27 April 2024, our
measurements show considerable amounts of liquid water
at the soil interface with otherwise relatively dry snowpack
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and smooth surfaces (see Fig. 13). The lysimeter time series
corroborates these measurements by detecting runoff start
on 8 April 2024 (see Fig. 9¢). However, we lack sufficient
data in order to prove and explore this possible scattering
source; therefore we only mention it as a hypothesis.

Two similar instances in 2023 (5-9 May) and 2024 (10
and 14 April) suggest another interesting phenomenon likely
affecting simulation accuracy. In both these intervals, Fig. 12
shows very good agreement between recorded and mod-
elled values of O’S/ V. regardless of the chosen permittivity
model and the variability associated with LWC. In both in-
stances, surface roughness had just started developing on a
wet-snow surface (LWC > 3 %), with measured RMSH val-
ues between 3 and 4 mm (see Fig. 10b). Thereafter, spring
snowfalls cover the early-stage roughness and the snow sur-
face reverts to smooth, with RMSH values between 1 and
2 mm (see Fig. 10a). In both years, the group of simulations
following the spring snowfalls (i.e. 11-15 May 2023, 21 and
22 May 2024) again shows strong biases when compared to
S1 recordings. This bias is almost certainly due to the fact
that the surface roughness which had started to develop was
then buried below a smooth layer of new snow, and it is
not simulated by SMRT in the proposed configuration (see
Sect. 3.2). In Table 3 we label this phenomenon “buried sur-
face roughness”.

Generally, simulations are in better agreement with S1
recordings when the measured surface RMSH is above 3 mm.
Figure 12 shows multiple groups of simulations where S1
retrievals from field data gain increasing accuracy with in-
creasing RMSH on a wet surface, together with a decreasing
dependence on the chosen permittivity model and the uncer-
tainty associated with LWC (29 April to 9 May 2023, 19 May
to 9 June 2023, 29 May to 1 July 2024). These instances sug-
gest that in conditions of increasing surface roughness on a
wet-snow surface, an additional source of uncertainty in S1
retrievals from field data might be associated with the IEM
(see Sect. 3.2) translating surface roughness into backscat-
ter response and/or with pointwise panel measurements un-
derestimating the surface roughness of the entire S1 cell.
In Table 3 we labelled these sources “uncertainty in IEM
modelling” and “uncertainty in surface roughness measure-
ments”, respectively.

Interestingly, the S1 signal is saturated at values of
of —22.4 and —23.7dB for 2023 and 2024, respectively.
These values are close to the nominal noise-equivalent sigma
naught (NESZ) of S1, i.e. —22dB. The saturation of the
signal is obtained by SMRT at much lower values, around
~ —30dB, regardless of the chosen permittivity formulation.

\a%
90

4.3.1 C-band radar backscatter sensitivity to the
coupled evolution of surface roughness and liquid
water content

To study the C-band radar backscatter sensitivity to the cou-
pled evolution of surface roughness and LWC, we selected
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the date of 16 April 2024. On this date, we measured a melt
event in the superficial 45 cm. The bottom part of the snow-
pack was homogeneously dry and was discretized as one
layer with the average of the scattering properties measured
in the field. These values are representative of a compacted
snowpack structure at the beginning of the melt process: den-
sity of 428kgm™3, SSA of 15.1m?>kg~! and temperature
of —0.1 °C. From this configuration, we prepared a series of
synthetic snowpack variations with surface LWC increasing
from 0 % to 12 % and coupled each of them to a range of sur-
face roughness RMSH values increasing from 1 to 15 mm.
These extremes represent a smooth surface typical of recent
snowfall and the highly textured surface of fully formed sun-
cups, respectively. To ensure consistency, we gradually in-
creased the value of the second roughness parameter CL as
well. To do so, we used an empirical logarithmic relation-
ship extracted from field data between RMSH and CL, which
we report in Fig. Al. However, this empirical relationship is
based on a limited number of points (75 in total) which show
larger spread for increasing values of RMSH. Therefore, we
assume that the only two discontinuities in the experimental
results (see Fig. 14a—c, RMSH =3 mm and LWC,, = 12 %)
can be explained considering this uncertainty. For clarity,
these points were removed. All experiments were run with
two incidence angles — 30 and 40° — which represent the
overall range of angles between satellite overpasses and the
snow surface within the reference cell (see Fig. 2 and Ta-
ble 1). The result of all the experiments is shown in Fig. 14,
for both permittivity formulations.

In general, Fig. 14 shows that the intensity of the scatter-
ing response has a strong dependence on LWC for lower val-
ues of surface roughness (RMSH <3 mm). The higher the
surface roughness, the weaker the dependence on LWC. In
more detail, with H-86, for LWC values lower than or equal
to 0.5 %, simultaneously increasing surface LWC and sur-
face roughness causes a decrease in C-band a(}’ V of a max-
imum of 2dB. Within this range, the intensity of the 0’(}] v
drop from smooth to rough surfaces decreases gradually with
increasing LWC. For LWC values higher than 0.5 %, the
spread in U(}’ V' as a function of increasing surface rough-
ness for the same value of LWC increases, with a reversed
trend. Simultaneously increasing LWC eventually generates
a 08/ Vincrease for all the considered roughness values in
this experiment. Interestingly, the higher the surface rough-
ness, the lower the LWC value needed to invert the trend: for
RMSH = 15 mm (typical of a textured snow surface where
suncups are visible but also very close to the limit of va-
lidity of the IEM), U(Y V' starts to increase for LWC > 1 %,
whereas for RMSH = 3 mm, the 08’ v only starts to increase
for LWC >2%. For LWC values higher than the thresh-
old of 0.5 %, the surface roughness influences the C-band
backscatter response to an extent that is comparable to the
effect of LWC alone over a smooth surface. Similar consider-
ations can be made for the experiments run with MEMLSv3,
but as a consequence of the different absorption, the above-
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Table 3. Supplementary information to Fig. 12: measured values of TWC, LWC and RMSH; noteworthy events for scattering (such as cold
spells or late snowfalls); and explanations for the mismatch between modelled and recorded S1 backscatter signatures.

Group

TWC

LWC

RMSH

Event

Source(s) of inconsistency, scattering
mechanism

la

Soil thawing

— Backscattering increase due to soil
thawing

2a

< 10mm

<3%

1 mm

Snowpack moistening
Smooth surface

— Uncertainty in spatiotemporal
LWC/TWC

— Scattering from surface structures
(melt-refreeze)

— Surface roughness underestimation
— Wet-soil scattering

3a

> 10 mm

>3%

1—4mm

Snowpack ripening
Formation of surface roughness

— Uncertainty in spatiotemporal
LWC/TWC

— Uncertainty in surface roughness
measurements

— Uncertainty in IEM modelling

4a

> 10mm

>3%

3—4 mm

Snowpack ripening
Increasing surface roughness

— Uncertainty in spatiotemporal
LWC/TWC

— Uncertainty in surface roughness
measurements

— Uncertainty in IEM modelling

S5a

> 10mm

>3%

~1mm

New snowfall on a wet snowpack
Well-developed surface roughness

— Buried surface roughness

6a

< 10 mm

<3%

~1mm

Cold spell (partial snowpack refreeze)
Smooth surface

— Uncertainty in spatiotemporal
LWC/TWC

— Scattering from surface structures
(melt-refreeze)

— Uncertainty in surface roughness
measurements

— Wet-soil scattering

Ta

> 10mm

>3%

>4 mm

Wet snowpack
Fully formed suncups

— Uncertainty in spatiotemporal
LWC/TWC

— Uncertainty in surface roughness
measurements

— Uncertainty in IEM modelling

< 10 mm

<3%

~ 1 mm

Snowpack moistening
Smooth surface

— Uncertainty in spatiotemporal
LWC/TWC

— Scattering from surface structures
(melt-refreeze)

— Surface roughness underestimation
— Wet-soil scattering

2b

> 10mm

>3%

~1mm

Snowpack moistening
Smooth surface

— Uncertainty in spatiotemporal
LWC/TWC

— Scattering from surface structures
(melt-refreeze)

— Surface roughness underestimation

3b

< 10mm
(Varying)

<3%

~1mm

Cold spell (partial snowpack refreeze)
Smooth surface

— Uncertainty in spatiotemporal
LWC/TWC

— Scattering from surface structures
(melt-refreeze)

— Surface roughness underestimation
— Wet-soil scattering
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Table 3. Continued.

Group TWC LWC RMSH Event Source(s) of inconsistency, scattering
mechanism
4b > 10mm >3% ~1mm Snowpack ripening — Uncertainty in spatiotemporal
Smooth surface LWC/TWC
— Scattering from surface structures
(melt-refreeze)
— Surface roughness underestimation
5b > 10mm >3% ~3mm Snowpack ripening — Uncertainty in spatiotemporal
Increasing surface roughness LWC/TWC
— Uncertainty in surface roughness
measurements
— Uncertainty in IEM modelling
6b > 10mm >3% ~1mm New snowfall on a wet snowpack — Buried surface roughness
Well-developed surface roughness
7b > 10mm >3% >4mm  Wet snowpack — Uncertainty in spatiotemporal

Fully formed suncups

LWC/TWC

— Uncertainty in surface roughness
measurements

— Uncertainty in IEM modelling

Table 4. RMSE (in dB) between modelled and recorded (r(}] V values according to the snow season, the selected permittivity formulation and

melting phase.

Season 2022-2023 ‘ 2023-2024

Permittivity formulation H-86 [dB] MEMLSvV3 [dB] Data to compare [#] ‘ H-86 [dB] MEMLSv3 [dB] Data to compare [#]
Overall 34 4.5 9 6.2 7.5 28
Dry 0.5 0.7 5 0.7 0.5 4
Moistening - - 0 9.1 12.2 3
Ripening 5.8 7.6 3 8.4 10.1 10
Runoff 0.2 1.9 1 33 2.7 11

mentioned changes in (T(Y V trends happen for lower values
of LWC. Furthermore, the experiments in Fig. 14 reveal that,
regardless of the permittivity formulation, for relatively low
values of LWC (=~ 1 %), a change in surface RMSH from 2
to 3mm generates a remarkable increase of ~6dB in the
backscatter response. In our field campaign, we typically
measured roughness values in this range over snow surfaces
undergoing the first cycles of melt-refreeze metamorphism.
Interestingly, the value of 6 dB is very close to the average
bias observed between S1 acquisitions and SMRT-modelled
O'(Y V during the moistening and ripening phase (see Table 4).
This supports the hypothesis that panel measurements may
underestimate the large-scale surface roughness. Moreover,
the backscatter increase occurring for all LWC and regard-
less of the incidence angle confirms that the monotonous in-
crease in backscatter following the local minimum can be
attributed to the formation of suncups, as initially suggested
by the measurements alone.

Finally, Fig. 14c and f allow considerations regarding the
impact of the incidence angle. To do so, we use the in-

dex (Aoy™Y)5o_400- i€ the difference in backscatter between

https://doi.org/10.5194/tc-19-5579-2025

simulations at incidence angles of 30 and 40° — the range of
incidence angles overlooking the reference cell. For smooth
surfaces (1 < RMSH < 2) and for LWC > 1.5 %, Aa&'v ex-
ceeds 2dB, i.e. twice the nominal uncertainty of S1 (see
Sect. 2.3). For LWC lower than 1.5 %, Acy’" is highly sen-
sitive to small increases in LWC. For RMSH > 3, the sen-
sitivity of AO’(}] V to changes in LWC almost disappears. In
conditions of fully formed suncups (RMSH > 10), Aa(}' v
drops below the nominal sensitivity of 1.0 dB for every LWC
value, meaning that the backscatter signals show progres-
sively weaker angular dependence for highly structured snow
surfaces. This phenomenon is easily understood consider-
ing that, on rough surfaces, diffuse scattering is enhanced.
Therefore, the position of the sensor relative to the snow
surface becomes less important, as the reflected energy is
less directional and more broadly scattered. The same phe-
nomenon explains the apparent slight backscatter decrease
for RMSH > 10 at angles of 30° (Fig. 14b, e). At lower in-
cidence angles, the radar beam is closer to perpendicular to
the surface than it is at higher incidence angles. On rough

The Cryosphere, 19, 5579-5612, 2025
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Figure 13. Ensemble of all the LWC profiles measured with dielectric instruments (light blue) from 24 April 2023 and 4 April 2024, i.e. the

first dates for which there are significant mismatches between modelled and S1-acquired o, O

V values in 2023 (a) and 2024 (b), respectively.

Melting calorimetry measurements (dark blue), including their associated uncertainty (dark-blue shaded areas) as described in Barella et al.
(2024), are shown for comparison. In 2024, a second simultaneous LWC profile using dielectric instruments (brown) was also obtained.

surfaces, with enhanced diffuse scattering, the fraction of en-
ergy reflected directly back to the sensor is reduced.

5 Discussion

Two consecutive years of detailed snow profiling with
specific focus on the melting season gave an unprece-
dented overview of the multitemporal evolution of the SAR
backscatter as a result of the changing snowpack properties.
The identification of the melting phases from multitempo-
ral SAR backscatter as proposed by Marin et al. (2020) was
complicated by two factors: (i) the failure of Sentinel-1B in
2022, which halved the temporal coverage of satellite ac-
quisitions, and (ii) lower incidence angles dampening the
backscatter response to snow moistening. As a matter of fact,
the optimal incidence angle for wet snow separability is ap-
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proximately 45° (Nagler et al., 2016; Karbou et al., 2021),
in line with the experimental results shown in Fig. 14. De-
spite these limitations, using nothing more than information
on 00 V change with respect to winter means, the threshold-
based method identified the moistening and ripening phases
for both years with high accuracy.

With the first measured time series of surface roughness
parameters, we demonstrated that for a high-altitude alpine
snowpack — where radiation can be the dominant energy
input during the melting season and surface roughness de-
velops several weeks before the snow cover starts showing
patches — the observed monotonous increase in backscat-
ter at the end of the melting season is physically related to
the development of surface roughness, from initial surface
degradation due to melt-refreeze cycles and/or the sequence
and intensity of snowfall events to the formation of suncups.
This phenomenon was only hypothesized by Marin et al.
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Table 5. Total water content (TWC) and surface roughness (RMSH) values measured for the LWC profiles shown in Fig. 13.

2023 \ 2024
Date TWC [mm] RMSH [mm] ‘ Date TWC [mm] RMSH [mm]
24 Apr 3 3 | 4Apr 2 1
26 Apr 1 1| 8Apr 13 2
29 Apr 113 1| 11 Apr 14 1
1 May 39 2 | 15 Apr 34 2
3 May 39 2 | 16 Apr 6 -
5 May 114 3| 18 Apr 3 1
8 May 143 3| 23 Apr 4 2
9 May 102 4 | 27 Apr 11 1
11 May 18 1 | 2May 16 2
12 May 22 2 | 9 May 161 1
15 May 14 1 | 10 May 62 2
17 May 11 1 | 14 May 46 3
19 May 36 3 | 21 May 96 1
22 May 72 — | 22 May 110 1
24 May 24 3 | 29 May 80 2
26 May 129 — | 3Jun 145 4
29 May 116 4 | 7Jun 115 3
31 May 193 7 | 10 Jun 44 4
2 Jun 27 10 | 14 Jun 47 6
5 Jun 38 — | 19 Jun 129 14
7 Jun 67 9 | 22 Jun 71 12
9 Jun 98 16 | 26 Jun 63 -
12 Jun 16 16 | 27 Jun 42 12
14 Jun 13 21 | 11Jul 22 14
16 Jun 64 30 | 4Jul 29 13

(2020). Without ground-truth reference, it is impossible to
distinguish the effect of surface roughness from disappearing
snow using multitemporal SAR backscatter alone. Addition-
ally, the start of the monotonous increase in multitemporal
SAR backscatter defines the local minima in the time series.
Several studies were carried out in recent years where such
minima were associated with the runoff start (Gagliano et al.,
2023; Darychuk et al., 2023). However, the proximity of the
backscatter minimum and runoff start is not due to SAR
direct detection of meltwater. Instead, this apparent coinci-
dence arises at the specific frequency of S1 because of the in-
terplay of several factors. As the snowpack reaches the max-
imum detectable water content by S1 (which reduces scat-
tering), surface roughness begins to develop, enhancing scat-
tering. These mechanisms will be discussed individually in
the remainder of this discussion. Based on our data, the only
and most likely conclusion we can draw from the backscatter
minima from a practical point of view is that the snowpack
is in an isothermal state and likely already releasing water.
However, processes such as melt-refreeze cycles, sublima-
tion, compaction or settlement in the upper snow layers can
potentially lead to the formation of rough surfaces before the
snowpack starts releasing meltwater runoff. Therefore, it is
relevant to rethink how information on backscatter minima
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is used for hydrological applications, especially when count-
ing on a limited satellite revisit frequency. Further research
should also investigate other potential energy input mecha-
nisms that are typical of snowpacks in environments outside
the high-altitude and mid-latitude conditions explored in this
study.

With radiative transfer modelling, we were able to link
measured snow properties to retrieved satellite-based radar
signals, aiming at reproducing the multitemporal backscat-
ter time series recorded by S1. This analysis revealed that —
rather than melting phases — the multitemporal S1 backscat-
ter time series identify two main regimes, each driven by
a different dominant factor influencing the radar response:
LWC and surface roughness. Thus, as shown in Fig. 12, the
moistening and ripening phases could be merged into a sin-
gle phase primarily dominated by LWC, whereas the runoff
phase could be redefined as a roughness-dominated phase.
Modelling satellite backscatter signals forced by field mea-
surements requires accounting for several sources of uncer-
tainty, which are predominantly associated with these two
variables. The uncertainty associated with LWC manifests
itself in many different ways: the time lag between satel-
lite and measurement acquisitions, the scattering originat-
ing from surface structures formed by melt—refreeze cycles,
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otherwise dry snowpack. The reported results are consecutive synthetic variations of LWC and roughness of the surface layer.

the spatial heterogeneity of the LWC distribution, the instru-
ment uncertainty associated with the measurements, and, on
the RT modelling side, a lack of a definite permittivity for-
mulation for wet snow. The uncertainty associated with sur-
face roughness is mostly linked to measurement inaccuracies
(and/or non-representativeness for the entire S1 cell) and, on
the RT modelling side, with possible errors in the IEM sur-
face model.

Within the approximately 5 h separating satellite and mea-
surement acquisitions, the liquid water per layer can change
significantly (Kendra et al., 1998; Techel and Pielmeier,
2011), especially during the moistening and ripening phases
or within cold spells, as indicated by the higher simulation
variabilities in Fig. 12. In early stages of the melt process, our
measurements are likely not representative of the snowpack
state overlooked by S1 because of the strong effect of melt—
refreeze. Our findings confirm that C-band a(}’ V' is highly
sensitive to diurnal snowpack variability, particularly dur-
ing the early stages of melting when features such as melt—
refreeze crusts are present (Lund et al., 2022; Brangers et al.,
2024). As noted in Brangers et al. (2024), this strong depen-
dence potentially complicates LWC retrievals significantly at
these latitudes. This point raises concerns because the early
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stages of melting represent a critical period when S1 can de-
tect LWC and likely the only window of opportunity to obtain
and integrate reasonable information. However, our RT sim-
ulations forced by field measurements were able to attribute
the observed O'OV V drops across all tracks over both years —
6.2,4.2, 1.5, and 7.8 dB — to corresponding measured TWC
of 3, 1, 2, and 34 mm, respectively. These results are in line
with the tower-based experiments of Strozzi et al. (1997) and
Strozzi and Matzler (1998).

Another issue is the instrument uncertainty in LWC mea-
surements. The deviations between dielectric and calori-
metric measurements that we obtained throughout the cam-
paign are in line with previous field and lab studies (Kinar
and Pomeroy, 2015; Avanzi et al., 2016). Unexpectedly, co-
located measurements in 2023 in the presence of ice lenses
showed smaller deviations with respect to simultaneous mea-
surements in 2024. Localized high values of LWC, such
as for ponding meltwater above ice lenses, can pose accu-
racy problems for instruments that empirically estimate the
volumetric liquid water content from the snow permittivity
(Techel and Pielmeier, 2011). However, as previously noted,
their presence could homogenize the overall liquid water
distribution in the cell overlooked by the satellite. The in-
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creased variability between measurement techniques in 2024
may be (at least partially) due to the increased LWC hetero-
geneity compared to 2023. This may indicate that the snow-
pack stratigraphy and LWC conditions play a larger role than
measurement errors due to spatial and temporal offsets. Ac-
counting for the LWC instrument uncertainty — which we es-
timated to be approximately 1 % from our measurements, in
line with previous similar comparative studies (Techel and
Pielmeier, 2011; Donahue et al., 2022) — generates an un-
certainty range in the simulated 08/ V' which is higher than
the variability in the signal recorded by S1 over the course
of one snow season. The highest deviations happen for the
highest values of LWC, in line with the findings of Veyssiere
etal. (2019).

Finally, the lack of a definitive permittivity formulation
for wet snow poses a significant challenge for the scien-
tific community. The permittivity formulations selected for
this study exhibit similar spectral shapes (see Fig. 5) and
are, to our knowledge, the only ones validated against real-
world observations at C-band frequencies. As mentioned in
Sect. 3.2, the permittivity formulation describes how the real
and imaginary parts of €5 change with increasing fractions
of liquid water and therefore how radar microwaves inter-
act with the snowpack. €, is computed using mixing theories
to account for volume fractions of ice, water and air in the
snow medium. MEMLSv3 parametrizes the shape of water
inclusions as elongated spheroids embedded in a homoge-
neous host medium. This represents an important source of
uncertainty. As liquid water increases, the shape and orienta-
tion of water inclusions significantly affect €, as the electro-
magnetic field interacts with them in a shape-dependent way,
generating anisotropic responses (Arslan et al., 2003; Chang
et al., 2016). However, characterizing the temporal evolution
of the shape of water inclusions during melting processes is
an ambitious and challenging task that was only recently ad-
dressed by Krol et al. (2024) through rapid MRI profiling in a
controlled laboratory environment. At the time our measure-
ment campaign was designed and conducted, these methods
— let alone their applicability in the field, which is still en-
tirely unknown — did not yet exist. These recent advance-
ments are highly promising for the crucial challenge of devel-
oping a comprehensive model applicable across all frequen-
cies and LWC conditions. Moreover, Fig. 12 highlights dis-
crepancies of approximately 6 dB between SMRT-simulated
and satellite-recorded backscatter signals, especially when
08/ V is largely dominated by LWC. Similar deviations were
found by Veyssiere et al. (2019) using MEMLS&a to repro-
duce a(}] V' during consecutive melt seasons over alpine ar-
eas. Additionally, both permittivity models saturate 087 Voat
values below —30dB. Such low values are never recorded
by S1, which saturates aOV Vv at around —22 dB. The tower-
based radiometric studies by Strozzi et al. (1997) and Strozzi
and Matzler (1998) confirm signal saturation in the C-band
vertical co-polarization at values between —20 and —25 dB.
Matching the recorded S1 0’8/ V would require an imaginary
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part of €, similar to that at 1 GHz — this would imply unre-
alistic penetration depths for the C-band, contradicting field
observations (Ulaby and Stiles, 1981; Shi and Dozier, 1995;
Ulaby et al., 2014; Lodigiani et al., 2025). We conclude that
one possible explanation for the observed deviations is the
overestimated absorption loss in the existing permittivity for-
mulations. In view of the described inherent limitations of
such formulations, a detailed quantitative analysis of scatter-
ing contributions from individual snow layers was not pos-
sible. As noted in Sect. 3.2, the absence of a unified per-
mittivity model for wet snow remains an important direction
for future research — not only for RT modelling, but also for
field measurements, since dielectric methods depend on such
models to derive LWC.

Later in the melting season, the effects of the uncertainties
associated with LWC become weaker because the snowpack
surface becomes wetter and the scattering is mostly domi-
nated by surface effects (Shi and Dozier, 1992) — this can
be observed in Fig. 12, as variability associated with LWC
decreases gradually with time. Simultaneously, deviations
between modelled and recorded O’OV V decrease substantially
(groups 4a and 5b in Fig. 12 and Table 3). Here, deviations
are most probably explained by inaccurate surface roughness
quantification. This is particularly evident in instances where
simulation accuracy drops after a spring snowfall on a sur-
face that had already begun developing marked roughness
(groups Sa and 6b in Fig. 12 and Table 3). However, at these
later stages of the melting process, simulations reproduce
the recorded backscatter generally well (groups 7a and 7b in
Fig. 12). This is confirmed by the low RMSE values reported
in Table 4 for the runoff phase, which we redefined as a phase
dominated by surface roughness effects. Here, further devi-
ations can be attributed to panel measurements possibly not
fully capturing the large-scale roughness features observed
by the satellite. This hypothesis seems to be confirmed by the
very recent results of Barella et al. (2025), showing that panel
sizes practical for field measurements may be insufficient to
capture the roughness features of wider areas. Additionally,
the IEM, which translates roughness parameters into scatter-
ing, could be affected by inaccuracies, especially when the
roughness values approach or exceed the model’s range of
validity.

In other words, with Fig. 12, we tried to reproduce the
recorded S1 0’8] V over a 20 x 20 m cell using physics-based
averages of fine, detailed snow properties measured at the
point scale. At wider scales, the relative importance of very
specific information on the state of the snowpack may de-
crease compared to more influential large-scale scattering
drivers, namely the development of internal snowpack struc-
tures (e.g. ice lenses and crusts), the soil features in the case
of an isothermal but predominantly dry snowpack and large-
scale surface roughness. Although the modularity and com-
prehensiveness of SMRT theoretically allow most of these
scenarios to be modelled, the problem of how to quantify
them on a large scale persists.
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In Fig. 14, we selected realistic snowpack layering ob-
served in the field and used the full range of measured val-
ues of surface roughness to repeat the experiments done in
the past by Shi and Dozier (1992), Strozzi et al. (1997), and
Strozzi and Matzler (1998). These simulations aimed to char-
acterize the scattering response of a wet-snow cover to in-
creasing surface roughness while varying the incidence an-
gle to match the range observed across the relative S1 or-
bits covering the study area. Since the relationship between
co-polarized signals and snow wetness is controlled by the
scattering mechanisms, the type of correlation between su-
perficial LWC and surface roughness expresses the relative
contribution of volume rather than surface scattering mecha-
nisms (Shi and Dozier, 1992). Shi and Dozier (1992) found
negative correlations with surface roughness for LWC be-
tween 2 % and 4 % and a positive correlation with increasing
surface wetness at an incidence angle of 50°. Similar results
were also found by Ulaby and Stiles (1981) at frequencies
of 8.6 GHz and incidence angles greater than 50°. Our re-
sults generally confirm these findings, but the wider range
of explored combinations of surface roughness and LWC re-
veals that the correlation tilt does not occur at a specific LWC
value. For RMSH values (simply “roughness” hereafter) be-
tween 2 and 10 mm, typical of snow during most of the melt-
ing period, the tilt depends on both LWC and roughness,
shifting towards higher LWC with lower roughness. Specifi-
cally, backscatter strongly depends on roughness when LWC
values are equal to or exceed 3 %. Again, for smooth sur-
faces (1-2 mm), both permittivity models saturate cr(}' V be-
low —30dB, a value never recorded by S1.

An interesting result from Fig. 12 and Table 3 is that
the most accurate simulations of S1 recordings happen
when measured values of surface roughness equal or ex-
ceed the threshold value of 3 mm. The experimental analy-
ses in Fig. 14 show that, for relatively low values of LWC
between 1% and 1.5 %, the backscatter response increases
by approximately 6 dB when the roughness increases from
2 to 3mm. The value of 6 dB is almost exactly the bias we
observed in Fig. 12 between S1 recordings and our simula-
tions, especially with increasing LWC. As mentioned, simi-
lar deviations were found by Veyssiere et al. (2019). Addi-
tionally, for LWC values > 1.5 % and roughness between 3
and 4 mm, the simulated a(}] V' is saturated at values that are
comparable to those recorded by S1. This raises the point
that more representative estimates of surface roughness for
the entire S1 cell and/or improved IEM modelling to trans-
late this information into backscatter signals could be just as
crucial as rigorous permittivity formulations for accurately
reproducing and better interpreting multitemporal S1 a(}' V.
Recent findings by Barella et al. (2025) also point in this di-
rection, suggesting that commonly used transect extraction
algorithms may filter out some small-scale roughness fea-
tures. In general, the experiments in Fig. 14 represent a sub-
stantial advancement with respect to Shi and Dozier (1992),
Strozzi et al. (1997), and Strozzi and Matzler (1998). In these
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earlier experiments, surface roughness was either not quanti-
tatively measured (being only qualitatively assessed) or eval-
uated over a very limited set of scenarios, overlooking inter-
mediate conditions that, as our measurements prove, charac-
terize the majority of the melting period.

Figure 14c and f show that for smooth surfaces and for
LWC values as low as 1.5% — i.e. when the melting pro-
cess is likely in its initial stage — the variation in backscat-
ter across the range of incidence angles overlooking the ref-
erence cell is comparable to or even exceeds the threshold
used in Nagler and Rott (2000), Nagler et al. (2016), and
Marin et al. (2020) for wet-snow detection. This angular de-
pendence constitutes an additional uncertainty factor in wet-
snow detection, which overlaps with the previously discussed
effects of diurnal variability in snowpack properties. On the
other hand, for LWC values higher than 2 % on smooth sur-
faces, the angular dependence increases up to 3 dB. This re-
sult supports the hypothesis that two distinct scattering mech-
anisms observed across the two seasons are directly linked to
incidence angle effects. The first is a persistent 3—-5 dB dif-
ference in 08/ V between the two ascending tracks, recorded
from mid-April to early June 2023 (see Fig. 8a). This spread
was not observed in the following year. Our LWC measure-
ments indicate that the snowpack surface was wetter in 2023
than in 2024, likely due to the presence of ice lenses acting as
drainage barriers for meltwater and favouring the formation
of a wetter layer above them (see Fig. 13 and Table 5). Conse-
quently, and in line with the results in Fig. 14, the smoother
and wetter snow surface in 2023 led to a stronger angular
dependence compared to 2024. Additionally, the angular de-
pendence decreases with increasing surface roughness. The
second observed feature is the sharp decrease in backscat-
ter between consecutive acquisitions of both ascending and
descending tracks in 2024 — from 15 to 22 June and from
19 to 26 June, respectively. Our measurements indicate con-
ditions of high snowpack saturation and surface roughness
values equal to or exceeding 10 mm (see Fig. 13 and Ta-
ble 5). Consistent with the results shown in Fig. 14b and e,
we interpret this decrease as the result of suncup formation
on a saturated snow surface. The enhanced surface roughness
likely increased diffuse scattering and reduced the proportion
of energy reflected back to the sensor, thereby explaining the
observed backscatter decrease. These findings indicate that,
despite all the aforementioned challenges in deriving LWC
from backscatter and vice versa, the multitemporal analysis
of angular dependence may carry valuable additional infor-
mation. Unfortunately, further analysis in this direction was
limited by the reduced revisit frequency of S1 during the pe-
riod of this study.

Ultimately, Fig. 14 suggests that with an estimate of the
surface LWC from a detailed snow model and recorded val-
ues of S1 backscatter, it is in principle possible to estimate
surface roughness. This would give information on two in-
teresting points. On the one hand, based on the position with
respect to the curve tilt, it would be possible to have infor-
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mation about the dominance of the volume versus surface
scattering mechanism. A prevalence of volume scattering
would mean that the snowpack has not yet become a com-
plete blackbody for C-band radar backscatter. On the other
hand, the value of surface roughness could be assimilated in
physics-based snow models to estimate important metrics for
the computation of turbulent heat fluxes, such as the aerody-
namic roughness length (Lehning et al., 2011).

Although promising for future research, this paper comes
with a number of limitations. LWC is a key variable for in-
terpreting and reproducing S1 acquisitions using radiative
transfer models. However, despite ongoing advancements,
accurately measuring LWC in the field, modelling it within
physics-based snow models, and accounting for it in permit-
tivity and RT models remain significant challenges which
need to be solved individually. The halved availability of
satellite data acquisitions due to the failure of Sentinel-1B in
the exact time span when this study was carried out hindered
the possibility of obtaining more information than that pre-
sented on the relationship between melting snowpack proper-
ties and the multitemporal SAR backscatter. Finally, despite
this study significantly enhancing our understanding of the
interaction of SAR backscatter with wet snow, our findings
are likely valid for high-alpine regions, i.e. homogeneously
covered by a rather high amount of snow, and where sur-
face roughness can develop before the snow cover disappears
in patches. The full capabilities of the Sentinel-1 mission
will shortly be restored following the recent launch of the
Sentinel-1C satellite. This development will hopefully spark
greater interest in the field, driving research efforts to address
the above-mentioned limitations, explore scattering mecha-
nisms in environments other than the one explored in this
study and potentially establish a new role for radiative trans-
fer modelling — specifically, to inform physics-based snow
models for hydrological applications.

6 Conclusions

In this paper, we presented a unique dataset of wet-snow
scattering properties collected at a fine vertical and tempo-
ral resolution over two snow seasons at the high-alpine field
site of Weissfluhjoch, Davos, Switzerland. Using this dataset,
we analysed the correlation between melting snow properties
and multitemporal SAR backscatter from S1 and modelled
the satellite signals using the radiative transfer model SMRT.
Our data show that the moistening and the ripening phase,
being mostly related to the presence of liquid water in the
snowpack, are generally well identified using time series of
multitemporal SAR backscatter from S1. The runoff onset,
often associated with local minima in multitemporal SAR
backscatter, is not detectable by the satellite. With our mea-
surements, we showed that these local minima result from
a combination of surface wetting, which reduces backscatter
until the S1 signal is saturated, and the development of sur-
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face roughness before the snow cover begins to disappear in
patches, leading to an increase in backscatter. Therefore, it
is important to rethink how this information is used for hy-
drological applications at high elevations and mid-latitudes,
especially when counting on reduced satellite revisit times.
Then, we used our dataset as input to the SMRT model to
reproduce the S1 backscatter signal. The simulations gen-
erally showed a negative bias with respect to satellite ac-
quisitions, with the most significant drivers being LWC in
earlier stages of the melting process and the surface rough-
ness later on. This mismatch led to the insight that, rather
than melting phases, the multitemporal S1 backscatter time
series reveal two dominant scattering regimes: one domi-
nated by LWC and the other by surface roughness. These
two regimes also represent the main sources of uncertainty
in electromagnetic modelling of melting snowpacks. These
challenges include the spatial and temporal variability of
LWC between field measurements and satellite overpasses,
inaccuracies in surface roughness estimation, and limitations
in the permittivity and roughness models applicable to wet
snow in the C-band. Despite these uncertainties, radiative
transfer modelling driven by ground measurements allowed
the in-depth physical interpretation of scattering mechanisms
at different stages. Specifically, the unprecedented time series
of measured surface roughness parameters allowed explor-
ing and defining the scattering effect of roughness over wet-
ting snowpacks at different incidence angles. Our findings
suggest that accurately quantifying surface roughness and/or
improving the transfer function in IEM modelling could be
as critical as developing new, rigorous permittivity formu-
lations to enhance S1 retrievals and our understanding of
scattering mechanisms on wet snow at these wavelengths.
With improved process understanding, the imminent restora-
tion of the full capabilities of the S1 mission, and further
validation of radiative transfer sub-modules, the use of C-
band satellite radar signals in snow hydrology applications
could proceed further, with radiative transfer models inform-
ing physics-based snow models.

Appendix A

Code and data availability. The code to reproduce the
simulations and plot of Fig. 12 is available on GitHub
(https://github.com/carlettif/multitemporal-s1-backscattering)

and at  https://doi.org/10.5281/zenodo.17542638  (Carletti,
2025). The SMRT model code is available on GitHub
(https://github.com/smrt-model/smrt/releases/tag/vl.1) and at
https://doi.org/10.5281/zenodo.1173103. The manually mea-
sured and automatically recorded data used in this paper are
available on Envidat (https://doi.org/10.16904/envidat.574, Car-
letti et al., 2025). All Sentinel-1 data are freely available at
https://dataspace.copernicus.eu/ (last access: 20 July 2025) upon
registration.
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Figure Al. Empirical logarithmic relationship fitted on field data
between the surface roughness parameters of RMSH and CL, based
on a total of N =75 values over the measurement campaigns of
2023 (yellow) and 2024 (light blue).
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