
The Cryosphere, 19, 5531–5545, 2025
https://doi.org/10.5194/tc-19-5531-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using observations of surface fracture to address ill-posed ice
softness estimation over Pine Island Glacier
Trystan Surawy-Stepney1, Stephen L. Cornford2, and Anna E. Hogg1

1School of Earth and Environment, University of Leeds, Leeds, United Kingdom
2Department of Geographical Sciences, University of Bristol, Bristol, United Kingdom

Correspondence: Trystan Surawy-Stepney (t.surawystepney@leeds.ac.uk)

Received: 2 August 2024 – Discussion started: 6 September 2024
Revised: 15 September 2025 – Accepted: 13 October 2025 – Published: 11 November 2025

Abstract. Numerical models used to simulate the evolution
of the Antarctic Ice Sheet require the specification of basal
boundary conditions on stress and local deviations in the
assumed material properties of the ice. In general, scalar
fields relevant to these unknown components of the sys-
tem are found by solving an inverse problem given obser-
vations of model state variables – typically ice flow speed.
However, these optimisation problems are ill posed, result-
ing in degenerate solutions and poor conditioning. In this
study, we propose the use of fracture and strain rate data
to provide prior information to the inverse problem, in an
effort to better constrain the inferred ice softness compared
to more heuristic regularisation techniques. We use Pine Is-
land Glacier as a case study and consider both a snapshot
inverse problem in which ice softness and basal slip param-
eters are sought simultaneously over the glacier as a whole,
and a time-dependent problem in which ice softness alone is
sought over the floating ice shelf at regular intervals. In the
first case, we construct a prior encoding the assumption that
the ice softness will be close to our initial guess except from
where we see fractures or high shear strain rates in satellite
data. We investigate the solutions and conditioning of this
data-informed inverse problem versus alternatives. The sec-
ond proposed method makes the assumption that changes to
ice softness occurring on monthly-to-annual timescales will
be dominated by the fracturing of ice. We show that these
methods can result in softness fields on floating ice that vi-
sually mimic fracture patterns without significantly affect-
ing the solution misfit, perhaps leading to greater confidence
in the softness fields as a representation of the true material
properties of the ice shelf.

1 Introduction

Large-scale ice sheet models commonly treat ice within the
paradigm of continuum mechanics – as a shear thinning vis-
cous fluid; an approach that has been successful in mod-
elling the behaviour of large ice masses relatively cheaply
(e.g. Seroussi et al., 2020). Within this framework, the flow
of the ice can be accounted for in large part by a balance be-
tween gravity, viscous stress due to internal deformation and
frictional stress at ice/bedrock interfaces. To close the system
and allow the model to solve for ice speed, equations relat-
ing viscous and frictional stresses to ice speed are specified,
informed by laboratory data and physical arguments.

The former “constitutive relation” very often takes the
form of Glen’s flow law:

τij = 2ηε̇ij where η =
1
2
A(T )−

1
n ε

1
n
−1 (1)

where τij is the deviatoric stress tensor, ε̇ij is the strain rate
tensor, ε is its second invariant, η is the strain-rate-dependent
effective ice viscosity and A(T ) is a temperature-dependent
rate factor. The value of the exponent n is dependent on
the particular mechanisms by which creep occurs within the
ice and various properties of the crystal grains (e.g. Haefeli,
1961), and takes a value between 1 and 4 in most cases.
(Here, we take the common reference value of n= 3.) It is
possible to treat A(T ) and/or n as free parameters that can
be fitted to observations, given the uncertainties involved in
both and the different physical mechanisms that distinguish
them. Frequently, however, these are prescribed a priori and a
stiffness field φ(x) is defined over the domain to account for
unknown deviations in the expected ice rheology. As such,
Eq. (1) becomes τij = 2φηε̇ij . Used in this way, φ approxi-
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mates the effect of uncertainties in the temperature and thick-
ness fields, regional changes in the temperature dependence
of Glen’s flow law, deviations from the assumed isotropy of
creep deformation and, of particular interest to this study,
fractures in the ice at different lengthscales. Often, a soft-
ness field ϕ is defined in relation to the stiffness field by
ϕ = (1−φ).

The relation between frictional stress and basal sliding
speed is known as a sliding law, and has a functional form
that depends on a number of often poorly constrained factors
such as the expected amount of deformation of ice around to-
pographic features in the bed, sliding over smooth bedrock,
and shearing of the sub-glacial till. A single sliding law is
often combined with a spatially varying basal slip parameter
C(x) to approximate this stress:

τ b = Cf (u). (2)

Given a constitutive relation and sliding law defined as
above, the equations solved by most large-scale ice sheet
models contain a component dependent on φ (or a related
scalar field performing an equivalent role) that represents
viscous stress, a component dependent on C that repre-
sents frictional stress, and a component representing grav-
itational driving. Therefore, for an ice sheet model to sim-
ulate real ice masses accurately, these scalar fields must be
well-constrained. In practice, they are typically inferred si-
multaneously from observations of ice speed using inverse
methods – a suite of techniques for inferring model control
parameters from observed state variables (MacAyeal, 1992)
– (e.g. Petra et al., 2012; Arthern et al., 2015; Cornford
et al., 2015; Gudmundsson et al., 2019). Ice velocity data,
rather than ice speed data, is also widely used in the com-
munity, and some methods of establishing current values for
C and φ also incorporate rates of thickness change into the
inverse problem (e.g. Larour et al., 2014; Goldberg et al.,
2015) (though this relies on the model having an automati-
cally differentiable forward solver). We don’t explicitly con-
sider these latter kinds of “transient” inverse problem here,
though the arguments we present still apply.

Regardless of its precise implementation, this inverse
problem is ill-posed, resulting in solutions that are degen-
erate and highly dependent on noise in the input data (the
problem, at least in its discrete form, is ill-conditioned). To
obtain reliable control fields, it is beneficial to replace this
ill-posed problem with a nearby well-posed one before solv-
ing it. The problem is sometimes simplified by solving for
C only on grounded ice, and φ on floating ice, thereby sepa-
rating the two fields spatially and removing a portion of the
degeneracy that arises from the mixing of these fields (e.g.
Goldberg et al., 2019). However, though you would often ex-
pect C to be the dominant control on grounded ice speed, this
may well not be true everywhere and an incorrect guess for φ
could have consequences for transient simulations. Another
approach is to regularise the solution by providing additional
constraints on the control fields. Such a regularised inverse

problem takes the general form of the following optimisa-
tion:

(C,φ)= argmin
C,φ

{
Jm(u,uo)+αCJC(C)+αφJφ(φ)

}
,

s.t. G(u,C,φ)= 0 (3)

where Jm(u,uo) is a misfit functional calculating the dis-
tance of the model output u from the observed data uo (often
ice speed), JC and Jφ are regularisation terms for the C and
φ fields, with strengths controlled by the parameters αC and
αφ respectively, and G(u,C,φ)= 0 are the momentum bal-
ance equations solved in the model’s forward problem.

A popular approach, aimed at improving the condition-
ing of the problem by suppressing the amplification of high-
frequency components of the input data, is to use Tikhonov
regularisation in a form that favours either low spatial fre-
quency or low amplitude components of the solution (e.g.
Morlighem et al., 2013; Habermann et al., 2013; Brinkerhoff
and Johnson, 2013; Cornford et al., 2015), e.g.:

αφJφ(φ)= αφ
∫
�

|∇φ|2 d�. (4)

However, this kind of regularisation is entirely heuristic
and, when it comes to distinguishing C and φ, relies on as-
sumed differences in the lengthscales over which changes
in the control fields can influence strain rates. Generally, in
regions without significant shear, these lengthscales are not
easily distinguished, and degeneracies between solutions for
C and φ proliferate. Additional difficulties arise when a con-
trol field contains distinct contributions with different spa-
tial frequencies. For example, uncertainty in englacial tem-
perature can vary on the scales of long-term atmospheric or
geothermal heat sources, or over the width of a shear margin.
Often, an imperfect but acceptable lengthscale is found by
searching parameter space informed by heuristics such as L-
curve analysis (Hansen and O’Leary, 1993; Hansen, 1994).

The aim of this study is to investigate whether the intro-
duction of genuine prior information into the inverse problem
results in solutions that are more qualitatively appealing than
those found using other, heuristic regularisation methods.

Previous studies have investigated instances in which soft-
ness fields found through solving inverse problems have
mirrored observed fracture features (Borstad et al., 2013;
Surawy-Stepney et al., 2023a) – suggesting that the presence
of fractures has the potential to dominate φ. With recent ad-
vancements in observational methods for locating fractures
in remote sensing data (Lai et al., 2020; Izeboud and Lher-
mitte, 2023; Zhao et al., 2022; Surawy-Stepney et al., 2023b),
we are moving towards reliable data that can be used to in-
form us at least about this specific component of the softness
field. Ranganathan et al. (2021) showed previously that the
use of strain rate data to weight the regularisation of C and
φ has the potential to reduce mixing between these control
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fields. The work presented here follows quite naturally from
these results.

Here, we investigate two ways in which fracture and
strain-rate observations can be used to inform the inverse
problem to replace or complement existing heuristic meth-
ods. The first is to use maps of surface fracture along with es-
timates of surface strain-rates to construct a prior distribution
for φ for use in snapshot inverse problems (single optimisa-
tions carried out for a set of geometry and speed data col-
lected at a specific instant in time). Next, we investigate the
use of timeseries of fracture maps in constraining the solu-
tions to inverse problems carried out over multiple timesteps
on floating ice. We make the assumption that softness fields
should vary on long timescales except from where we see
changes to the pattern of fracture. We show, with these meth-
ods, that one can generate softness fields that mimic, in cer-
tain ways, the changing fracture patterns on the Pine Island
Ice Shelf between 2016 and 2021, without substantially af-
fecting the solution misfit. This may have potential uses in
constraining models that aim to evolve softness fields in re-
sponse to englacial stresses.

2 Methods

The simulations presented in this article were performed
using the BISICLES ice sheet model (Cornford et al.,
2013). This is an adaptive mesh, finite volume model which
we choose here to solve discretized versions of the two-
dimensional shallow-stream equations:

∇ · [φhη̄(∇u+ (∇u)>+ 2(∇ ·u)I)]
−Cf (u)− ρigh∇s = 0, (5)

where u= (ux,uy)
> is the horizontal velocity, η̄ is the

vertically-integrated effective ice viscosity, ρi is the density
of ice, h is the ice thickness and s is the ice surface. In this
study we use a linear sliding law f (u)= u for ease of com-
puting adjoint sensitivities during the inverse problem.

Each inverse problem we consider in this article is of
the form of Eq. (3), with a misfit functional of the form
Jm(u,uo)= ‖u− uo‖

2
2. The inverse problems differ solely

in the form of the regularisation terms Jφ . We solve each
in BISICLES using a non-linear conjugate gradient method
(Cornford et al., 2015).

Each simulation is carried out over Pine Island Glacier
(PIG) in the Amundsen Sea Sector of West Antarctica with a
domain encompassing the whole present-day drainage basin
(Zwally et al., 2012). This region was chosen as it represents
a potentially strong correspondence between fracturing and
ice softness, given the abundant crevasses in the shear mar-
gins, upstream of the grounding line and the regular forma-
tion of rifts near the terminus, as well as the established dy-
namic impact of some of this fracturing (Joughin et al., 2021;
Sun and Gudmundsson, 2023). Across the rest of Antarc-
tica, we expect the link between the dynamics of ice and

the extent of fracturing to be weaker in general – due to
the lack of obviously coincident changes in fracture and ice
dynamics. We use a form of the rate factor A(T ) described
in Cuffey and Paterson (2010), with an internal energy field
generated using a 100 000 year calculation in which surface
temperature, thickness and velocity are held at present day
values and the combined ice temperature and moisture frac-
tion fieldE = CT+Lw evolves toward equilibrium. We used
a geometry defined by BedMachine-v3 (Morlighem, 2022),
with time-evolving calving front positions extracted from
Sentinel-1 backscatter images. Each simulation used veloc-
ity and fracture data from within a five-year period between
November 2016 and November 2021. We used 200 m reso-
lution, monthly-averaged ice velocity observations made us-
ing feature tracking applied to Sentinel-1 image pairs (Wuite
et al., 2021) as the input data to the cost function and to esti-
mate shear strain rates.

Crevasse data were generated according to the methods
described in Surawy-Stepney et al. (2023b). This involves
the application of deep-learning-based and other computer
vision techniques to synthetic aperture radar (SAR) backscat-
ter images from the Sentinel-1 satellite clusters, at 50 m spa-
tial resolution. This produces maps showing the locations at
which the surface expressions of crevasses and rifts are vis-
ible in the SAR data and include crevasses on floating and
grounded ice. Of particular interest to this study are rifts on
the Pine Island ice shelf, fractures in its shear margins, and
the large field of grounded crevasses extending ∼ 100 km
upstream of the grounding line (Fig. 1a). We use compos-
ite fracture maps that combine data from a month of SAR
backscatter images, taking into account the differing visibil-
ity of crevasses imaged from different angles. The presence
of obliquely overlapping Sentinel-1 frames is another reason
for the choice of PIG as the location for this study.

2.1 Fracture data assimilation in snapshot inverse
problems

The snapshot problem we consider is the joint estimation of
C and φ over Pine Island Glacier in May 2019 from mean
ice speeds over the month.

The prior we construct for φ encodes the assumption that
φ ≈ 1 away from regions of observed fracture or where there
are high shear strain rates (which can contribute the effects
of enhanced anisotropy, shear heating and microfracturing
to φ). In practise, this is equivalent to a form of Tikhonov
regularisation using a diagonal Tikhonov matrix with entries
weighted away from where we expect soft ice.

To construct this, we first form a field ξ which goes to 0
in regions which have high shear strain rates (defined below)
or where fractures have been observed and to 1 elsewhere. In
essence, this should reflect our confidence in our initial guess
for the ice rheology. We construct it as:

ξ =min{ξfrac,ξshear} (6)
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Figure 1. Contributions to the field ξ , representing, in our prior for the softness field, where we have observations of surface fracture or high
shear strain rates. (a) SAR backscatter images over grounded and floating parts of Pine Island Glacier from May 2019 showing regions of
visible crevassing: (1) surface crevasses on the grounded ice, (2) two almost-connected rifts near the Pine Island calving front, (3) the heavily
“damaged” southern shear margin of Pine Island Ice Shelf. (b) The component of ξ due to the observation of crevasse features, made from
fracture maps developed in Surawy-Stepney et al. (2023b). Black boxes anticlockwise from the top show the locations of the SAR images a1,
a2 and a3 respectively. (c) The component of ξ due to the presence of high shear strain rates. Background images to b and c are the MODIS
Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot et al. (2016).

where ξfrac is low where we see fractures in satellite imagery
(Fig. 1b), and ξshear is low where we see high strain rates
(Fig. 1c).

To construct ξfrac, we first smooth the fracture map for
May 2019, by convolving with a Gaussian kernel, to produce
contiguous fracture fields on the grounded ice. We call this
fracture map f . Then ξfrac = 1−f (Fig. 1b). There are a few
things to note in these fracture data of potential relevance
to the stress-balance of the glacier. Firstly, we see a large
contiguous area of surface fractures extending upstream from
the grounding line and widening to cover a region in which
previous studies have suggested membrane stresses are im-
portant in the stress-balance as basal stresses become small
(Joughin et al., 2009) – something we see in our own solu-
tions for basal stress. SAR images of this region show uni-
form coverage by closely-spaced surface fractures, almost
identical in appearance (Fig. 1a1). If this is indeed an area
in which membrane stresses form a significant component of
the stress balance, the presence of crevasses deeper than the
firn layer could have implications for the dynamics by chang-
ing the horizontal transmission of stress. Additionally, there
is a rift (really, two rifts that are almost connected) near to
the ice shelf terminus that led to the calving of a large tabular
iceberg in February 2020 (Fig. 1a2) – part of a series of calv-
ing events regarded to have had significant consequences for

the dynamics of Pine Island Glacier (Joughin et al., 2021).
Finally, there are a large number of fractures on the south-
ern shear margin of Pine Island Ice Shelf (Fig. 1a3). Viscous
deformation in shear margins can account for a significant
portion of the stress budget of an ice shelf, so changes to the
large-scale rheology in such locations will influence the dis-
tribution of stress throughout the ice shelf.

We create ξshear, the strain-rate contribution to ξ , using
the same velocity data that we use in our misfit functional.
To estimate the derivatives ∂iuj , we differentiated the ve-
locity components using a method described in Chartrand
(2017), using Tikhonov regularisation to promote smooth-
ness (regularisation parameters were chosen with some trial-
and-error, where preference was given to solutions in which
regions of high shear varied smoothly over lengthscales com-
parable to the widths of visible shear margins). Aligning
the x-coordinate with local flow direction, we define re-
gions of high shear to be those in which |ε̇xy |> 0.1 a−1.
This threshold is a bit discretionary, though it corresponds
to stresses within the range 90–320 kPa of tensile strength
suggested in Vaughan (1993) for a wide range of englacial
temperatures. Then ξshear =max{0,1–10|ε̇xy |} (Fig. 1c) and
ξ =min{ξfrac,ξshear} (this looks like a combination of Fig. 1b
and c).
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In the case of the snapshot inverse problem, the assump-
tion we wish to encode is that φ ∼N (1,γ 2) whenever ξ →
1, where γ is a small number related to the strength of the
prior. This can be written:

p8(φ)∝ exp

− 1
2γ 2

∫
�

(1−φ)2ξ d�

 . (7)

Assuming the distribution of measurement errors is isotropic,
with covariance σ 2I, this translates to a regularisation term:

αφ =
σ 2

γ 2 , Jφ(φ)=
∫
�

(1−φ)2ξ d�. (8)

To understand how the introduction of prior information
in the form of crevasse and strain-rate data changes the so-
lutions to the inverse problem, we compare the solutions to
those found using alternative regularisation methods. For the
snapshot case, we perform three inverse problems over the
full domain, starting with the same initial guesses for C and
φ, with the same regularisation on C, with the following reg-
ularisation terms for φ, defined in reference to Eq. (3):

1. No regularisation: Jφ(φ)= 0.

2. The widely-used heuristic regularisation:
Jφ(φ)=

∫
�
|∇φ|2 d�.

3. Our data-informed regularisation:
Jφ(φ)=

∫
�
(1−φ)2ξ d�

The results are shown in Sect. 4.1.
We note that the initial guess for the control fields can have

a large influence on the optimisation problem, as the closer
it is to the desired solution, the more likely it is that the opti-
misation will converge close to that solution. For the φ field,
we use an initial guess of 1 everywhere (this is likely to be
within an order of magnitude of the solution). The C field
can vary by orders of magnitude, so a uniform initial guess
would be a poor choice. Instead, we take the view that the
initial guess should be the field required to reproduce the ob-
servations on grounded ice as closely as possible with a uni-
form φ = 1. This is reflective of an assumption that grounded
ice speed is largely accounted for by balance between gravity
and friction (though we know this to be untrue). Hence, be-
fore carrying out the full optimisation including both control
fields, we solve an inverse problem for C with fixed φ = 1,
matching speeds only on grounded ice and use this as the ini-
tial guess for the joint inverse problem. This has the effect of
reducing the deviation of φ from 1 in the solution and has the
added bonus of allowing us to search independently for the
regularisation parameters αC and αφ . In general, we carry out
the search for regularisation parameters using L-curve anal-
ysis (Hansen and O’Leary, 1993), though we consider this a
heuristic method that should be used alongside other meth-
ods where necessary (Sect. 5.3).

2.2 Fracture data assimilation through time

The use of fracture maps as a prior in the snapshot inverse
problems makes an assumption about the relative contribu-
tions of different uncertainties to φ. For example, we have to
have a certain amount of trust in the 3D temperature field we
use. As previously noted, φ also contains contributions from
sources that cannot easily be distinguished by the spatial
scales on which they vary. However, it seems likely that the
contribution of fracturing to ice softness varies on a shorter
temporal scale than any other contribution. Hence, while at-
tributing ice softness to the presence of fractures requires
a large number of assumptions, we can reasonably attribute
changes in ice softness over monthly-to-annual timescales to
the fracturing or healing of ice, and the advection of frac-
tures. With this in mind, we consider the case of imposing
a regularisation that penalises changes to φ in successive
timesteps, except where we have seen the evolution of frac-
tures in the observational data. Concretely, given a series of
timesteps with times {ti |i = 1, . . .,n}, separated by 1t (e.g.
one month), we solve the following inverse problem for the
control parameters (Ci,φi) at each timestep:

(Ci,φi)= argmin
Ci ,φi

{Jm(ui,uoi )+αCJC(Ci)

+
αφ

1t
Jφ(φi,φi−1)}, (9)

This is much the same as the snapshot inverse problem de-
fined by Eq. (3), though our regularisation term Jφ(φi,φi−1)

now includes the softness fields in the current and previous
timesteps. Though not particularly sophisticated, a method
such as described by Eq. (9) is immediately amenable to
the introduction of fracture data through its inclusion in the
regularisation term Jφ . Previous studies (Hogg et al., 2017;
Selley et al., 2021) have used such a method with Jφ =∫
�
|φi −φi−1|

2d� and we modify this only slightly here. We
propose the regularisation function:

Jφ =
∫
�

(1− |fi − fi−1|)× |φi −φi−1|
2d� (10)

where fi is the map showing the locations of fractures over
the domain at time ti . Hence, changes to the softness field
are preferred in regions in which the fracture pattern has
changed, with a strength that depends on the length of the
timestep and the regularisation parameter αt .

We carry out such a procedure on Pine Island Glacier with
5 years of speed and fracture observations from December
2016 to December 2021, and timesteps of one month. This
captures three calving events and the major disintegration of
the southern shear margin of the ice shelf, and that of the
calving front of Piglet Glacier (Joughin et al., 2021; Surawy-
Stepney et al., 2023b). For each month, we use the mean
speeds measured over that month as our observed speeds, and
median fracture map composites.

https://doi.org/10.5194/tc-19-5531-2025 The Cryosphere, 19, 5531–5545, 2025



5536 T. Surawy-Stepney et al.: Assimilation of Fracture Data into the Inverse Problem

We carry out two series of inverse problems, both starting
with the same initial guess (φ field found using heuristic reg-
ularisation). One to act as a baseline, and the other reflecting
our new approach:

1. Heuristic regularisation: Jφ =
∫
�
|φi −φi−1|

2d�.

2. Data-informed regularisation:
Jφ =

∫
�
(1− |fi − fi−1|)× |φi −φi−1|

2d�

The results for these simulations are shown in Sect. 4.2.

3 A synthetic example

In order to validate the basic premise of the method and build
some intuition as to where we could expect it to change the
solution, we performed some preliminary synthetic experi-
ments involving the heuristic and data-informed regularisa-
tions of the snapshot inverse problem.

To do this, we set up a domain (Fig. 2a–c) representing an
ice stream with damaged shear margins, in which thickness
linearly decreases from 512 m on the left hand boundary to
256 m at the calving front on the right. We prescribed peri-
odic regions of low basal stickinessC in the central section to
reflect the stripes of hard and soft bed that often underlie real
ice streams (Fig. 2b). We defined a stiffness field φ of 0.25
in the lower boundary of the ice stream and 0.5 in the upper
boundary, indicating asymmetrically softened shear margins,
and 0.25 in a vertical stripe on the floating ice, representing
a partial thickness crack (Fig. 2a). The resulting flow speed
is shown in (Fig. 2c), with flow going from left to right. We
considered inverse problems with heuristic regularisation and
data-informed regularisation corresponding to cases 2 and 3
as described in Sect. 2.1. For both inverse problems, the input
speed data was generated by adding random Gaussian noise
to the output of the forward problem (Fig. 2c) with a standard
deviation of 10 m a−1. Regularisation strengths were chosen
to be optimal according to L-curve analysis. For the data-
informed regularisation, values of ξ were chosen to be 0.01
where we prescribed values of φ less than 1, and 1 elsewhere.

The solutions confirm that the heuristic regularisation
does not prevent the mixing of the two control fields in
the grounded region (Fig. 2d–f), and look like it has over-
regularised – despite the optimal strength having been cho-
sen according to the L-curve. This is to be expected because
the prescribed variations in basal friction in the forward run
affect the effective viscosity of the ice, and there is noth-
ing preventing the inverse problem attributing this to stiff-
ness variations. The the data-informed regularisation reduces
this degeneracy (Fig. 2g–h), at the expense of a marginally
greater misfit (Fig. 2i). The solution for φ is, as we would ex-
pect, better in the case of data-informed regularisation than
heuristic regularisation. This emphasises the important fea-
ture of ill-posed problems, namely that there is no simple re-
lationship between the misfit and the quality of the solution.

Given the idealised nature of this set up, we take these results
as more of a validation of the potential of the method rather
than of its real-world efficacy, where our priors are much less
well-defined. Specifically, the prior credence in where φ 6= 1
is both high and uniform across the domain in the synthetic
example – given that we prescribed it in the forward problem.
The next section describes the results of the methods applied
to the real case of Pine Island Glacier.

4 Results

4.1 Snapshot inverse problems

We begin with the results of fracture data assimilation ap-
plied to a snapshot inverse problem on Pine Island Ice Shelf
described in Sect. 2.1. As a reminder, we consider how using
the data-informed regularisation alters the problem compared
to a case of no regularisation, and the heuristic regularisation
of Eq. (4). As in the list shown in Sect. 2.1, we refer to op-
timisations in which φ is unregularised as “case 1”, those in
which we apply heuristic Tikhonov regularisation as “case
2” and those in which we apply the data-informed regulari-
sation given by Eq. (8) as “case 3”. We look at the misfits, the
output control fields and changes to the problem condition-
ing. To help interpret the misfits, note that the flow speeds of
Pine Island Glacier at the time of these observations ranged
from around 1000 m a−1 over the crevasse field on the main
grounded trunk of the glacier to around 5000 m a−1 on the
central ice shelf.

4.1.1 Softness fields

The φ fields in cases 1–3 differ substantively from each other
on Pine Island Glacier for this set of geometry and speed
data (Fig. 3). This is true for both the grounded and float-
ing ice. Firstly, in both cases 1 and 2 there are large devi-
ations of φ from 1 far upstream of the grounding line in-
cluding substantial softening in the shear margins of even
slow-flowing parts of the glacier (Fig. 3a, b). This is com-
pletely absent in the solution to case 3 (Fig. 3c). Given the
lower misfits in these regions (Fig. 3d, e) compared to case
3 (Fig. 3f), it appears that the model finds it difficult to com-
pensate for the velocity gradients at the margins of the trib-
utary ice streams by enhancing gradients in C where it is
encouraged not to alter φ. This misfit is, on average, 1.75
and 2.03 m a−1 larger on grounded ice in case 3 than case
1 and 2 respectively (Fig. 4b). In the large fractured region
upstream of the grounding line (Fig. 1a, b), the solution for
case 3 shows higher amplitude deviations of φ from 1 than in
cases 1 and 2.

The differences in φ between the different forms of reg-
ularisation are just as pronounced on the floating ice shelf.
In cases 1 and 2, softnesses on the ice shelf are smooth and
spread to large distances either side of the shear margins. In
contrast, in the solution to case 3, softness is concentrated in
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Figure 2. Synthetic experiments showing the model setup (a–c), the results of the inverse problem with heuristic Tikhonov regularisation
(d–f) and data-informed regularisation (g–i). (a) prescribed stiffness, (b) prescribed basal friction coefficient, (c) the resulting flow speed,
(d) inferred stiffness using heuristic regularisation, (e) inferred basal friction coefficient using heuristic regularisation, (f) misfit of the
solution using heuristic regularisation, (g) inferred stiffness using data-informed regularisation, (h) inferred basal friction coefficient using
data-informed regularisation, (i) misfit of the solution using data-informed regularisation.

the shear margin with larger amplitude deviations of φ from
1 confined to a smaller area. A portion of the solution degen-
eracy for φ on Pine Island Glacier occurs because the central
shelf moves almost entirely by pure advection. In the absence
of any significant strain rates, most solutions for φ in this re-
gion fit the data equally well. The inclusion of an explicit
prior appears to help with this by encouraging stiff ice on the
central shelf.

The rift that propagated across the ice shelf at the time the
speed data was collected caused a discontinuity in the data.
The feature is much more clearly resolved in the solution to
case 3 than case 2, and even case 1. Hence, it appears difficult
for the model to assign low values of φ to a region very local
to the rift unless encouraged to do so. This is perhaps due
to the distributed influence of the ice at the terminus on the
dynamics of the ice shelf as a whole (Joughin et al., 2021;
Bevan et al., 2023). The idea that a good misfit indicates
a good solution is true only for well-conditioned problems,

however, it is interesting to note that, on the floating ice, the
misfit for case 3 is, on average, 8.38 m a−1 lower than in case
2 (Figs. 3e–f, 4a). The figure also shows that this is largely
due to the reduction of the extremal misfits associated with
the presence of fractures and associated discontinuities in the
speed field.

4.1.2 The effect on problem conditioning

A well conditioned problem damps the contribution of os-
cillatory, high frequency components of the input data, such
as uncorrelated noise in the measured speed, while an ill-
conditioned problem is highly sensitive to it. Bringing prior
information into the inverse problem has the potential to
change the conditioning by enhancing gradients in previ-
ously flat regions of the cost landscape. In order to test this
change in conditioning, we investigated the impact of pertur-
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Figure 3. Solutions to the inverse problem with three methods of regularisation. (a–c) Stiffness fields for the unregularised, heuristically
regularised and data-informed inverse problems respectively. (d–f) Misfits for the unregularised, heuristically regularised and data-informed
inverse problems respectively. Background images are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in
black) are according to Rignot et al. (2016).

bations in the input velocity data on the spread of resulting φ
and u fields.

We performed 10 inverse problems with the addition of
uncorrelated Gaussian noise to the input data for the case
of data-informed regularisation, heuristic regularisation and
no regularisation. Noise was added with a mean of zero and
standard deviation of 10 % of the local speed. In each case,
we measured the cell-wise standard deviation over the 10 φ
and u output fields (Fig. 5).

Unsurprisingly, the regularised problems show a smaller
spread in the solutions for the control fields – suggesting im-
proved conditioning (Fig. 5a–c). The spread of solutions for
φ is confined in the case of the data-informed regularisation
to the regions of very low ξ , while in those regions, the stan-
dard deviations are of similar magnitude to the unregularised
case. This is expected because in essence, the data-informed

regularisation separates regions in which high-amplitude de-
viations of φ from 1 are penalised (where ξ → 1) from re-
gions that are entirely unregularised. The heuristic regulari-
sation, case 2, that is explicitly devised to improve the prob-
lem conditioning indeed looks to result in the most well-
conditioned problem on grounded ice. However, this is not
the case on the central ice shelf, where the degeneracy de-
scribed above leads to a larger solution variance than in the
data-informed case. The spreads of speed (Fig. 5d–f) reflect
the spreads of the control fields.

4.2 Inverse problems through time

As listed in Sect. 2.2, we consider two instances of tempo-
ral regularisation of the type described in Eq. (9): the “data-
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Figure 4. Distributions of misfits for the three regularisation methods for the snapshot inverse problem for floating (a) and grounded (b) ice.
Boxes show median and inter-quartile range, whiskers show the 10th and 90th percentiles and crosses show mean values.

informed” case:

Jφ =
∫
�

(1− |fi − fi−1|)× |φi −φi−1|
2d�

and αφ = 0, αt = 5× 106, (11)

and the “heuristic” case:

Jφ =
∫
�

|φi −φi−1|
2d�

and αφ = 1.5× 109, αt = 104, (12)

equivalent to that used in Selley et al. (2021).
Using fracture data in successive timesteps to weight the

temporal regularisation has a significant effect on the soft-
ness fields over the five years of observations compared with
the simpler approach (Fig. 6a, b). The data-informed case
leads to features of low φ which resemble crevasses starting
to appear in the southern shear margins after ∼ 18 months
(black dotted arrow Fig. 6b). Rifts that led to the calving of
large icebergs in October 2018 and February 2020 are vis-
ible as highly linear features of soft ice in the solutions to
the data-informed problem (black dashed arrows Fig. 6b).
These features are visible in Fig. 6a, though are less eas-
ily discernible as rifts. The softness fields in the two cases
appear similar by May 2021, with that of the heuristic reg-
ularisation looking essentially like a blurred out version of
the data-informed case. Both show the southerly migration
of the seaward end of the southern shear margin through the
time period, and, by 2021, a stripe of soft ice that connects
the shear margins of Pine Island and Piglet Ice Shelves. It
is only clear in Fig. 6b (black solid arrow) that this stripe of
soft ice corresponds to a number of long, parallel rifts. Dif-
fuse blobs of softness can be seen on the central ice shelf in
Fig. 6a (May 2021, grey arrow) which are not present in the

data-informed case. As the simulation contains no thickness
advection and no accumulation rate is specified, it is possible
that these could be the result of localised thinning. Otherwise
they could once more be the result of ill-posedness. This lat-
ter possibility is perhaps more likely given how agnostic the
model is to the values of φ in the central trunk and that the
gravitational forcing is not modified by a change in stiffness.

Throughout the simulation period, the misfits associated
with each case are very similar, with generally slightly
larger mean misfits over the region in the data-informed case
(Fig. 6c, d). The exceptions to this are in the months in which
calving events occur – where the misfit is generally elevated
as the model struggles to deal with the sudden appearance of
large velocity gradients near the glacier terminus. At these
times, the data-informed case does slightly better as the ob-
servations of rift growth nudge the model towards the right
pattern of softening near the terminus.

5 Discussion

The problem of accurately estimating ice softness and basal
slip fields from observations of ice speed is dogged by the
spector of ill-posedness. In an effort to improve this, we have
presented two simple ways of assimilating fracture data (and
in one case strain-rate data) into the inverse problem for a
marine-terminating ice stream, as a way of providing the
problem with prior information. In a number of ways, the ef-
fect of these methods, their success and what we learn from
the experiments we have carried out differs for grounded and
floating ice, so we first review these separately.

5.1 Grounded ice

As discussed above, the presence and evolution of fractures is
only a contributing factor in determining φ, and the efficacy
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Figure 5. Variation in the solutions for the three methods of regularisation. (a–c) Standard deviation in the softness fields between 10
optimisations with Gaussian noise added to the speed data for the unregularised, heuristically regularised and data-informed inverse problems
respectively. (d–f) Associated standard deviations in the modelled speed for the unregularised, heuristically regularised and data-informed
inverse problems respectively.

of the methods aimed at improving snapshot inverse prob-
lems depends on the extent to which we apportion softness
to fracturing. We have seen in our example of snapshot prob-
lems over Pine Island that softness fields on grounded ice
found using the data-informed regularisation vary consider-
ably within contiguous areas of observed fracture (Fig. 3c).
If fracturing in these regions were truly the main contributor
to ice softness, one would expect φ to be uniformly less than
1 this region – visually mimicking the uniform coverage of
the region by surface fractures (Fig. 1a1). This suggests that
here at least, the dominant contribution to our uncertainty in
the material properties of the ice softness is not the unac-
counted for presence of fractures, but some combination of
other factors. This is consistent with the fact that prescribing
the data-informed regularisation on the grounded ice damp-
ens the softness away from these regions of fracture but does

not change the shape of the solution greatly within them. This
suggests that observations of surface fracture on grounded
ice have limited use in reducing the degeneracy associated
with mixing between C and φ fields.

In addition, this constitutes evidence that this kind of
grounded surface crevasse has a limited impact on ice dy-
namics, despite the very low basal frictions we find in this
part of Pine Island Glacier (Joughin et al., 2009) and the en-
hanced membrane stresses required to compensate for this.
This is consistent with previous assumptions that the depths
of these crevasses is only a small fraction of the ice thickness
(Benn and Evans, 2014).

Finally, it is worth noting that the softness fields on
grounded ice (and also substantially on floating ice) found
using heuristic regularisation (Fig. 3b) mimic many of the
features of the strain rate map in Fig. 1c. This suggests
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Figure 6. The evolution of the stiffness on Pine Island Ice Shelf between June 2018 and May 2021 for heuristic (a) and data-informed (b) reg-
ularisation. (c) Mean misfit over the ice shelf for the two cases through time. (d) Mean misfit over the ice shelf for the heuristically-regularised
problem. (e) Timeseries of mean misfit over the ice shelf for the data-informed and heuristically-regularised problems. Background images
in (a) and (b) are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot et al.
(2016).

greater potential for this data to be used to constrain the soft-
ness and that the prior we are currently using doesn’t fully
capture our assumption that softness should be related to
shear (as that of Ranganathan et al., 2021 might, for exam-
ple). A better prior might, for example, be to assume softness
is linear in principal strain rate. Future work should look to
investigate different priors that better utilise the strain rate
data at our disposal.

5.2 Floating ice

We have shown in both snapshot inverse problems and time-
dependent inverse problems that the softness fields over float-
ing ice, resulting from use of our proposed regularisation
methods, appear more like what we would expect if the
softening were due to fracturing/shearing compared to more
heuristic regularisation methods. When encouraged to do so,
the model is happy to concentrate softness in regions of ob-
served fracture or high shear without suffering a worse misfit
with the prescribed speed data. It is tempting to think that
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this results in softness fields that appear more likely to accu-
rately represent the material properties of the ice shelf at the
time the ice speed data was collected. Unfortunately, the ill-
posedness of the problem means that methods of evaluating
whether this is true do not extend far beyond a visual as-
sessment of whether the solutions “look right” in the context
of our priors, however this is a valuable technique. Though
the correlation between rheological parameters, inferred in a
manner similar to that described in the heuristic regularisa-
tion case here, and crevasse data has previously been shown
to be limited (Gerli et al., 2024), we have shown in both the
snapshot and time-dependent cases that there are solutions
to the inverse problem with at least equally good misfit in
which this correlation is undoubtedly strong. Given the many
qualitatively dissimilar solutions to the inverse problem, de-
pending on choice of regularisation, e.g. Fig. 3, this seeming
contradiction in results is not unexpected, but perhaps warns
against over-interpretation of the solutions in both cases.

5.2.1 When would we use these methods?

The example we have chosen for the snapshot inverse prob-
lem, where a large rift can be seen on the central trunk of Pine
Island Ice Shelf along with an associated discontinuity in uo,
is somewhat contrived to show the differences between the
regularisation methods discussed. It is unlikely that a model-
user looking to initialise a century-long simulation would
choose such data, and would do better to choose data from
a time more representative of a typical state of the glacier.
Even if a typical state does include fractures and speed dis-
continuities, without a method of sensibly evolving the soft-
ness field through time, it would be reasonable to initialise a
model with a smoother solution for (C,φ) that might be less
representative of the true initial state, but also less specific
to it. Hence, softness fields found with the use of fracture
data and regularisation procedures we propose here are more
likely to be useful in diagnostic simulations, or transient sim-
ulations with timescales on the order of years.

A major motivation for investigating these methods of
constraining the inverse problem is that the time-varying so-
lutions have potential use in evaluating models that take a
continuum damage mechanics approach to parameterising
the effect of fractures on large-scale ice rheology (e.g. Sun
et al., 2017). In particular, the softness fields shown in Fig. 6b
could be used to constrain the way in which a scalar damage
field, that acts isotropically on the rheology, is evolved by
such a model (Borstad et al., 2016).

5.3 A note on L-curves

Figure 7 shows, on a logarithmic scale, solution and misfit
norms at convergence for a number of possible regularisation
parameters αφ for Eq. (8), known as an L-curve (Hansen and
O’Leary, 1993). Intuition suggests that one should choose the
regularisation parameter at the corner of the L-curve, which

Figure 7. L-curve for the data-informed regularisation. Solution
norm (y) and misfit (x) are plotted on a logarithmic scale for dif-
ferent choices of the regularisation parameter αφ .

balances the regularisation and misfit components of the cost
function. This can be shown in some circumstances to be
the point at which contributions to the solution are balanced
between errors in the data and errors in the regularisation
(Hansen, 2000). In our case, for the snapshot inverse prob-
lems with data-informed regularisation, this is αφ ≈ 5×108.
However, this choice of parameter results in solutions with
fewer crevasse features than we expect to see – such as the
rift near the ice shelf terminus (Fig. 6b). Hence, in prac-
tise, we choose a parameter an order of magnitude smaller,
where we are satisfied with the misfit (staying on the “verti-
cal branch” of the L-curve) but can see some of the detail we
believe should be present in the softness field. Though very
useful, L-curve analysis can be a blunt instrument and should
always be used alongside other heuristics such as visual as-
sessment of the control fields in deciding the regularisation
parameter. Its use is based on the assertion that the preferred
solution to an inverse problem is one that contains the least
extraneous structure (Wolovick et al., 2023). However, for
structure to be deemed extraneous, a cost function that en-
codes a good deal of your prior knowledge is required, which
is not often available. This tendency for L-curve analysis to
produce over-regularised solutions has been noted previously
(e.g. Chamorro-Servent et al., 2019; Milovic et al., 2021),
and notably in Recinos et al. (2023).

5.4 Next steps

This article is relatively light on quantitative metrics regard-
ing the success of the proposed methods and future work
could aim to change this. In general, the success of a method
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is difficult to quantify without having a set of experiments
for which the right answer is know a priori. We chose to
look at real-world data for which this is not the case. We
have looked at some quantitative results on the stability of
the solutions under noise in the input data (Sect. 4.1.2) and
the misfits achieved by different approaches (Sect. 4.1.1, 4.2)
but we cannot push these too far. As mentioned above, for
ill-conditioned problems such as inverse problems involv-
ing viscous flow, there are no guarantees that the quality of
the misfit reflects the quality of the solution, so we cannot
rely on it (or similar metrics) to differentiate between meth-
ods. As such, we have opted largely for qualitative discussion
about whether the solutions reflect expected patterns, which
we deem more appropriate.

An approach one could take might be to expand on the
kinds of methods employed in Sect. 3 and use synthetic
data generated from known solutions. For example, assum-
ing crevasse depths for a known crevasse pattern and comput-
ing speed given some assumed relationship between crevasse
depth and softness. In reality, a range of cases and assump-
tions should be investigated. The difficulty here is in gener-
alising the results of such experiments to the real-world case,
due to the large number of assumptions of unknown valid-
ity one would have to make along the way. For example,
the methods by which you generate a crevasse pattern, the
crevasses you choose to have an effect on the softness, the
contributions to the softness do you take to be from sources
other than crevasses, the choice of an isotropic softness field
in generating the synthetic speed data, etc. However, should
others think of methods for quantifying the effects of these
assumptions, they would also open up the possibility of prop-
erly quantifying the effect of different priors on the solutions
of the inverse problem. Of course, this becomes easier the
better we can model the different processes that contribute to
the softness field; this should continue to be a focus of work
in the ice sheet modelling community.

6 Conclusions

We have introduced two ways in which fracture location data,
and in one case strain rate data, can be used as prior informa-
tion to inform the estimation of basal slip and ice softness
fields from observations of ice speed. Applications of these
methods to snapshot and time-dependent inverse problems
over Pine Island Glacier show that little is gained in their use
compared to the use of popular heuristic regularisation meth-
ods when considering the solutions on grounded ice. This
suggests that a failure to account for the presence of fractur-
ing does not dominate our uncertainties in the material prop-
erties of grounded ice. This is not true, however, on floating
ice, where we see the resolution of fracture features in the
static and time-varying softness fields without impacting the
misfit, and a reduction in solution degeneracy in regions of
low strain rates. This suggests that such methods can be used

to provide us with softness fields that better represent the true
material properties of the ice shelf at the time of the acqui-
sition of the ice speed data. Such softness fields have poten-
tial use in diagnostic modelling, and in constraining models
seeking to evolve softness fields in time.
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