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Abstract. Snow is an important freshwater resource that im-
pacts the health and well-being of communities, the econ-
omy, and sustains ecosystems of the cryosphere. This is
why there is a need for a spaceborne Earth observation mis-
sion to monitor global snow conditions. Environment and
Climate Change Canada, in partnership with the Canadian
Space Agency, is developing a new Ku-band synthetic aper-
ture radar mission to retrieve snow water equivalent (SWE)
at a nominal resolution of 500 m, and weekly coverage of
the cryosphere. Here, we present the concept of the SWE
retrieval algorithm for this proposed satellite mission. It is
shown that by combining a priori knowledge of snow con-
ditions from a land surface model, like the Canadian Soil
Vegetation Snow version 2 model (SVS-2), in a Markov
Chain Monte Carlo (MCMC) Bayesian model coupled with
the Snow Microwave Radiative Transfer model (SMRT), we
can retrieve SWE with an RMSE of 15.8 mm (16.4 %) and
a MCMC-retrieved SWE uncertainty of 23.4 mm (25.2 %).
To achieve this accuracy, a larger uncertainty in the a priori
grain size estimation is required, since this variable is known
to be underestimated within SVS-2 and has a considerable
impact on the microwave scattering properties of snow. It is
also shown that adding four observations from different in-
cidence angles improves the accuracy of the SWE retrieval
because these observations are sensitive to different scatter-
ing mechanisms of the snowpack. These results validate the
mission concept of the proposed Canadian satellite mission.

1 Introduction

Yearly, snow can cover more than 50 % of the terrestrial
Northern Hemisphere (Robinson et al., 2012) and is an im-
portant fresh water resource that impacts the health and well-
being of communities, the economy, and sustains ecosystems
(Meredith et al., 2019). Snow extent and mass trends are fore-
casted to keep decreasing at a rate up to —50 x 100 km? yr~!
and —5 Gtyr~!, respectively (Mudryk et al., 2020). Yet, it is
still the only component of the water cycle that, currently,
does not have a dedicated Earth Observation (EQ) mission
(Derksen et al., 2019). Monitoring snow water equivalent
(SWE), i.e. the amount of water stored in solid or liquid form
in the snowpack, at high spatio-temporal resolution is critical
for climate services, water resource management, and envi-
ronment prediction (Garnaud et al., 2019; Kim et al., 2021;
Cho et al., 2023). Following the work done for the European
Space Agency (ESA) Earth Explorer 7 Cold Regions Hydrol-
ogy High-resolution Observatory (CoReH20) mission (Rott
et al., 2010), and recent work in the field of microwave snow
remote sensing (Tsang et al., 2022), Environment and Cli-
mate Change Canada (ECCC), in partnership with the Cana-
dian Space Agency (CSA), are developing a Synthetic Aper-
ture Radar (SAR) satellite mission that aims at imaging the
Northern Hemisphere at a nominal resolution of 500 m on
a weekly basis, currently named, the Terrestrial Snow Mass
Mission (TSMM) (Derksen et al., 2019).

The international snow community has made consider-
able progress in the recent decade in demonstrating that Ku-
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Band radar measurements provide the best option for fu-
ture satellite missions to monitor snow as a water resource
at sub-kilometre spatial resolution, due to its sensitivity to
SWE via its volume scattering in dry snow and its sensitiv-
ity to its phase (wet/dry) (Tsang et al., 2022). Even though
passive microwave measurements show the same sensitiv-
ity to SWE and snow phase, the technology does not cur-
rently provide sub-kilometre measurements (Galeazzi et al.,
2023). It is also known that, due to the sensitivity of the
Ku-band radar backscatter (O’O) to the snow microstructure
(King et al., 2018; Picard et al., 2022b; Montpetit et al.,
2024), retrieving SWE from a single microwave measure-
ment can prove challenging (Lemmetyinen et al., 2018; Pan
et al., 2024). This is why TSMM presents a dual Ku-Band
frequency (13.25 and 17.5 GHz), dual polarization (VV/VH)
concept to constrain a retrieval algorithm with more mea-
surements, i.e. the higher Ku frequency being more sensi-
tive to snow microstructure than the lower frequency and
the cross-polarization signal being more sensitive to interac-
tions within the snow volume than the co-polarization (Ulaby
and Ravaioli, 2020). The main objective of TSMM is to re-
trieve SWE from these satellite observations with a seasonal
root-mean-square-error (RMSE) of 25 % in alpine regions
and 30 mm elsewhere (Derksen et al., 2019). These obser-
vations will then be ingested into the Canadian Land Data
Assimilation Scheme (CalLDAS) (Carrera et al., 2015; Gar-
naud et al., 2021) in order to improve ECCC’s numerical
weather/climate prediction services. Assimilating TSMM re-
trievals will also help improve surface modelling like the Soil
Vegetation Snow (SVS) (Leonardini et al., 2021) model and
other hydrological systems such as the Canadian Hydrolog-
ical Model (CHM) (Marsh et al., 2020). This study aims at
developing the workflow that will be used to derive SWE
from the dual-frequency SAR measurements and also pro-
vide stratified snow information that will be crucial to im-
prove hydrological and land surface modelling via data as-
similation across all the various landscapes found in Canada.

Many studies have developed Bayesian methods to re-
trieve SWE from SAR (Rott et al., 2012; Singh et al., 2024;
Pan et al., 2024). It is key for these methods to correctly
specify SWE uncertainty, where it was achieved by speci-
fying layer and density uncertainties. Rott et al. (2012) used
a constrained minimization approach where SWE and effec-
tive snow grain radius was optimized iteratively to match for-
ward modelled and measured o°. This method was intended
to be applied to X-band and Ku-band ¢® measurements for
the CoReH20 mission. Singh et al. (2024) used a Bayesian
inference model that seeks to estimate the joint probability of
backscatter measurements and snow properties. Prior distri-
butions of snow parameters were necessary for this approach
and were obtained from a multilayered snow hydrological
model driven by numerical weather prediction (NWP) fore-
casts. This method was also applied to X- and Ku-band SAR
data and showed great success rate to retrieve SWE over
Grand Mesa, Colorado, USA. Pan et al. (2024) modified the
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Bayesian-based Algorithm for SWE Estimation (Pan et al.,
2017) to apply it to active microwave measurements. This
methods relies on the Markov Chain Monte Carlo (MCMC)
method to optimize multiple snow properties simultaneously
to minimize a cost function between the measured and for-
ward modelled 0. They showed that an RMSE below 30 mm
of SWE could be achieved when applied to X- and Ku-band
data.

This study uses a Bayesian approach on data acquired dur-
ing the 2018/19 Trail Valley Creek (TVC) experiment, where
only single frequency Ku-band VV polarization data was ac-
quired from an airborne platform (Montpetit et al., 2024).
Since it has been largely documented that using a multi-
layered snowpack approach considerably improves SWE re-
trievals compared to single layer snowpack (Pan et al., 2024;
Durand et al., 2024; Singh et al., 2024; Lemmetyinen et al.,
2018), this study only focuses on a multi-layered approach.
We focus on the two dominant snow layers observed in
an Arctic snowpack, i.e. a dense wind compacted rounded
grains (R) snow layer at the surface with a coarse depth hoar
(DH) layer at the bottom (Montpetit et al., 2024; Rutter et al.,
2019; Derksen et al., 2009). The retrieval algorithm devel-
oped for this study was inspired by previous work using the
MCMC method (Picard et al., 2022a; Pan et al., 2017, 2024).
Section 3 details how the approach used in this study differs
from previous work. In the context of an EO algorithm devel-
opment, emphasis will be given on the need to include quality
spatio-temporal information. Methods to improve computa-
tion efficiency, without compromising retrieval accuracy will
also be presented.

Section 2 briefly describes the 2018/19 TVC experiment.
For a more detailed explanation, please refer to Montpetit
et al. (2024). Section 3.5 details the SWE retrieval archi-
tecture as well as the processing applied to field measure-
ments in order to properly compare the outputs of the re-
trieved MCMC snow properties with surveyed properties in
the field. Section 4.1 compares the Canadian land surface
model Soil Vegetation Snow version 2 (SVS2) outputs (Vion-
net et al., 2025; Woolley et al., 2024) to field measurements,
while Sect. 4.2 shows the results to validate the MCMC ap-
proach. Sections 4.3 and 4.4 show the comparisons of the
MCMC retrieved SWE and vertical snow properties to the
surveyed properties. The efficiency of the MCMC method to
retrieve SWE is assessed in Sect. 5. Considerations in order
to estimate both SWE and snow properties that are represen-
tative of actual snow conditions on the ground and the usage
of SVS2 and its future improvements to be implemented are
also discussed in Sect. 5.

2 The Trail Valley Creek 2018/19 Snow Radar
Experiment

The TVC 2018/19 experiment was designed by ECCC to
advance science readiness activities for TSMM. The TVC
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watershed, near Inuvik, Northwest Territories, Canada, was
selected since many snow and hydrological research activ-
ities are conducted there every year (e.g. Shi et al., 2015;
Wilcox et al., 2022). Including the airborne SAR campaign
for this study (Siqueira et al., 2021), there has been other
similar campaigns over TVC like the SnowSAR campaign
of 2012/13 (King et al., 2018) and more recently, in April
2024, the Cryospheric SAR (CryoSAR) instrument (Kelly
et al., 2024) onboard the Alfred Wagner Institute (AWI) Po-
lar 5 (Haas et al., 2024) was flown with a dual L- and Ku-
band SAR. Other work at TVC focused on improving land
surface modelling of Arctic environments (Woolley et al.,
2024) using the Ensemble System Crocus (ESCROC) model
(Lafaysse et al., 2017), which was implemented in the Soil
Vegetation Snow version 2 (SVS2) land surface model (Vion-
net et al., 2022, 2025; Garnaud et al., 2019).

In a first step, Montpetit et al. (2024) has shown that the
Ku-band radar instrument developed by the University of
Massachusetts (UMASS) team (Siqueira et al., 2021) is sen-
sitive to snow physical properties and that the Snow Mi-
crowave Radiative Transfer (SMRT) model could be used to
properly model the o from surveyed snow properties. In this
study, we will show that from the same airborne o0 measure-
ments we can retrieve SWE using independent modelled data
(SVS2) as priors in the retrieval algorithm.

Figure 1 shows a map of the study area and the surveyed
sites. The radar image in Fig. 1left consists in a mosaic of
two different airborne passes, flown in the same direction,
acquired by the UMASS radar system (Sect. 2.1), where the
near range acquisitions (higher backscatter) of the first pass,
done at steeper incidence angles, meets the far range acquisi-
tions (lower backscatter) of the second pass, made at shal-
lower incidence angles. A DEM (center) from the Arctic-
DEM (Porter et al., 2023) and the vegetation classification
(right, Griinberg and Boike, 2019) is shown for context with
the radar imagery. For a detailed description of the different
dataset measured during this TVC experiment, please refer to
Montpetit et al. (2024). Elements relevant to this study will
be presented here.

2.1 Airborne SAR measurements

For this TVC experiment, the UMASS Ku-band SAR instru-
ment was mounted on a Cessna-208. It flew at a nominal al-
titude of 1000 m, and measured o© at 13.285 GHz in VV po-
larization over a 2 km swath, with a 2 m ground-range reso-
lution and an incidence angle range of ~ 20-70°. Flight lines
were planned to maximize repeat coverage of the SikSik sub-
basin within the TVC watershed. This enabled swath over-
lap between flight passes and measurements of the same tar-
gets in different viewing geometries. A total of 16 flight lines
were planned, measuring selected targets within the area of
interest (AOI) in four different look-directions. To compare
measured o to surveyed snow information, a 100m x 100 m
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area was clipped around the surveyed site, was filtered to re-
duce noise and artifacts, and averaged.

Due to challenging flight conditions in November 2018
and challenging snow conditions in March 2019, only the
January 2019 o measurements are used in this study to val-
idate the SWE retrieval algorithm in dry snow conditions.

2.2 Ground based snow and soil measurements

Within the AOI, six static sites were identified, in order to
monitor the underlying ground conditions of the SikSik sub-
basin throughout the winter, and also monitor the evolution
of snow conditions over contrasting land covers, represen-
tative of TVC (Fig. 1). Four HydroProbe soil sensors were
installed horizontally in a soil pit at each of these static sites,
where soil temperature, moisture and permittivity were mea-
sured continuously during the campaign. This data enabled
the retrieval of microwave background soil properties from
TERRASAR-X and RADARDSAT-2 satellite SAR measure-
ments (Montpetit et al., 2024).

A total of 20 surveyed sites, including the static sites
(Fig. 1), are used in this study to validate the SWE re-
trieval algorithm. At the center of each of these sites, a snow-
pit was excavated, and a full snow profile was surveyed to
use as reference snow measurements for a given site using
the standard methods (Fierz et al., 2009). For each snow-
pit, snow temperature, density, Specific Surface Area (SSA)
were measured at the pit wall. Density was measured us-
ing a Taylor-LaChapelle style cutter and a shielded digital
scale. SSA was measured using the A2 Photonics IceCube
instrument (Domine et al., 2007; Gallet et al., 2009). Be-
hind the pit wall, three Snow Micro Penetrometer (SMP)
profiles were acquired (Proksch et al., 2015) in order to cal-
ibrate the force measurements to the reference density and
SSA measurements. To get a representative distribution of
snow microstructure at the airborne spatial scale, north-south
and east-west transects were surveyed with the SMP (a total
of 16 more profiles) covering an area of ~ 100m x 100m.
Snow depth measurements were surveyed every meter along
these transects with a MagnaProbe (Sturm and Holmgren,
2018) (~ 290 measurements per site). Figure 2 shows the
schematic of a typical sampling done for a given site. All
profiles (snowpits, SMP and MagnaProbe profiles) per site
are then used to generate a statistical representation of snow
conditions within the radar footprint, with a measured snow
uncertainty represented by the spatial variability within the
footprint. Spatial variability consists in the largest uncer-
tainty within the footprint compared to snow parameter mea-
surement uncertainty, the latter can thus be neglected.

2.3 Soil Vegetation Snow version 2 model outputs
The SVS2 model outputs used in this study are a subset of

the dataset generated by Woolley et al. (2024). This dataset
was generated for the period of September 1991 to Septem-

The Cryosphere, 19, 5465-5484, 2025



5468

=

0 0.5 1

133°31.8W 133°30.0W . 133°31.8W 133°30.0W

. Montpetit et al.: SWE retrieval from airborne Ku-band SAR

Jan. sites surveyed [ | z
ArcticDEM

Elevation (m)

150

T = T
133°28.2W 133°31.8W 133°30.0W 133°28.2W

2 2.5 km

Figure 1. Sites sampled during the January campaign of the TVC 2018/19 experiment. Squares correspond to a 100m x 100 m around
the central surveyed snowpit (see Sect. 2.2). Background images are two overlapped UMASS Ku-Band radar images corresponding to two
different flight passes acquired 14 November 2018 (left, Siqueira et al., 2021), the 2m ArcticDEM (center, Porter et al., 2023), and the

vegetation classification (right, Griinberg and Boike, 2019).
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Figure 2. Ground based snow measurements sampling scheme
taken from Montpetit et al. (2024).

ber 2023, but only the period of 12-15 January 2019 was
used, which corresponds to the three day window where the
UMASS airborne SAR measurements were acquired dur-
ing the January intensive campaign of this TVC experiment.
These outputs were generated from point-scale simulations
located at the main meteorological site of TVC (SM site
in Fig. 1), where most of the meteorological forcing data
was acquired, and complemented by neighbouring stations
when data was not available. The multi-layered snow infor-
mation comes from the ESCROC model (Lafaysse et al.,
2017). The one-dimensional, vertical snow profile outputs of
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Crocus, consist in mass, density, temperature, liquid water
content, age and snow microstructure properties (optical di-
ameter, sphericity) for each layer. These outputs can then be
translated into thickness, density and SSA for each layer. The
maximum number of layers was set to 20 for this dataset, in
order to get detailed stratigraphic information. A total of 120
different simulations were conducted with different combi-
nations of wind and surface vegetation effects, and thermal
conductivity parameterizations. These ensembles were used
to generate the priors for the MCMC retrieval algorithm (see
Sect. 3.5.1). Test were also conducted in this study with the
30 ensemble members that had the best continuous ranked
probability score (CRPS, see Woolley et al., 2024). Both ver-
sions used in the study of Woolley et al. (2024) are tested in
this study, where an Arctic version of SVS2 was developed
to improve the overall snow properties and stratigraphy of
Arctic snowpacks. For a complete description of the dataset,
please refer to Woolley et al. (2024).

3 Methods

In this section, the SWE retrieval workflow will be presented
as well as the methodology to compare the retrieved SWE
data with measured data from the TVC 2018/19 experiment.
In order to improve computation efficiency, the methodol-
ogy to reduce the surveyed snowpack stratigraphy to two
layers, will be introduced. A different approach, more au-
tomated (Meloche et al., 2025), which is applied to the SVS2
outputs will also be described. Finally, the Bayesian MCMC
methodology will be described in details in order to retrieved
the SWE from the SVS2 initial guess.

https://doi.org/10.5194/tc-19-5465-2025
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3.1 SWE retrieval workflow

The workflow to retrieve SWE from Ku-Band SAR measure-
ments is similar to what was presented by Pan et al. (2024),
where snowpack variables are optimized iteratively using a
Markov Chain Monte Carlo (MCMC) model to minimize the
error between the simulated and measured o° (Sect. 3.5).

To initialize the snowpack variables, like the work of
Singh et al. (2024), a land surface model was used to gen-
erate the prior distributions. In the context of an EO mission
like TSMM, this allows for the prior distributions to evolve
both spatially and temporally. In this study, the SVS2 outputs
of Woolley et al. (2024) were used to generate these prior
distribution (Sect. 3.5.1). In order to improve computation
efficiency, the multi-layered SVS2 outputs were first reduce
to two layers (Sect. 3.3). Since the simulations were done at
point-scale for the TVC domain, all sites in Fig. 1 were opti-
mized using the same prior snowpack variable distributions.
Both the default and Arctic versions of SVS2 published by
Woolley et al. (2024) will be investigated in this study, in or-
der to determine the importance of defining more accurate
snow priors to retrieve SWE with MCMC.

The MCMC method iteratively samples the snow vari-
ables (Sect. 3.5.3) from these prior distributions and converts
them into o° using the Snow Microwave Radiative Transfer
(SMRT, Picard et al., 2018) model (Sect. 3.4). The proba-
bility of the sampled snow properties is then calculated us-
ing the likelihood function (Sect. 3.5.2) and the snow vari-
able distributions are then updated to generate the poste-
rior snow variable distributions. The posterior distributions
are then compared to surveyed snow properties (Sect. 3.2)
to assess the performance of the MCMC method. Since
only single band and single polarization o measurements
were acquired for this TVC experiment, retrievals were done
with measurements closest to the optimal incidence angle of
35 ° (King et al., 2018). An extra test including four mea-
surements in the proposed incidence angle range of TSMM
(20° < 6 < 50°) was conducted. Lower incidence angles be-
ing less sensitive to snow volume scattering and higher in-
cidence angles being more sensitive to snow volume scat-
tering, this emulates, without exactly reproducing, the dual
Ku-Band frequency, dual polarization concept of TSMM.

3.2 Reducing the in situ snow profiles to two layers

The snow profiles used in this study were presented in Mont-
petit et al. (2024) where detailed stratigraphy was surveyed
during the TVC experiment and the measured snow profiles
were reduced to two layered snowpacks. The methodology
to obtain these reduced snowpacks is summarized here.

In order to have a representative snowpack at the 100 m
spatial scale, scale at which the UMASS airborne Ku-Band
SAR data has been processed (Sect. 2.1), all the MagnaProbe
snow depths, SMP density and SSA profiles, and complete
snowpit measurements (temperature, snow cutter density,
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IceCube SSA and visual profile inspection) were used. The
~ 290 MagnaProbe measurements per site were used to gen-
erate a snow depth distribution and its median value was used
as its total snow depth. The SMP data measured behind the
snowpit wall (2-3 measurements) with a vertical resolution
of 2.5 mm was then calibrated (Proksch et al., 2015; Mont-
petit et al., 2024) into density and SSA profiles using the
surveyed measurements from the density cutters and the Ice-
Cube instrument for SSA. Then, the 5 cm aggregated SMP
profiles, thickness determined to be small enough to repre-
sent average snowpack layers (Sandells et al., 2022; Mont-
petit et al., 2024), were classified into two grain types using
the support vector machine methodology initially developed
by King et al. (2020) and adapted to the 2018/19 TVC ex-
periment by Montpetit et al. (2024): (1) rounded grains (R)
or, (2) depth hoar (DH). From the classified SMP profiles,
distributions of density and SSA were generated for the two
snow layers. The median value of these distribution was then
used as the density and SSA values for their corresponding
snow layers. Finally, from the snowpit measurements, the
median temperature measured for both snow layers was as-
signed to the representative snowpacks, even though temper-
ature has little impact in the modelled backscattered signal
for dry snowpacks (Picard et al., 2018), and was not consid-
ered in the MCMC optimization. Examples of representative
snowpits are shown in Sect. 4.1.

3.3 Reducing the SVS-2 snow profiles to two layers

SVS-2 can generate snow profiles of up to 50 layers. This
considerably impacts the computation time of radiative trans-
fer modelling using SMRT, thus increases the computa-
tion resources required to efficiently retrieve SWE using the
MCMC approach. Meloche et al. (2025) have developed an
objective method using K-means clustering in the extinction
coefficient (k.) and layer height space, that generates a mi-
crowave equivalent snowpack from a multi-layered snow-
pack, that preserves the snowpack radiative transfer prop-
erties while retaining the bulk physical snow properties of
the snowpack like SWE. They have shown that this approach
can improve computation time up to 87 % when comparing
SMRT simulations with a 50-layer snowpack and the equiv-
alent 2-layer Microwave Equivalent Snowpack (MES).

For this study, all 120 ensemble members of both the de-
fault and Arctic version of the SVS-2 20-layer profiles were
reduced to 2-layer using the Meloche et al. (2025) method.
To do so, the ke, calculated from the SVS2 outputs using sub-
modules of SMRT, in addition to the layer heights were used
to classify the multi-layered snowpacks into two-layered mi-
crowave equivalent snowpacks. Examples of representative
snowpits are shown in Sect. 4.1. These two-layered snow-
packs were then used to calculate the prior distributions used
as first guesses for both snow layers into the MCMC method.
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3.4 Radiative transfer modelling

To convert these snowpack variables into simulated 00, the
SMRT model is used (Picard et al., 2018). Similarly to Pan
etal. (2024), the Improved Born Approximation (IBA) model
is used to calculate snow scattering, which is implemented
in the python open-source code of SMRT. The same radia-
tive transfer modelling configuration used in Montpetit et al.
(2024) is used in this study. Since the proposed TSMM SWE
algorithm decouples the contributions to the measured o
from the soil and snow in a two step process, the soil prop-
erties retrieved by Montpetit et al. (2024), using lower fre-
quency satellite SAR data, was used directly in SMRT. This
is one of the difference with the methodology of Pan et al.
(2024). Also, snow temperature was not optimized in this re-
trieval since it is known to have little impact on simulated o°
of dry snow (Picard et al., 2018). The measured temperatures
of both layers were assigned in SMRT since it is a required
input to simulated o©.

3.5 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) method used for
this SWE retrieval algorithm is coded using the open-source
PyMC v5.16.2 python library (Salvatier et al., 2016; Abril-
Pla et al., 2023), and was run on a high performance com-
puting Linux cluster, hosted at ECCC. The architecture of
the MCMC method was inspired from the work of Pan et al.
(2024), but many aspects of the methodology used in this
study are different and will be described in this section.

The MCMC method was initially run for 15 000 iterations.
A portion of these iterations were used as the burn-in period
(a maximum of 5000 burn-in iterations was tested), e.g. these
iterations are used to initialize the model and allow the sam-
pling of the different variables to stabilize to values more
representative of the observations. This burn-in period is not
included in the iterations used to build the posterior distribu-
tions. Since MCMC tends to have correlated sampled vari-
ables between iterations, usually a large number of iterations
is needed. Here, a maximum of 10 000 iterations were used.
The Equivalent Sample Size (ESS), is an index that deter-
mines the number of samples that are uncorrelated (Martin
et al., 2021), and helps to determine if the number of total
iterations are sufficient. Additionally to the number of itera-
tions, the MCMC method can use chains that are run in par-
allel. This ensures that the final posterior distributions con-
verge to a similar solution for all chains. The chain conver-
gence coefficient (Ié) is an index that calculate the between
chain convergence of the posterior distributions (Gelman and
Rubin, 1992). Both indexes are thus used to calculate the op-
timal number of iterations and chains to use. Tests were con-
ducted in order to determine the optimal number of burn-in
iterations, total iterations and chains needed to converge to
proper solutions. These results are presented in Sect. 4.2.

The Cryosphere, 19, 5465-5484, 2025

B. Montpetit et al.: SWE retrieval from airborne Ku-band SAR

3.5.1 Prior distributions of snow properties

Similarly to the study of Pan et al. (2024), the initial prior
distributions used as the first estimate of snow properties are
constrained normal distributions. In order to make a method-
ology that works for all climates and all seasons, in the con-
text of a satellite mission like TSMM, the means and stan-
dard deviations used to initialize these priors come from an
ensemble of SVS2 outputs. Since MCMC outputs are very
sensitive to initial prior estimates, using a dynamic prior that
changes through time and space allows for a more precise
prior, which will result in a more precise SWE posterior es-
timate from the MCMC approach. This will be further dis-
cussed in Sect. 5.2. Table 1 shows the means and standard
deviations of all 120 members of both the default and Arc-
tic versions of the SVS2 outputs (Woolley et al., 2024). For
snow height (Hgpow), the minimum value was chosen as the
thinnest representative thickness of a layer (Sandells et al.,
2022; Montpetit et al., 2024) and the maximum value was
randomly put to 1 m even though no 1 m snowpack was mea-
sured at TVC during the campaign (e.g. see Fig. 4 of Mont-
petit et al., 2024). The minimum and maximum values for
snow density (psnow) and Specific Surface Area (SSA) were
extrapolated from all the measurements of the field cam-
paign. The values for SWE are also shown in Table 1 for
reference and discussion purposes, since SWE is the desired
retrieved parameter of the study. Examples of these priors
are presented in Sect. 4.1. In order to assess the importance
of using the best possible source of data to generate these pri-
ors, means and standard deviations from the top 30 ensemble
members of the Woolley et al. (2024) datasets were used. The
impacts of the accuracy of the initial snow property estimates
on SWE retrieval are shown in Sects. 4.3 and 5.2. Given the
known higher uncertainty of the SVS2 SSA outputs for both
versions of the model (Woolley et al., 2024), compared to
density and thickness, tests were conducted to increase the
standard deviation of SSA for both snow layers, to assess its
impact on retrieved SWE.

Finally, similarly to Pan et al. (2024) and Picard et al.
(2022b), not knowing exactly the accuracy of the mea-
sured radar signal and its uncertainty given the variability of
snow/soil properties at the 100m scale, an uncertainty
parameter (§) was given to the measured and simulated
backscattered signals, which were described by a normal dis-
tribution centered at the measured o® and § as its standard de-
viation. This uncertainty parameter is then fed into the likeli-
hood function. The § prior was initialized at the radiometric
accuracy of the UMASS antenna of 1 dB, with an uncertainty
of 0.5dB.

3.5.2 Likelihood function

In order to improve computation efficiency, the log-
likelihood function was used between the measured and sim-
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Table 1. Values used for the truncated normal distributions of the MCMC priors using the 120 and top 30 members of both SVS2 versions
of Woolley et al. (2024). Min and max values were extracted from all surveys of the 2018/19 TVC experiment. For reference and discussion,
mean and standard deviation for the layered SWE information is also given, though these values are not used in the MCMC priors since SWE

is not an explicit input to the model. Std stands for standard deviation.

Snow Property  Grain Type All 120 members ‘ Top 30 members Min Max
Mean ‘ Std ‘ Mean ‘ Std
Default  Arctic ‘ Default  Arctic ‘ Default  Arctic ‘ Default  Arctic
Hgnow (cm) R 29.8 27.1 7.7 10.0 24.3 28.5 2.8 9.5 5.0 100.0
H 154 13.7 4.1 8.3 15.8 13.3 2.9 7.9 5.0 100.0
Psnow (kgm_3) R 217.7  246.5 14.6 20.4 231.1 2354 5.2 8.2 150.0 450.0
H 190.0  200.3 30.0 40.8 218.7 199.0 32 36.0 100.0 350.0
SSA (m? kg*]) R 12.7 11.6 1.6 2.8 12.1 11.2 14 2.5 10.0 50.0
H 5.2 4.0 1.4 1.5 6.1 4.0 0.8 1.5 8.0 25.0
SWE (mm) R 64.2 66.2 13.3 23.5 56.1 67.2 6.7 222 - -
H 29.6 30.6 10.1 24.0 347 29.0 6.6 22.7 - -

ulated o (Leung, 2022), and is given by:

100 —0? ?
l(Ur?le518|agm)=_§ mesa sim

—In («/E) —1In(5) (1

5|00 ) is the likelihood metric between the

where (o sim
0 0 0 :
measured o (o, m)» glven an un-

mes’

0 ) and simulated ¢ (og

certainty on the measured o0 (8). This likelihood function is
then used to calculate the Metropolis—Hastings likelihood ra-
tio, which determines if the sampled snow parameters of the
current iteration are accepted or rejected within the sampling

strategy.
3.5.3 MCMC sampling

Given that the current version of SMRT uses the Discrete Or-
dinate Radiative Transfer (DORT) (Picard et al., 2013, 2018)
method to solve the radiative transfer equation, and this
solver is not differentiable for all variables, more modern
and efficient samplers, like the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2011), could not be used. This is why
the Adaptive Differential Evolution Metropolis (DEMCZ)
sampling (ter Braak and Vrugt, 2008) method, implemented
in PyMC, was used in this study. This method differs from
the original differential evolution metropolis (DEMC) sam-
pling method (ter Braak, 2006) since it uses information from
past iterations to generate future jumps in sampled snow
properties. DEMCZ also requires a lower number of chains
(N) to be run in parallel in order to converge to a solution
compared to N = 2d, where d is the number of snow param-
eters to optimize, e.g. 3 snow parameters (Hsnow, Psnows SSA)
per layer, for a total of 12 chains for our current two-layer
snowpack configuration. Also, for our specific SWE retrieval
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algorithm, N can be kept constant, where if we have more
or less snow layers, we do not need to adapt the number of
chains to run, even though the number of snow properties
change. DEMCZ is also known to be more efficient than ran-
dom walk samplers. In this study, different number of chains
were tested (a minimum of 4 and up to 12), and a total of 7
chains was chosen, in order to ensure proper sampling and
good convergence (ESS and R), without compromising the
computation efficiency of the algorithm. Similar results were
obtained using 4 chains, but the model was less stable. The
maximum number of chains was chosen as computation effi-
ciency was not impacted, with the similar convergence, and
model stability was preserved no matter the number of snow
layers.

Also, since this experiment optimizes many snow vari-
ables and many combinations of these variables can provide
the same simulated 0¥, constraints between layers for each
variables were introduced, similarly to Picard et al. (2022a),
where they constrained density profile to have a positive gra-
dient with depth. Here, given the two-layer experiment, these
constraints were determined based on local and published
knowledge of the vertical profiles (see Fig. 3 to 5). Hard con-
straints were put on density, SSA and thickness between the
layers. If those constraints were not met, the sampled values
for these three parameters were rejected. The density of the
R layer had to be higher than for the DH layer. The thickness
of the R layer was also constrained to be lower than the DH
layer. Finally the SSA of the R layer had to be higher than the
DH layer. The impact of these constraints will be presented
in Sect. 4.4 and discussed in Sect. 5.

The Cryosphere, 19, 5465-5484, 2025
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Figure 3. Measured snow thickness (Hspow) distributions during the January TVC campaign, compared to the thickness distributions pro-
vided by the 120 SVS2 ensemble members (Woolley et al., 2024) for the two dominant snow grain type layers (a) rounded grains, (b) depth
hoar, and (c) the total thickness, including both snow layers. Magenta lines represent the truncated normal distributions (Table 1) used as
priors, using the mean and standard deviations of the two different SVS2 versions. The red line represents the normal distribution, using the
mean and standard deviation of the measurements, and consists in the desired posterior distributions obtained by the MCMC approach.

4 Results

In this section, the different sources of snow information will
be presented in order to understand how the SWE retrieval
algorithm is impacted within the MCMC method. The re-
sults of the tests to determine the MCMC parameterization
will then be presented. Results of the SWE retrievals using
the UMASS Ku-band SAR data will then be shown, and fi-
nally the snow posterior distributions will be compared to the
measured in situ snow properties for different MCMC con-
figurations.

4.1 Modelled and measured snow properties

Figure 3 shows the layer thicknesses (Hgpow) distributions
for both SVS2 versions and the measured layer thicknesses
for the R (a) and DH (b) layers for all sites of the TVC ex-
periment. The truncated normal distributions (Table 1) are
overlaid on top of the histograms and the normal distribu-
tion of the measurements is shown in red and would con-
sist in the idealized posterior distribution that the MCMC
method would retrieve. We see that both versions of SVS2
overestimate the thickness of the R layer and underesti-
mate the thickness of the DH layer. That said, both versions
show good overlap between their normal distribution and the
idealized posterior distribution, suggesting that the MCMC
method could converge to the proper thicknesses efficiently.

Figure 4 shows the same distributions as Fig. 3, for den-
sities. Both SVS2 versions underestimate the density of the
R layer, and the Arctic version shows a better overlap with
the idealized posterior distribution. The distribution of both
SVS2 versions overlap well with the idealized posterior dis-
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tribution for the DH layer even though there is a tendency to
slightly underestimate the density.

Figure 5 shows the same distributions for SSA. Here, it
is clear that SVS2, no matter the version, underestimates the
SSA and even outputs values that are below the minimum
values measured in the field. In order to achieve the over-
lap shown in Fig. 5, the SVS2 standard deviations had to be
tripled.

Figure 6 shows the same distributions for SWE. We see
that SVS2 tends to overestimate SWE for the R layer and
underestimate SWE for the DH layer. Variability in modelled
layered SWE for both versions of SVS2 is similar to what is
observed in the field. This results in a very narrow range of
modelled bulk SWE that fit very well with the observations.
This tends to indicate that SVS2 reproduces the bulk SWE
properly over TVC but has more difficulty in properly rep-
resenting SWE stratigraphy. Figure 6¢ also shows that the
higher uncertainties and the over- and underestimations of
the layered SWE tend to cancel out for the bulk properties. It
should be noted that the distributions in Fig. 6¢ do not realis-
tically represent the priors and the uncertainty on SWE since
SWE is not an explicit variable used in the MCMC model.

Impacts of the different prior distributions shown in
Figs. 3-5 will be discussed in Sect. 5 in the context of the
SWE retrieval.

4.2 MCMC algorithm parameterization

To determine the optimal MCMC parameterization, different
tests with different numbers of iterations were run. It was de-
termined (not shown) that beyond 1000 burn-in iterations (a
total of 5000 burn-in iterations were tested), no significant

https://doi.org/10.5194/tc-19-5465-2025



B. Montpetit et al.: SWE retrieval from airborne Ku-band SAR

5473

a) A 0.035 b)

0.025
0.030

4
)
N
)

0.025

0.020

°
°
=
@

0.015

(=]
(=}
=1
o

0.010

Probability Density Function

0.005
0.005

0.000

Psnow(kg m~3)

Figure 4. Same as Fig. 3 for snow density (osnow)-

Arctic

100 400 100 200
Psnowlkg m=3)

a) EEN SVS-2 Default
0.16 [ SVS-2 Arcitc
c 1 Snowpits
o014 ----- Prior Default
£~ - -
g —— Prior Arctic
5 0.12 —— Snowpits
w ’
Z /
G 0.10 i
< 1
a = |
0.08 \
> v
= \
'8 0.06
[ \
a \
2 0.04 \
o \
‘\
0.02 \
\
\\
S
0.00 =
0 10 20 30 40 50

SSA(m2kg1)

SVS-2
B pefault
SVS-2
B Arctic
1 Snowpits

Prior
Default

Prior

Snowpits

200
Psnow(kg m=3)

0.30 b)

0.25

0.20

0.15

0.10

0.05

0.00
o 10 20 30 40 50

SSA(m2kg1)

Figure 5. Same as Figs. 3 and 4 for SSA. Since SSA is grain type specific, a bulk snowpack value is not shown, as in Figs. 3 and 4.

improvement was observed to converge to a proper solution.
Below 1000 burn-in iterations, more chains in parallel and a
larger number of total iterations were needed for the method
to converge, but a larger uncertainty on the posterior distri-
butions was observed.

With 1000 burn-in iterations, a test with 10 000 iterations
was run over all sites to determine the optimal number of it-
erations necessary. Figure 7a shows the R (Gelman and Ru-
bin, 1992) over all the iterations. The mean, minimum and
maximum R for all the sites are shown in Fig. 7a, as well as
the recommended acceptable threshold (Vehtari et al., 2021).
It it shown that after 4000 iterations, all R values are below
1.1 and some start to be below the recommended threshold,
which is considered acceptable in certain contexts, where the
ESS is large enough.
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Figure 7b shows the evolution of the ESS for the 10000
iterations. We see that after 5000 iterations, all ESS values
are beyond the acceptable threshold of 100 and are five times
greater on average. These results, with the results of Fig. 7a
indicate that the optimal number of iterations is around 5000
iterations. Figure 7c shows the evolution of the SWE RMSE
over all the iterations. We see that after 4000 iterations, no
considerable gain is achieved in retrieving SWE. With the
results shown in these three figures, 5000 iterations was se-
lected in order to ensure optimal SWE retrieval and proper
convergence of all the retrieved snow properties for all snow
layers. All the results of the following sections were thus ob-
tained after 5000 iterations.
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5474

B. Montpetit et al.: SWE retrieval from airborne Ku-band SAR

0.030 0.040

L)
~
>

b) i,

i

0.035

o
o
N
]

0.030

0.020
0.025

0.015 0.020

0.010

Probability Density Function

0.005

0.000 .
o 100 150 200 o 50

SWE (mm)

Figure 6. Same as Figs. 3 and 4 for SWE.

4.3 MCMC retrieved snow water equivalent

The following results present the impact of using different
priors in the MCMC method on the retrieved SWE. Fig-
ure 8 shows the retrieved SWE from the MCMC method
with priors coming from all 120 ensemble members of the
default and Arctic SVS2 versions (Woolley et al., 2024).
The truncated normal distributions used for the priors were
generated with the mean values and the standard deviations
(Table 1). The original modelled SWE values from both
SVS-2 versions are shown in red, with the variability in
modelled bulk SWE among the 120 ensemble members is
shown in the red shaded area. The expected SWE retrieval
accuracy of the TSMM mission, for an Arctic snowpack
(30mm, see Derksen et al., 2019), is also shown in this
figure. Retrieved SWE from the default SVS2 priors show
larger RMSE (27.6 mm) than the ones retrieved with the Arc-
tic SVS2 priors (20.9 mm). These results are summarized in
Table 2. Retrieved SWE uncertainty is also shown in Ta-
ble 2. Here, uncertainty is defined as quartile deviation in-
stead of the usual standard deviation since the posterior dis-
tributions are not strictly normal distributions. Little variabil-
ity in the retrieved SWE from both SVS2 versions can be
observed. There is also an offset between the retrieved SWE
and the original SVS2 modelled SWE. The uncertainty on
the retrieved SWE values (error bars) is slightly better for
the default version of SVS2 (11.9 mm mean quartile devia-
tion) compared to its Arctic version (19.6 mm mean standard
deviation). Nonetheless, the SWE estimates from the Arctic
version show only two points outside the TSMM expected
accuracy compared to eight points for the default version.
Since the expected TSMM accuracy is on the RMSE crite-
rion, both tests meet the requirement.

We see that the initial modelled SWE value of the Arctic
version of SVS2 is slightly better than the one from the de-
fault version. The Arctic version also shows little variability
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(red shaded area) compared to the default version, in its ini-
tial SWE estimate. Both versions of the models do not repre-
sent the range of SWE values that were measured in the field.
These observations will be discussed in Sect. 5, supported by
results shown in Sect. 4.4. Knowing that many of the ensem-
ble members of both SVS2 versions were not representative
of the Arctic snowpack, the same test was processed using
the top 30 ensemble members, which were determined to be
more representative of snowpacks surveyed at TVC (Woolley
et al., 2024).

Figure 9 shows the retrieved SWE using the top 30 SVS2
ensemble members as priors. The default version of SVS2
seem to provide better results (RMSE = 17.9mm) in terms
of SWE retrieval. The values are in fact close to the origi-
nal modelled SVS2 SWE. There is still little variability com-
pared to measured SWE values. The Arctic version shows
lesser performances (RMSE = 21.2mm), with a similar off-
set shown in Fig. 8, but the retrieved SWE show a bit more
spread. The initial SVS2 SWE values do not differ consid-
erably from the previous test. One significant result com-
pared to past tests is the uncertainty of the retrieved SWE
values (errors bars) for the default version are much nar-
rower (6.9 mm mean quartile deviation). From the past two
figures, the top 30 default SVS2 ensemble members seem
to perform best, where most points and their uncertainty fit
within the expected accuracy of TSMM. However, with re-
sults presented in Sect. 4.4, the default version was rejected
for the following tests, due to the retrieved posterior snow
properties (see Sect. 4.4).

Figure 10 shows the results of the SWE retrieval when in-
creasing the §ssa, and when including four radar observa-
tions from different angles. When comparing the impact of
increased dssa on priors, we see that the overall accuracy is
improved, with an RMSE = 18.7mm, compared to 20.9 mm
(Fig. 8). Similar spread can be observed, but one observed
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Table 2. Retrieved SWE RMSE and uncertainty, for different parameterizations of the MCMC method. Uncertainty is defined as the quartile
deviation, and the values consist in the mean value over all sites. Percentages over the mean surveyed SWE values are given in parentheses.
Tests were conducted with the default SVS2 version as priors and larger dsga but due to MCMC convergence issues, results are not shown

here.

Parameterization

SWE RMSE (mm) \

SWE uncertainty (mm)

Default

Arctic ‘ Default Arctic

120 ensemble members 27.6 (28.7 %)
Top 30 ensemble members 17.9 (18.7 %)
Larger ssa -
Larger 6ggaacsigssa +4 obs -

209 (21.7%) | 11.9 (12.9%)
21.2 (22.0%) 6.9 (7.4 %)
18.7 (19.4 %) -
15.8 (16.4 %) -

19.6 (21.1 %)
18.8 (20.2 %)
22.5 (24.2 %)
23.4 (252 %)

improvement is the lower difference between the retrieved
SWE values and the original SVS2 modelled SWE. One in-
teresting result to note is that the uncertainty (22.5 mm quar-
tile deviation) on the retrieved SWE values (errors bars) are
not considerably impacted compared to the original Arctic
test (19.6 mm quartile deviation).

The greatest improvement can be observed when retriev-
ing SWE using four ¢ measurements. The lowest RMSE
was obtained (15.8 mm), out of all the tests, and all values are
within the expected accuracy of the TSMM mission. Again,
the uncertainty (23.4 mm quartile deviation) on the retrieved
SWE values (error bars) were not considerably impacted,
though in some cases, the uncertainties are slightly larger.

4.4 MCMC retrieved snow properties

In this section, the impacts of prior selection and constrain-
ing valid snowpack properties, between layers, within the
MCMC method will be presented. The SM site (Fig. 1) was
chosen as an example for these results, and is typically what
is observed for all sites. Figure 11 shows posterior distri-
butions of snow parameters from the MCMC method and
the normal distribution of the surveyed snow measurements
(snowpits) and priors from the default SVS2 version (column
a), the Arctic SVS2 version (column b) and the default SVS2
version without constraining the valid snow properties (col-
umn c¢). The evolution of the MCMC sampling for all snow
parameters are also shown throughout the 5000 iterations in
Fig. 12, for the three same scenarios.

Figure 11a shows that, using the default version of SVS2,
SWE tends to be underestimated for this site compared to
its initial prior estimation, e.g. the bias between medians is
24.5 mm higher for the posterior than the prior, compared to
the snowpit distributions. Posterior thicknesses for both lay-
ers show improvement from their respective priors, i.e. an
improvement of 14.4 and 3.8cm for the R and DH layers
respectively. Densities show little improvements even after
5000 iterations. Posterior and prior distributions tend to over-
lap well, without much convergence towards the snowpit dis-
tributions, with only a difference of 4.9 and 0.1 kgm™3 dif-
ference between their medians for the R and DH snow layers
respectively. SSA for DH shows improvement where the pos-
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terior median is closer to prior median by 0.7 m?kg~>. There
is an improvement of the SSA for the R layer but tend to still
be largely underestimated compared to measured SSA, with
a bias of —20.4 m>kg .

Figure 11b shows that, using the Arctic version of SVS2,
SWE is slightly more underestimate by the posterior com-
pared to the prior, i.e. the bias between medians is 24.7 mm
higher for the posterior than its prior, which had a bias of
6.3 mm with the snowpits measurements. SWE estimate is
better than what was estimated using the default SVS2 ver-
sion, where a bias of —18.5 mm is obtained for the Arctic
SVS2 prior compared to —36.1 mm for the default SVS2
prior (Fig. 11a). Again, thicknesses are well estimated by
posteriors compared to priors, with 16.5 and 5.8cm im-
provements on biases for the R and DH snow layers respec-
tively when compared to measurements. This shows that both
sources of priors tend to perform well as first guesses for the
MCMC method. Density posteriors still show some differ-
ences with measurements (—50.3 and —31.1 kgm™ biases
for R and DH snow layers respectively) but the errors are
considerably lower than the estimates from the default SVS2
version, where improvements of 74.0 and 10.8 kgm™~3 on bi-
ases were observed for the R and DH snow layers. The same
observation can be made for the SSA posteriors, where an
improvement of 11.8 and 4.7 m*kg ™3 is observed compared
to results of Fig. 11a.

Figure 11c shows the same results when no constraints are
given to the sampled snow parameters between layers, and is
mainly presented for discussion purposes in Sect. 5. The best
results in terms of SWE estimate is observed compared to re-
sults of Figs. 11a and 11b, with a bias of —8.4 mm. Nonethe-
less, the thicknesses show the worst estimates (bias of 14.9
and —9.0 cm for R and DH grain layers) and do not deviate
from the prior estimates (0.1 and 1.1 cm difference between
the posterior and prior medians for R and DH grain layers).
The same observation is made for the density of the R layer
with a bias of —127.6kgm™> for the posterior compared to
—129.5kgm™3 for the prior. The density of the DH layer
is well estimated though (bias = 0.3kgm™3) and shows the
best results out of all MCMC estimates. Similar observations
can be made for the SSA where only a slight improvement is
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by Vehtari et al. (2021), and ESS threshold published by Kass et al.
(1998) are shown in red.

seen for the R layer (bias = —188.2m?kg>), and excellent
estimation of the DH layer SSA is seen (bias = 0.2m?kg~>).

Figure 12 shows the sampling evolution of the MCMC
method for the same three scenarios as in Fig. 11. We see that
with less observations (one observations for Figs. 12a and c,
and four observations for Fig. 12b, the sampling converges
more rapidly and shows less variability, which is also shown
in the spread of the retrieved parameters (Fig. 11). One pa-
rameter that does not show as much variability with more ob-
servations is the radar o® uncertainty (8). The variability of
the o measurement tends to converge around 1.1 £0.3dB,
1.24+0.2 and 1.2+0.4dB for Fig. 12a, b, and c) respec-
tively. These results also show that with poor prior estimates
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(Fig. 12a) and an unconstrained optimization (Fig. 12c),
some snow parameters, especially for the R layer quickly
converge to a poorly estimated value, even though the SWE
estimate is close to measurements.

The differences in snow profile estimates between the dif-
ferent selected prior distributions and MCMC parameteriza-
tions will be further discussed in the next section. The impli-
cation for different applications will also be discussed.

5 Discussion
5.1 Retrieving SWE with MCMC

Results of Sect. 4 show that, like previous studies (Pan et al.,
2024), the MCMC method is very powerful to fit, in this case,
SAR o observations with modelled ¢, when many vari-
ables need to be optimized simultaneously. Figure 11 shows
that, without proper constraints, the MCMC method can use
the 0¥ information to optimize snow parameters and still
achieve great results when comparing to bulk SWE, but re-
turns a snow profile that is not representative of what is found
in the field (Fig. 11c). These results confirm that SAR 0?0
is sensitive to SWE in the Ku-Band range, since, even with
a poorly estimated microstructure (Figs. 11a and c), which
is an important parameter that drives snow volume scatter-
ing in that frequency range (Montpetit et al., 2024; Picard
et al., 2022b; King et al., 2018), other variables like thick-
ness are tuned to fit the measured o® (Fig. 12c), and can still
achieve a reasonable SWE estimate compared to measure-
ments. It should be noted that when SWE is poorly estimated
by the prior, the posterior SWE estimate has a higher error
(Fig. 9), where SWE estimates are concentrated around the
initial modelled SWE and do not diverge from that initial
estimate. Also, further tests were done (not shown), where
the uncertainty on the SWE was increased, by increasing
uncertainty on thickness and density individually and sepa-
rately. Every tests resulted in underestimation of SWE, most
likely due to the underestimation of SSA in the priors, which
boosted the volume scattering of both layers. The most sen-
sitive parameter in the MCMC model being thickness, it re-
duced the snow thickness to reduce the volume scattering
and fit the modelled o° with the measured o, resulting in
an underestimation of SWE. Figure 11c also confirms pre-
vious observations (King et al., 2018) that Ku-Band o is
most sensitive to the DH layer rather than the R grain wind
slab layer. Parameters from the DH layer show lower median
biases than the R layer, and the latter also tends to stick to
its prior distribution, indicating lower sensitivity of the o°
to the R layer. It explains why the posterior SWE estimates
are lower than the initial SVS2 estimates for both versions
(Fig. 8), since ¥ is very sensitive to both SWE and mi-
crostructure. The thickness of the R layer is properly esti-
mated, i.e. MCMC reduces its thickness to lower the scatter-
ing caused by the low SSA estimation, and does not increase
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its density sufficiently to properly estimate SWE. The fact
the SVS2 underestimates the R layer density, and that the
MCMC model struggles to sample values that are close to
measured densities, aggravates the underestimation of SWE.
This is why it is important to have some knowledge of strati-
graphic snow properties, e.g. number of snow layers, density
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and SSA gradients, to constrain the MCMC method to valid
snow properties without overfitting on the most sensitive pa-
rameters, and to not over-trust the initial prior estimates, i.e.
not be too restrictive on the prior uncertainties. With inter-
layer constraints (Fig. 11a and b), it is possible to achieve
SWE estimates within desired errors, like the 30 mm RMSE
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determined for the TSMM mission (Derksen et al., 2019),
and comparable to the unconstrained MCMC method. A way
to potentially solve the issue of the high sensitivity to layer
thickness would be to use SWE as a prior directly and infer
snow density and thickness from published relationships be-
tween SSA and density (Domine et al., 2007). This will be
further tested in future experiments in the context of TSMM.

The impact of the initial guess is also valid for other snow
parameters. There is a very fine balance to identify between
prior estimates and their uncertainties. The farther the ini-
tial guess is from the ground truth, higher is the number of
iterations needed for MCMC to converge towards a final so-
lution (Pan et al., 2024). Also, increasing the uncertainty on
the priors tend to increase the uncertainty on the posteriors
and a larger number of iterations is also needed to converge
to a solution. Figure 10 shows that by increasing the uncer-
tainty on SSA, a known snow parameter to be highly un-
derestimated by SVS2 (Woolley et al., 2024), the accuracy
of the retrieved SWE is improved. By allowing the method
to sample SSA in a wider range of possible values, closer to
what was measured in the field, more weight is given to snow
microstructure in the modelled . In this case, increasing
the uncertainty on SSA does not directly impact the uncer-
tainty on retrieved SWE, since SWE is a function of density
and thickness. Nonetheless, it does have an impact on the o0
measurement uncertainty (6), which indirectly adds uncer-
tainty to all snow variables.
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Similarly, when comparing the outputs from both SVS2
versions, the prior density estimates for the R layer of the
default version (Fig. 11a), do not allow to sample values
close to the measured pgnow, due to the lower prior uncer-
tainty, which prevents the MCMC method to properly sample
other variables, such as SSA for the same layer, since volume
scattering in the IBA model depends on both SSA and den-
sity. It should be noted from Fig. 11a, that a secondary peak
had started to form, for both pgnow and SSA for the R layer,
closer to the measured values after 5000 iterations. This in-
dicates that with a higher number of iterations, it is possi-
ble that the method could have converged towards a better
solution, even with a less accurate first guess, showing the
potential of MCMC to retrieve snow parameters. That said,
a test was conducted to confirm this hypothesis (not shown
here), with 40 000 iterations and no significant improvement
was observed compared to Fig. 11a. With the initial estimate
of psnow being closer to what was measured with the Arctic
version of SVS2, we clearly see that after 5000 iterations,
the method converges towards a solution that is closer to the
measurements for all snow parameters. Figure 7¢ also shows,
that increasing the number of iterations does not improve
SWE retrieval.

As shown in Fig. 10, the largest gain in SWE accu-
racy comes from adding more observations to the retrieval
method. In this study, measurements at different incidence
angles were available, which modified the sensitivity of the
o9 to the different scattering mechanism (Tsang and Kong,
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Figure 11. Example from the SM site of prior distributions coming
from the default (column a, same prior parameterization as Fig. 9a)

and Arctic (column b,

same prior configuration as Fig. 10b) ver-

sions of SVS2 and retrieved posterior distributions from the MCMC
method, for the different snow variables compared to the surveyed
snow measurements. Column (c¢) consists in the MCMC optimiza-
tion using the default version of SVS2, where no vertical constraints
on snow properties were applied. § is the free parameter correspond-
ing to the uncertainty of the radar backscatter measurement and was
not measured in the field.

2001), thus modifying the importance of the different snow
parameters in the retrieval process. This could explain why
the retrieved uncertainty on the radar o0 (8) is less variable
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Figure 12. Evolution of the MCMC sampling for the 5000 iterations
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in Fig. 12b, since with four observations, that uncertainty
is spread out over the snow parameters and less on the o
measurements. This result also shows that, even though the
lower Ku-Band frequency (13.5 GHz) is sensitive to SWE
and snow volume scattering, it still has a high sensitivity to
surface scattering at the soil-snow interface, which could ex-
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plain why there is not significant spread among the retrieved
SWE. The lack of spread in the retrieved SWE can also be
explained by the low uncertainty on the thickness priors of
both layers, which are the most sensitive parameters in the
MCMC model, but are restrained to a narrow range of thick-
ness values. Also, the fact that volume scattering is less im-
pacted by density, than it is by SSA, reduces the potential of
sampling a wider range of SWE values, which is a function
of snow thickness and density. The higher error coming from
using optimized effective soil properties (increased RMSE of
0.4 dB) for all the TVC domain instead of site specific vari-
ables (see Fig. 13 of Montpetit et al., 2024), propagates in the
uncertainty of the o measurement and impacts the retrieved
snow properties. Since the uncertainty on the modelled o°
values (§) are of the order of 1.5 dB, compared to a change in
RMSE of 0.4 dB, it is unlikely that considering site specific
soil properties will have a significant impact on the retrieved
SWE in this study. That said, it was shown by Montpetit et al.
(2024) that soil cannot be neglect for SWE retrievals at Ku-
band, and that its properties must be properly estimated. This
result confirms the choice of the dual frequency, dual polar-
ization concept for the TSMM mission, where four obser-
vations will be made available for each satellite pass. The
higher Ku-band frequency (17.25 GHz) being more sensi-
tive to snow micro-structure, and the cross-polarization be-
ing more sensitive to volume scattering, especially from the
DH layer (Ulaby and Ravaioli, 2020). This concept should al-
low the MCMC method to converge towards a good stratified
snow profile estimate, given that proper stratigraphic infor-
mation is known, i.e. layering, DH fraction, vertical density
SSA gradients, etc. For this study, this knowledge was based
on field observations, which is not possible to achieve opera-
tionally at the continental scale. This is why, improved snow
modelling for different landscapes, and improve data assim-
ilation schemes are necessary to enhance the predictability
and assessment of these stratigraphic conditions.

5.2 Current limitations of snow physical models

Results of Sect. 4.3 show that properly estimating the initial
guess for the different snow properties is crucial to accurately
retrieve SWE using the MCMC approach. In an operational
context, computation efficiency is important. This is why a
proper prior is important (Fig. 9) to improve the accuracy
of SWE estimates but also reduce the number of iterations
needed for the MCMC method to converge to a solution.
Again, in an operational context over various landscapes, as
seen in Canada, it is important to rely on snow modelling
such as what SVS2 can provide, in order to spatialize the pri-
ors but also allow them to evolve in time, thus adapting the
priors in both space and time.

That said, we have seen that the higher uncertainty on
the SSA estimates (Fig. 5) makes it challenging to use di-
rectly the SVS2 estimates as priors. Same observation is true
for the density of the R layer (Fig. 4), where the density is
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strongly underestimated, making it more difficult for MCMC
to converge to a realistic solution. These higher uncertain-
ties mainly come from the fact that Crocus, the snow phys-
ical model implemented in SVS2, was originally developed
to simulate alpine snow. Ongoing work will implement new
snow physical processes in Crocus, and improve the mod-
elling of vertical physical processes for the different climates
observed in Canada.

This study has shown that, even though the priors may
have higher uncertainties, it is still possible to retrieve SWE
within the 30 mm RMSE threshold (Fig. 10) set for TSMM.
The proposed improvements above, supported by results of
Sect. 4, should provide a more efficient and accurate retrieval
algorithm that could be applied to a large and diverse land-
scape, such as Canada. This study is the initial step to creat-
ing a SWE retrieval algorithm that can be applied both spa-
tially and temporally. The validation done here, in an Arctic
environment, will be reproduced in other global climates, and
will be used to further enhance the SWE retrieval algorithm.

6 Conclusions

This study uses the previously published Trail Valley Creek
(TVC) experiment 2018/19 dataset (Montpetit et al., 2024) in
order to developed a snow water equivalent (SWE) retrieval
method inspired by previous work using the Markov Chain
Monte Carlo (MCMC) method (Pan et al., 2024). The heart
of the retrieval algorithm relies on the Snow Microwave Ra-
diative Transfer (SMRT) model (Picard et al., 2018) which
allows to minimize a likelihood function between the mea-
sured and modelled backscatter measurements at Ku-band
(13.25 GHz). Here, the measured ¢° come from the Uni-
versity of Massachusetts instrument mounted on board a
Cessna-208. The retrieved SWE and layered snow properties
from the MCMC method were compared with field measure-
ments surveyed during the 2018/19 TVC experiment.
Compared to previous studies retrieving SWE under dry
snow conditions using the MCMC method, here we neglect
certain snow parameters like snow temperature, which do
not have a significant impact on radar backscatter radiative
transfer modelling (Picard et al., 2018). This study focuses
on retrieving snow properties and uses the retrieved under-
lying soil properties needed for radiative transfer modelling
from Montpetit et al. (2024). We also show that, in order to
create an efficient SWE retrieval algorithm applicable to var-
ious climates and landscapes, the new version of the land
surface model used in support of environmental forecasting
at Environment and Climate Change Canada, Soil Vegetation
Snow version 2 (SVS2) (Woolley et al., 2024; Garnaud et al.,
2021; Vionnet et al., 2022) can be used to generate prior dis-
tributions for the MCMC method. This is crucial for future
satellite missions such as the Terrestrial Snow Mass Mission
(TSMM). Given the results shown in this study, we should
also expect that by allowing the priors to evolve in time
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and space, given the dynamic seasonal evolution of weather
and snow conditions, a reduced number of iterations will be
needed for the MCMC method to converge to a solution, thus
improving computation efficiency. Since the SWE retrieval
algorithm optimizes 3 x N parameters simultaneously, where
N is the number of snow layers present in the snowpack,
we also implemented the snowpack layer reduction method
published by Meloche et al. (2025) to improve computation
efficiency, which reduces the number of layers to a relevant
number, i.e. a rounded grain (R) wind slab snow layer with
an underlying coarse depth hoar (DH) snow layer (Montpetit
et al., 2024).

Even though the SVS2 outputs do not reflect perfectly
the measured snow height (Hgpow), sSnow density (psnow) and
Specific Surface Area (SSA) during the 2018/19 TVC exper-
iment (Sect. 4.1), it is possible to increase the uncertainty on
the prior distributions for the known snow properties to have
higher errors in order to retrieve SWE accurately (Sect. 4.3).
These are also known limitations of the Crocus model for
Arctic snowpacks and work is ongoing to improve the model
to better represent modelled snow properties over various cli-
mates. This work also indicates that land surface models like
SVS2 and radar measurements can work together to mutually
improve their accuracies. This is part of the TSMM concept
where SVS2 and the radar measurements will work together
with a data assimilation scheme to mutually improve their
estimates, particularly in remote regions with little observa-
tions (Derksen et al., 2019).

It was shown that it is important to have priors that re-
flect typical values observed in the field and to constrain the
inter layer valid properties (e.g. SSAr > SSApp), since the
MCMC tends to optimize parameters that influence the radar
o0 the most. This can lead to a better SWE estimate (Table 2)
but with a very different retrieved vertical snow profile com-
pared to measurements (Fig. 11). This has significant impacts
for many hydrological applications which require stratified
snow properties (Cristea et al., 2022), and could also impact
numerical prediction systems which uses retrieve snow prop-
erties in their data assimilation scheme (Alonso-Gonzalez
et al., 2022).

It was also shown that the best improvement to SWE ac-
curacy and uncertainty was to include more o¥ observations,
where the different observations are more or less sensitive
to either surface or volume scattering. This was achieved
here by including observations at various incidence angles.
A SWE RMSE of 15.8 mm was achieved when including
four observations and a larger uncertainty on SSA, allow-
ing MCMC to more rapidly sample values included within
the measured distributions. This result confirms assump-
tions used to develop EO missions to retrieve SWE such as
CoReH20 (Rott et al., 2010), and TSMM (Derksen et al.,
2019), where dual-frequency and dual-polarization concepts
are put forward, giving four observations for a single satellite
pass. The higher frequency in the dual-frequencies and the
cross-polarization term ensures a higher sensitivity to snow
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volume where the lower frequency and the co-polarization
term ensures a higher sensitivity to surface scattering proper-
ties such as the snow-soil interface.

Work is still required in order to operationalize SWE re-
trieval algorithms such as the one proposed in this study, but
it confirms, along with previous studies (Singh et al., 2024;
Pan et al., 2024; Durand et al., 2024; Lemmetyinen et al.,
2022), the feasibility of such EO missions.
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