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Abstract. Accurate Snow Water Equivalent (SWE) estima-
tion is significant for understanding global climate change,
surface energy balance, and regional water cycles. However,
although many studies have examined the inversion of SWE
using active and passive microwave remote sensing, it re-
mains challenging to assess its global distribution with suf-
ficient temporal and spatial resolution and accuracy. Inter-
ferometric Synthetic Aperture Radar (InSAR) has become a
promising technique for SWE change estimation, which is
limited by the optimal radar frequencies and revisit inter-
vals that have not been available until recently. In this study,
12d Sentinel-1 C-band InSAR data from 2019 to 2021 are
used to retrieve ASWE (SWE change in one InSAR pair)
and cumulative SWE in the Altay region of Xinjiang, China.
The correlation between the retrieved ASWE and in-situ ob-
servations reaches R =0.56, with a low RMSE of 9.54 mm
(n = 152) throughout the two whole snow seasons, with val-
ues of R =0.58 and RMSE of 10.1 mm for 2019-2020, and
R =0.48 and RMSE of 8.6 mm for 20202021, respectively.
These results are obtained by filtering wet snow. Heavy
snowfall leads to decorrelation and phase unwrapping errors,
which affect ASWE retrieval and are propagated into cumu-
lative SWE. Validation of the cumulative SWE after remov-
ing wet snow yields an RMSE of 40.9 mm, which improves
to 28.3 mm when high-elevation stations with unwrapping er-
rors due to heavy snowfall are also excluded. InSAR-derived
cumulative SWE time series show consistency with ground

observations at some stations, though slight overestimations
and underestimations are observed due to error accumula-
tion. Various factors combined with validation results show
that higher coherence, lower air temperature, and reliable
snow density improve the retrieval accuracy. The proposed
coherence-weighted least squares phase calibration method
demonstrates that selecting at least half of the available in-
situ ASWE stations for calibration yields reliable ASWE es-
timates, although including more points can further improve
the robustness. Calibrating only the integer multiples of 27
provides reasonable accuracy, but is still inferior to the full
calibration method, indicating that residual modulo 2 phase
has a noticeable contribution to the final inversion accuracy,
which highlights that phase calibration plays a key role in
the accurate ASWE retrieval. This study provides a valuable
reference and processing prototype for applying 12 d revisit
Sentinel-1 and future NISAR InSAR data to SWE monitor-
ing.

1 Introduction

Snow significantly influences the balance of surface radia-
tion energy due to its high albedo, thermal insulation prop-
erties, and heat absorption during melting periods (You et
al., 2020). These characteristics make snow an essential in-
dicator of the global climate system (Aguirre et al., 2018).
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Snowmelt is a crucial source of water resources to billions of
people worldwide (Barnett et al., 2005). Snow water equiva-
lent (SWE) is defined as the height of liquid water that would
be produced if a snow column of a specified thickness com-
pletely melts into water. SWE is a crucial input parameter in
hydrological processes, ecological models, and climate sys-
tem models (Derksen et al., 2010). It also plays a key role
in the energy transfer process between soil and atmosphere.
However, evaluating the global distribution of SWE with ad-
equate temporal and spatial resolution and accuracy remains
challenging.

Passive microwave (PM) remote sensing, based on the mi-
crowave emissions from snowpack (Foster et al., 1997), is
currently the main method of retrieving daily spatiotempo-
ral information on SWE at a large scale. This method will
become saturated for SWE larger than 150 mm, which lim-
its their use in mountainous areas. Many research has been
conducted using passive microwave remote sensing to esti-
mate snow depth and SWE (Takala et al., 2011; Dai Liyun
et al., 2012; Tedesco and Jeyaratnam, 2016). While satellite-
based passive microwave remote sensors have provided valu-
able insights for global estimation of cryospheric snow depth
(SD)/SWE, they have limited spatial resolution, typically at
the 10 km level. Although a large amount of efforts have pro-
vided accurate SWE products using PM observations, ex-
isting SWE products still do not meet the minimum accu-
racy requirements for hydrological applications (Brown et
al., 2018).

Active microwave (radar) has shown stronger applicability
in basin-scale snow research due to its high spatial resolution
(tens of meters typically) and sensitivity to snow parameters
(Storvold et al., 2006; Shi and Dozier, 1996; Thakur et al.,
2012). This technique relies on backscattering from the vol-
ume scattering of snow. Higher frequencies (Ku and X-band)
have been used to estimate SWE (Rott et al., 2010; Yueh et
al., 2009; King et al., 2018; Zhu et al., 2021). However, a
single parameter retrieval of SWE is challenging. This is be-
cause radar backscatter depends on multiple factors, such as
snow density, snow depth, liquid water content, stratigraphy,
grain size, and soil/vegetation conditions, as well as system-
atic factors (frequency and polarisation). Moreover, snow mi-
crostructure parameters are hard to assess over a large scale
(Rutter et al., 2019).

Recently, repeat-pass Interferometric Synthetic Aperture
Radar (InSAR) offers a promising approach to obtaining
SWE change at high spatial resolution and accuracy (e.g.,
15mm at L-band, 3.75mm at C-band) by capturing radar
phase changes. The method for retrieving SWE using InNSAR
was first proposed by Guneriussen et al. (2002). A key advan-
tage of this approach is that low-frequency signals are hardly
affected by snow stratigraphy, and knowledge of snow mi-
crostructure is not required (Yueh et al., 2017). Subsequently,
the technique was applied under various conditions, includ-
ing a range of frequencies, temporal baseline pairs, and dif-
ferent acquisition platforms. It was applied to C-band space-
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borne repeat-pass InSAR datasets from ERS with a short
temporal baseline of 3 d which was conducted on the Aus-
trian Alps (Rott et al., 2003) and the North Slope of Alaska
(Deeb et al., 2011). The C-band spaceborne repeat-pass In-
SAR datasets from Sentinel-1 with a 6 d revisit during win-
ter over Idaho were applied to retrieve SWE (Oveisgharan
et al., 2024). The higher frequency X/Ku-band was explored
using dense time series from a ground-based radar (Leinss
et al., 2015). Demonstrations of low-frequency L-band were
based on a variety of airborne InSAR data, such as a 4-month
dataset from DLR’s E-SAR (Rott et al., 2003), 12d pairs
from NASA/JPL’s UAVSAR (Marshall, 2021), and 8 d tem-
poral baselines also from UAVSAR (Hoppinen et al., 2024).
Additionally, temporal baselines ranging from 5 to 20 d were
analyzed from UAVSAR pairs in forested areas (Bonnell et
al., 2024). Spaceborne L-band, 4-month InSAR pairs from
ALOS-2 were examined over regions with sparse vegetation
(Lei et al., 2023). In the Altay region of Xinjiang province,
China, available historical L/C-band InSAR datasets (e.g.,
JAXA’s ALOS, ESA’s Sentinel-1, and China’s Lutan-1) were
utilized to produce SWE change products (Lei et al., 2024).
These investigations demonstrate that low-frequency radar
signals, combined with shorter revisit times, can enhance
penetration and reduce temporal decorrelation. This makes
them particularly suitable for monitoring SWE in areas with
frequent snowfall. Nevertheless, the limited availability of
satellite observations with suitable frequencies and temporal
baselines causes a challenge to the widespread application of
this technique.

At present, Sentinel-1 data with a 6d revisit period and
InSAR method have been used to retrieve SWE in Idaho,
USA, and good results have been obtained (Oveisgharan et
al., 2024). However, the use of spaceborne data and the In-
SAR method for SWE retrieval has not been widely exam-
ined. In most regions globally, only a 12 d revisit period of
Sentinel-1 data can be achieved (Kellndorfer et al., 2022).
The retrieval performance under a 12 d revisit period with C-
band spaceborne data has not been well studied. In this study,
we evaluated the performance of SWE retrieval over Altay
using interferometry based on 12d C-band Sentinel-1 data.
In Sect. 2, we introduce the study area and dataset used. Sec-
tion 3 describes the methodology we use, which shows how
we processed Sentinel-1 data and retrieved it to SWE. Sec-
tion 4 introduces the comparison between the retrieved SWE
with in-situ data, followed by factors that may influence the
results in Sect. 5. At last, the conclusions are provided in
Sect. 6.

2 Study Area and Datasets
2.1 Study Area

Altay Prefecture (44°59'35"-49°10'45" N, 85°31'57"-
91°01'15” E) of Xinjiang province is situated in north-
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western China, covering a total area of approximately
118 000 km?, bordering Kazakhstan, Russia, and Mongolia.
Altay Prefecture is one of the regions with rich seasonal
snowmelt water resources, providing snow water resources
for these four countries. The average annual snow depth
is approximately 40cm, with a maximum of over 70cm
(Dai et al., 2022). The period of snow accumulation and
ablation typically occurs from October to late April or early
May, spanning roughly 6—7 months. The snow density is
small, with a typical value of 0.2 gcm™3 (Yue et al., 2017).
The region has a temperate continental climate, featuring
short, warm summers and long, cold, snowy winters, with
a mean annual temperature of 0.7-4.9 °C (Fu et al., 2017).
The terrain is low in the southwest and high in the northeast
(Fig. 1). In Xinjiang, China, the Altay region exhibits
varied topography, with elevations exceeding 3000 m in the
northeast, 700-800 m in the central part, and about 600 m in
the southwest. The core study area spans 47.5-48.5° N and
87.5-89.5°E, covering roughly 110 x 150 km.

2.2 Datasets
2.2.1 Sentinel-1

The European Space Agency’s (ESA) Copernicus Sentinel-1
mission began in 2014 with the launch of Sentinel-1A on 3
April 2014, followed by Sentinel-1B on 25 April 2016. Each
satellite has a 12d repeat cycle. They orbit 180° apart, to-
gether imaging the Earth every 6d but only in limited re-
gions, which are predominantly over Europe (Kellndorfer et
al., 2022). Sentinel-1 supports dual polarization and deliv-
ers products quickly. The data can be freely accessed from
the Alaska SAR Facility (ASF, https://search.asf.alaska.edu/,
last access: 28 October 2025). The Sentinel-1 radar oper-
ates at C-band (5.405 GHz) and offers four imaging modes.
These modes vary in resolution, reaching as fine as 5m,
and cover up to 400 km. The operational mode used in this
study is the Interferometric Wide swath (IW) mode, which
operates as TOPS mode, offering a large swath width of
250km with a ground resolution of 5 x 20 m in range and
azimuth, respectively (Torres et al., 2012). Hence, a 15 x 5
(range x azimuth) multilooking is applied, resulting in a final
resolution of 75 x 100 m. For this study, Sentinel-1 Single
Look Complex (SLC) data is collected over the Altay region.
19 scenes were acquired every 12d from 5 September 2019
to 8 April 2020, and 18 scenes from 11 September 2020 to
3 April 2021. All data correspond to a descending flight di-
rection with an overpass time of approximately 00:13 UTC,
with the local Beijing time being 08:13 (UTC+8), path 19,
frame 434.

2.2.2 In-situ snow observations

The observation data of snow parameters, including snow
depth and SWE, is collected from in-situ sites established by
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the Altay Meteorological Institute and from our own estab-
lished observation stations. A total of 15 sites are available
from 2019 to 2021. These sites are primarily situated in flat
areas to minimize the influence of surrounding vegetation.
Among these sites, only two measure SWE using snow pil-
low, while the remaining 13 sites measure snow depth. Snow
depth sites use lasers, or a combination of snow poles and
time-lapse cameras. The snow depth obtained by laser is au-
tomatically obtained with a shorter interval of 10 min or 1 h.
However, the snow depth of the photographic snow observa-
tion station needs to be read manually with a slightly longer
interval of 3—4 h. The locations and environments of the snow
depth measurement sites using snow poles and cameras are
shown in Fig. 2. SWE data are collected less frequently (ev-
ery 3-7d). For validation, snow depth observations nearest
to satellite overpass times are converted to SWE using snow
density from ERAS5-Land hourly data.

2.2.3 Auxiliary data

In this study, the auxiliary data are acquired for the following
purposes: snow density is utilized to compute SWE for mul-
tiple snow depth (SD) stations, air temperature data support
subsequent analysis, and digital elevation models (DEMs)
along with precise orbit data are necessary for the InSAR
processing of Sentinel-1 SLC data.

ERAS5-Land hourly data is a reanalysis dataset (https:
/lcds.climate.copernicus.eu/datasets/reanalysis-era5-land?
tab=overview, last access: 28 October 2025) providing
a consistent view of the evolution of land variables over
several decades, with enhanced spatial resolution compared
to ERAS. The data are freely available through Climate Data
Store. In this study, we obtain ERAS air temperature and
snow density data for our study area at 00:00 UTC, which
is the closest available time to the Sentinel-1 overpass at
00:13UTC. Air temperature is defined at 2m above the
surface and is calculated by interpolating between the lowest
model level and the Earth’s surface, taking atmospheric
conditions into account. Temperature values in Kelvin can
be converted to degrees Celsius (°C) by subtracting 273.15.

Snow density is derived from the ECMWF Integrated
Forecast System (IFS) model, which represents snow as a
single additional layer over the uppermost soil level. No-
tably, ERAS5-Land snow density has a horizontal resolution
of 0.1° x 0.1° (~ 9 km), which is much coarser than the spa-
tial resolution of Sentinel-1 InSAR data (tens of meters) used
for SWE inversion. This spatial scale mismatch implies that
ERAS-Land snow density represents average conditions over
large areas and may not capture the fine-scale variability cap-
tured by InSAR. Therefore, in addition to potential uncer-
tainties in the ERAS-Land snow density data itself, this mis-
match can introduce errors when using ERAS snow density
for in-situ SWE calculation.

For Sentinel-1 SLCs’ InSAR process input data, digi-
tal elevation models (DEMs) and precise orbit data are ac-
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Figure 1. Location of study area, including 15 in-situ snow station points.
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Figure 2. In-situ snow depth observation sites using depth poles captured by the camera. There are several typical kinds of land cover,
including valley sites: (a) Xiaodong and (g) Dachonggou, conifer forest in the shade aspect hill: (b) Hongfugiao, plain sites: (¢) Wuxilike-
Muban, (d) Wuxilike, (g) Jiayilemacun and (h) Wuzhighuan. Panel (h) shows these sites’ locations in the study area.
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quired from Shuttle Radar Topography Mission (SRTM)
DEM and the ASF (https://s1qc.asf.alaska.edu/aux_poeorb/,
last access: 28 October 2025), respectively.

3 Methodology

To achieve the goal of assessing the performance of 12d
Sentinel-1 C-band InSAR for monitoring SWE changes in
the whole dry snow season, a series of components is de-
scribed, including the theory of SWE retrieval from inter-
ferometric phase, data processing procedures, and the phase
calibration method. In particular, Sect. 3.1 explains the the-
ory of InSAR-derived SWE. Section 3.2 describes the work-
flow of stack processing Sentinel-1 SLCs to generate the in-
terferometric phase of nearest neighbour dates, then process-
ing of InSAR phases to produce a time series phase changes
after correction of atmospheric delay and DEM error, and
finally converting the phase change to SWE change. Sec-
tion 3.3 introduces the in-situ SWE processing method. Sec-
tion 3.4 provides the phase calibration method for InSAR-
derived SWE change by using in-situ measurements for cal-
ibration.

3.1 Relationship between ASWE and A¢

The InSAR SWE retrieval method considers the signal pene-
tration through the snow layer to the ground. The primary
backscattering contribution from dry snow-covered terrain
originates from the snow—ground interface, while the vol-
ume scattering effect on the interferometric phase is negli-
gible, as confirmed by ground-based experiments (Matzler,
1996). The complex permittivity properties of snow, which
are strongly dependent on the liquid water content, govern
the propagation of radar waves in snow. At C-band, dry snow
has a typical penetration depth of 20 m (Matzler, 1996; Rott
etal., 2003), while wet snow with liquid water content is lim-
ited to a few centimeters due to a prominent rise in imaginary
part of permittivity as water content increases.

The real parts of the complex permittivity & is a function
of snow density as shown in Eq. (1) (Matzler, 1996):

g5 =14 1.60p, + 1.86p] (1)

where p; is expressed in gcm ™.

Because snow has a different dielectric constant from air,
radar waves undergo refraction as they propagate through
a snow layer. When comparing the optical path lengths of
radar waves without and with snow conditions, a path delay
can be observed. The delay arises from the change in opti-
cal path length, given by n -s (where n is the refractive in-
dex and s is the geometric path length), caused by refraction
within the snowpack and the reduced propagation velocity
of radar waves in snow compared to air. The signal delay
can be derived from the geometry path illustrated in Fig. 3.
For conditions without snow, the radar wave travels the dis-
tance CA, while for snow-covered conditions, the distance
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Air

Eair

AZg

A Ground

Figure 3. Propagation path of radar wave through atmosphere with
snow-free and snow-covered ground for a fixed pixel. 6 is the in-
cidence angle, 65 is the refracted angle in snow, &g is the real part
of the permittivity of the snow, ,;j, is the real part of the permittiv-
ity of the air, and AZs is the increase in snow depth between the
snow-free and snow-covered ground images.

is DE 4 EA. Furthermore, this path delay also occurs when
there is a change in snow depth AZ;, between two measure-
ments, with the delay being proportional to AZ;. This delay
in path length induces a differential interferometric synthetic
aperture radar (DInSAR) phase difference, which can be cor-
related with the change in snow depth.

The relationship between change in SWE (ASWE) and
the differential interferometric phase shift (A¢), following
Guneriussen et al. (2002), can be expressed based on the ge-
ometric configuration in Fig. 3 as:

Ap = —2k; - AZg (cose —\Jes— sin29> )

Leinss et al. (2015) derive a nearly linear dependence be-
tween ASWE and A¢ by approximating the snow density
dependent permittivity term from Eq. (1) into Eq. (2) and
using a Taylor expansion under low density and small inci-
dence angle assumptions, leading to the simplified expres-
sion in Eq. (3):

o 5
A¢=2k,~~§<1.59+9§)-ASWE 3)

where A¢ is the interferometric phase, ASWE is the SWE
change, and the wavenumber is defined by k; = 2T” with A
being the central wavelength of the radar. The incidence an-
gle at the air-snow interface is given by 6. The optimal « is
close to 1 for common incidence angles (< 50°). We utilize
Eq. (3) to retrieve SWE, with the parameter « set to 1 in this
study.

The main advantage of this method is its simplicity and a
reduced reliance on a priori information. However, its appli-
cation is constrained by several factors: (1) temporal decor-
relation (Zebker and Villasenor, 1992; Jung et al., 2016; Lee
et al., 2013), which is particularly critical for C-band data
with a 12 d revisit cycle and can be severe over vegetated ter-
rain; (2) the phase unwrapping problem (Engen et al., 2003;
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Rott et al., 2003; Leinss et al., 2015), which occurs when the
SWE change is about larger than 30 mm in our cases (2w
phase change corresponds to 30 mm SWE change); and (3)
signal attenuation in wet snow, which limits the method to
dry snow conditions (Storvold et al., 2006).

To improve the reliability of the inversion results, data cor-
responding to wet snow conditions were filtered out during
the validation process on a per-site basis. Wet snow at the
current observation site is identified based on any of the fol-
lowing criteria:

a. air temperature is above 0 °C at the current site for any
acquisition date of the interferometric pair;

b. after 1 February, if the coherence between two consec-
utive interferometric pairs drops by more than 0.3 at the
current site, the second interferometric pair and all sub-
sequent points for that site are excluded;

c. the coherence of the interferometric pair is below 0.35
at the current site.

3.2 Sentinel-1 interferometric phase processing
methods and procedures

The InSAR stack processing is performed using the
NASA/JPL’s open-source software ISCE2 (https://github.
com/isce-framework/isce2, last access: 28 October 2025)
along with the time series tool MintPy (https://github.com/
insarlab/MintPy, last access: 28 October 2025). As shown in
Fig. 4, the workflow consists of three main blocks: (i) In-
SAR stack processing for Sentinel-1 TOPS data using ISCE
(Fattahi et al., 2016), (ii) InSAR time series analysis from a
stack of unwrapped interferograms to phase time-series us-
ing MintPy (Yunjun et al., 2019), and (iii) phase calibration
and SWE inversion.

In the first stage, after the co-registration, filtering, and
phase unwrapping procedures, stacks of all secondary single-
look complex (SLC) images are co-registered to the refer-
ence SLC. A coregistered stack of SLCs are produced, and
the burst interferograms are merged. Merged interferograms
are multilooked, filtered and unwrapped. A multi-look aver-
aging of 15 x 5 (range x azimuth, similar to the following)
is applied to 37 SLC data scenes, resulting in a ground reso-
lution of 75 x 100 m. The SNAPHU algorithm is chosen for
phase unwrapping in ISCE2.

In the second stage, the outputs from the first stage are
processed to generate a corrected phase time series, which
is then geocoded. Errors in phase unwrapping, tropospheric
delays, and topographic residuals are corrected. The tro-
pospheric delay correction uses the PyAPS method (https:
//github.com/insarlab/Py APS, last access: 28 October 2025),
which estimates differential phase delay maps based on
ECMWEF’s ERA-5 data. To prevent the removal of long-term
trends that may impact SWE inversion, the deramp step in
MintPy is not used in our study.
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In the third stage, the phase time series is calibrated using
in-situ ASWE measurements. After calibration, the corrected
phase measurements are used to derive ASWE. The details
of the phase calibration method are provided in Sect. 3.4.

3.3 In-situ SWE processing method

In-situ snow ground observations consist of measurements of
snow depth and SWE.

To ensure spatiotemporal consistency with satellite over-
passes, snow depth data recorded closest to the satellite ob-
servation time are selected (00:00 UTC, 08:00 Beijing local
time). When minor gaps exist in the snow depth time series
on the required dates, missing values are filled by averag-
ing observations from adjacent available dates. Subsequently,
snow density from the ERA5-Land dataset corresponding to
the same location and time is extracted. SWE is then esti-
mated by multiplying the snow depth by the corresponding
ERAS5-Land snow density.

For SWE data obtained from snow pillow observations,
which are generally reliable but recorded every few days,
daily interpolation is required. A direct average from adja-
cent days cannot be applied due to the relatively long ob-
servation intervals. Therefore, daily ERA5-Land SWE data
closest to the satellite observation time are used as a refer-
ence. A least squares fitting method is applied to determine a
scaling factor that brings the ERAS5-Land SWE values closer
to the in-situ observations. The scaled ERA5 SWE data are
then used to interpolate the in-situ SWE observations through
a fifth-order polynomial fitting. This approach enables the
construction of a continuous daily SWE time series, ensuring
a daily dataset aligned with the satellite’s 12 d revisit cycle.

3.4 Phase calibration based on in-situ SWE

InSAR phase measurements are relative and must be cali-
brated to remove the unknown scene-wide phase offset. Sev-
eral factors contributing to phase offset: integer multiple of
27, data processing (focusing, range gating), DEM residual
error, unwrapping error, atmospheric (troposphere and iono-
sphere) phase delay, systematic phase calibration error. In ge-
ographical applications of InSAR, the reference point used
for calibration is typically chosen such that the displacement
remains unchanged or is known between the two image ac-
quisitions. For ASWE retrieval using InSAR, previous stud-
ies have suggested two strategies: using corner reflectors with
snow always being cleaned, which offer a stable zero-phase
reference point (Nagler et al., 2022; Dagurov et al., 2020) or
using the average of in-situ ASWE measurements (Conde et
al., 2019; Oveisgharan et al., 2024).

In our case, it is difficult to identify a fixed phase reference
point because snow accumulation and ablation affect the en-
tire scene, and corner reflector deployment is labor-intensive.
Therefore, we follow the second strategy and use all avail-
able in-situ stations for calibration rather than a subset. Us-
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Figure 4. Flow chart of the time series InSAR Processing procedures.

ing a larger number of spatially distributed stations reduces
random errors and minimizes potential biases introduced by
individual stations. This approach ensures a more stable and
unbiased calibration of the InSAR-derived ASWE. At the
same time, our method differs from previous studies in one
aspect: instead of directly calibrating the retrieved ASWE
using in-situ observations, we use all available in-situ SWE
measurements to calibrate the interferometric phase itself.
The calibrated phase is then used in the ASWE retrieval. If
local incidence angles are taken into account, a scene-wide
phase offset produces different ASWE offsets at each site.
Therefore, applying a single ASWE calibration to the en-
tire scene is not suitable, and calibrating the phase directly
is more appropriate, reducing incidence-angle-related uncer-
tainties and improving the robustness of the ASWE esti-
mates.

3.4.1 Phase calibration method

Based on this strategy, we formulate the calibration of the
interferometric phase using in-situ SWE observations. For a
single InSAR scene, the phase calibration equations can be
expressed from Eq. (3) as follows:

o 5
A¢—C=2ki~§<l.59~|—9§>-ASWE &)
where C is the phase calibration constant for the interfer-

ogram, which includes both the integer multiple ambigu-
ity of 27 and residual phase as mentioned in Sect. 3.4. Let

y=2ki-3 (1 S59+6 %> - ASWE, where y represents the cal-
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culated interferometric phase from in-situ ASWE measure-
ments. In the following, we present the application of our
phase calibration method in three representative cases: (a)
a single InSAR scene, (b) multiple non-redundant InSAR
scenes, and (c) redundant InSAR scenes (simple example).

(a) A Single InSAR Scene

Suppose there are m in-situ SWE observations at different lo-
cations within a single InSAR scene. This can be formulated
as:

y=A¢+AC 5)
where y=( y1 » Ym )T is an m x 1 vector of cal-
culated interferometric phases from in-situ data, with each el-
ement y; corresponding to the ith in-situ SWE measurement;
A= (A1 Ag Agp, )T is an m x 1 vector of mea-
sured interferometric phases from this InSAR pair, with A¢;
denoting the observed interferometric phase at the location of
the ith in-situ measurement; A= ( —1 —1 -1 )T
is an m x 1 design matrix.

To estimate the phase calibration constant C, we employ
a coherence-weighted least squares approach. Then the op-
timal coherence-weighted least squares coefficients for this
single InAR scene is

. 2 vi (Agi—yi)
¢ = (ATWA) ATW(y—ag) =" (6)
DV

i=1
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where W = diag(yy, 2, . - ., Ym) 1s an m x m diagonal weight
matrix based on coherence values y;, with y; representing
the coherence value at the ith measurement location. This
formulation assigns a larger weight to phases derived from
locations with higher coherence, enhancing the robustness of
the calibration.

(b) Multiple Non-redundant InSAR Scenes

We now extend the phase calibraton method to the case of
N (N > 1) non-redundant interferometric pairs. Each pair re-
quires estimation of a distinct phase calibration constant Cj,.
For the nth (n=1, 2, ..., N) interferometric pair, let m, de-
note the number of in-situ SWE observations, which may
vary from pair to pair. Let A¢,, and y, represent the
my, X 1 vector of observed interferometric phases and the cor-
responding in-situ calculated interferometric phases for the
nth pair, respectively. Bold represents vector (lower case) and
matrix (capitalization).

The equations for all pairs can be expressed in

matrix form identical to that of Eq. (5): where
y=( Y, Ym, Yy )T is an m x1 vector of
N

stacked calculated interferometric phases, with m = Y m;;

i=1
T .
A([):(Aqul Ad,, Ad,,, )m><1 is an mx1
vector of

stacked measured interferometric phases;
c=(C & Cn )T is an N x1 vector of
calibration constants; A = blkdiag(v,,;,, Vp,, ..., Umy) 1S
an m x N block-diagonal design matrix, where each block

T.
v, =( -1 -1 —1 )" isanm, x 1 vector.

Vi, 0 0
0 vy O :
A= 0 v, @)
: : : .0
0 . o 0 vy SN

The coherence-weighted least squares estimate of C is given
by:

¢ = (ATWA>_1ATW(y —A) 8)

Where W is an m x m block-diagonal weight matrix con-
structed from the coherence values y of all measurement
points:

W = blkdiag(Wy,,, Wiy, ..., Winy)
Wn, O B
0 Wi,y 0
=+ 0 w. .. ©)
: : ; 0
0 e 0 Wy
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And each diagonal block w,,, is an m, x m, matrix:

Wi, = diag(y1, v2, -+ Ym,)
yr 0 ... ... O
0 » 0 :
=l : 0 n (10)
N 0
0 ... ... 0 v,

My X my,

Each interferometric phase image is calibrated based on its
estimated é,, (n=1,2,3,..., N). The coherence-weighted
least squares method provides an unbiased estimate of C.
Specially, when only nearest without redundant InSAR pairs
are considered, A is a block-diagonal matrix with v,,, blocks
that are being independent; thus, the solutions to each C, can
be derived separately. In this scenario, for the nth InSAR pair,
the estimated C,, represents the coherence-weighted average
value of all calibration parameters at different locations:

-1
5 _ (T T
C, = (vmnwmn vmn) Uy Win, Xm,,

Y v (Agi — i)
=t (11)

my

D Vi
i=1

Note that up to this equation, the coherence-weighted
least-squares solution is strictly equivalent to calibrating each
interferogram individually, and the matrix formulation does
not provide additional benefit unless redundant interfero-
grams are involved.

In this study, only the nearest InSAR pair is considered
because the temporal baseline in our study is already 12d,
which is relatively long compared to the rate of snow varia-
tion. Therefore, we adopt the non-redundant multi-pair ap-
proach described in this method. Using longer baselines,
such as 24 or 48d, is less advantageous for phase un-
wrapping. However, if shorter temporal baseline data be-
come available in the future, redundant interferometric pairs
should be considered. In that scenario, the design matrix A is
no longer block-diagonal, and the coherence-weighted least
squares solution from Eq. (8) instead of Eq. (11) must be ap-
plied.

(c) Redundant InSAR Scenes: A Simple Example

To illustrate the case of redundant interferometric pairs, con-
sider a sequence of n SAR acquisitions. Then, n — 1 adja-

cent interferometric pairs can be formed.The number of all
possible interferometric pairs is = @ For sim-

plicity, we examine a three-scene case (1st, 2nd and 3rd),
which yields three combinations of interferometric pairs.
The calibration constants satisfy the relation theoretically
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C13 = C12+ C23, where C;; denotes the calibration param-
eter for the interferogram formed from the ith and jth SAR
acquisitions.

In this case, let Ag;; and y;; be the m;; x 1 vectors of
the observed interferometric phases and the phases calcu-
lated from in-situ SWE measurements, respectively, for the
pair (7, j). Note that m;;, the number of in-situ SWE obser-
vations, may differ for each pair. The phase calibration can
be also expressed in the same form as Eq. (5) with the fol-
lowing definitions: M = m 2 +mo3+m3 is the total number
of observations; y =( y;2 Y23 Y13 );lxl is the stacked
vector of calculated phases; A = blkdiag(via, v23, ..., v(3) is
an M x 3 block-diagonal design matrix, where each block
Vij = ( -1 -1

T

(Cia Cx Ci3 )3X1 is the vector of calibration con-

stants; Ag=( Ad, A3 Ady3 )LX] is the stacked

vector of observed interferomtric phases.
Substituting those definitions into Eq. (5) yields the matrix
form:

Y12 vip O 0 Ci2
Y23 — 0 v 0 Cos
Y13 / mxi1 0 0 vz /yu3\ C13 /3

Ady,
+| A¢ys (12)
Ad13 )y

T .
—1 )" is an mjj x 1 vector; C =

Since C is a systematic calibration parameter, it follows that
C13 = C12 + Ca3. Substituting this constraint into Eq. (12)
can be rewritten as:

Yi2 v 0 Cir
y23 = 0 v ( Cos )
Y13/ mxi Vi V23 /o 2l
Agio
+| Ady (13)
Ad’13 Mx1

By incorporating the redundant interferometric pair Cj3
into the design matrix A, the number of equations for solv-
ing C increases, and the matrix becomes non-block-diagonal
with non-zero elements introduced in its off-diagonal re-
gions. As a result, the dimension of the parameter vector C
is reduced, while the forms of y and A¢ remain unchanged.
This demonstrates how redundancy can be exploited to im-
prove the estimation of calibration parameters in the presence
of multiple interferometric pairs.

3.4.2 Phase calibration using different numbers of
randomly selected in-situ stations

In Sect. 3.4.1, the calibration parameter for each interfero-
metric pair is estimated by coherence-weighted least squares,
where all available in-situ stations are used. In this section,
to validate the phase calibration method and to assess its per-
formance under different conditions, we test the calibration
using different numbers of in-situ stations.
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For each interferometer pair, only a subset of available in-
situ ASWE observations is used to derive the calibration pa-
rameter (calibration points), while the remaining stations are
reserved for validation only. Because the number of available
stations is relatively limited after removing missing observa-
tions or filtering wet snow (in our case, the maximum is 12),
we do not apply additional selection criteria (e.g., air tem-
perature, elevation). In particular, both the lowland (valley/-
plain) stations and the high-elevation mountain stations are
randomly selected for calibration and validation, without any
preference. Instead, a Monte Carlo random selection strategy
is adopted: from all available stations, a specified number (1,
2,...,upto9)is randomly chosen for calibration, and the re-
maining stations (at least three) are used for validation. This
random selection is repeated 100 times for each case, and the
statistics of these realizations are used to quantify the perfor-
mance. This procedure ensures a fair evaluation of how the
number of stations used for calibration affects the robustness
of the phase calibration and subsequent ASWE retrieval.

We note that, except for this specific analysis (Sect. 3.4.2)
and its corresponding validation results (Sect. 4.3.2), all other
retrieval results presented in this study are based on calibra-
tion using all available stations to ensure high reliability and
accuracy.

3.4.3 Partial phase calibration for the integer multiples
of 2

Besides testing the number of calibration points (Sect. 3.4.2),
we also examine the impact of partial phase calibration. The
calibration parameter (C) is considered to consist of two
components: the integer multiple of 27 and the residual part
less than 27. Three cases are tested to investigate the influ-
ence of different components of the calibration parameter on
the ASWE retrieval: no phase calibration, calibration using
only the integer multiple of 25, and calibration using the full
parameter. The second strategy means that only the integer
multiple of 27 within the calibration parameter is used, i.e.,
full calibration parameter subtracts its modulo 2. Specifi-
cally, if C is with (—m, ), C =0; if C < —m, it is replaced
by —2m; if C > m, it is replaced by 2z. This approach re-
moves the integer phase while ignoring the residual phase.

4 Results

This section shows the unwrapped phase and coherence of
each InSAR pair in two snow seasons firstly. Then the re-
trieved time series scene-wide cumulative SWE is described,
followed by the validation results, which compare retrieved
and in-situ ASWE, and then assess the impact of using differ-
ent numbers of calibrated points on validation accuracy. Fi-
nally, the validation of cumulative SWE and the comparison
between the in-situ and retrieved cumulative SWE at each
station are shown.
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4.1 Intermediate results of InSAR processing

During the InSAR processing (Sect. 3.2), some intermediate
results are obtained, including the unwrapped phase and co-
herence of each InSAR pair in two snow seasons, as shown
in Figs. 5 and 6. During the snow season, some InSAR pairs
show relatively high coherence, corresponding to the sub-
figures 7 to 10 in Fig. 5, and 6 to 11 in Fig. 6. These rel-
atively good interferometric pairs will be mentioned in the
subsequent validation of results in Fig. 11. The areas with
higher coherence correspond to places with more robust and
accurate unwrapped phases. Lower coherence corresponds
to more discontinuities in unwrapped phase distributions,
and more isolated areas appear in the connected components
identified during the unwrapping process. These areas may
increase the errors in the inversion results and result in ad-
verse effects.

Based on the SWE and air temperature time series changes
observed at the in-situ Wuxilike site (see Fig. 7), several pat-
terns can be identified for the snow season. As shown in
Fig. 7a, a snowfall event was recorded in September 2019,
but the corresponding interference pair dates (subplot O of
Fig. 5) correspond to the period before and after the snow-
fall, showing little impact on the interference pair by snow-
fall and snowmelt. Then, up until mid-October, no snowfall is
observed. During this time, changes in phase and coherence
are likely caused by atmospheric variations driven by gradu-
ally decreasing temperatures, as indicated in subplots 1 and 2
of Fig. 5, in which decorrelation and obvious changes in the
unwrap phase begin to occur. Snowfall starts in mid-October,
leading to a continuous increase in SWE. This results in a
large area of low coherence, primarily due to the impact of
snowfall, as shown in subplot 3 of Fig. 5. In early November,
temperatures rise above 0 °C, leading to a snowmelt process.
This causes coherence to remain low, as illustrated in sub-
plot 4 of Fig. 5. A similar low coherence remains in subplots
5 and 6 of Fig. 5, this is likely due to heavy snowfall events
and temperature fluctuations around 0 °C, causing an unsta-
ble snowpack state. The snowpack becomes more stable later
in the snow season, accompanied by consistently low temper-
atures, mainly around —10 °C. During this period, coherence
is relatively high, as shown in subplots 7 to 10 of Fig. 5. Af-
ter mid-February of the following year, rising temperatures
lead to a snowmelt process. The presence of wet snow sig-
nificantly reduces coherence, as illustrated in subplots 13 to
17 of Fig. 5.

We make a note here that, large snowfall events can cause
temporal decorrelation, leading to phase unwrapping errors.
Under this condition, the SWE retrieval method is not recom-
mended. For example, as shown in Fig. 7a, the cumulative
SWE increases by about 100 mm from 4 to 28 November
2019 over one of the high-elevation stations, which exceeds
the SWE changes detection limit (approximately 30 mm for
C-band, corresponding to a 27t phase change). This suggests
that phase ambiguity may occur. During this period, low co-
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herence is shown by dark areas in subplots 5 and 6 of Fig. 5,
which likely leads to unwrapping errors. These errors are vis-
ible as isolated unwrapped phase patches. Although our cal-
ibration constant is designed to estimate and remove scene-
wide phase bias (including integer multiples of 2r), local
unwrapping errors depend strongly on coherence and may
persist even after calibration. To mitigate such effects, un-
wrapping correction, multilooking, and filtering are applied
before calibration, which improves phase quality and mini-
mizes the practical impact of phase ambiguities.

The following year, a similar pattern is observed (Fig. 7b).
The coherence is low from mid-to-late September to late
November due to the snowfall and the air temperature, which
is not continuously below 0°C. Lower coherence corre-
sponds to larger unwrap phase changes. High coherence is
recorded during low temperatures and stable SWE, as shown
in subplots 6 to 11 of Fig. 6. In contrast, coherence decreases
during the final snowmelt period when temperatures rise, as
shown in subplots 12 to 16 of Fig. 6.

The decorrelation pattern in Figs. 5 and 6 (bottom panel) is
related to topography. As shown in the red area of Fig. 1, the
north-east region is characterized by relatively high eleva-
tions (above 2000 m), while the south-west part of the study
area is lower (around 1000 m) and relatively flat. The ob-
served north-west to south-east decorrelation coincides with
the higher-elevation regions, where the complex topography
likely contributes to reduced coherence. Moreover, the coher-
ence pattern may reveal human activities (e.g., human graz-
ing activities in September).

4.2 Spatiotemporal distribution in cumulative SWE

All of the time series retrieved ASWE are used to calculate
the retrieved cumulative SWE at each date from the start date
of our satellite’s observation date, which can be expressed as

1
SWE(#;41) = SWE(fp) + Z ASWE(t}, tj41) (14)

tj=to

where fy is the start date (5 September 2019 or
11 September 2020), SWE(#4+1) is the cumula-
tive (or absolute) SWE on the date of 41, and
ASWE(tj,tj4+1) = SWE(#j4+1) —SWE(#j). For  exam-
ple, the cumulative SWE at 20190929 (in yyyymmdd
format) is the summation of the cumulative SWE at the
initial date of 20190905, ASWE(20190905,20190917), and
ASWE (20190917,20190929).

Large spatial-scale cumulative SWE changes in the two
snow seasons at the Altay, every 12d, at a 75 x 100 m spa-
tial resolution, are mapped using InSAR and Sentinel-1 fol-
lowing the above InSAR processing (see Figs. 8 and 9).
A comparison of Figs. 8 and 9 show that the processes of
spatial variation for accumulated SWE in both the 2019-
2020 and 2020-2021 seasons are similar. In both seasons,
the SWE shows a gradual increase from September to the
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Figure 5. The unwrapped phase (top panel) and coherence (bottom panel) data from 5 September 2019 to 8 April 2020, every 12 d.

end of March. However, differences are also observed. In the
second year, the spatial extent of maximum SWE cumulation
was smaller than in the first year. Additionally, the location
and the range of the region where SWE reached its peak are
different between the 2 years.
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During the 2019-2020 snow season, SWE cumulation is
in a moderate pattern in the early months, from September
to November, SWE increases from 0 mm to approximately
50mm in general. As the season gets into late January, sig-
nificant cumulation is observed in areas A and B, located
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Figure 6. The unwrapped phase (top panel) and coherence (bottom panel) data from 11 September 2020 to 3 April 2021, every 12d.

at higher elevations, while the lower-elevation area C in the
southwest shows a relatively smaller increase. By the end of
March, SWE reaches its maximum spatial extent, with the
most notable cumulations still emerging in the higher eleva-
tions, areas A and B. This is also evident when comparing

The Cryosphere, 19, 5361-5388, 2025

Fig. 8(16) and Fig. 8(17), where the SWE values in Fig. 17
become larger and the area covered by higher SWE values
(red) expands. This increase is consistent with the in-situ
SWE measurements at the Wuxilike station during the same
period, as shown in Fig. 7a.
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Air Temperature and SWE Over Time at the Wuxilike station
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Figure 7. Observed time series in-situ SWE and air temperature change at the Wuxilike station from (a) 2019 to 2020 and (b) 2020 to 2021.
(The vertical black dashed lines correspond to satellite observation dates.)

A similar temporal process of SWE cumulation can be
found in the 2020-2021 season, though with differences in
the spatial variations. Early cumulation trends are similar to
those of the previous year, with SWE rising to approximately
50 mm by late November. However, uneven increases appear
across the study area from December to February, which may
be explained by the influence of meteorological conditions
and topographic factors. The rise in SWE is concentrated in
area A, where the peak cumulation in spatial extent is reached
on 3 April 2021, as shown in Fig. 9(17), with a smaller spa-
tial extent of increase compared to the previous snow sea-
son. A rapid SWE decrease in late March is observed in
area B, where SWE declines from approximately 100 mm to
around 50 mm. These spatiotemporal differences reflect the
uneven distribution or temporal dynamics of snow accumu-
lation and melting processes. They are influenced by various
factors during the snow season, such as differing snowfall
patterns, topography (Eppler et al., 2022), vegetation (Jost et
al., 2007), and meteorological conditions (Deeb et al., 2011).
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4.3 Validation of the retrieved SWE

4.3.1 Comparing Sentinel-1 retrieved ASWE with
in-situ ASWE

As shown in Fig. 10, the retrieved ASWE, with a 12d tem-
poral baseline from 5 September 2019 to 8 April 2020, and
11 September 2020 to 3 April 2021, are validated against
all in-situ ASWE observations, with an RMSE of 9.5 mm
(R=0.56, p-value <« 0.05). Here, we use a 5 x 5 pixel av-
eraging on retrieved ASWE, corresponding to a spatial res-
olution of 375 x 375m. The high coherence points (red)
are closer to the 1:1 line with higher accuracy, while the
lower coherence ones (purple) are affected by the decorre-
lation error sources and thus more scattered away from 1: 1
line. These results prove that InSAR-derived ASWE using
Sentinel-1 with a 12d revisit time is able to estimate the
ASWE at Altay, indicating that the importance of high co-
herence is one of the key factors to obtain good retrieval re-
sults. The validation results show minor differences depend-
ing on the choice of multi-pixel averaging for the retrieved

The Cryosphere, 19, 5361-5388, 2025



5374 J. Zhou et al.: Snow water equivalent retrieval and analysis using 12 d Sentinel-1 interferometry

(1) 20190917 (2) 20190929 (3) 20191011 ) 20191023 (5) 20191104 (6) 20191116
0 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000
—m —m
0 100 200 0 100 200 0 100 200 [ 100 200 0 100 200 0 100 200
SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm)
(7) 20191128 (8) 20191210 (9) 20191222 (10) 20200103 (11) 20200115 (12) 20200127

0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
—] —] —m —— — ] —m
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm)

(13) 20200208 (14) 20200220 (15) 20200303 (16) 20200315 (17) 20200327 (18) 20200408

1000 2000 0 1000 2000 [ 1000 2000 0 1000 2000 0 1000 2000 [ 1000 2000
—— — ——m — —— —
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 [ 100 200
SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm) SWE (mm)

Figure 8. Spatiotemporal distribution of cumulative SWE in Altay during the 2019-2020 snow season. (Both this figure and the following
one show the SWE variation relative to the first reference scene, with a 12 d cumulation interval. The SWE of the reference scene is set to
0. The reference scene for this figure is 5 September 2019. The cumulation’s end dates are shown at the top of each sub-figure. The red
rectangles mark areas A, B, and C to describe the SWE variations across different regions. To improve comparison, these are colored in the
same range.)
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Figure 9. Spatiotemporal distribution of cumulative SWE in Altay during the 2020-2021 snow season. (The reference scene for this figure
is 5 September 2020.)
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ASWE. Notably, our results are close to those in Idaho
(RMSE =7.6 mm, R =0.82; Oveisgharan et al., 2024), al-
though their study used a shorter 6d temporal baseline,
whereas ours relied on 12 d.

As illustrated in the previous section, there are some dif-
ferences in spatiotemporal cumulative SWE in the two snow
seasons. To examine whether the differences in spatiotem-
poral cumulative SWE between the two seasons affect re-
trieval accuracy, the total validation results are divided by
year, with each time series InNSAR pair assessed separately
(see Fig. 11). The validation results remain reliable, with
similar performance when analyzed separately for each snow
season or combined, indicating the stability of the retrieval
method across different snow seasons.

The retrieved ASWE are validated against in-situ ASWE
with an RMSE of 10.1mm (R =0.58, p-value <0.5) in
2019-2020, 8.6mm (R =0.48, p-value<0.5) in 2020-
2021. The points that belong to higher coherence (circled)
InSAR pairs are closer to the 1 : 1 line, showing a good agree-
ment in the retrieved and in-situ ASWE.

4.3.2 Validation results under different numbers of
selected points

Based on the method introduced in Sect. 3.4.2, part of the
ASWE observations in each InSAR pair in 2019-2020 are
used to derive the calibration parameter. Then, the rest of
ASWE observations are used to validate the retrieved ASWE
after calibrating each InSAR pair using the derived calibra-
tion parameter. As shown in Fig. 12, the maximum number
of available ASWE observations in all InSAR pairs in the
2019-2020 snow season is 12. Hence, the maximum number
of points used for calibration is limited to 9 to ensure that at
least 3 points remain for validation. One hundred tests based
on the random selection of stations, varying the number of
points used for calibration, are carried out, and the following
validation results are shown in Figs. 13 and 14.
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Validation results based on calibration parameters com-
puted using coherence-weighted least squares, under differ-
ent numbers of randomly selected calibration stations after
100 Monte Carlo realizations, are presented in Fig. 13. The
validation shows that accuracy changes as the number of
points changes. Even using a single calibration station can
produce reasonably good retrievals, with an average R of
0.46 and RMSE of 12 mm. In particular, accuracy improves
as the number of calibration stations increases from 1 to 6
at first, then stabilizes when the number of calibration points
varies between 6 and 8. However, as the number of calibra-
tion points increases beyond 8, the rapid reduction in valida-
tion points is likely the main reason for a degraded validation
performance.

This shows that selecting approximately half of the avail-
able stations (i.e., 6 out of 12) for calibration yields reliable
validation results. In general, increasing the number of cal-
ibration points improves the accuracy; however, when too
many points are used, the number of remaining validation
points decreases rapidly, which can adversely affect the val-
idation statistics. Therefore, all other retrieval results pre-
sented in this study are based on calibration using all avail-
able stations to ensure high reliability and accuracy.

This trend is further illustrated in a scatter plot comparing
the in-situ ASWE with the Sentinel-1 InSAR-derived ASWE
for one representative realization out of the 100 trials under
different numbers of selected calibration stations (from 1 to
9), see Fig. 14. The results show good validation performance
when using 6, 7, or 8 calibration points. This finding also sug-
gests that selecting at least half of the available ASWE val-
ues for calibration can yield reliable InSAR-derived ASWE
estimates.

4.4 Comparing Sentinel-1 retrieved cumulative SWE
with in-situ cumulative SWE

It should be noted that discrepancies in initial SWE values
may exist when comparing cumulative SWE from in-situ
measurements and that derived from InSAR observations.
To ensure a consistent basis for comparison, an initial value
alignment is performed before the validation analysis. On the
one hand, the satellite-derived SWE is referenced to the first
Sentinel-1 acquisition, where the initial SWE is set to zero.
However, at the same time, a few in-situ stations may record
small but nonzero SWE values due to early snowfall events.
On the other hand, for most stations, no snowfall is recorded
on the date of the first acquisition or even several subsequent
acquisitions, so the measured cumulative SWE remains zero.
In contrast, the InSAR-derived cumulative SWE may show
nonzero values at the same acquisition due to atmospheric
effects or other factors accumulating over time. As a result,
inconsistencies in initial SWE values may also occur at later
dates, even when no snowfall is observed. This discrepancy
introduces a constant offset when comparing the retrieved
cumulative SWE with in-situ data. To eliminate this offset
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and ensure consistency in the initial comparison, the satellite-
derived cumulative SWE is adjusted to match the first avail-
able in-situ cumulative SWE observation on the same date.
This alignment procedure is then applied to all subsequent
satellite-derived cumulative SWE values.

4.4.1 Validation of retrieved cumulative SWE

As shown in Fig. 15, the retrieved cumulative SWE is vali-
dated against in-situ SWE (referring to cumulative observa-
tions) after excluding wet snow, with an RMSE of 40.9 mm

The Cryosphere, 19, 5361-5388, 2025

(R =0.65, p-value « 0.05). We clarify that for ASWE, wet-
snow periods were explicitly excluded and only dry-snow
conditions were retained, following the criteria described at
the end of Sect. 3.1. However, since cumulative SWE is ob-
tained by integrating the ASWE time series, continuity of the
full snow season is required for comparison. Therefore, some
wet-snow points were temporarily retained in the cumulation
process (shown as light grey dots in Fig. 15 and the cumula-
tive SWE curves in Figs. 16-17), but these were excluded in
the final cumulative SWE evaluation.

https://doi.org/10.5194/tc-19-5361-2025
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After this exclusion, some underestimated and scattered
points deviate significantly from the 1: 1 line. Most of these
points correspond to high-elevation stations such as Wuxi-
like, Wuxilike-Muban, and Tollheit (not shown due to limited
valid data). We excluded these stations from further valida-
tion. The locations and elevations of these stations can be
found in Fig. 2, and the cumulative SWE underestimation
is illustrated later in Figs. 17 and 18. Tollheit is not shown
due to the limited number of valid data points. Specifically,
heavy snowfall (around 100 mm) at the Wuxilike station (and
nearby Wuxilike-Muban) in early November 2019 leads to
low coherence and phase unwrapping errors (as shown in
Figs. 5 and 7). This leads to ASWE underestimation errors
propagating through the time series. Improved validation re-
sults are obtained by excluding these underestimated points,
with an RMSE of 28.3 mm and R =0.70.

The bimodal scatter distribution observed in the valida-
tion results is mainly attributed to the error propagation in
the time series retrieved ASWE. Since cumulative SWE is
calculated by summing ASWE from consecutive interfero-
metric pair, any overestimation or underestimation of ASWE
in a single pair propagates through the subsequent cumula-
tive SWE, leading to deviations (to be illustrated in detail in
Figs. 22 and 23). As a result, the scatter tends to split around
the 1:1 line, forming a bimodal pattern. Nevertheless, de-
spite this apparent bimodal scatter distribution. In general,
the higher in-situ SWE values generally correspond to higher
retrieved SWE values, which means the overall trend of the
retrieved cumulative SWE remains consistent with the in-situ
measurements.

Here, the wet snow points (light grey) are excluded, as they
meet the wet-snow exclusion criteria described at the end of
Sect. 3.1. This exclusion is primarily due to the limited pen-
etration depth of C-band radar signals in wet snow, which
restricts the ability to retrieve reliable SWE estimations un-
der such conditions. To better understand this limitation, the
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physical basis of wet snow interaction with radar signals is
briefly discussed below.

The penetration depth of a medium &, is related to the vol-
ume absorption coefficient «, as

8y = — (15

P )
where k, is related to the effective dielectric constant of the
Wwet SNOwW Eyg as

Kq = _Tlm{ sws} (16)

The permittivity of wet snow at C-band (5.405 GHz) can
be given by the following equations from the modified
Debye-like model (Hallikainen et al., 1986):

Ews = Eqs — JEurs (17)
el =14 1.83p5+0.02m! 915 40.0539m 3! (18)
el =0.0321m} 3! (19)

where pj is the snow density (g cm™3), and m, is the volume
fraction of liquid water in the snow mixture (%).

As shown in Fig. 16A, significant differences exist in the
interaction mechanisms between electromagnetic waves and
dry snow versus wet snow. Electromagnetic waves interact
primarily with the surface layer of wet snow, resulting in
an increase of the scattering phase center compared to dry
snow. This leads to a loss of coherence between the wet snow
signal and the previous snow-free observation. Particularly
at the end of the snow season, the C-band electromagnetic
waves can not penetrate the snow to the ground with the in-
crease of m, caused by the snow melt process. For example,
in Fig. 16B, a penetration depth §,, of approximately 5 cm is
observed when m, is 6 %, but usually the snow depth is larger
than 20 cm. Under these conditions, errors will be introduced
if the retrieval algorithm Eq. (3) for dry snow scenarios is
applied. Therefore, the wet snow data are excluded during
the validation. Nevertheless, when the liquid water content
is very low in the early stages of snowmelt (e.g., §, = 33 cm
for my = 1 %), the radar signal still can penetrate most of the
snowpack, allowing the impact of melting on SWE reduction
to be effectively captured. It should also be noted that the
failure of the inversion algorithm occurs gradually.

4.4.2 Comparing Sentinel-1 retrieved time series
cumulative SWE with in-situ cumulative SWE

The time series of retrieved cumulative SWE is evaluated at
each in-situ SWE station (Figs. 17 and 18, for each year,
respectively). Good agreements (except for the period after
mid-March) are shown between the in-situ and retrieved cu-
mulative SWE at some stations, such as stations (2), (6),
and (10) in Fig. 17 and station (d) in Fig. 18. Neverthe-
less, an overestimation of about 20 to 60 mm is exhibited
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Figure 14. Comparison between the in-situ ASWE and the Sentinel-1 InSAR retrieved ASWE under different numbers of selected calibration
points, from 1 to 9, in one realization.

Figure 15. Comparison between the Observed in-situ SWE and

Sentinel-1 retrieved cumulative SWE (mm)
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SWE. At the Wuxilike station (Fig. 17(8)), heavy snowfall is

https://doi.org/10.5194/tc-19-5361-2025



J. Zhou et al.: Snow water equivalent retrieval and analysis using 12 d Sentinel-1 interferometry

5379

Air eaur 0.35 i i T I
2 03| Frequency = 5.405GHz .
Snow density = 0.2g/cm
Eo025t
k=
L £ o2}
. c
2
S0.15f
&
2
Azg g ol
Dry snow Wet snow 0.05
£S(pS ) FV,L’;\'(:{)S'?'nV)
0 . . . .
Ground 0 2 4 6 10 12
Snow wetness (%)
(A) (B)
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Figure 17. Time series of in-situ and retrieved cumulative SWE using Sentinel-1 interferometric phase for different stations in Altay during
the 2019-2020 snow season. (The in-situ cumulative SWE is represented by blue lines, while the retrieved cumulative SWE is shown by six
different colored lines, each corresponding to a different spatial scale. Specifically, the retrieved SWE values are calculated as the average
SWE within a window centered at the station’s latitude and longitude, with window sizes of 1 x 1,3 x3,5x%x5,7x7,9x9,and 11 x 11
pixels, respectively. The number in the upper right corner is the elevation of the site. The same color scheme apply to the following Fig. 18
for the 2020-2021 snow season.)

recorded from early November to early December. Although
an increasing trend is captured in the retrieval, a notable un-
derestimation remains, owing to decorrelation and phase un-
wrapping errors caused by heavy snowfall. This time-series
result is consistent with the above temporal decorrelation
analysis (Figs. 5 and 7) as well as the underestimation of the
cumulative SWE in Fig. 15 (the large light gray dots).

https://doi.org/10.5194/tc-19-5361-2025

However, some sites show different estimations (overes-
timation in one year and underestimation in another year)
in two years. This phenomenon may be related to the dif-
ferent snow accumulations over the 2 years. Another reason
might be that the errors will accumulate as time passes. This
means one pair of overestimations and underestimations will
propagate on the following estimations. Moreover, the over-
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Figure 18. Time series of in-situ and retrieved cumulative SWE using Sentinel-1 interferometric phase for different stations in Altay during

the 2020-2021 snow season.

estimated station may become underestimated after the phase
calibration process, or vice versa. The choice of pixel aver-
aging can affect the final retrieval results, too. For example,
at the Xiaodonggou station in Fig. 17(10), the retrieval accu-
racy improves as the averaging window size increases. This
may be related to the mountainous terrain rather than the uni-
form plain surrounding the station, where a larger averaging
window may have more impact on the retrieval results. In ad-
dition, for Fig. 17, we observe that at several stations (6, 7, 9,
and 10), the in-situ SWE measurements decrease during mid-
to-late March, while the satellite-derived SWE continues to
increase. However, most of these retrievals follow a pattern
consistent with the in-situ SWE observed at the Wuxilike-
Muban station (blue curve in Fig. 17(11)). This is probably
because the Wuxilike-Muban station was used in the estima-
tion of calibration parameters with the coherence-weighted
least squares method, and its observations generally show
high coherence.

Despite some overestimation and underestimation, the re-
trieved SWE trends are generally consistent with in-situ mea-
surements across all stations, which agrees with the findings
of Oveisgharanet al. (2024), who suggest that the main rea-
son for these discrepancies is likely related to phase unwrap-
ping errors and phase ambiguities. Moreover, we found that
using the coherence-weighted least squares method gener-
ally provides better results than the least squares method (not
weighted), as indicated by the smaller differences between
the in-situ and retrieved cumulative SWE in Figs. 17 and 18.

5 Discussion

Good inversion performance is demonstrated in Sect. 4 in
general, but some inconsistencies between retrieved and
measured SWE can be seen, which are yet to be further in-
vestigated. For example, the points which are far from the
1:1 line in Fig. 10, and the overestimation and underestima-
tion of retrieved cumulative SWE in Figs. 15 and 16. In this
section, we explore why different points show varied accu-
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racy and what the optimal occasions of this retrieved method
are by using available data on meteorology and snow proper-
ties. Then, the validation of cumulative SWE and ASWE at
the same site is shown next with the scatterplot. At the end
of this section, the effects of partial phase calibration on the
inversion result are studied.

5.1 Analysis of multiple factors influencing the
retrieval of ASWE

This section investigates the influence of various factors, in-
cluding coherence, air temperature, elevation, slope, snow
depth, and snow density, on the validation of retrieved
ASWE, as illustrated in Fig. 19. Those with lower coher-
ence (purple) become more scattered, as shown in Fig. 19(a).
As shown in Fig. 19(b), the lowest temperature (purple) val-
ues cluster around the 1:1 line. Points at lower elevations
(Fig. 19(c)) appear more accurate, and red points at high al-
titudes tend to show an underestimation. For Fig. 19(e) and
(f), the purple points corresponding to lower values of snow
depth (about 15cm) and snow density (about 150 kg m_3)
appear more concentrated compared to higher values.

Furthermore, to better understand the relationship between
coherence, topography, and in-situ ASWE, additional rela-
tionships are illustrated in Fig. 20. A weak negative cor-
relation is observed between coherence and in-situ ASWE
(R=-0.32) in Fig. 20A. Most points cluster at high coher-
ence (> 0.8) within a narrow ASWE range (—10 to 20 mm),
while a few with ASWE > 30 mm drop to lower coherence
(< 0.6), leading to the weak overall correlation. The re-
duced coherence observed at ASWE > 30 mm may be re-
lated to phase unwrapping, since the phase-to-ASWE con-
version (Eq. 3) indicates that one 27 cycle corresponds to
about 30 mm of ASWE, beyond which phase unwrapping er-
Tors can occur.

In addition, elevation shows a weak positive correlation
with in-situ ASWE (R =0.29) in Fig. 20B. This reflects
that higher elevations generally experience heavier snowfall
and accumulate thicker snowpacks, leading to larger SWE
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changes. Moreover, coherence and elevation are negatively
correlated (R = —0.34). At higher elevations, coherence val-
ues exhibit a wider distribution, including both high and low
values, whereas lower elevations tend to cluster at higher co-
herence levels. This pattern, also visible in Fig. 19(a) and (c),
may be associated with larger snowfall at higher elevations,
which could contribute to the reduced coherence. This is con-
sistent with the findings that large increases of SWE can cre-
ate ambiguities in its retrieval by inducing phase wrapping
(Engen et al., 2003; Ruiz et al., 2022).

Additionally, data is removed based on specific thresh-
olds for each factor to assess the impact on inversion results,
as summarized in Table 1. For coherence, the threshold for
removing low values was gradually increased from 0.4 to

https://doi.org/10.5194/tc-19-5361-2025

0.7 (with no points having coherence below 0.2). After re-
moving low-coherence points, inversion results show mini-
mal changes, with a slight decrease in RMSE and a slight
increase in correlation. This may be because only 16 % of
points have coherence below 0.7, and more than half (62 %)
have coherence above 0.9, see Fig. 21a. When filtering higher
temperature values (from 0 to —20 °C, decreasing by 5 °C),
significant improvements are observed after removing points
above —20 °C. The correlation increases to 0.75, and RMSE
decreases to 8.14 mm. These points, corresponding to tem-
peratures below —20 °C, are from four InSAR pairs collected
from November to January during the dry snow season. For
elevation and slope, the inversion results after limiting these
ranges may not be entirely reliable, as the data distribution is

The Cryosphere, 19, 5361-5388, 2025
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Figure 21. Histograms of various attributes of the validation point.

not balanced (see histograms in Fig. 21c and d), and the to-
tal number of data points is relatively small. Elevation and
slope are intrinsic to the site, meaning each station corre-
sponds to specific values of elevation and slope. Regarding
snow depth, we test removing points with thick and shallow
snow depths, retaining points with snow depths in a certain
range, and removing thick snow (from 20 to 140 cm, increas-
ing by 20cm). The lowest RMSE is obtained by retaining
only points with snow depths between 0 and 20 cm, where
the R-value reaches 0.57 and the RMSE is about 7 mm. This
relatively good performance may be related to the fact that er-
rors tend to be smaller under shallow snow conditions. This
shallow snow (between 0 and 20 cm) constitutes a large pro-
portion of the dataset (37 %, as shown in Fig. 21e) compared
to other depth ranges. For snow density, limiting the snow
density in the scatter plot to between 150 and 200 kg m~—3
will slightly improve the results with an RMSE of 0.58 and
RMSE of 9.15 mm.

In conclusion, better validation results can be obtained
by filtering temperature to below —20 °C, snow depth to 0—
20cm, and snow density to 150-200kgm™3 in this study.
However, the coherence, elevation, and slope limits do not
significantly improve the inversion results. These findings
are likely influenced by the distribution of properties. To de-
scribe the effect of uneven data distribution, histograms for
each attribute are plotted (Fig. 21). More than half of the
coherence values are in the range above 0.9, 37 % of snow
depths are in the 0-20 cm range, snow density is concentrated
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Value Value

between 150-160kgm~>, and 74 % of temperature values
located between —20 and —10 °C. Elevation and slope an-
gles are less continuous due to the limited station distribu-
tion. These characteristics may suggest that similar proper-
ties are required to achieve inversion results comparable to
ours.

5.2 Delta and cumulative in-situ SWE and retrieved
SWE comparison at individual stations

Based on the distribution of in-situ vs. retrieved ASWE
(rather than cumulative SWE validation) at individual sta-
tions, comparison data are grouped into two categories: one
with better agreement (more clustered along the 1:1 line,
Fig. 22) and one with poorer agreement (more scattered,
Fig. 23).

The accuracy of cumulative SWE is directly influenced by
the accuracy of ASWE, since cumulative SWE is calculated
by accumulating ASWE values. For example, when ASWE
is close to the 1: 1 line, most of the cumulative points is also
observed to be close to the 1:1 line, as shown in Fig. 22.
However, as cumulative SWE increases, it tends to scatter
more from the 1 : 1 line, showing a consistent trend of overes-
timation or underestimation through error propagation based
on the time series accumulation. In contrast, there are cases
where the ASWE’s validation does not show a good rela-
tionship, yet the cumulative SWE does, as shown in Fig. 23.
Similarly, with higher cumulative SWE values, data points
increasingly deviate from the 1:1 line. Factors such as re-
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Figure 22. Comparison between the in-situ SWE changes and the Sentinel-1 InSAR retrieved SWE changes at three stations in Altay. (The

top row is ASWE, and the bottom row is cumulative SWE; each column corresponds to the same station.)

moving tropospheric error during processing may contribute
to these discrepancies. Additionally, the reason may be vari-
ations in the station environment and errors in the in-situ data
observations. The cumulative SWE is more prone to random
error, which propagates to other pairs.

Furthermore, the scattered point distribution for different
years at the same station exhibits similarities. This consis-
tency suggests that patterns of overestimation and underes-
timation in delta and cumulative values may stem from the
station’s properties or observation biases.

5.3 The effects of partial phase calibration on
validation of retrieved ASWE

Based on the method described in Sect. 3.4.3, the effects of
partial calibration on the validation of retrieved ASWE are
tested. The results are shown in Fig. 24. In case (A), where
no calibration is used, the validation shows a poor agreement,
with no significant correlation (R = 0.14). In case (B), apply-
ing only the integer multiple of 27 part, the validation im-
proves substantially with an RMSE of 11.9 mm (R =0.43).
In case (C), using the full calibration parameter, further im-
provement is observed with an RMSE of 9.5 mm (R = 0.56).
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These results demonstrate that our phase calibration is es-
sential for improving the accuracy of InSAR-based ASWE
retrieval. While the integer multiple of 27 accounts for the
main portion of the phase error, the residual phase (that is
caused by data processing errors, DEM residual error, atmo-
spheric delays, systematic phase calibration error, etc) still
has a noticeable effect. Comparison to case (A), case (B) and
(C) show lower RMSE and bias, as well as a higher corre-
lation, confirming the importance of calibrating the residual
phase component. It can also be observed that the overall
performance is improved through phase calibration, while
some points with initially good agreement deviate from their
previous alignment. In conclusion, the best accuracy can be
achieved when the full calibration parameter (i.e., case (C))
is applied.

6 Conclusions

In this paper, Sentinel-1 data collected every 12 d from 2019
to 2021 are used to retrieve change in SWE (ASWE) and cu-
mulative SWE throughout the entire snow season. A specific
frame is selected to include 15 in-situ stations over Altay.
An adequate correlation (R =0.56) is observed between the
retrieved 12d ASWE and the in-situ values, with an RMSE

The Cryosphere, 19, 5361-5388, 2025
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of 9.5 mm over 2 years, noting that inversion results are fil- After excluding wet snow, the retrieved cumulative SWE
tered out of the wet snow. Considering that the nearly global shows reasonable performance, with an RMSE of 40.9 mm
consistent coverage offered by Sentinel-1’s 12 d repeat-pass (R =0.65). Further improvement is achieved by excluding
imagery, the SWE inversion using Sentinel-1 and the InSAR high-elevation stations affected by early-season heavy snow-
method presented in this study, along with the analysis of fall that cause phase unwrapping errors, reducing the RMSE
multiple factors (such as coherence and air temperature) im- to 28.3 mm and increasing R to 0.70. The observations and
pact on the accuracy of this retrieval technique, can be ap- inversion of time series cumulative SWE show consistency at
plied to other snow-covered regions. several stations, albeit some stations indicate overestimations
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Table 1. The validation results based on filtering of different pa-
rameters. Bold font indicates the relatively best result within each
parameter group (i.e., lowest RMSE or highest R value).

(1) coherence (%)

filter out range RMSE (mm) R Total number
<04 9.36 0.57 149
<0.5 8.6 0.60 141
<0.6 8.67 0.58 135
<0.7 8.61 0.6 127

(2) Air temperature (°)

filter out range RMSE (mm) R Total number
> -5 9.61 0.54 147
>—10 9.49 0.56 138
>—15 9.38 0.66 74
>-20 8.14 0.75 26
(3) Elevations (m)

filter out range RMSE (mm) R  Total number
>2000 7.59 0.58 120
> 1500 7.58 0.56 106
> 1000 7.59 0.31 60
> 600 6.81 0.39 9
(4) Slope (°)

filter out range RMSE (mm) R Total number
>0 9.16 0.58 101
<0 10.25 0.54 51
remain range

—5<slope <5 7.66 0.44 66
—3 <slope <3 8.4 0.4 53
—1 <slope < 1 9.44 -0.07 30
(5) Snow depth (cm)

remain range RMSE (mm) R  Total number
10 <SD <80 7.84 0.70 77
20 <SD < 80 8.45 0.71 45
20 <SD <40 8.82 0.63 25
40 <SD <60 8.24 0.77 15
0<SD <20 6.96 0.57 55
0<SD <40 7.59 0.60 80
0 <SD <60 7.69 0.66 95
0<SD <80 7.67 0.68 100
0<SD <100 8.26 0.65 103
0<SD <120 8.64 0.62 105
0<SD < 140 8.60 0.68 106

(6) Snow density (kg m_3)

remain range RMSE (mm) R  Total number
150 < density <200 9.15 0.58 122
180 < density < 200 11.49 0.36 9
Original validation

RMSE (mm) R  Total number
without filtering 9.54 0.56 152

https://doi.org/10.5194/tc-19-5361-2025

or underestimations. The scene-wide coherence, unwrapped
phase, and cumulative SWE are displayed in the snow season
from 2019-2021. The similarities of snow changes in 2 years
can be found in these displays.

Moreover, a novel coherence-weighted least squares phase
calibration method is introduced and validated by varying
the total number of in-situ ASWE stations for calibration.
The results show that selecting at least half of the avail-
able ASWE values for calibration can yield reliable InSAR-
derived ASWE estimates. Additionally, although applying
only the integer multiple of 27t improves the results, better
accuracy is achieved when the full calibration parameter is
used. This suggests that the residual phase component has a
pronounced contribution to the overall error and should not
be ignored. Besides the results mentioned above, the factors
that affect the performance of this approach are discussed,
such as coherence, air temperature, and snow density. Higher
coherence, lower temperatures, and more accurate snow den-
sity measurements are essential for achieving effective inver-
sion results. Moreover, greater snowfall at higher elevations
may contribute to reduced coherence.

Regarding potential limitations, on one hand, it is noted
that for the InSAR method to invert SWE effectively, longer
wavelengths and shorter revisit times (which improve co-
herence) are necessary, as well as longer time series obser-
vations for better atmospheric effect estimation. This study
uses C-band data with a 12d revisit period, which can be
improved using lower frequency bands (L-band) and shorter
revisit intervals. On the other hand, stations that directly mea-
sure SWE are preferred, as many stations require snow den-
sity data, introducing some uncertainty into observations.
Visual interpretation errors in snow depth measurements
through snow poles monitored with time-lapse cameras may
also happen, particularly in sloped locations, which could
amplify uncertainties. Despite these limitations, our valida-
tion results are still reasonable, providing a valuable refer-
ence for the broader application of 12d revisited Sentinel
data in SWE inversion studies.

Code and data availability. The Sentinel-1 data are freely available
from the European Space Agency and can be accessed via the
Alaska SAR Facility (ASF, https://search.asf.alaska.edu/, last ac-
cess: 28 October 2025). European Space Agency (ESA): Sentinel-
1 Precise Orbit Ephemerides (POEORB) is available at https:
//s1qc.asf.alaska.edu/aux_poeorb/ (last access: 28 October 2025).
The ERAS5-Land hourly data from 1950 to present are avail-
able from the Copernicus Climate Change Service (C3S) Cli-
mate Data Store (CDS) at https://doi.org/10.24381/cds.e2161bac
(last access 3 November 2025; Copernicus Climate Change Ser-
vice, 2019). The InSAR Scientific Computing Environment version
2 (ISCE2) is available at https://github.com/isce-framework/isce2/
(isce-framework, last access: 28 October 2025). The Python-based
Atmospheric Phase Screen (PyAPS) software is available at https:
//github.com/insarlab/PyAPS (last access: 28 October 2025). The
MintPy software used in this study is available at https://github.
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