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Abstract. The measurement of ice thickness is of great im-
portance for the accurate estimation of glacier volume and
the delineation of bedrock topography. In particular, this is a
crucial factor in forecasting the future evolution of glaciers
in the context of a changing climate. In order to derive
the ice thickness, the travel time of electromagnetic waves
in radargrams acquired by radio-echo sounding (RES) sys-
tems is analyzed. This can only be achieved by identifying
the ice surface and underlying ice bottom in corresponding
radargrams. Manually identifying these two reflection hori-
zons in RES data is a laborious and time-consuming process.
Consequently, scientists are attempting to automate this task
through the use of techniques such as deep learning. Such
automation can significantly reduce the time between a field
campaign and the calculation of the glacier’s ice thickness
distribution. In this paper, we present the first benchmark
dataset for delineating the ice surface and bottom bound-
aries in RES data to facilitate standardized comparisons
of deep learning models in the future. The “IceAnatomy”
dataset comprises radargrams and the corresponding man-
ual picks, amounting to a total of over 45000 km of obser-
vations. The RES data originate from three sources: FAU
(Friedrich-Alexander-Universitit Erlangen-Niirnberg, Insti-
tute of Geography), CReSIS (Center for Remote Sensing
and Integrated Systems), and AWI (Alfred Wegener Insti-
tute, Helmholtz Centre for Polar and Marine Research). The
dataset comprises different RES systems as well as different
pre-processing methods. In addition, the data were acquired
over a large range of geographical and glaciological settings,
featuring different thermal regimes present in Antarctica and

the Southern Patagonian Ice Field. This diversity ensures that
the models’ behaviors can be analyzed in different scenarios.
We define a standardized train—test split for each source in
the dataset. This allows us to introduce not only a baseline
model trained on the entire training set (the “omni”-model),
but also three source-specific baseline models. The source-
specific models are trained exclusively on the subset of the
training data acquired by the specified source. The baseline
models provide an initial benchmark against which subse-
quent models can be compared. The source-specific mod-
els demonstrate more accurate results than the omni-model.
For the FAU, CReSIS, and AWI test sets, the source-specific
models achieve mean meter errors of 2.1, 23.1, and 4.9 m
for the ice surface and 9.1, 78.2, and 29.3m for the ice
bottom. In relation to the mean measured ice thickness of
the test set, these errors equate to 1.2 %, 3.1 %, and 0.3 %
for the ice surface and 4.9 %, 10.4 %, and 1.5 % for the
ice bottom. The dataset and implementation are available
at https://doi.org/10.5281/zenodo.14036897 (Dreier et al.,
2024) and https://doi.org/10.5281/zenodo.14038570 (Dreier,
2024).

1 Introduction

Glaciers and ice shelves are key indicators of global climate
(Haeberli et al., 2007; IPCC, 2013). Knowing their volume
and ice thickness distribution is crucial for assessing future
cryospheric contributions to sea level rise. Moreover, data on
the ice volume of glaciers and ice sheets are necessary for un-
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derstanding their response to climate change. Ice thickness
measurements enable the subsequent prediction of the rate
and timing of glacier retreat or disappearance using different
types of models. This enables the assessment of a glacier’s
contribution to regional hydrological cycles and its subse-
quent influence on local to regional scales with associated
socioeconomic impacts (Werder et al., 2020; Ayala et al.,
2020; Farinotti et al., 2017). Several techniques to determine
ice thickness exist, including seismic, gravitational, and mag-
netic methods, as well as radio-echo sounding (RES) (Bo-
gorodsky et al., 2012; Kohler et al., 1997). While satellite
gravimetry allows for a resolution in the range of kilome-
ters, its spatial resolution does not allow for the interpretation
of detailed subglacial features (Willen et al., 2024). Seismic
measurements offer a high resolution, but widespread use in
the Antarctic region is limited by high exploration costs or
logistical infeasibility (An et al., 2023). For this reason, RES
is preferred over other methods when an accurate assessment
of a subglacial topography is of interest. After pre-processing
the RES data, we obtain an image commonly referred to as
a radargram. It depicts the cross-section of the glacier along
the flight path. Experts can then interpret the RES data by de-
lineating the reflections of surfaces or internal glacial struc-
tures. Delineating the ice boundary, defined by the ice surface
(air to ice transition) and the ice bottom (ice to ground/water
transition), is necessary to obtain the glacier’s thickness at
each point in the radargram. However, it is a time-intensive
task, especially with large datasets (Sime et al., 2011). Sev-
eral automated and semiautomated approaches to delineate
the layers have been developed (Fahnestock et al., 2001; Gif-
ford et al., 2010; Freeman et al., 2010; Rahnemoonfar et al.,
2017a, b; Kamangir et al., 2018; Rahnemoonfar et al., 2019;
Cai et al., 2020, 2022; Liu-Schiaffini et al., 2022b; Mogadam
and Eisen, 2025; Moqgadam et al., 2025; Jebeli et al., 2023b).
However, these approaches are not comparable as they have
been evaluated on different datasets or a different train—test
split of the same dataset. In this paper, we present a publicly
available, standardized benchmark dataset for ice thickness
extraction. It is the first of its kind to be directly designed
for deep learning approaches, with a pre-defined train—test
split, fully human-annotated ice bottom labels, and different
recording systems. It comprises radargrams from Antarctica
and Patagonia with polythermal, cold-based, or temperate
thermal regimes. The dataset is intended for supervised train-
ing and evaluation of deep learning models. Therefore, the
dataset includes depth labels for both the ice bottom and ice
surface layer. Together with the dataset, we present a base-
line model that delineates the ice boundary in a given radar-
gram. The model is based on the U-Net architecture (Ron-
neberger et al., 2015) and serves as a reference and a starting
point for future improvements. In the following, we high-
light two potential areas where our algorithm could be further
extended to impact real-world scenarios in the future. First,
once trained, our algorithm can be executed on virtually any
modern laptop in the field. Combined with a pre-processing
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chain tailored to our approach, this allows for near-real-time
analysis of acquired data on-site. Since flight hours are costly
and often limited by weather conditions, optimizing their use
is crucial. If data can be processed in the field — e.g., between
two flights — flight plans could be dynamically adjusted to fo-
cus on areas of high interest within the same campaign, e.g., a
bedrock ridge beneath a glacier whose extent is greater than
initially assumed or ice inflow from large tributary glaciers
into the main valley, which alters the bedrock topography at
points of conflux more than expected. Second, and perhaps
more importantly, the presented method can be further de-
veloped to handle more specialized tasks, such as delineating
intraglacial water channel systems or identifying water tables
within existing datasets. This would represent a step toward
a comprehensive, quantitative, and standardized approach for
interpreting the ice surface and ice bottom in radagrams, ulti-
mately leading to fully automated products that could signif-
icantly benefit the cryospheric research community. In par-
ticular, the automated mapping of internal reflection layers
remains a critical knowledge gap — one that deep learning is
well-positioned to address (Mogadam and Eisen, 2025).
In summary, our contributions are as follows:

1. A novel benchmark dataset, IceAnatomy, for deep-
learning-based extraction of ice boundary from RES
data is created.

2. A baseline deep learning model for the automatic delin-
eation of the ice bottom and the ice surface is proposed.

3. A thorough evaluation of individual models and an
omni-model is conducted on the dataset.

The work is structured as follows: Sect. 2 provides an
overview of datasets and algorithms previously used for au-
tomatic ice boundary extraction. Subsequently, Sect. 3 gives
insight into the recording and processing of the dataset as
well as relevant geographical and glaciological factors of the
study sites. The baseline models are introduced in Sect. 4. An
extensive evaluation of the baseline models and the bench-
mark dataset is presented in Sect. 5. Lastly, we summarize
our research and draw conclusions in Sect. 6.

2 Related works

Over the past decades, RES has been widely used in glaciol-
ogy. A multitude of publications cover the extraction of ice
boundary layers from RES data. In this section, we highlight
related RES datasets and layer extraction approaches.

2.1 Datasets

Numerous RES datasets on glaciers and ice sheets are pub-
licly available. However, most existing datasets do not meet
the requirements necessary for benchmarking models. Com-
mon issues include the fact that most datasets are missing
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either the layer labels or radargrams or are not publicly avail-
able (Young et al., 2021; Blankenship et al., 2018; Dong
et al., 2022; Corr, 2020). As a result, accurately benchmark-
ing models to extract the ice bottom often becomes unfeasi-
ble. From the datasets, where both the labels and the radar-
grams are publicly available, a large portion contains la-
bels that are generated automatically with human supervi-
sion (Corr et al., 2021; CReSIS, 2025). While this technique
is sufficient for clearly visible layers like the ice surface, the
ice bottom is often too ambiguous for an automatic tracker
to capture accurately in its entirety. Thus, the supervising
human would have to intervene in such cases. However, the
level of human involvement and the methods to validate the
picking process are rarely specified, creating a level of un-
certainty that undermines the reliability of the benchmark
dataset. Lastly, some datasets also do not satisfy the quali-
tative standards. While the picking process can often be sub-
jective, errors like a negative ice thickness are an indication
of a lack of accuracy, making them unsuitable for training or
evaluating deep learning approaches (CReSIS, 2012, 2013).
Since listing and evaluating every dataset is virtually impos-
sible, we focus our comparison on datasets that have been
used to extract the ice boundary in previously published work
and for which both radargrams and human-annotated labels
are publicly available. These constraints significantly limit
the number of related datasets.

The one RES system that has been used extensively to
collect such data is the Multichannel Coherent Radar Depth
Sounder versions 1-5 (MCoRDS) (Allen et al., 2012a),
which was used, for example, in NASA’s Operation Ice-
Bridge (OIB) program on a McDonnell Douglas DC-8-72
jetliner (Shi et al., 2010a). The data acquired over Antarc-
tica in 2009 are the most widely used (Crandall et al., 2012;
Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al.,
2018; Kamangir et al., 2018). However, data from differ-
ent years (Kamangir et al., 2018; Mitchell et al., 2013; Cai
et al., 2020; Garcia et al., 2021a, b; Cai et al., 2022, 2019;
Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini et al.,
2022; Ilisei and Bruzzone, 2014, 2015) and other locations
like Greenland (Donini et al., 2022) and the Canadian Arctic
Archipelago (Xu et al., 2017, 2018) were also analyzed.

Only very few publications included data from RES sys-
tems other than MCoRDS. Gifford et al. (2010) extracted the
ice boundary from data acquired by a predecessor RES sys-
tem (Lohoefener, 2006) during 2006 and 2007 in Greenland.
Dong et al. (2022) featured data from the Chinese Academy
of Sciences’ Deep Ice Radar acquired during the 29th Chi-
nese Antarctic Scientific Expedition. Lastly, Liu-Schiaffini
et al. (2022a) used algorithm-assisted human-labeled data ac-
quired in the Canadian Arctic and Antarctica by the Uni-
versity of Texas Institute for Geophysics’ high-capability
radar sounder (HiCARS). A major downside of these datasets
is that they do not provide standardized training and eval-
uation splits, making inter-model comparison challenging.
Furthermore, datasets usually only focus on a single area,
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e.g., Greenland or Antarctica, which makes generalization
to other areas or glaciological settings difficult to verify.
IceAnatomy addresses this issue by including data from mul-
tiple study sites, radar systems, and glaciological settings. It
also provides standardized splits for training and evaluation
to allow for an accurate and fair comparison between mod-
els. In conclusion, to the best of our knowledge, there is no
comparable benchmark dataset for ice boundary extraction
from radio-echo sounding data.

2.2 Algorithms

RES has been employed to detect crevasses (Liu et al., 2020;
Walker and Ray, 2019; Williams et al., 2012, 2014) and the
ice boundary (Crandall et al., 2012; Lee et al., 2014; Rah-
nemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir
et al., 2018; Mitchell et al., 2013; Xu et al., 2017, 2018;
Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022;
Liu-Schiaffini et al., 2022a), to segment subsurface struc-
tures (Cai et al., 2020, 2019; Garcia et al., 2021a, b; Ghosh
and Bovolo, 2022; Garcia et al., 2023; Donini et al., 2022;
Ilisei and Bruzzone, 2014, 2015), and to track internal ice
and snow layers (Crandall et al., 2012; Karlsson et al., 2013;
Ibikunle et al., 2020; Rahnemoonfar et al., 2021; Varshney
et al., 2020, 2021; Yari et al., 2019, 2020; Dong et al., 2022).
Mogadam and Eisen (Moqadam and Eisen, 2025) provide an
overview of the methods used in this domain.

To obtain the ice boundary, one can either directly de-
lineate the ice surface and bottom or first segment differ-
ent regions such as ice, bedrock, and air and then extract
the two layers during post-processing. Most existing stud-
ies (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar
et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018;
Mitchell et al., 2013; Xu et al., 2017, 2018; Cai et al., 2022;
Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al.,
2022a) prefer direct extraction. Fewer studies (Cai et al.,
2020, 2019; Garcia et al., 2021a, b; Ghosh and Bovolo, 2022;
Garcia et al., 2023; Donini et al., 2022; Ilisei and Bruzzone,
2014, 2015) use the segmentation approach. The segmenta-
tion approach assigns a semantic class to each pixel in the
radargram, from which the ice boundaries can be derived di-
rectly or after post-processing.

In terms of methodology, early studies mainly used classi-
cal image processing and machine learning techniques such
as hidden Markov models (Crandall et al., 2012; Berger
et al., 2018), Markov chain Monte Carlo (Lee et al., 2014),
contour detection (Rahnemoonfar et al., 2017a), the level
set approach (Rahnemoonfar et al., 2017b; Mitchell et al.,
2013), Markov random fields (Xu et al., 2017), edge-based
and active contour methods (Gifford et al., 2010), Kullback—
Leibler maps (Ilisei and Bruzzone, 2014), and support vec-
tor machines (Ilisei and Bruzzone, 2015). After 2017, stud-
ies turned to convolutional neural networks (CNNs) (Kaman-
gir et al., 2018; Cai et al., 2020, 2019; Garcia et al., 2021a;
Cai et al., 2022; Donini et al., 2022; Dong et al., 2022;
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Liu-Schiaffini et al., 2022a; Garcia et al., 2021b, 2023; Je-
beli et al., 2023a, b; Matsuoka et al., 2021; Mogadam et al.,
2025), combinations of CNNs and recurrent neural networks
(RNNs) (Xu et al., 2018), and combinations of CNNs and
transformers (Ghosh and Bovolo, 2022).

In comparison, we rely on the U-Net architecture from
(Ronneberger et al., 2015) to evaluate our newly created
dataset. Furthermore, we integrate Atrous Spatial Pyramid
Pooling from Chen et al. (2018) and the ResBlock design
from Esser et al. (2020) to improve the performance.

3 Dataset

In this section, we introduce the benchmark dataset
“IceAnatomy”, which covers several different geolocations
and was acquired by multiple radar systems. We divide the
dataset into three subsets based on the sources of the data:
the AWI (Alfred Wegener Institute, Helmholtz Centre for Po-
lar and Marine Research), CReSIS (Center for Remote Sens-
ing and Integrated Systems), and FAU (Friedrich-Alexander-
Universitidt Erlangen-Niirnberg, Institute of Geography) sub-
sets. A summary of the most important information about the
dataset is given in Table 1.

3.1 Study sites
3.1.1 Southern Patagonian Ice Field

The Southern Patagonian Ice Field (SPI) is the largest tem-
perate ice body in the Southern Hemisphere. It is character-
ized by one of the highest mass loss rates in the world (Zemp
etal., 2019; Marzeion et al., 2018; Hugonnet et al., 2021) and
by its large outlet glaciers that drain into lakes or the ocean
(Aniya, 1999). Two of the largest eastward-flowing outlet
glaciers in the region are the Perito Moreno and Viedma
glaciers. The only way to obtain information over large areas
about their bedrock topography is by helicopter-borne RES
measurements. This is particularly applicable to the lower
parts of the glaciers, which are surrounded by steep mountain
flanks and have heavily crevassed surfaces. As the glaciers
are temperate, i.e., most of the ice is close to or at the pres-
sure melting point, they contain a relatively high proportion
of water (Aristarain and Delmas, 1993; Millan et al., 2019;
Strelin et al., 2014; Schaefer et al., 2015). This characteris-
tic, combined with the steep and deep glacier troughs, often
makes analyzing radargrams challenging. Hence, we hypoth-
esize that they pose a significant challenge to machine learn-
ing systems. Figure 1 shows the location of both glaciers on
the east of the SPI.

3.1.2 Antarctica

As depicted in Fig. 2, the IceAnatomy dataset offers three
major study sites in Antarctica: the Antarctic Peninsula (in-
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cluding James Ross Island, JRI), West Antarctica, and East
Antarctica.

The Antarctic Peninsula is the most represented region
in the benchmark dataset, as it is present in all three RES
subsets. It exhibits one of the milder climates in Antarctica,
with an annual average temperature of —3.2 °C (Morris and
Vaughan, 1994). This is also reflected in the thermal regimes
present in the region, as it contains temperate, cold-based,
and polythermal ice. The temperate portions of the Antarctic
Peninsula are frequently near the margins and at lower ele-
vations, while the cold-based ice regions are generally found
at higher elevations. The transition zones between higher and
lower elevations commonly contain polythermal ice (Van Li-
efferinge and Pattyn, 2013; Macelloni et al., 2019). However,
elevation alone is often not sufficient to determine the ther-
mal regime. A comparison with the ice velocity maps of Rig-
not et al. (2011) and Gardner et al. (2022) reveals that fast-
moving ice is present even in higher-elevation areas, which
is atypical for cold-based areas (Park et al., 2024; Dawson
et al., 2022). This suggests that there is a significant amount
of polythermal ice at higher elevations and that the main
thermal regime is polythermal. Another significant charac-
teristic of the Antarctic Peninsula is its relatively shallow ice
sheet compared to the rest of Antarctica. On average, the ice
sheet is estimated to be 610 m thick inland and 300 m in the
ice shelves (Drewry et al., 1982). This results in a generally
clearer signal because the signal has to travel through less ice
and is less likely to be distorted by impurities in the glacier.

West Antarctica is significantly colder than the Antarctic
Peninsula, with an annual average temperature of approxi-
mately —28.1 °C and a primarily polythermal thermal regime
(Morris and Vaughan, 1994). Polythermal regions only com-
monly occur at the margins and the coastline, while cold-
based zones are mainly present at higher elevations (Macel-
loni et al., 2019; Van Liefferinge and Pattyn, 2013; Rignot
et al., 2011). West Antarctica also contains relatively thick
ice with inland ice sheets estimated to be 1780 m thick and
ice shelves around 375 m (Drewry et al., 1982).

The last subregion in Antarctica is East Antarctica. It ex-
hibits the coldest climate of the three areas, with an an-
nual average temperature of around —59.8 °C and a primar-
ily cold-based thermal regime (Morris and Vaughan, 1994).
Temperate areas are commonly found near the margins,
while polythermal zones act as a transitional zone between
the cold-based and temperate areas (Macelloni et al., 2019;
Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). East
Antarctica is also the region with the generally thickest ice.
On average, its ice sheets are approximately 2630 m thick in-
land and 400 m in its ice shelves (Drewry et al., 1982).
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Table 1. A summary of details about the IceAnatomy benchmark dataset (Lippl et al., 2019; Shi et al., 2010b; Riickamp and Blindow, 2012;
CReSIS, 2024a; Allen et al., 2012b; Steinhage, 2001, 2015). VR stands for the vertical resolution of the two-way travel.

Study sites VR Width reso. Length Year Main thermal Labeled
regime bottom %
James Ross Island 2.5 ns pixel 1 2 m pixel ~! 275km  2017/18  Polythermal 82.5%
FAU Perito Moreno 2.5 ns pixel ~! 2 mpixel ! 145km 2022 Temperate 83.1%
Viedma 2.5ns pixel ™! 2 m pixel ~! 140km 2022 Temperate 46.2%
CReSIS  Antarctic Peninsula  105ns pixel_1 12m pixel_1 20400km 2009 Polythermal 63.9 %
West Antarctica 105 ns pixel_1 12-30m pixel_l 24400km 2009 Polythermal 78.9 %
AWI Antarctic Peninsula 12 ns pixel_1 62m pixel_l 1490 km 2013 Polythermal 31.7%
East Antarctica 13.33 ns pixel ™ I 66-79m pixel_1 1015 km 1997/99  Cold-based 73.7 %

T4.3°W

—72.8°W

8 ; 7 i ; R ————{now
| - | — FAU Dataset flight lines “ S - |
| [ southern Patgonian Icefield [ | |

50.4° - 0rs 80s 483°S

511°S

Figure 1. Overview of the Southern Patagonian Ice Field (inland). Orange boxes indicate surveyed areas of Perito Moreno Glacier and
Viedma Glacier. Black lines indicate flight paths over the Perito Moreno Glacier. The background is a hillshaded SRTM; © 2025 NASA,
map data © 2025 Google Earth optical imagery (RGI 7.0 Consortium, 2017). Maps are rotated by 90°.

3.2 Dataset generation sponding to approximately a 2 m spatial sampling rate. The
data are georeferenced by two Leica GS16 multifrequency
32.1 FAU data Global Navigation Satellite System (GNSS) systems. The

rover antenna is mounted on the radar antenna in a central
position, while the base station is installed in proximity to
the landing and starting area. After differential processing
of the GNSS data, the positions are matched to the radar
traces before further processing is applied. Then, the RES
data are processed in REFLEX v8.5 software, developed by
Sandmeier Geophysical Research. The processing flow com-
prises the following steps and is applied to subsections of
each flight: equidistant trace interpolation, shift for time zero,
subtracting special average, bandpass filter, amplitude regu-
lation by gain function (cold ice) or energy decay (temperate
ice), 2D migration, and static correction. To apply the 2D mi-

The RES system of FAU is a broadband 25 MHz bistatic
monopulse sounder designed as a sling load for helicopter
use. It is a functional replica of the BGR-P30 system (Blin-
dow et al., 2012). The antenna weighs roughly 280kg and
can be attached to any helicopter type that allows for the at-
tachment of a sling load and has the required take-off capac-
ity. The system is typically operated 20 m above ground at a
nominal airspeed of 60 kmh~!.

The radar time series are collected at a 2.5 ns sampling rate
using 256-fold stacking to improve sensitivity and signal-to-
noise ratio. The traces are collected at a rate of 10 Hz, corre-
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Figure 2. Flight paths of the AWI and CReSIS campaigns in Antarctica. The background is assembled with help from the Quantarctica QGIS

project (Matsuoka et al., 2021).

gration, it is necessary to derive a velocity model comprising
an air and an ice layer. For the air layer, the wave travels at the
speed of light, while for the ice layer, we assumed a speed of
0.168 mns~! (Johari and Charette, 1975). Especially in tem-
perate ice, the migration helps to focus the scattered energy
to enhance the ice bottom reflections.

The RES data for JRI were acquired during two differ-
ent airborne ground-penetrating radar campaigns in 2017 and
2018 (Lippl et al., 2019). Since Gourdon Glacier consists
mainly of bare ice, no firn correction was applied for the
outer parts of the profile. For the data on the plateau, a stan-
dard correction for firn and snow (410 m, AWI/BAS Bedmap
1 mission summary) as used in the British—Argentinian sur-
vey was assumed (Lythe and Vaughan, 2001). The RES data
for Perito Moreno Glacier and Viedma Glacier were acquired
in March and April 2022. For these study sites in the FAU
subset, the ice is thicker than the radar’s maximum penetra-
tion depth of estimated 700 m (Blindow et al., 2011). The
original depth of the radargrams is over 6000 pixels, which
equates to over 1300 m on average — the total depth in me-
ters is not constant due to fluctuations in the flight height of
the helicopter. We cut the radargrams to 4096 pixels, which

The Cryosphere, 19, 5337-5359, 2025

corresponds to an average of about 800 m. This saves com-
puting power while keeping all the essential information. To
restore the full flight traces in the FAU dataset from their sub-
sampled parts, we reassembled the radargrams according to
their trace numbers. Any conflicting depths for the ice sur-
face and bottom in overlapping parts were smoothened with
Gaussian importance weighting. Furthermore, in rare cases,
the initially labeled ice surface and bottom had small gaps.
To avoid such inconsistencies, we filled gaps of 11 pixels or
fewer in the ice surface and bottom via bicubic interpolation
using the two nearest manually labeled points as a reference.

The initial layer labels were fully manually annotated
by a single interpreter to ensure consistency throughout the
dataset. Surface reflections were generally straightforward to
identify; however, in heavily crevassed areas, we increased
the resolution to delineate the air—ice interface as accurately
as possible across these features. Bedrock picks were con-
ducted using the same approach. In regions with ambiguous
reflections, ReflexW (Sandmeier, 2024) software enabled
zooming into specific subsets of the radargrams, thereby en-
hancing the clarity of features of interest. Additionally, sev-
eral intersecting profile lines provided cross-points for inter-
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nal validation. These intersections were annotated indepen-
dently by the same interpreter and subsequently compared.
All cross-profile values fell within the expected margin of
error, even in areas with steep slopes or greater depths (i.e.,
deviations < 10 %). At Perito Moreno Glacier, two control
points from previous studies were available for comparison
(Sugiyama et al., 2011; Stuefer et al., 2007). The first, along
the “Buscaini” profile, corresponds to a seismic survey con-
ducted in 1996, which reported a maximum ice thickness of
720 m. The second, located nearer to the glacier terminus,
corresponds to a borehole drilled in 2010, revealing an ice
thickness of 515+ 5m. Both control points were in close
agreement with our ice thickness estimates.

3.2.2 CReSIS data

The CReSIS data were recorded during the 2009 campaign of
Operation Ice Bridge in Antarctica, which comprised 21 mis-
sions. Three were sea ice surveys and thus are not included
in the CReSIS dataset. The remaining 18 missions can be
split into two groups: six missions focusing on the Antarc-
tic Peninsula (PEN1, PEN2, PEN3, PEN4, PENS, and LVIS-
PEN) and 12 missions exploring West Antarctica (PIG1,
PIG2, PIG3, PIG4, LVISPIG, LVIS86, GETZ1, ABBOTT]1,
TSK1, TSK2, TSK3, and TSK4) (Allen et al., 2012b). All 18
missions employed the Multichannel Coherent Radar Depth
Sounder (MCoRDS) flown on a McDonnell Douglas DC-
8-72. It has a center frequency of 195 MHz and an eight-
channel chirp signal to accurately assess the ice (Rodriguez-
Morales et al., 2014; Shi et al., 2010b).

To process the recorded data, the standard CReSIS L1B
CSARP-mvdr (minimum variance distortionless response)
processing steps were applied. These include pulse com-
pression via a Tukey and Hanning window, beam forming,
motion compensation, synthetic aperture radar processing in
combination with f—k migration, channel combination, and
waveform combination (CReSIS, 2024b). After the process-
ing, the radargrams had a vertical resolution of the two-way
travel time (vertical resolution, VR) of 105 ns pixel’] and a
width resolution of 12-30 mpixel~! depending on the mis-
sion.

We obtained the fully processed CReSIS subset by down-
loading the CSARP-mvdr processed L1B product from the
CReSIS website and taking the square root of the ampli-
tudes. Likewise, CReSIS also provides downloads for the an-
notated ice bottom and surface layers on their website (CRe-
SIS, 2024a). According to Lee et al. (2014) and Crandall
et al. (2012), the ice bottom surface is human-annotated but
noisy. Although the noise might pose a problem for certain
approaches, we chose not to alter the labels. The reason for
this is that the dataset has been used previously in other pub-
lications, and in order to remain comparable, we use the same
labels. However, to provide additional context regarding the
quality, CReSIS provides a quality label for every pick. The
label indicates the annotator’s confidence, ranging from 1
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(high) to 3 (low). We include these labels in the benchmark
dataset for future research. The general picking procedure for
CReSIS data is outlined in CReSIS (2024b).

3.2.3 AWl data

The AWI subset was recorded during campaigns in Dronning
Maud Land in 1997 and 1999 (Steinhage et al., 2023b, a)
and in the Antarctic Peninsula in November 2013 (Stein-
hage, 2015). All three campaigns employed a version of the
electromagnetic reflection system (EMR) radar system with
a center frequency of 150 MHz and the toggle mode enabled.
The toggle mode alternates the radar’s pulse length between
60 and 600 ns periodically. Thus, the system can achieve a
decent VR while capturing deep internal layers of the ice.
The processing of the recorded data was similar for all three
campaigns. The data were differentiated, rescaled, high-pass-
filtered, and bandpass-filtered. To reduce the amount of noise
in a radargram, multiple traces were combined into a single
trace. In detail, 10 traces were combined for the 1997 and
1999 flights, and seven traces were combined for the 2013
flight (Steinhage, 2001; Nixdorf et al., 1999; Steinhage et al.,
2001). Automatic gain control was used to normalize the
amplitude values. After the processing, the radargrams had
a VR of 12-13.33 ns pixel ' and a width resolution of 66—
79 m pixel ! depending on the campaign.

The ice surface and ice bottom were annotated by one
person. To ensure consistency, plausibility checks were per-
formed at crossing points with other profiles from the same
or related campaigns. No systematic biases were observed. In
the picks, gaps of 11 pixels or fewer were filled using bicu-
bic interpolation. Finally, for the radargrams from 1997 and
1999, all data below 3600 pixels, which is about 4 km, were
discarded because only noise was visible at these depths. The
gathered data were processed with FOCUS, DISCO, LAND-
MARK, and Python.

4 Baseline method

To demonstrate the usability of the dataset, we present a base-
line method in this section. The method’s pipeline consists of
pre-processing steps and a deep learning model, elaborated in
the following subsections.

4.1 Pre-processing

The radargrams are given in relative power p to the recorded
amplitudes, which we first convert to decibels using the fol-
lowing formula:

dB = 10-log;o(p). ()

Next, we apply a z-score normalization; i.e., we subtract the
mean and divide by the standard deviation. However, the
mean and standard deviation are not formed over the en-
tire IceAnatomy dataset because there is a strong divergence
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in the recorded spectrum values between the different sub-
sets. This divergence is caused by the large difference in
radar systems and data processing, which represents a do-
main shift. Therefore, normalization is performed separately
for the AWI and CReSIS data and for the three study sites in
the FAU subset.

Then, the normalized radargrams of the entire IceAnatomy
dataset are resized to a standard height of 1024 pixels to limit
the computational cost and simplify processing. Finally, each
radargram is cut into patches with a width of 512 pixels and
a total height of 1024 pixels. For trajectories whose width is
not divisible by 512, we apply symmetric padding at the end.

4.2 Deep learning model

We apply a deep learning model to extract the ice boundary
from the radargram. The model’s architecture is depicted in
Fig. 3 and is based on the U-Net (Ronneberger et al., 2015),
a widely adopted approach for tasks such as ice boundary ex-
traction and comparable tasks (He et al., 2019; Jebeli et al.,
2023b, a; Donini et al., 2022; Dong et al., 2022; Ghosh and
Bovolo, 2022; Mogadam et al., 2025). While more recent ar-
chitectures, such as the transformer (Vaswani et al., 2017),
may offer better performance, they also come with increased
computational costs, larger models, and other practical limi-
tations. The U-Net consists of three components: an encoder,
a decoder, and a bottleneck.

The encoder extracts features from the radargram into a
feature map, the decoder utilizes the feature map to make
a prediction, and the bottleneck connects these two compo-
nents. As the model has to handle large input sizes, the en-
coder contains five down-sampling steps to process the in-
put, while the decoder has five up-sampling steps to recon-
struct the original size. In the encoder, each down-sampling
step consists of two residual blocks (ResBlocks), while in the
decoder, each up-sampling step consists of three ResBlocks
(Esser et al., 2020) (see Appendix B for a detailed summary
of its structure). In the bottleneck, we inserted an Atrous Spa-
tial Pyramid Pooling (ASPP) (Chen et al., 2018) layer. ASPP
processes the same feature map in parallel with differently
dilated convolutional layers. In contrast to typical convolu-
tional layers, dilated convolutional layers do not utilize a set
of adjacent pixels. Instead, they sample a set of pixels from
a grid around a center point, thereby achieving differently
sized fields of view. The sampling is uniform and based on
a dilation rate. The chosen dilation rates in this model are 1,
4, and 6. Since the model is based on the U-Net architecture,
it also includes skip connections. Skip connections directly
forward the output of each down-sample step in the encoder
to the corresponding parts in the decoder via concatenation.
The increased channel dimensions in the decoder are solved
by including an additional ResBlock for channel reduction
after each up-sampling step in the decoder.

To calculate the final prediction of the model, we first for-
ward the feature map computed by the U-Net into two sepa-
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rate output heads, each consisting of a single ResBlock. Each
output head then creates one probability map, resulting in
two final probability maps. The first one represents the prob-
abilistic prediction of the ice surface, while the second one
represents the probabilistic prediction of the ice bottom. The
final prediction of the model is then the highest probable pre-
diction of each column, which we compute by applying a
column-wise argmax operation.

To train the network, we employ a custom loss, a cost
function that gives feedback to the network by measuring the
difference between the prediction and the corresponding la-
beled ice boundary. The custom loss consists of two parts: a
distance-based (Lgigt) loss and a classification (Ljags) l0ss,

L = Lgist + Lclass- (2)

For both the classification and distance-based losses, the
probability maps of the ice surface (I?S) and ice bottom (l?b)
are treated column-wise, i.e., per trace. The classification loss
is a smoothed cross-entropy loss (Lcg) where each pixel in
a column is treated as a separate class, and the pixel clos-
est to the ground-truth boundary is considered the correct
class. The distance-based loss (Lpjst) sums up the probabili-
ties in the column, which are weighted with a distance map.
The distance map contains the distance to the correct pick
for each pixel. Hence, the further away the predicted pick is
from the annotated layer, the greater the loss. Appendix C
provides a more in-depth overview of the loss function.

The annotations in the dataset have discontinuities in
the labeled layers where the ice bottom dropped below the
radar’s penetration depth, the receiver flew over the edge of
the glacier, or the signal was too ambiguous for experts to
interpret. Tracks for which no pick is available for a layer are
not included in the loss calculation and the evaluation.

5 Evaluation
5.1 Evaluation metrics

Previous work either directly extracted the ice boundaries
or deduced them from an intermediate segmentation, where
they predicted a semantic class for every pixel in the radar-
gram. Depending on the chosen method, the metrics used
to assess the quality of the predictions differ. For segmen-
tation approaches, most of these metrics are based on a
confusion matrix that measures how accurately the model
distinguishes between a chosen positive class and all the
other classes, dubbed the negative class. A confusion ma-
trix contains four measurements: true positives (TPs) (the
number of correctly predicted pixels for the positive class),
true negatives (TNs) (the number of correctly predicted pix-
els for the negative class), false positives (FPs) (the number
of wrongly predicted pixels for the positive class), and false
negatives (FNs) (the number of wrongly predicted pixels for
the negative class). Based on these four measurements, more
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Figure 3. The architecture of the proposed deep learning model. It receives the normalized amplitudes of a radargram as input and predicts
the ice surface and the ice bottom as two separate outputs. The Atrous Spatial Pyramid Pooling contains three dilated convolutional layers,
one convolutional layer with adaptive average pooling, and a 1 x 1 convolutional layer. It utilizes the rectified linear unit (ReLU) activation

function, which is defined as ReLU(x) = max(x, 0).

sophisticated metrics are defined for the segmentation ap-
proaches. The most commonly employed one is the accu-
racy (%) (Garcia et al., 2021a, b, 2023; Ghosh
and Bovolo, 2022; Donini et al., 2022; Ilisei and Bruzzone,
2015). Less commonly used metrics include the intersection

over union (IoU) (ﬁ) (Cai et al., 2019), precision
) (Ghosh

(tpepp) (Ghosh and Bovolo, 2022), recall (1o

Precision - Recall
and Bovolo, 2022), the Fy score (2 precedtp€) (Cai et al.,

2020; Ghosh and Bovolo, 2022), sensitivity (rprrg +FN) (Gar-
cfa et al., 2023; Donini et al., 2022), specificity (TN +FP)
(Garcia et al., 2023; Donini et al., 2022), and the error rate
(tnrprpprr) (Misei and Bruzzone, 2014).

For direct extraction approaches, the mean column-wise
absolute error, also called the mean absolute error (MAE)
(Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al.,
2017a; Berger et al., 2018; Mitchell et al., 2013; Xu et al.,
2017, 2018; Gifford et al., 2010; Dong et al., 2022; Liu-
Schiaffini et al., 2022a), is the most common metric. It mea-
sures the average pixel-wise distance between the annotated
layer and the prediction. Other distance-based metrics in-
clude the median of the column-wise mean absolute error
(Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al.,
2018; Xu et al., 2017), the mean squared error (MSE) (Cran-
dall et al., 2012; Mitchell et al., 2013; Dong et al., 2022),
the root mean square error (RMSE) (Liu-Schiaffini et al.,
2022a), and the largest underestimation and overestimation
(Gifford et al., 2010). We can also define confusion-matrix-
based metrics on the layer extraction task. In that case, we
define each height pixel of the radargram as a separate class
and the closest pixel in each column to the corresponding
layer as the correct class. However, a limitation of confusion-
matrix-based metrics, such as precision, is that they do not
account for distance weighting. For example, if a prediction
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Figure 4. A visual representation of the four metrics used in this
work. The left side of the figure depicts the MAE and MME as the
difference between prediction and ground truth (GT), respectively.
Meanwhile, the right side of the figure features the AP-1 % and AP-
5 %, respectively, as an interval around the ground truth. Note that
the ground truth and the predictions are technically float numbers.
However, we thickened the ground truth by 20 pixels to improve
visibility.

is always 1 pixel next to the annotated layer, also known as
ground truth (GT), the confusion-matrix-based metrics will
have the worst possible value, even though it is a near-perfect
prediction. Therefore, some studies (Xu et al., 2017; Gifford
et al., 2010; Liu-Schiaffini et al., 2022a) have relaxed these
confusion-matrix-based metrics by considering predictions a
few pixels from the ground truth to still be correct.

As metrics for our benchmark framework, we have cho-
sen the MAE, two relaxed average precision (AP) metrics,
and the mean meter error (MME). The MAE is calculated
as the column-wise difference in pixels between the ground-
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truth depth of a layer and the predicted depth. Resizing the
radargram will change the value of this metric. Therefore,
we also introduce the MME, which approximates the real-
world error. We calculate the MME by multiplying the MAE
with the product of the wave velocity in the medium and the
VR of the radargram. The wave velocity describes the speed
of the electromagnetic wave of the radar through a medium.
We assume it to be constant with the speed of light (c,ir =
0.299792458 mns~') in air and with ¢jce = 0.168 mns~! in
ice (Johari and Charette, 1975). The VR is the time it takes
for the wave to pass through the physical equivalent of a pixel
in the radargram. Since the VR is indirectly proportional to
the y dimension of the radargram, the MME stays consistent
across different heights. Table 1 records the different VRs for
radargrams in the Ice Anatomy dataset in their original height
and Egs. (3) and (4) summarize the formula for the MME.
Note that the MME is still highly dependent on the original
VR of the radargram. The MME will be naturally higher for
a radargram where every pixel constitutes a 40 m change in
height rather than a 4 m change, as even small mistakes lead
to a drastic increase. Thus, we also record the MAE as it is
more consistent over radargrams of the same image height
but with different study sites and radar systems. For more
details on the VR, see Appendix E.

R Caj A
MME;(§s. y5) = 5= > VR-MAE(3s. y) 3)
S| }A’SE?S
R Ci N
MMEj (§p, yb) = 2; > VR-MAEy (5o, ) )
bl ~ A
ey

MME and MAE both describe the distance between two
lines. A disadvantage is that they are not robust to outliers.
As an outlier-robust alternative, we also use a relaxed aver-
age precision (AP). To standardize the relaxation, we count
everything below a 1 % or 5 % error of the total height in pix-
els of the radargram as a hit (AP-1 % and AP-5 %). For our
chosen height of 1024 pixels, this would mean the AP-1 %
allows for an error of 10.24 pixels, and the AP-5 % allows
for an error of 51.2 pixels. Tying the average precision to the
height of the radargram prevents the metric from drastically
changing if future studies resize the radargrams differently.
In addition, relaxing the metric alleviates the problem of un-
certainties in the labels. Figure 4 shows a visualization of the
employed metrics.

5.2 Experimental protocol

Since there are large differences between the subsets of the
IceAnatomy dataset, we train one model for each subset, i.e.,
the FAU, CReSIS, and AWI subsets. The model for the AWI
data is a special case, as the subset is very small. This would
make the model prone to overfitting. To mitigate this issue,
the AWI model is first pre-trained on all three subsets of the
IceAnatomy dataset and then fine-tuned on the AWI subset.
In addition to the specialized models, we train one model on
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the full IceAnatomy training dataset and evaluate it on the
test subsets separately to contrast it to the subset models.

For the FAU subset, we select one flight from each of the
study sites as part of the test set: the third flight over Per-
ito Moreno, the second flight over Viedma, and the flights
from 2017 for JRI. The remaining flights are used for training
and validation, where the validation set includes the second
half of the first flight over Perito Moreno, the third section
of the first flight over JRI, and the traces 5023 to 8077 for
the flight over Viedma. For the CReSIS subset, we choose
the TSK2, PIG4, PEN4, and PEN5 missions as the test set.
This results in seven flights in the test set, containing three
over the Antarctic Peninsula and four over West Antarctica.
From the remaining 25 flights, the flights from PEN3, PIG3,
and GETZ1 missions are taken for the validation set. For the
AWI subset, we decided not to pick an exclusive flight for
testing as the differences between the collected radargrams
are too big. Instead, we utilized the last 20 % of the 2014
flight over the Antarctic Peninsula and the 1999 flight over
East Antarctica as our test set. For training, we picked the
entirety of the 1997 flight over East Antarctica, the first 70 %
of the flight over the Antarctic Peninsula, and the first 70 %
of the 1999 flight over East Antarctica. The remaining 10 %
of the 1999 and 2014 flights were used for validation.

We assess the model on the validation set after every it-
eration over the full training set and stop training when the
AP-1 % does not improve for 25 subsequent evaluations. We
save the model with the highest AP-1% value on the val-
idation set. The learning rate, a parameter that determines
the strength of every network update, is set to 5 x 1074, As
the optimizer, an algorithm that updates the network weights
based on the loss function, we use AdamW (Loshchilov and
Hutter, 2019) with a weight decay of 0.05 and reduce the
learning rate by a factor of 0.5 when AP-1 % plateaus for 10
subsequent iterations of the entire validation set. The batch
size, a parameter that determines how many samples are used
for every weight update, is 32 for all models. To increase
variety in the data, we randomly modify the training data
via data augmentations. In particular, we employ an additive
Poisson noise scaled with Gaussian noise, brightness, con-
trast, gamma correction, and flipping horizontally.

5.3 Results

Table 2 provides quantitative results on all three subsets for
the dataset-specific models and the omni-model trained on
the full dataset.

Overall, the results are promising, with high AP-1 % and
AP-5% values and low MME and MAE values for most
combinations. Still, dataset- and model-specific discrepan-
cies exist.
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Table 2. Overview of the performance of our presented deep learning model on the different subsets in our benchmark dataset. We distinguish
the layer prediction into two classes: the ice surface (S) and the ice bottom (B). Furthermore, we split our experiments into two parts: the
dataset-specific models, which were trained only on a specific subset of the data, and the omni-model, which was trained on the entire dataset.
Note that for the AWI subset-specific model, we utilized the weights of the omni-model as a starting point to stabilize training. We compare
the model’s performance on the MME, MAE, AP-1%, and AP-5 % as defined in Sect. 5.1. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. We conducted the evaluation on the test
set and averaged the results over five runs to minimize statistical errors.

Dataset-specific model Omni-model

Layer MME | MAE | AP-1% 1 AP-5% 1 MME | MAE| AP-1%1 AP-5%1*
FAU S 2.1m[1.2%] 2.0 98.8 % 100.0 % 2.4m[1.3%] 23 98.5 % 99.9 %
B 9.1m [4.9 %] 13.1 74.3 % 95.8 % 19.5m [10.5%] 27.3 68.3 % 90.5 %
CReSIS S 23.1m[3.1%] 2.5 96.9 % 100.0 % 20.8m [2.8 %] 2.2 97.9 % 100.0 %
B 78.2m[10.4%] 152 87.9 % 94.1 % 66.5m [8.9 %] 12.8 88.6 % 94.4 %
AWI S 4.9m [0.3 %] 0.7 99.3 % 100.0 % 12.0m [0.6 %] 1.7 97.6 % 99.4 %
B 29.3m [1.5 %] 7.4 83.5% 97.6 % 39.8m [2.1 %] 10.0 75.7 % 95.6 %

5.3.1 Ice surface predictions

The predictions for the ice surfaces are nearly perfect for all
subsets and all models. The three subset models even achieve
100 % accuracy for the AP-5%. Hence, the remaining dis-
crepancies are likely significantly influenced by measure-
ment inaccuracies, noise, and general model variance. There-
fore, we will only consider the task of ice bottom delineation
to assess model performance.

5.3.2 Ice bottom predictions

For the ice bottom predictions, the differences in the MME
between the three subsets are more pronounced than for the
MAE, which can be attributed to the different VRs. The MAE
difference between the FAU and CReSIS subsets is small,
while the MAE on the AWI subset is substantially lower
than both. The AP-1 % is lower for the FAU subset than for
the AWI and CReSIS subsets. Interestingly, this difference
between subsets is relativized for AP-5 %. This means that
most incorrect predictions for FAU are in the 1 % to 5 % error
range. The same is true for the AWI subset. For the CReSIS
data, this effect is not as strong. Here, the AP only increases
from 87.9 % for the 1 % error rate to 94.1 % for the 5 % error
rate.

5.3.3 Omni-model

The omni-model shows persistently higher MME and MAE
values and lower AP-1% and AP-5% values for the FAU
and AWI subsets than the dataset-specific models. In detail, it
only achieves an MME of 19.5m and 39.8 m and an AP-1 %
of 68.3 % and 75.7 %, respectively. We attribute the lower
performance of the omni-model to the substantial domain
shift between the three subsets and the fact that the FAU and
AWI subsets are significantly smaller than the CReSIS sub-
set. For the CReSIS subset, the omni-model outperforms the
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dataset-specific model. In particular, it achieves an MME of
66.5m and an AP-1 % of 88.6 %. These results suggest that
there can be a benefit from more training data even with the
domain shift. However, the domain shift makes the general-
ization to underrepresented or new domains difficult.

5.3.4 Influence of study sites

Table 3 divides the results of the subset-specific models by
study site and thermal regime.

For the FAU subset, the Perito Moreno and Viedma predic-
tions are quantitatively worse than the ones from JRI. A key
difference between Perito Moreno, Viedma, and JRI is the
thermal regime. The first two are temperate glaciers, while
JRI contains polythermal ice. Besides the higher water con-
tent in Perito Moreno and Viedma, both are also substantially
deeper than JRI in most areas. They even have areas with
ice thicker than the 700 m maximum penetration depth of the
employed radar system. Viedma and JRI also feature moraine
material several meters thick on the glacier surface. These
rock and debris deposits are not penetrable by the wavelets
and thus create radar shadows below them or substantially
decrease the amount of reflected energy.

If we look at the associated radargrams, we can mostly see
a relatively stable and clear prediction for JRI. On the other
hand, Viedma and Perito Moreno have much stronger differ-
ences from the ground truth. Especially in deep and noisy
regions, the models struggle. Figure 5 shows example traces
for the three study sites of the FAU subset.

Between the Antarctic Peninsula and West Antarctica
study sites of the CReSIS subset, there are strong differ-
ences in the quantitative analysis. The MME and MAE val-
ues exhibit a difference of approximately a factor of 5, while
the AP-1% and AP-5% are approximately 9 % apart. In
the qualitative analysis, we can see that the predictions in
both regions actually follow the ground truth closely. How-
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Table 3. Overview of the influence of geographical and glaciological factors on the performance in detecting the ice bottom. We differentiate
between the subset, the study site, and the general thermal regime. For the performance analysis, we compare the MME, MAE, AP-1 %, and
AP-5 % as defined in Sect. 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified
test set study site behind the MME. Note that for the AWI subset-specific model, we utilized the weights of the omni-model as a starting
point to stabilize training. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical errors.

The analyzed models were the subset-specific models.

Study site Main thermal regime ~MME |, MAE | AP-1%1 AP-5% %
Perito Moreno Temperate 22.1m [8.0%] 263 54.9% 91.1 %
FAU Viedma Temperate 10.0m [5.0 %] 120 68.5% 96.8 %
James Ross Island Polythermal 3.9m [2.7 %] 92 849% 96.9 %
CReSIS  Antarctic Peninsula  Polythermal 31.6m [4.5%] 58 91.5% 97.6 %
West Antarctica Polythermal 148.7m [18.0 %] 294  82.5% 88.8 %
AWI Antarctic Peninsula  Polythermal 32.7m [9.8 %] 8.1 87.3% 96.4 %
East Antarctica Cold-based 27.3m [1.0%] 69 81.1% 98.3 %
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Figure 5. Visualization of the subset-specific model’s performance on the FAU subset. Panel (a) shows trace 3000-5500 of the third flight
over Perito Moreno, panel (b) depicts traces 5000-7500 of the second flight over Viedma, and panel (¢) presents traces 5000—7500 from the

first section of the 2017 flights over James Ross Island.

ever, sometimes the predicted ice bottom layer makes a jump
and the actual ice surface is predicted to be the ice bottom.
We call this “ice boundary collapse”. Examples of this phe-
nomenon can be seen in Fig. 6.

For the AWI subset, the results for East Antarctica are gen-
erally more favorable than those for the Antarctic Peninsula.
This result is consistent with the observation on the FAU sub-
set that the algorithm performs better for colder ice than for
warmer ice. The only exception is the AP-1%, where the
Antarctic Peninsula slightly outperformed East Antarctica.
This result suggests that a large majority of the wrong pre-
dictions in East Antarctica are between the 1 % and 5 % in-
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terval and that our algorithm struggles to pinpoint the exact
location of the ice bottom. We can confirm this behavior in
the qualitative analysis, where the prediction is sometimes
slightly above or below the ground-truth line but follows it
closely overall. Similarly, the predictions for the Antarctic
Peninsula also appear to be very accurate but contain more
occasional outliers. Figure 7 depicts the predictions for both
East Antarctica and the Antarctic Peninsula.
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Figure 6. Visualization of the subset-specific model’s performance on the CReSIS subset. Panel (a) presents traces 2000—4500 from
mission PEN4 in the Antarctic Peninsula (PEN4_01_001). Panel (b) presents traces 2000—4500 from mission TSK2 in West Antarctica

(TSK2_07_003).
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Figure 7. Visualization of the subset-specific model’s performance on the AWI subset. Panel (a) depicts traces 21 000-23 500 from the 2014
flight in the Antarctic Peninsula. Panel (b) presents traces 7837-9787 from the 1999 flight in East Antarctica.

5.3.5 Loss function

To assess the performance of our combined loss function, we
conducted a small ablation study. Specifically, we evaluated
two additional experiments in which we replaced the com-
bined loss with each of its individual components: in the first
setup, we trained the model with the cross-entropy loss, and
in the second setup, we trained it only with the distance loss.
We compare the results of these two configurations with the
combined loss in Table 4.

For the FAU subset model, the distance loss improves the
MME but not the AP-1%. In contrast, the cross-entropy is
better for the AP-1 % but not for the MME. The combina-
tion of both losses results in an improved MME, while AP-
1 % remains the same. The results for the CReSIS subset are
less clear. It is evident that the distance loss alone does not
enhance the MME or AP-1 %. However, the combined loss
demonstrates the most optimal outcome in relation to the
MME, while the AP-1 % is only slightly worse in compar-
ison to CE alone. Similar to the CReSIS results, the distance
loss alone does not improve the MME compared to the cross-
entropy for the AWI subset. However, the combined loss pro-
vides the best results with a higher AP-1 % value.

https://doi.org/10.5194/tc-19-5337-2025

5.4 Discussion and outlook

One apparent influence on the quality of the ice bottom pre-
diction is the primary thermal regime of the region. In gen-
eral, the warmer the ice, the less reliable the prediction. The
reason behind this is probably the influence of water on the
signal, as well as the higher likelihood of a heavily crevassed
surface. Temperate ice generally contains water, as most of
the ice is close to or at the pressure melting point. Water ab-
sorbs the recorded signal, leading to higher noise with in-
creased depth and strong attenuation. Hence, the model’s per-
formance naturally decreases as the associated radargrams
are more challenging to interpret. Polythermal glaciers, con-
trary to temperate glaciers, do not exhibit ice at the pressure
melting point everywhere. Instead, elevated temperatures are
usually confined to zones of fast flow driven by frictional
heating or to marginal areas of the glacier. Hence, the effects
are not as detrimental as for entirely temperate glaciers.
Another interesting observation is the difference between
temperate and polythermal ice regarding the AP-1 % and AP-
5 %. The AP-1 % of temperate ice is significantly lower than
for polythermal ice. However, the AP-5 % is relatively simi-
lar for both types of ice. While it is natural for the difference
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Table 4. Summary of our ablation study regarding the proposed modifications to the loss function. For every variation of the loss function,
we trained a subset-specific model and compared the performance based on the MME and AP-1 % of the ice bottom layer. We conducted the
evaluation on the test set and averaged the results over five runs to minimize statistical errors. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. Note that for the AWI subset-specific
model, we utilized the weights of the omni-model as a starting point to stabilize training, which was also trained with the specified loss

function.
FAU CReSIS AWI
MME | AP-1% 1 MME | AP-1% 1 MME | AP-1% 1
Lcg 139m [7.4%] 743 % 88.0m [11.7%] 88.6 % 29.7m[1.6%] 82.5%
Lpist 9.9m [5.1 %] 72.3% 1195m [159%] 85.5% 332m[1.7%] 81.8%
Lcg+ Lpige 9.1m [4.9%] 74.3 % 78.2m [10.4 %] 87.9 % 293m[1.5%] 83.5%

to decrease at higher error intervals, the change in this case
is still very drastic. To put this into perspective, Viedma and
James Ross Island were 16.4 percentage points apart on the
AP-1 % but on the AP-5 % only 0.1 percentage points. A pos-
sible explanation for this could lie in the meltwater at the base
of the ice. Temperate ice more commonly collects meltwater
at its base than polythermal ice. Since water absorbs the sig-
nal, the exact position (AP-1 %) becomes difficult to identify.
However, the general position (AP-5 %) is still clear because
the water is only at the base. Besides the thermal regime and
average depth, the presence of debris usually plays a signifi-
cant role in radio-echo sounding. Interestingly, the quantita-
tive results of JRI and Viedma indicate that the presence of
debris did not play a major role in the model’s performance
compared to depth and thermal regime. However, we suspect
that the numbers do not capture the effect of debris very well
since the debris likely absorbed the signal entirely. Thus, the
expert could not create ground-truth labels for these parts,
which makes the effect of debris on the model’s performance
not accurately measurable with numerical methods.

One of the more prominent and recurring phenomena in
the CReSIS model’s predictions is the collapse of ice bound-
aries. In ambiguous cases, the model shows a bias toward
predicting the ice bottom close to the ice surface or as the ice
surface. One explanation could be that the CReSIS data are
differentiated and thus represent only the change in ampli-
tude. That makes it challenging to distinguish whether the
peak of the ice surface and ice bottom overlap or the ice
bottom is not visible. The problem gets further amplified by
noise and artifacts, such as multiples. They can exhibit sim-
ilar patterns as the ice bottom, making the model biased to-
ward predicting the ice bottom as the ice surface when in
doubt.

Furthermore, we believe that the influence of the ice
boundary collapse is also reflected by the quantitative anal-
ysis of the different CReSIS study sites. As West Antarc-
tica generally contains thicker ice sheets than the Antarctic
Peninsula, the average distance between the ice boundaries
significantly increases. Thus, a wrong prediction of the ice
bottom as ice surface leads to a considerably higher MAE
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and MME for West Antarctica than the Antarctic Peninsula.
However, the ice boundary collapse is likely not the only rea-
son for this effect as the AP-1 % and AP-5 % are also lower
for West Antarctica than the Antarctic Peninsula. Hence,
thicker ice sheets might be naturally more challenging.

Nonetheless, future research should address ice boundary
collapses as they tremendously affect performance. Larger
contexts, additional post-processing steps, or recurrent neu-
ral networks could help stabilize the predictions as they in-
corporate more information. Another interesting problem to
explore is the performance drop from subset-specific mod-
els to the omni-model. Our results indicate that the domain
shift between the subsets is too prominent for a simple omni-
model to catch up on all subset characteristic features. Hence,
models cannot utilize the full benefits of a larger dataset
when they are recorded and processed differently. In partic-
ular, domain shift techniques could help with this challenge,
but also more advanced regularization techniques, e.g., spa-
tial dropout, could prevent the model from focusing too much
on a single domain (Tompson et al., 2015). In Appendix D,
we show that a uniform sampling strategy can also help mit-
igate the domain shift.

We believe that our framework is a step towards a poten-
tial fully automated generation of ice thickness maps based
on RES data and that our work represents an advancement
toward validating survey data in the field.

6 Conclusions

This paper presents the first benchmark framework for
delineating the ice boundary in RES data. The included
dataset “IceAnatomy” contains hundreds of kilometers of
processed, labeled, and georeferenced RES data from three
different sources (FAU, CReSIS, AWI). Since all sources
employ a different radar system and processing methods,
“IceAnatomy” offers a wide range of varying amplitude
spectrums, vertical resolution of the two-way travel time,
and width resolutions, making it applicable to a multitude
of settings. Furthermore, it also features different geographi-
cal factors, such as study sites and thermal regimes, allowing
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for in-depth analysis of the models and their behavior in dif-
ferent geographical scenarios.

To fairly compare different models in the future, we pro-
vide an official train and test split for each source of the
dataset. This enables the development of not only an omni-
model trained on the entire dataset but also specialized
subset-specific models trained on one of the three sources.
We trained and evaluated a baseline model for each of these
scenarios. In our experiments, the subset-specific models
provide the most promising results with MMEs of 2.1 m
[1.2%], 23.1m [3.1%], and 4.9m [0.3 %] for the ice sur-
face and 9.1 m [4.9 %], 78.2m [10.4 %], and 29.3 m [1.5 %]
for the ice bottom depending on the source.

Previous work has already demonstrated the effective-
ness of automatic approaches for ice boundary extraction but
lacked a common method for accurately comparing models.
With this benchmark framework, we hope to address this
issue by unifying and standardizing both training and eval-
uation schemes. We hope that this benchmark dataset will
encourage more scientists to engage in this challenging and
important research area. Deep learning models that extract
the ice boundary can greatly speed up the processing of RES
data. As aresult, the ice thickness and, consequently, the sub-
glacial topography can be determined more quickly after a
field survey.

Appendix A: Additional hyperparameters

This section gives an overview of the hyperparameters in our
employed U-Net from Sect. 4.2. The input dimension of our
U-net is (1024,512, 1) (H, W, 1), which then gets scaled ac-
cording to the depth level of the encoder or decoder. Inside
the network, we down- and up-sample our feature map five
times each while scaling the feature dimension according
to the depth-level-dependent value of [8, 16, 32, 64, 64, 128].
To reduce the risk of overfitting, we also utilize dropout lay-
ers inside the ResBlocks with a probability of 10 %. For
the loss function, we employed our proposed combined loss
function. Since the numerical value of the distance loss is
significantly higher than that of the classification loss, we
had to weigh the individual components. In detail, we chose
the weights ws_class = 0.5, Wp_class = 1.0, ws_dist = 0.05, and
wp_dist = 0.1 as they performed the best in preliminary ex-
periments.

Appendix B: ResBlock design

To provide a better understanding of the network architec-
ture, this section examines one of its core components: the
ResBlock from Esser et al. (2020). Its structure, shown in
Fig. B1, comprises several components. First, it starts with a
group normalization layer (Wu and He, 2018) that normal-
izes the data in groups of channels to increase stability dur-
ing training. Next, a swish activation (Ramachandran et al.,
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Figure B1. Structure of the residual block employed in our deep
learning model. The arrangement is based on the design of Esser
et al. (2020).

2017) function adds nonlinearity to the ResBlock so the net-
work can learn more complex patterns. The activation is fol-
lowed by a two-dimensional convolution layer that processes
and combines the visual features by applying convolutional
operations. This is followed by another group normalization
and swish activation function before a regular dropout layer
(Hinton et al., 2012) is applied. The dropout layer randomly
withholds information during training to improve generaliza-
tion and prevent the model from overfitting — a process in
which the model develops a strong bias towards the training
data. After the dropout layer, another two-dimensional con-
volutional layer is applied. Finally, a residual connection (He
et al., 2016), a shortcut from the start of the ResBlock to the
end through a convolution layer, is added to the output of
this sequence of layers to improve the gradient flow in the
network.

Appendix C: Loss function details

The formulas of the classification and distance-based loss are
as follows.

Leg=—) xe(1—€)log(p(xc))
ceC
€c(1 —xc)log(p(xc))
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Ws_classs Wh_classs Ws_dist, and wp_gist are the respective
weights for a weighted combination of the single loss parts,
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€. is the smoothing factor, C specifies the column, () is
the dot product, o is the softmax function that converts the
model’s outputs into probabilities, |.| is the cardinality of a
set, and d is the function that creates a vector filled with the
column-wise distance map given the respective column of the
label.

Appendix D: Additional experiments

Since the three subsets of IceAnatomy differ in size, we
also investigate whether a uniform sampling strategy, where
samples are drawn equally from each subset, could help the
omni-model achieve the performance of the domain-specific
models on the AWI and FAU subsets. From our results in
Table D1, we can see that a uniform sampling strategy does
lead to improvement for the AWI and FAU subsets. In the
case of the AWI subset, the omni-model even outperforms
the domain-specific model. However, in the case of the FAU
subset, we are still below the domain-specific model. We rea-
son that the domains of the AWI and CReSIS subsets are sig-
nificantly closer than the FAU subset as these two subsets
contain differentiated radargrams. We, therefore, believe that
domain shift remains an important area for future research.
In addition to the uniform sampling, we also investigated
how different hyperparameter setups regarding learning rate
and regularization would affect the benchmark model. From
the results in Tables D2 and D3, we can see that different hy-
perparameter setups favor different subsets of IceAnatomy.
However, there seems to be no universal optimal setup.

M. Dreier et al.: IceAnatomy

Table D1. Overview of the performance of our omni-model with uniform sampling. We distinguish the layer prediction into two classes:
the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME, MAE, AP-1 %, and AP-5 % as defined in
Sect. 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set study site
behind the MME. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical errors.

Omni-model
Layer MME | MAE | AP-1% 1 AP-5% 1

FAU S 2.0m[1.1%] 1.9 99.3 % 100.0 %

B 14.0m [7.6 %] 19.0 74.1 % 94.1 %
CReSIS S 23.1m [3.1%] 2.5 97.2 % 100.0 %

B 75.0m [10.0%] 14.6 87.7 % 93.9%
AWI S 3.8m [0.2 %] 0.5 99.7, % 100.0 %

B 23.9m [1.3%)] 6.0 86.1 % 98.3 %

The Cryosphere, 19, 5337-5359, 2025
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Table D2. Overview of the performance of our omni-model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as
defined in Sect. 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set
study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical errors.
Note that for Ir = 0.005 we averaged over five runs, as we had those values from previous experiments.

Ir = 0.0001 Ir = 0.0005 Ir=0.001
Layer MME | AP-1% 4 MME | AP-1% 4 MME | AP-1% 4

FAU S 2.1m[l.1%] 99.0 % 2.0m[1.1%] 99.3% 2.1m[1.1%] 99.1%
B 14.1m[7.6%] 73.9% 14.0m[7.6%] 74.1% 143m[7.7%] 74.1%

CReSIS S 26.2m[3.5%] 96.7 % 23.1m[3.1%] 97.2% 21.9m[2.9%] 97.6%
B 1054m[14.0%] 87.2% 75.0m[10.0%] 87.7% 94.9m[12.6%] 87.9%

AWI S 4.4m[0.2%] 99.5% 3.8m[0.2%] 99.7, % 3.7m[0.2%] 99.6 %
B 269m[1.4%] 86.2 % 23.9m[1.3%] 86.1% 205m[1.1%] 87.8%

Table D3. Overview of the performance of our omni-model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1 % as
defined in Sect. 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set
study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical errors.
Note that for dropout = 0.1 we averaged over five runs, as we had those values from previous experiments.

dropout = 0.0 dropout= 0.1 dropout = 0.2
Layer MME | AP-1% 4 MME | AP-1% 4 MME | AP-1% 1
FAU S 2.0m[1.1%] 99.2 % 2.0m[1.1%] 99.3 % 2.0m[1.1%] 99.3 %
B 10.2m [5.5 %] 74.2 % 14.0m [7.6 %] 74.1 % 143m[7.7%] 73.5%
CReSIS S 22.5m [3.0%] 97.0 % 23.1m[3.1%] 97.2 % 21.5m[29%] 97.6%
B 79.0m [10.5%] 87.8% 75.0m [10.0%] 87.7% 69.2m[9.2%] 88.5%
AWI S 7.3m [0.4 %] 99.0 % 3.8m [0.2 %] 99.7 % 3.8m [0.2 %] 99.5 %
B 26.0m [1.4 %] 85.7% 23.9m[1.3%] 86.1 % 245m[1.3%] 86.6%
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Appendix E: Translations of the vertical resolutions

While the vertical resolution of the two-way travel time ap-
proximates the granularity of the specific radargrams, it is
challenging to interpret for a real-world scenario. To simplify
interpretation, we provide a simple conversion in Table E1
given a fixed radargram height of 1024 pixels. Although the
vertical resolution was fixed for each data source, the ratio of
pixels to meters varies depending on the flight, the original
height of the radargram, and the chosen radargram height, as
well as between the air and ice layers. Interestingly, this table
also offers an estimate of the lower error bound introduced by
discretizing the continuous height values into pixels. Since
the introduced model does not interpolate between pixels,
decimal pixel heights cannot be represented accurately. The
problem gets further amplified by downscaling the images to
a lower resolution, as the pixel-to-meter ratio rises propor-
tionally.

M. Dreier et al.: IceAnatomy

Table E1. A conversion table that translates pixels to meters given a fixed height of 1024 pixels.

Study sites

1 pixel to meters in air

1 pixel to meters in ice

James Ross Island 0.7 0.4
FAU Perito Moreno 1.5 0.8
Viedma 1.5 0.8
CReSIS  Antarctic Peninsula 9.6-16.0 5.4-9.0
West Antarctica 9.6-16.1 5.4-9.0
AWI Antarctic Peninsula 7.2 4.0
East Antarctica 7.0 3.9

Code and data availability. The  dataset is  available at
https://doi.org/10.5281/zenodo.14036897 (Dreier et al., 2024) and
the implementation at https://doi.org/10.5281/zenodo.14038570
(Dreier, 2024) or https://github.com/ki7077/IceAnatomy (last
access: 13 October 2025).
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