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Abstract. Seasonal snowmelt in High Mountain Asia is an
important source of river discharge. Therefore, observation
of the spatiotemporal variations in snow cover at catchment
scales using high-resolution satellites is essential for under-
standing changes in water supply from headwater catch-
ments. In this study, we adapt an algorithm to automati-
cally detect the snowline altitude (SLA) using the Google
Earth Engine platform with available high-resolution multi-
spectral satellite archives that can be readily applied for ar-
eas of interest. Here, we applied and evaluated the tool to
five glacierized watersheds across the Himalayas to quan-
tify the changes in seasonal and annual snow cover over the
past 21 years and analyze climate reanalysis data to assess
the meteorological factors influencing the SLA. Our find-
ings revealed substantial variations in the SLA among sites in
terms of seasonal patterns, decadal trends, and meteorolog-
ical controls. We identify positive trends in SLA in Hidden
Valley (+ 11.9 m yr−1), Langtang (+14.4 m yr−1), and Rol-
waling (+8.2 m yr−1) in the Nepalese Himalayas but a neg-
ative trend in Satopanth (−15.6 m yr−1) in the western In-
dian Himalayas and no significant trend in Parlung in south-
eastern Tibet. We suggest that the increase in SLA in Nepal
was caused by warmer temperatures during the monsoon sea-
son, whereas the decrease in SLA in India was driven by
increased winter snowfall and reduced monsoon snowmelt.
By integrating the outcomes of these analyses, we found that
long-term changes in SLA are primarily driven by shifts in

the local climate, whereas seasonal variability may be influ-
enced by geographic features in conjunction with climate.

1 Introduction

Snow is an essential water resource in High Mountain Asia
(HMA), as it supplies melted water to downstream re-
gions and regulates seasonal streamflow, especially during
drought years (Pritchard, 2019; Kraaijenbrink et al., 2021).
Mountain-sourced water supplies increasingly sustain human
societies with drinking and irrigation water, for industrial
needs, and through hydropower generation (Immerzeel et al.,
2020; Viviroli et al., 2020). Snow has a cooling effect on
the atmosphere by reflecting shortwave radiation and main-
taining freezing ground temperatures, and a decrease in the
extent of snow has been suggested as one of the causes of
high-elevation warming (Palazzi et al., 2019). Therefore, un-
derstanding the current and past snow cover distribution, its
ongoing changes, and its driving factors are fundamentally
important.

Several studies have addressed variations in snow cover
in detail for individual watersheds (e.g., Girona-Mata et al.,
2019; Stigter et al., 2017), whereas large-scale assessments
have predominantly focused on annual values with moderate-
resolution sensors (> 500 m) such as MODIS (Smith and
Bookhagen, 2018; Tang et al., 2020; Kraaijenbrink et al.,
2021). Past studies have used MODIS to provide a strong
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baseline understanding of global and regional snow phenol-
ogy, including snow cover duration and extent (e.g., Johnston
et al., 2023; Notarnicola, 2022; Roessler and Dietz, 2023).
MODIS snow products have been essential for the constraint
of snow reanalyses (Kraaijenbrink et al., 2021; Liu et al.,
2021), but standard MODIS snow products may overesti-
mate snow cover in HMA and require additional process-
ing (Muhammad and Thapa, 2020). Furthermore, although
MODIS provides daily temporal resolution and a broad per-
spective, the coarse spatial resolution of retrievals (500 m)
poorly resolves topographic features; fractional snow cover
products are a key advance but do not mitigate this problem
(Painter et al., 2009; Rittger et al., 2021). Because catchment-
scale snow cover derived from MODIS can be affected by
cloud cover owing to spectral similarities between clouds
and snow (Stillinger et al., 2019), it can be biased by high-
elevation snow-free areas and struggle with shadows and
subpixel effects in the extreme high-relief topography of the
Himalayas (Girona-Mata et al., 2019).

The snowline altitude (SLA) is a useful metric to study
snow cover variations at annual and seasonal timescales since
it integrates both snowfall and snowmelt dynamics and is
independent of catchment hypsometry (Girona-Mata et al.,
2019; Deng et al., 2021). SLA is less biased by cloud cover
than snow cover extent and is useful for evaluating and con-
straining hydrological models (e.g., Krajčí et al., 2014; Buri
et al., 2023, 2024; Robinson et al., 2025). The seasonal pat-
tern and aspect dependency of SLA are particularly useful
to reveal the primary controls of snow cover dynamics (e.g.,
Girona-Mata et al., 2019). On glaciers, it can also be used as
a proxy for the equilibrium line altitude (e.g., Spiess et al.,
2016; Racoviteanu et al., 2019) and to constrain glacier mass
balance (e.g., Mernild et al., 2013; Barandun et al., 2018).
By reflecting the interplay between solid precipitation and
melt, changes in seasonal snowlines can provide an important
and simple indicator of climatic changes. Several previous
studies have derived SLA and its changes on various scales,
e.g., individual catchments to continental scales (e.g., Mc-
Fadden et al., 2011; Racoviteanu et al., 2019; Girona-Mata
et al., 2019; Tang et al., 2020). In High Mountain Asia, most
studies have used MODIS to examine SLA changes and have
highlighted a broad tendency towards shorter snow cover pe-
riods, excepting the western Himalayas, part of eastern Ti-
bet, and part of the eastern Tien Shan (Tang et al., 2022).
However, none of them have examined SLA changes and the
primary controls of SLA variations at high resolution and
in multiple regions to identify and understand regional dif-
ferences. Analysis of seasonal variations in snow cover at
high spatial resolution provides insights into snow dynamics
and their relationships with climatic and geographic factors
(Girona-Mata et al., 2019).

Knowledge of the regional variation in the SLA, its sea-
sonal controls, and ongoing changes provides an impor-
tant basis for a deeper understanding of current and fu-
ture changes in snow cover under climate change. This

study therefore aimed to answer the following research ques-
tions. (1) How does snowline seasonality vary across the
Himalayas? (2) Which meteorological factors play a dom-
inant role in controlling SLA throughout the year across
this region? (3) How much and in which months has the
snowline shifted in the recent 21st century? (4) Which cli-
matic changes are associated with these changes in catch-
ment snowline?

2 Methods

Our method to delineate snowline altitudes closely follows
that of Girona-Mata et al. (2019) but is implemented in
Google Earth Engine. A schematic diagram of the method
is shown in Fig. 1. The framework uses an automated pro-
cessing to map snow cover, masking confounding land cover
types; identify boundaries of the snow-covered area; and fi-
nally retrieve topographical information corresponding to the
SLA. Here we explain the approach and input datasets in
more detail, before introducing our test sites and the data
evaluation and analysis.

2.1 Detection of snowline altitude

Our method starts with the identification of a catchment of in-
terest, specified by latitude and longitude. Based on these co-
ordinates, we automatically determine the boundaries of the
target catchment from the HydroBASINS version 1.0 from
the HydroSHEDS database (Lehner and Grill, 2013). Hy-
droBASINS provides 12 hierarchical levels of nested water-
shed boundaries according to their stream order, from which
we chose level 9 for the target catchments, which is compara-
ble in size to that used in Girona-Mata et al. (2019). To refine
the domain of investigation, we used three kinds of land sur-
face classification data: (1) glacier outlines from the latest
version of the GAMDAM inventory (Nuimura et al., 2015;
Sakai, 2019), (2) outlines of supraglacial debris detected by
Scherler et al. (2018), and (3) maps of surface waterbodies
named “Global Surface Water” created by the Joint Research
Centre (Pekel et al., 2016). We used these datasets to mask
these surface types as areas that may be erroneously identi-
fied as snow.

Next, the tool collects multispectral data for the target do-
main. We used Level-1 top-of-atmosphere (TOA) reflectance
for Landsat 5/7/8 data and Level-1C TOA reflectance for
Sentinel-2 data to detect snow-covered areas. The spatial res-
olutions of these datasets were 30 m for Landsat 5/7/8, 10 m
for the visible bands of Sentinel-2, and 20 m for the short-
wave infrared (SWIR) bands of Sentinel-2. We identified all
scenes from to 1999–2019 period whose internal metadata
indicated a cloud cover of less than 50 % of the scene.

To determine the snow-covered area, we calculated the
normalized difference snow index (NDSI; Dozier, 1989),
which is defined as the relative magnitude of the reflectance
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of the visible (green) and shortwave infrared (SWIR) bands.
The NDSI approach is an established, robust, and acces-
sible method for mapping snow in a variety of illumina-
tion and atmospheric conditions and is applicable to both
TOA and surface reflectance values. There is an extensive
precedent for NDSI as a practical method for identifying
snow, although threshold values are not always transfer-
able between settings (e.g., Burns and Nolin, 2014; Dozier,
1989; Gascoin et al., 2019; Härer et al., 2018). We masked
clouds based on the metadata associated with each scene
and then used an NDSI threshold of 0.45 to identify snow-
covered areas, which is relatively conservative but performs
well against independent high-resolution measurements and
spectral-unmixing approaches (Girona-Mata et al., 2019).
Saturation issues are common in Landsat 5/7, where the in-
put signal exceeds the maximum measurable signal and may
bias the detected snow-covered areas. Considerable sensor
improvements were made with Landsat 8 and Sentinel-2 in
terms of radiometric resolution (mitigating saturation prob-
lems, as well as sensor stability, and acquisition schedule,
but, fortunately, snow and ice can be mapped effectively
with established approaches) (Paul et al., 2016). Rittger et
al. (2021) evaluated the impact of band saturation using 25
images of Landsat 7 in the Himalayas and reported that
28 % of snow-covered pixels were saturated in the visible
bands. This problem was mitigated by selecting a conserva-
tive NDSI threshold (0.45) for identifying snow.

Next, we delineated the snowline from the derived snow
cover map using the Canny edge detection algorithm (Canny,
1986) which produces clean edges based on filtered local
high values in image gradient. However, at this point, the
snowline may include misidentified areas because snow-
covered areas are often obscured by clouds, shadows, scan
line corrector (SLC) error stripes, or band saturation over
snow. For example, the boundary of an obscured area may be
misidentified as a snowline if clouds cover the actual bound-
ary of a snow-covered area. Therefore, we removed snow-
lines from potentially erroneous areas such as cloud cover,
deep shadows, SLC error stripes (Landsat 7), and ice and wa-
ter surfaces. The last two categories (removal of surface ice
and water surfaces) were not implemented in Girona-Mata
et al. (2019), but the NDSI can return high values for both
surfaces, even when snow is not present (i.e., frozen water or
bare glacier ice), which could bias the results. As per Girona-
Mata et al. (2019), we also removed very small polygons
(smaller than 35 pixels) to eliminate the effects of rock out-
crops which may not be relevant for meteorological patterns
(i.e., oversteepened slopes that cannot hold snow).

Finally, we retrieve topographic information for each
point on the snowline boundary, including elevation, slope,
and aspect. As a reference digital surface elevation model
(DEM), we used ALOS World 3D – 30 m (AW3D30) ver-
sion 2.2, which was produced from measurements by the
Panchromatic Remote-sensing Instrument for Stereo Map-
ping (PRISM) on board the Advanced Land Observing

Figure 1. Schematic diagram of the snowline detection algorithm
with a sample image obtained from Sentinel-2. The parts high-
lighted in blue represent updates to the method of Girona-Mata et
al. (2019). By inputting longitude and latitude, all procedures are
automatically performed on the Google Earth Engine platform.

Satellite (ALOS). The spatial resolution of AW3D30 is ap-
proximately 30 m (1 arcsec mesh). The target accuracy of
AW3D30 was set to 5 m (root mean square value) both verti-
cally and horizontally (Takaku et al., 2018).

Finally, we calculated the median snowline altitude for
(i) the entire catchment and (ii) each 45° aspect group of each
catchment. This process was repeated for all available images
for each study area.

2.2 Study sites

We selected five glacierized catchments along the Himalayas
(Fig. 2), where hydro-glaciological studies and glacier mon-
itoring programs have been conducted in recent years. The
catchments that we identified after the representative glacier,
river, or valley were, from west to east, Satopanth, Hid-
den Valley, Langtang, Rolwaling, and Parlung (Fig. 2). The
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catchments have mean elevations ranging from 3864 to
5384 m and include numerous glaciers covering 6.8 % to
38.7 % of the catchment area (Table 1). Although the Asian
summer monsoon dominates the climate over its entire range,
the monsoon intensity varies considerably across the five
catchments. Satopanth receives limited summer precipita-
tion and moderate winter snow from westerly disturbances
(Cannon et al., 2015; Bao and You, 2019; Morinaga, 1987),
whereas Parlung experiences considerable spring precipita-
tion (Yang et al., 2013). In the other three regions, most an-
nual precipitation occurred from June to September (Fig. S1
in the Supplement). Our scene selection criteria for these
sites resulted in 6128 scenes – 1384 for Satopanth, 1173 for
Hidden Valley, 967 for Langtang, 1520 for Rolwaling, and
1084 for Parlung – spread across the 1999–2019 study pe-
riod (Figs. S3–S7).

2.3 Evaluation of the automated approach

High-resolution multispectral images from RapidEye and
PlanetScope were used to manually produce snowline
datasets against which to evaluate the automatically detected
snowlines. RapidEye and PlanetScope are both Earth obser-
vation constellations operated by Planet Labs, with spatial
resolutions of 6.5 and 3.7 m. For each target catchment we
prepared one to three ortho-images obtained close to the date
when automatic detections were conducted from the Land-
sat 5/7/8 or Sentinel-2 images. A list of the images used is
shown in Table 2.

The automatically detected snowlines were compared with
the manually delineated snowlines obtained using high-
resolution PlanetScope ortho-images obtained near the date
of automatic detection (within 10 d). In manual delineations,
the location of the snowline was determined by checking
high-resolution satellite images as well as the glacier out-
line and elevation data. Because it was difficult to distinguish
snowlines on ridges, we created two sets of manually delin-
eated snowlines: (i) snowlines extracted by excluding ridges
or shadows (minimum extraction, orange lines in Fig. S3)
and (ii) snowlines extracted without excluding ridges (maxi-
mum extraction; blue lines in Fig. S3). We then compare each
manually detected snowline point to the nearest automati-
cally detected point in the temporally corresponding Landsat
or Sentinel-2 scene and computed the horizontal and implied
vertical distance (based on the DEM) between these two
points. We did this for each of 12 validation scenes and for
both manual slow-line delineations, producing nearly 90 000
evaluation pairs. From these, we determine the median abso-
lute deviations of pairwise distances and height differences
for each manual snowline dataset and each scene.

In addition, to investigate the agreement of SLAs derived
from different satellites, we compared the SLAs derived from
Landsat 7, Landsat 8, and Sentinel-2 from 2016 to 2019.
Landsat 5 data were excluded from this comparison because
of the operational period (March 1984 to January 2013), but

we note that the predecessor approach performed favorably
for Landsat 5 and 7 scenes (Girona-Mata et al., 2019). This
second check is important for determining whether snow-
lines derived using our method from sensors with different
spatial and radiometric resolutions are biased relative to one
another (Rittger et al., 2021).

2.4 Analysis of SLA seasonality, trends, and controls

We first analyzed the seasonality of the SLAs by considering
a dual-phase harmonic regression (Eastman et al., 2009) of
the derived SLA values for the full period. The seasonal pat-
terns of SLA in the first (1999–2009) and the second (2010–
2019) half decades are compared using t tests (significance
level of 0.05). For months with significant differences be-
tween the two periods, we examined the ERA5 climatic fac-
tors that could drive the SLA changes.

To examine long-term trends, satellite-derived SLA val-
ues for each scene were converted to a monthly mean. By
linearly interpolating the missing values, the 21-year SLA
trend was identified using the Mann–Kendall test (signifi-
cance level of 0.01). We then examined the climatic fac-
tors driving SLA changes using multiple regression analysis
for both annual variations (12-month moving averages) and
longer-term changes (60-month moving averages).

The detected SLA was analyzed to explore the effects
of orographic and meteorological controls on seasonal and
long-term variations. We investigated the disparities in SLA
among aspect classes (east-, south-, west-, and north-facing
slopes), interpreting the observed differences conceptually
using the framework proposed by Girona-Mata et al. (2019).

To further understand the seasonal and long-term con-
trols of SLA variations, we analyzed climate reanalysis data.
We obtained 0.25° gridded near-surface 2 m air tempera-
ture, downward surface shortwave radiation, cloud cover, and
precipitation from ERA5 (Hersbach et al., 2020). We ag-
gregate the hourly products into daily and monthly mean
datasets. The air temperature was corrected to the average
snowline altitude during the target period (1999–2019) in
each catchment using a standard environmental lapse rate
(0.065 °C m−1). Finally, we compared the 12-month and 60-
month seasonal decomposition of the SLAs with those of
climatic variables (air temperature, precipitation, and solar
radiation) and assessed their statistical relationships through
multiple regression analysis. For this trend analysis, we use
a seasonal trend decomposition based on LOESS (locally es-
timated scatterplot smoothing) (STL) method, which is typ-
ically a robust trend detection method for noisy data with
variable sampling and strong seasonality (Cleveland et al.,
1990).
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Figure 2. Upper center figure shows the location of target catchments (from west to east: Satopanth (SP), Hidden Valley (HV), Langtang
(LT), Rolwaling (RW), Parlung (PL)). Enlarged views of target catchments are shown in surrounding figures: (a) Satopanth (SP), (b) Hidden
Valley (HV), (c) Langtang (LT), (d) Rolwaling (RW), and (e) Parlung (PL). Catchment outlines and glaciers are indicated by red and light-
blue polygons, which are sourced from the HydroSHEDS (Lehner and Grill, 2013) and GAMDAM (Sakai, 2019) databases, respectively.
Yellow dots denote representative villages. The background images of (a)–(e) are composite images created using the Sentinel-2 images
acquired between 2017 and 2020.

Table 1. Information on target catchments. Catchment geometric characteristics were derived from the HydroBASINS level 9 catchment
boundaries and the ALOS World 3D – 30 m DEM and glacier geometries are from the Randolph Glacier Inventory 6.0, while the climatolog-
ical characteristics were determined from ERA5, downscaled with an adiabatic lapse rate to the median catchment snowline elevation (see
Sect. 3).

Central coordinate Median altitude Area Glacierized area Annual total Daily mean
(m a.s.l.) (km2) (km2) precip. air temp.

(max; min) (mm) (°C)

Satopanth 79.36° E, 30.78° N 5031 (7080; 3154) 243.0 94.0 (39 %) 1654 −7.5
Hidden Valley 83.63° E, 28.91° N 5384 (6492; 2876) 445.0 49.1 (11 %) 801 −8.4
Langtang 85.58° E, 28.21° N 4879 (7156; 1461) 587.7 144.6 (25 %) 1978 −3.7
Rolwaling 86.41° E, 27.89° N 5008 (6897; 1621) 309.5 76.8 (25 %) 1170 −3.9
Parlung 95.71° E, 29.84° N 3864 (6052; 2678) 253.2 17.1 (7 %) 2056 −2.2

3 Results

3.1 Evaluation of detected snowlines

We first present the comparison of detected SLAs from our
method with those obtained through manual delineation at
multiple scenes in each catchment to indicate the accuracy
of the detected SLA. The SLAs obtained from our method
exhibited a very close agreement with the manual delin-
eation results (Table 2), with median absolute horizontal dis-
tances below 25 m for the nearest snowline points in all
scenes and median absolute vertical distances (SLA differ-

ences) of 10 m or less. The spatial correspondence of the
derived snowlines from automatic and manual methods was
superb (Figs. S8–S9 for examples) for areas of overlapping
coverage. Interestingly, despite this close correspondence,
the cumulative distributions of snowline elevations differed
substantially between the automatic and manual snowline
derivations (Fig. S10), highlighting the importance of consis-
tent catchment-wide sampling of snowline elevations. This
is achievable through automated processing but not through
manual delineation; we note that in situ monitoring of snow-
lines (e.g., Moringa et al., 1987) can thus provide rich infor-
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mation about temporal variability in snowlines but may be
locally biased in terms of the SLA.

Considering the intersatellite variability between the SLAs
retrieved from Landsat 7, Landsat 8, and Sentinel-2 (Fig. S4),
we observed the least variation in SLAs during the monsoon
season (with a standard deviation (σ ) of SLA for all sites
and satellites < 18 m) and the largest variation during winter
(σ < 140 m). Disagreements during winter were not unex-
pected given the inconsistent acquisition dates for the three
satellites and the variable occurrence of winter snowfall in
the Himalayas. Focusing on the differences in snowline alti-
tudes (SLAs) between different satellites during the monsoon
season, we observed a high degree of consistency in the range
of SLA values within each catchment. Despite heavy cloud
cover, the standard deviation in the median SLA between dif-
ferent satellites generally remained within 50 m, except for
Parlung, where the deviation extended to 120 m. Although
these variations may appear significant, they are relatively
minor compared to the seasonal SLA variations observed for
each sensor. Therefore, we consider the bias resulting from
the use of different satellites in this study to be acceptable for
examining seasonal and decadal changes in the SLA.

3.2 Snowline seasonality

The derived SLA values demonstrate strong seasonal vari-
ability (Fig. 3). Across most sites, SLA maxima were ob-
served during the monsoon and minima were in the winter
season, which is consistent with the findings of Girona-Mata
et al. (2019). However, the timing of the maximum SLA var-
ied slightly among the sites: July in Langtang and August in
Satopanth, Rolwaling, and Parlung. Hidden Valley showed a
relatively stable SLA during the monsoon season, with a less
pronounced maximum SLA occurring in August (Fig. 3f).
The minimum SLA occurred in late winter or the early pre-
monsoon season at all sites: January in Langtang, February
in Hidden Valley, March in Rolwaling and Parlung, and April
in Satopanth. The winter–spring SLA transition differed be-
tween sites: in Langtang SLA began to increase in January,
whereas the SLA in Satopanth continued to decrease until
April. All sites exhibited a relatively steady winter SLA. The
differences between the minimum and maximum SLAs var-
ied from 480 m (Hidden Valley) to 1100 m (Langtang).

All sites show strong intraseasonal dispersion in winter-
time, when the range of SLA measurements is greater than
the annual SLA amplitude; the winter SLA range doubles the
annual amplitude in Hidden Valley, Langtang, and Rolwal-
ing. Despite the relatively small number of images acquired
during the monsoon season at all sites due to thick cloud
cover, the derived SLAs for this period exhibit narrow spread
and the highest SLA values. In all catchments other than Par-
lung, the monsoon season SLA exceeded 5500 m a.s.l.; in
Parlung, the ice-free topographic availability limited snow-
line retrievals to 5000 m a.s.l. As noted by Girona-Mata
et al. (2019), we find a strong second harmonic phase in

Satopanth, Rolwaling, and Hidden Valley, which are located
at high-elevation but monsoon-dominated sites. This second
harmonic was less prominent in Langtang and Parlung.

3.3 Trends in SLA for 1999–2019

The STL time series decomposition of SLAs revealed
contrasting SLA trends between catchments (Fig. 4).
Increasing SLA trends were found in Hidden Valley
(+11.9 m yr−1), Langtang (+14.4 m yr−1), and Rolwaling
(+8.2 m yr−1), whereas Satopanth showed a decreasing trend
(−15.6 m yr−1) and Parlung showed no statistically signif-
icant trend (Fig. 4). These trends were confirmed for both
12-month and 60-month moving averages using the Mann–
Kendall test, and the p values for the four catchments where
trends were detected were all less than 0.001. The altitudi-
nal difference between the minimum and maximum SLAs,
with 12-month moving averages for each catchment, varied
between 580 m (Parlung) and 820 m (Langtang).

3.4 Seasonal SLA aspect differences

Catchment snowlines showed distinct seasonal patterns of as-
pect dependence (Fig. 5). A common characteristic among
the five catchments was the minimal difference in SLA be-
tween aspects during the monsoon season, in contrast to
the substantial SLA differences between aspects during win-
ter. Additionally, the standard deviation in the SLA, repre-
sented by the error bars in Fig. 5, was smallest during the
monsoon season, gradually increasing, and largest during
winter. Regarding specific regional characteristics, Satopanth
showed minimal differences in the SLA between aspects,
even during winter, with only a slight decrease in the north-
facing SLA. Conversely, aspect-induced differences were
pronounced throughout the year in the Parlung region. Fur-
thermore, Parlung exhibited a relatively small seasonal vari-
ability in the standard deviation of the SLA values.

3.5 Decadal changes in seasonal SLA

To examine the cause of the long-term changes in the SLA
shown in Fig. 4, we compared the seasonal patterns of the
SLA and climatic variables for the first half (1999–2009 in
blue) and second half (2010–2019 in red) of each catch-
ment (Fig. 6). Focusing on the months with statistically sig-
nificant changes, SLA decreases were found in March in
Satopanth (Fig. 6a), Hidden Valley (Fig. 6b), and Rolwal-
ing (Fig. 6d) and in January in Parlung (Fig. 6e). No sig-
nificant seasonal SLA decrease was observed in Langtang
(Fig. 6c). Increases in the SLA were evident in September
in Satopanth (Fig. 6a); October to December in Hidden Val-
ley (Fig. 6b); July and October in Langtang (Fig. 6c); and
July, October, and November in Rolwaling (Fig. 6d). No sig-
nificant increase was observed in Parlung (Fig. 6e). Over-
all, SLA decreases were primarily detected in winter to early
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Table 2. Performance of the automated snowline in comparison to manually digitized snowline datasets 1 and 2, reporting the median
absolute deviation (MAD) for the horizontal distance (D) and vertical difference (H) of the nearest pairs of snowline points in the dataset.

Catchment Scene for automatic Scene for manual MAD D1 MAD H1 MAD D2 MAD H2
detection delineation (m) (m) (m) (m)

Satopanth 13 Sep 2017, Landsat 8 13 Sep 2017, RapidEye 16 9 16 7
20 Jan 2021, Landsat 8 27 Jan 2021, PlanetScope 16 9 16 7

Hidden Valley 15 Jun 2019, Sentinel-2 15 Jun 2019, PlanetScope 10 3 9 3
25 May 2020, Sentinel-2 23 May 2020, PlanetScope 10 3 10 3
12 Oct 2020, Sentinel-2 12 Oct 2020, PlanetScope 10 3 9 2
30 Dec 2020, Sentinel-2 30 Dec 2020, Sentinel-2 11 3 10 3

Langtang 12 Feb 2016, Landsat 8 13 Feb 2016, RapidEye 15 7 15 6
13 Nov 2017, Landsat 8 12 Nov 2017, RapidEye 15 6 17 8

Rolwaling 30 Dec 2019, Landsat 8 30 Dec 2019, PlanetScope 22 10 19 8
17 May 2020, Sentinel-2 27 May 2020, PlanetScope 18 8 17 8

Parlung 29 Dec 2020, Landsat 8 29 Dec 2020, PlanetScope 20 10 20 9

Mean 15 6 14 6

Figure 3. (a–e) The derived snowline altitude (SLA) over the target period (1999–2019) at each catchment and (f) the SLA anomaly from
the mean SLA over the target period (1999–2019). Grey dots and solid lines in (a)–(e) show the SLAs derived from each satellite scene and
smooth curves fitted with harmonic functions, respectively. Catchment abbreviations denote Satopanth (ST), Hidden Valley (HV), Langtang
(LT), Rolwaling (RW), and Parlung (PL), respectively.

spring, with increases in the monsoon and post-monsoon sea-
sons.

The decrease in winter SLA is associated with a decrease
in temperature in January across all regions where a decrease
in winter SLA was detected. The increase in precipitation
during February and March may also have contributed to the
lowering of winter SLAs in Satopanth, Hidden Valley, and
Rolwaling. No changes in solar radiation were identifiable in
relation to decreases in the winter SLA.

The rising SLAs identified in the three Nepalese catch-
ments (Hidden Valley, Langtang, and Rolwaling) were all as-
sociated with rising temperatures during the monsoon. We

note that the SLA increases occurred in conjunction with
precipitation increases (all three sites) and net shortwave de-
creases (all except Rolwaling). Consequently, the SLA vari-
ations during the monsoon may be more closely linked to
air temperature than to precipitation, shortwave radiation, or
cloud cover. The decrease in solar radiation during the mon-
soon was statistically significant in the three Nepalese re-
gions, which is consistent with increased precipitation. It is
unrealistic for the decrease in solar radiation to contribute
to the increase in SLA, but it could suppress the increasing
rate of the SLA. In contrast, the increasing solar radiation in
November in Rolwaling may have contributed to the increase

https://doi.org/10.5194/tc-19-5283-2025 The Cryosphere, 19, 5283–5298, 2025



5290 O. Sasaki et al.: Contrasting changes in Himalayan snowline altitude

Figure 4. Snowline altitude with 60-month (solid lines) and 12-
month (dashed lines) moving averages at the five target catch-
ments. Catchment abbreviations denote Satopanth (ST), Hidden
Valley (HV), Langtang (LT), Rolwaling (RW), and Parlung (PL),
respectively. Trends (p < 0.001) for the moving averages were
−15.6 m yr−1 for ST, 11.9 m yr−1 for HV, 14.4 m yr−1 for LT,
8.2 m yr−1 for RW, and insignificant for PL.

in the SLA in the same month. In Satopanth, an increase is
observed only in September, suggesting an association with
the temperature increase in the same month.

3.6 Relationships between trends in meteorology and
SLA

The 12-month moving averages of snowline altitude exhib-
ited significant correlations with changes in air temperature
across most sites, except for Satopanth (Fig. 7, Table 3). In
Rolwaling, all climatic variables except precipitation demon-
strated a correlation with the SLA, with air temperature ex-
hibiting the strongest impact, as evidenced by the largest
t value. Conversely, in Satopanth, precipitation emerged as
the sole statistical control on SLA, with a negative t value
indicating that precipitation lowers the SLA. This finding
that increased precipitation at the decadal scale has lowered
the SLA is consistent with the results of our seasonal analy-
ses that increased winter snowfall lowers the winter SLA in
Satopanth.

Overall, our results underscore the substantial influence
of air temperature on SLA variations, which is consistent
with previous research (Girona-Mata et al., 2019; Tang et al.,
2020). This relationship is also expected to decisively control
future snow climatology in the region (Kraaijenbrink et al.,
2021). However, we also found that winter precipitation can
serve as a significant driving factor, particularly in Satopanth,
where the SLA displays a negative trend over our study pe-
riod. Although the influence of solar radiation is smaller than
that of air temperature, it contributes to an increase in the
SLA in Rolwaling. We also note that cloud cover plays a
significant role and is negatively correlated to SLA for both
Hidden Valley and Langtang.

4 Discussion

4.1 Seasonal pattern and controls

We found consistencies and differences in the seasonal pat-
terns across the five target catchments. Across the five re-
gions, the SLA reaches its highest level during the monsoon
summer and is maintained at a relatively stable snow–rain
transition altitude caused by abundant precipitation and al-
titude dependence on air temperature (Girona-Mata et al.,
2019). Once the precipitation reaches a sufficient level to
maintain this altitude, additional precipitation has no further
impact on the SLA. Solar radiation is less effective during
the monsoon summer because of frequent and heavy cloud
cover, leading to highly diffused shortwave radiation (Pel-
licciotti et al., 2011). However, Parlung was an exception,
as indicated by the minimal differences in SLA between the
aspects (Fig. 5). In Parlung, differences in SLA between as-
pects persisted even in summer (Fig. 5), suggesting that solar
radiation still has an impact on SLA.

Snow is most abundant from late winter to the early pre-
monsoon season, just before the snowmelt begins in earnest.
In Langtang, SLA shows the seasonal minimum in January,
indicating snowmelt starting in February as solar radiation
increases. In contrast, Satopanth experiences a later mini-
mum, seeing the lowest SLA in April. This region is less
influenced by solar radiation throughout the year (Fig. 5), so
snowmelt may begin primarily when temperatures rise.

Winter exhibits significant variability in the snowline al-
titude (SLA) across catchments. Winter storms sporadically
deposit snow to very low elevations, which then ablates to
the seasonal freezing line, leading to increased variability
in the SLA. The cumulative likelihood of these storms in-
creases throughout the winter such that the seasonal snowline
eventually converges to approximate the freezing line before
the monsoon. Particularly in Langtang and Rolwaling, the
variability was pronounced, with more snow cover on the
west-facing slopes than on the east-facing slopes (Fig. 5).
Conversely, Hidden Valley experiences less east–west vari-
ation and winter SLA variability than Langtang and Rolwal-
ing. This could be attributed to the high-altitude Dhaulagiri
mountain range to the southwest, which may act as a bar-
rier to westerly winds, thereby limiting the inflow of moist
air across the mountains. Despite being located further west,
Satopanth exhibited minimal aspect variation in the SLA
(Fig. 5). The Satopanth catchment features high-elevation
ridges on its western side (Fig. 1).

Therefore, westerly winds (Cannon et al., 2015; Maussion
et al., 2014) may have deposited more snow on the outer
western slopes of the catchment area. It is conceivable that
winds crossing these western ridges contributed to snowfall
within the catchment. This phenomenon may explain the re-
duced east–west disparity observed in Satopanth compared
to regions directly impacted by prevailing winds. In contrast,
Parlung, located on the southeastern Tibetan Plateau, is less
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Figure 5. (a–e) Boxplots of the monthly snowline altitude (SLA) for each aspect of the slope: north, east, south, and west. (f) Relative
distribution of 45° topographic aspects for each catchment (%).

influenced by westerly winds. Based on the above analysis,
the seasonal patterns of SLA are not only dependent on cli-
matic factors but also are significantly influenced by topog-
raphy.

4.2 Trends, decadal changes in seasonality, and
controls

Long-term trends and statistically significant explanatory
variables exhibited similar patterns in the study catchments
(Fig. 7). Satopanth showed a declining SLA trend, primar-
ily associated with the trend in ERA5 precipitation. In con-
trast, the three Nepalese catchments exhibited increasing
SLA trends that were mainly associated with temperature.
Parlung showed no discernible trend, with fluctuations that
were possibly related to temperature variations.

We interpreted the seasonal meteorological changes driv-
ing long-term variations in SLA. In Satopanth, the declining
trend was primarily driven by a decrease in SLA in March.
This decrease in SLA in March could be attributed to in-
creased snowfall in February following a temperature de-

crease in January. This finding is consistent with that of a
previous study that reported an increasing trend of synoptic-
scale western disturbance activity over the past few decades,
leading to increased winter precipitation in the western Hi-
malayas (Krishnan et al., 2019). Conversely, the rising SLA
in September may have moderated the decreasing rate of the
interannual trend of SLA in Satopanth. In the three Nepalese
regions, the increasing trends of SLA are driven by SLA
increase during the monsoon season to post-monsoon sea-
son, corresponding to rising temperatures during the mon-
soon season. The rising temperatures during the monsoon
had a stronger effect on SLA than concurrent precipitation
increases and net shortwave decrease. Although the increase
in precipitation during the monsoon season is also statisti-
cally significant in these three catchments, the SLA during
the monsoon may be controlled by the snow–rain transition
altitude which is determined by the altitude dependence of
air temperature, generalizing past inferences for Langtang by
Girona-Mata et al. (2019) to the central Himalayas. It thus
seems plausible that the increase in temperature is the main
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Figure 6. Monthly climatologies of SLA and climate variables (Ta, air temperature at 2 m height; Pm, monthly total precipitation; Rs, daily
mean downward solar radiation flux at the surface) for the first half (1999–2009 in blue) and the second half (2010–2019 in red), respectively.
Shaded areas indicate statistically significant changes (pink for increase and light blue for decrease) between the periods.

factor contributing to the SLA increase during the monsoon
and the post-monsoon seasons.

Hidden Valley and Rolwaling also exhibited SLA lower-
ing in March, possibly attributed to increased winter precip-
itation. In Parlung, a decrease in SLA due to lower tempera-
tures was observed in January. However, this decrease in the
January SLA was not sufficient to cause a long-term trend of
declining SLA.

We anticipate that the long-term SLA trend is controlled
by the balance between increased snowmelt during the mon-
soon and increased snowfall during winter. The balance be-
tween winter precipitation and summer temperature varied
among the five catchments despite being located in the same
Himalayan range. These results indicate that regions with
different climatic and topographic characteristics, such as
arid areas or those with winter accumulation, may have dis-
tinct factors controlling snow cover variability.

4.3 Reliability of trend detection

Our data-inclusive approach to snowline analyses mixes four
satellite sensors with differing radiometric capabilities and
sampling biases. The three Landsat sensors exhibit broad
similarities in terms of spectral and temporal sampling, al-
though with considerable improvements for Landsat 8, in
particular (Paul et al., 2016). Collectively, these three sen-
sors led to a relatively stable temporal sampling over our
five study catchments, but the inclusion of Sentinel-2 data
substantially increases the quantity of observations for the
later period (Figs. S3–S7), in addition to the slightly different
sensor characteristics. We therefore tested the effect of the
Sentinel-2 data inclusion on our trend retrieval approach. The
retrieved SLA trends differ for each site (up to 2.6 m yr−1 dif-
ference) depending on the inclusion of Sentinel-2 data, but at
no site does the trend direction or significance change based
on this dataset (Figs. S14–S18).
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Figure 7. Time series of SLA and climate variables (Ta, air temperature at 2 m height; Pm, monthly total precipitation; Rs, daily mean
downward solar radiation flux at the surface) for the period from 1999 to 2019. Variables with 60-month and 12-month moving averages are
drawn with thick and thin lines, respectively.

All four sensors exhibited a similar seasonal sampling
(Fig. S11), and the inclusion of Sentinel-2 data had a min-
imal effect on the seasonal harmonic regression of SLA
(Figs. S19–S23). However, all four sensors exhibited reduced
sampling during the monsoon months due to the extensive
summer cloud cover, so the reliability of the trend retrieval
for reduced data sampling was evaluated through a synthetic
trend retrieval experiment. Beginning with a sampled har-
monic and a random trend similar to that measured at our
sites, we introduce noise and reduced monsoon image avail-
ability (Figs. S24–S28). Our experiment highlights that the
seasonal decomposition approach is robust to both noise and
seasonal sampling biases and successfully retrieves the im-
posed trends to within 2.5 m yr−1. Our results highlight that

standard regressions of oscillations around trends, even with-
out sampling errors and biases, are subject to producing er-
roneous trends due to edge effects. This emphasizes the im-
portance of long records and careful trend retrieval, such as
with our seasonal decomposition approach, for environmen-
tal records with strong variability.

4.4 Limitations, advantages, and future perspectives

A major limitation for our study is the inconsistent data avail-
ability over time due to changing sensor missions, cloud
cover, and the varying extent of observations. Image avail-
ability is improving due to the increased number of opera-
tional imagers but could have a strong impact on both the
characterization of seasonal snow dynamics, especially for
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Table 3. Correlation coefficients (R) between SLAs and single variables calculated using 12-month and 60-month moving averages and
results of the multiple regression analysis using 12-month moving averages of climate data and SLA. Influential factors (p < 0.05 and
|t |> 2.0) are shown in bold. A positive or negative t value indicates a contribution to the increase or decrease in SLA, respectively.

Univariate Multivariate

12-month R 60-month R Coefficient Standard t value p value
(p value) (p value) error

Satopanth Air temperature 0.50 (<0.001) 0.80 (<0.001) 6.05 11.18 0.54 0.580
Precipitation −0.18 (0.004) −0.44 (<0.001) −2.81 0.39 −7.24 <0.001
Solar radiation −0.44 (<0.001) −0.11 −11.85 1.17 −10.12 <0.001
Cloud cover −0.15 (0.017) −0.34 (<0.001) −0.13 1.97 −0.07 0.948

Hidden Valley Air temperature 0.34 (<0.001) −0.07 (0.34) 68.26 12.82 5.32 <0.001
Precipitation −0.21 (<0.001) 0.51 (<0.001) 0.10 0.62 0.17 0.869
Solar radiation 0.04 (0.51) −0.36 (<0.001) 5.56 2.45 2.27 0.024
Cloud cover 0.05 (0.47) 0.18 (0.017) 10.52 3.29 3.20 0.002

Langtang Air temperature 0.57 (<0.001) 0.45 (<0.001) 94.58 12.49 7.58 <0.001
Precipitation −0.08 0.59 (<0.001) −0.34 0.78 −0.43 0.667
Solar radiation −0.19 (0.003) −0.69 (<0.001) −2.98 3.12 −0.95 0.341
Cloud cover −0.13 (0.037) −0.15 (0.031) −0.39 3.68 −0.11 0.916

Rolwaling Air temperature 0.61 (<0.001) 0.71 (<0.001) 87.45 13.19 6.63 <0.001
Precipitation 0.01 (0.864) 0.40 (<0.001) 0.74 0.70 1.06 0.290
Solar radiation −0.05 0.11 (0.146) −8.47 3.23 −2.63 0.009
Cloud cover −0.40 (<0.001) −0.76 (<0.001) −32.63 4.50 −7.26 <0.001

Parlung Air temperature 0.28 (<0.001) 0.43 (<0.001) 32.41 7.71 4.20 <0.001
Precipitation −0.15 (0.019) −0.67 (<0.001) −0.43 0.40 −1.08 0.286
Solar radiation 0.04 (0.549) 0.58 (<0.001) 1.34 1.34 1.00 0.317
Cloud cover −0.06 −0.51 (<0.001) 3.09 2.66 1.16 0.248

earlier periods, as well as the robust detection of a trend.
A second major limitation is the prevalence of cloud cover,
which further limits the usable area of affected images and
can, in some cases, lead to biases in the detected snowline
due to undersampling. This can be mitigated with more strin-
gent cloud coverage criteria but will further reduce image
availability for severely cloud-affected regions. Our cloud
masking was largely successful for the evaluation scenes but
is likely to fail in some situations, leading to false snowline
detections. As detailed above, our method is able to success-
fully recover snowlines and snowline trends despite these
challenges.

The combination of multiple datasets with differing foot-
prints, compounded by variable cloud cover and deep shad-
ows, can lead to sequential scenes differing in snowline, but
this can be the result of spatial sampling biases. Although
our evaluation of the automated snowline retrieval showed
its high accuracy relative to manual datasets (Table 2), it is
clear that sampling biases due to spatial coverage can lead
to statistical differences at the catchment scale (Fig. S10).
In our study, differences in spatial coverage may have in-
creased the variability in derived catchment snowlines even
over short timescales. Our results indicate SLA variations
are typically 200 m within 10–20 d based on a variable-lag

sensor cross-comparison (Fig. S28). This is reflected in the
spread of seasonal retrieved SLA values (Fig. 3) but should
not affect our derived trends. Nevertheless the challenge of
spatial sampling underlines the importance of complete spa-
tial coverage for integrated snowline assessments, encourag-
ing the use of future rapid-repeat and cloud-insensitive snow
monitoring methods (e.g., Tsai et al., 2019). We note that an
advantage of our methodology is its transferability, and ad-
ditional snow cover data products could easily be included
in the analysis. Our full approach is directly transferable to
Landsat 9, launched in 2021, or other high-resolution satel-
lites that will be launched soon, allowing for longer and more
detailed analyses. In addition, our method can be applied to
wider areas as it leverages cloud-accessible global datasets
and cloud processing.

This study used top-of-atmosphere radiances from multi-
ple sensors to determine snow cover based on a fixed NDSI
threshold; this simple approach showed close correspon-
dence with independent evaluation datasets, and the similar
method of Girona-Mata et al. (2019) also produced reliable
snow cover at the Langtang site. Future developments could,
in the future, be applied to homogenized surface reflectances
with a fractional snow cover algorithm (Rittger et al., 2021).
Further adaptations to the method, to enable application more
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broadly, could include temporal stacking, data fusion, or a
different statistical definition of the snowline in order to fur-
ther control for spatial sampling challenges. In addition, to
reduce the effect of spectral differences between Landsat and
Sentinel-2 sensors on our derived snowlines, future efforts
could make use of recent harmonized products (e.g., Feng et
al., 2024).

An advantage of our method leveraging high-resolution
sensors, compared to the standard snowline detection method
leveraging MODIS data (Krajčí et al., 2014), is its high spa-
tial precision, which enabled us to examine aspect differ-
ences in snowline and to resolve snow at high altitudes.
The coarser spatial resolution of MODIS snow cover prod-
ucts (500 m) results in a crude representation of steeper to-
pography, which leads to a high snow cover dropout rate
at high elevations (e.g., Mortimer and Sharp, 2018), caus-
ing the detected SLA to jump to very high elevations in
summer. As a result, the SLAs obtained from MODIS were
much higher than SLAs from our method at all sites dur-
ing the monsoon season, as high-elevation snow was essen-
tially undetected (Fig. S6). In contrast, the low-elevation dis-
crepancies in SLAs appear to occur mainly in Satopanth and
occasionally in Hidden Valley (Fig. S6). Upon examining
the snowlines in Satopanth, we discovered that many north-
facing slopes were shadowed by topography. As a result, our
method, which masks shadows, tends to detect snowlines that
are biased towards south-facing slopes. This likely explains
the discrepancies observed at lower elevations in Satopanth,
as snowlines detected on higher south-facing slopes were not
fully captured. One option to address this issue is to apply a
statistical correction, considering that we have measured the
aspect difference and can identify which areas of the domain
have been sampled versus those that have not. This correc-
tion would help provide a more accurate representation of
the SLA across areas with various topographies.

Our study demonstrated significant regional differences
in snow cover dynamics across five catchments in the Hi-
malayas, highlighting the diversity of snow phenology in
similar climates and emphasizing the need for further de-
tailed investigations in distinct climates. By applying our au-
tomated method to broader areas, such as the whole of Asia
or globally, future studies can investigate the distinct charac-
teristics of snow dynamics in different regions; application to
strongly differing domains will, however, need further eval-
uation. This approach will enable us to examine changes in
the SLA worldwide and identify the factors controlling these
changes, contributing to a deeper knowledge of the spatial
and temporal distributions of snow cover and the hydrology
in the cryosphere and downstream regions. Future work on
SLA detection at larger scales could provide process-based
advances beyond the foundations achieved with coarse sen-
sors such as MODIS.

5 Conclusion

In this study, we demonstrate the use of an algorithm to auto-
matically detect the catchment snowline altitude (SLA) from
multispectral remote sensing data and apply it to five glacier-
ized monsoonal catchments in the High Mountain Asia re-
gion for the 1999–2019 period. Our results highlight strongly
variable seasonal SLA amplitudes between the five sites. All
sites exhibit maximum SLA values during the monsoon at
5500 m a.s.l., with the exception of the topographically lim-
ited Parlung catchment, as well as minimum values during
the winter, when the scatter of SLA is also very high. This
behavior and the variable aspect dependence during these
periods highlight the contrast between temperature control
on SLA during the monsoon and precipitation control dur-
ing the winter. Our results indicate rising SLA at three of
the study catchments (Hidden Valley, Langtang, and Rolwal-
ing) with trends up to +14.4 m yr−1, no statistical trend at
the Parlung catchment, and a lowering SLA in Satopanth
(−15.6 m yr−1). Decadal changes in the monthly SLA and
climatic factors suggest that long-term SLA trends are pri-
marily controlled by the balance between higher tempera-
tures during the monsoon and lower temperatures with in-
creased snowfall during winter. Further application of our
method on a broader scale could provide novel insights into
the spatiotemporal variation in snow cover and its control-
ling factors, providing control for numerical modeling ef-
forts. This will contribute to a deeper understanding of the
future state of snow cover and related hydrology, which are
crucial for water resource management and climate change
adaptation.

Code availability. The scripts for automatic detection of SLA
are available at https://doi.org/10.5281/zenodo.15718051 (Sasaki,
2025).

Data availability. HydroSHEDS data (Lehner and Grill, 2013),
Landsat 5/7/8 data (Earth Resources Observation and Science
Center, 2020a, b, c), Sentinel-2 data (Copernicus Sentinel-2,
2021), and AW3D30 (Takaku et al., 2018) are available through
the Earth Engine Data Catalog (https://developers.google.com/
earth-engine/datasets/catalog/), which is a data catalog of the
Google Earth Engine that is a cloud-based geospatial analy-
sis platform. The latest version of the GAMDAM inventory
data used in this study are available on the PANGAEA website
(https://doi.org/10.1594/PANGAEA.891423; Sakai, 2018). Outline
data for the supraglacial debris are available in the supplemen-
tal data of Scherler et al. (2018). Surface waterbody data are
available from the official Global Surface Water website (https:
//global-surface-water.appspot.com/; Pekel et al., 2016). Rapid-
Eye and PlanetScope data are available from the European Space
Agency, https://earth.esa.int/eogateway/missions/rapideye (Euro-
pean Space Agency, 2022a) and https://earth.esa.int/eogateway/
missions/planetscope (European Space Agency, 2022b). Finally,
meteorological data from ERA5 are available via the Copernicus
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Climate Data Store (https://doi.org/10.24381/cds.adbb2d47; Hers-
bach et al., 2023).
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Krajčí, P., Holko, L., Perdigao, R. A. P., and Parajka, J.: Estimation
of regional snowline elevation (RSLE) from MODIS images for
seasonally snow covered mountain basins, J. Hydrol., 519, 1769–
1778, https://doi.org/10.1016/j.jhydrol.2014.08.064, 2014.

Krishnan, R., Sabin, T. P., Madhura, R. K., Vellore, R. K.,
Mujumdar, M., Sanjay, J., Nayak, S., and Rajeevan, M.:
Non-monsoonal precipitation response over the Western Hi-

malayas to climate change, Clim. Dynam., 52, 4091–4109,
https://doi.org/10.1007/s00382-018-4357-2, 2019.

Lehner, B. and Grill, G.: Global river hydrography and net-
work routing: baseline data and new approaches to study the
world’s large river systems, Hydrol. Process., 27, 2171–2186,
https://doi.org/10.1002/hyp.9740, 2013.

Liu, Y., Fang, Y., and Margulis, S. A.: Spatiotemporal distribution
of seasonal snow water equivalent in High Mountain Asia from
an 18-year Landsat–MODIS era snow reanalysis dataset, The
Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-
2021, 2021.

Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation Seasonality and Variability over
the Tibetan Plateau as Resolved by the High Asia Reanalysis,
J. Climate, 27, 1910–1927, https://doi.org/10.1175/JCLI-D-13-
00282.1, 2014.

McFadden, E. M., Ramage, J., and Rodbell, D. T.: Landsat TM and
ETM+ derived snowline altitudes in the Cordillera Huayhuash
and Cordillera Raura, Peru, 1986–2005, The Cryosphere, 5, 419–
430, https://doi.org/10.5194/tc-5-419-2011, 2011.

Mernild, S. H., Pelto, M., Malmros, J. K., Yde, J. C., Knud-
sen, N. T., and Hanna, E. Identification of snow ablation rate,
ELA, AAR and net mass balance using transient snowline
variations on two Arctic glaciers, J. Glaciol., 59, 649–659,
https://doi.org/10.3189/2013JoG12J221, 2013.

Morinaga, Y.: Seasonal variation of snowline in Langtang Valley,
Nepal Himalayas, 1985–1986, B. Glacier Res., 5, 49, 1987.

Morinaga, Y., Seko, K., and Takahashi, S.: Seasonal variation of
snowline in Langtan Valley, Nepal Himalayas, 1985–1986, Bul-
letin of Glacier Resarch, 5, 49–53, 1987.

Mortimer, C. A. and Sharp, M.: Spatiotemporal variabil-
ity of Canadian High Arctic glacier surface albedo from
MODIS data, 2001–2016, The Cryosphere, 12, 701–720,
https://doi.org/10.5194/tc-12-701-2018, 2018.

Muhammad, S. and Thapa, A.: An improved Terra–Aqua
MODIS snow cover and Randolph Glacier Inventory 6.0 com-
bined product (MOYDGL06*) for high-mountain Asia be-
tween 2002 and 2018, Earth Syst. Sci. Data, 12, 345–356,
https://doi.org/10.5194/essd-12-345-2020, 2020.

Notarnicola, C.: Overall negative trends for snow cover extent and
duration in global mountain regions over 1982–2020, Sci. Rep.,
12, 13731, https://doi.org/10.1038/s41598-022-16743-w, 2022.

Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D.,
Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya,
S., Tsunematsu, K., Tshering, P., and Fujita, K.: The GAM-
DAM glacier inventory: a quality-controlled inventory of Asian
glaciers, The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-
9-849-2015, 2015.

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R.
E., and Dozier, J.: Retrieval of subpixel snow covered area, grain
size, and albedo from MODIS, Remote Sensing of Environment,
113, 868–879, https://doi.org/10.1016/j.rse.2009.01.001, 2009.

Palazzi, E., Mortarini, L., Terzago, S., and Hardenberg, J.:
Elevation-dependent warming in global climate model simula-
tions at high spatial resolution, Clim. Dynam., 52, 2685–2702,
https://doi.org/10.1007/s00382-018-4287-z, 2019.

Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., and Schwaizer,
G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping

https://doi.org/10.5194/tc-19-5283-2025 The Cryosphere, 19, 5283–5298, 2025

https://doi.org/10.1080/01431161.2023.2291000
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.1029/2019WR024935
https://doi.org/10.5194/tc-12-1629-2018
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1038/s41586-019-1822-y
https://doi.org/10.1038/s41586-019-1822-y
https://doi.org/10.1175/JHM-D-23-0047.1
https://doi.org/10.1038/s41558-021-01074-x
https://doi.org/10.1038/s41558-021-01074-x
https://doi.org/10.1016/j.jhydrol.2014.08.064
https://doi.org/10.1007/s00382-018-4357-2
https://doi.org/10.1002/hyp.9740
https://doi.org/10.5194/tc-15-5261-2021
https://doi.org/10.5194/tc-15-5261-2021
https://doi.org/10.1175/JCLI-D-13-00282.1
https://doi.org/10.1175/JCLI-D-13-00282.1
https://doi.org/10.5194/tc-5-419-2011
https://doi.org/10.3189/2013JoG12J221
https://doi.org/10.5194/tc-12-701-2018
https://doi.org/10.5194/essd-12-345-2020
https://doi.org/10.1038/s41598-022-16743-w
https://doi.org/10.5194/tc-9-849-2015
https://doi.org/10.5194/tc-9-849-2015
https://doi.org/10.1016/j.rse.2009.01.001
https://doi.org/10.1007/s00382-018-4287-z


5298 O. Sasaki et al.: Contrasting changes in Himalayan snowline altitude

Glacier Extents and Surface Facies, and Comparison to Landsat
8, Remote Sens., 8, 7, https://doi.org/10.3390/rs8070575, 2016.

Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A.
S.: High-resolution mapping of global surface wa-
ter and its long-term changes, Nature, 540, 418–422,
https://doi.org/10.1038/nature20584 (data available at:
https://global-surface-water.appspot.com/, last access: 15
January 2024), 2016.

Pellicciotti, F., Raschle, T., Huerlimann, T., Carenzo, M., and
Burlando, P.: Transmission of solar radiation through clouds
on melting glaciers: a comparison of parameterizations and
their impact on melt modelling, J. Glaciol., 57, 367–381,
https://doi.org/10.3189/002214311796406013, 2011.

Pritchard, H. D.: Asia’s shrinking glaciers protect large
populations from drought stress, Nature, 569, 649–654,
https://doi.org/10.1038/s41586-019-1240-1, 2019.

Racoviteanu, A. E., Rittger, K., and Armstrong, R.: An Automated
Approach for Estimating Snowline Altitudes in the Karakoram
and Eastern Himalaya From Remote Sensing, Front. Earth Sci.,
7, 220, https://doi.org/10.3389/feart.2019.00220, 2019.

Roessler, S. and Dietz, A. J.: Development of Global Snow Cover
– Trends from 23 Years of Global SnowPack, Earth, 4, 1,
https://doi.org/10.3390/earth4010001, 2023.

Rittger, K., Bormann, K. J., Bair, E. H., Dozier, J., and Painter, T.
H.: Evaluation of VIIRS and MODIS Snow Cover Fraction in
High-Mountain Asia Using Landsat 8 OLI, Front. Remote Sens.,
2, 647154, https://doi.org/10.3389/frsen.2021.647154, 2021.

Robinson, K. M., Flowers, G. E., Baraër, M., and Rounce,
D. R.: Modelling glacier mass balance and runoff in
the Kaskawulsh River Headwaters of southwest Yukon,
Canada, 1980–2022, Hydrological Processes, 39, e70150,
https://doi.org/10.1002/hyp.70150, 2025.

Sakai, A.: GAMDAM glacier inventory for
High Mountain Asia, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.891423, 2018.

Sakai, A.: Brief communication: Updated GAMDAM glacier inven-
tory over high-mountain Asia, The Cryosphere, 13, 2043–2049,
https://doi.org/10.5194/tc-13-2043-2019, 2019.

Sasaki, O.: Scripts and data for Contrasting patterns of change
in snowline altitude across five Himalayan catchments, Zenodo
[code], https://doi.org/10.5281/zenodo.15718051, 2025.

Scherler, D., Wulf, H., and Gorelick, N.: Global assessment
of supraglacial debris-cover extents, Geophys. Res. Lett., 45,
11798–11805, https://doi.org/10.1029/2018GL080158, 2018.

Smith, T. and Bookhagen, B.: Changes in seasonal snow water
equivalent distribution in High Mountain Asia (1987 to 2009),
Sci. Adv., 4, e1701550, https://doi.org/10.1126/sciadv.1701550,
2018.

Spiess, M., Huintjes, E., and Schneider, C.: Comparison of
modelled- and remote sensing- derived daily snow line altitudes
at Ulugh Muztagh, northern Tibetan Plateau, J. Mt. Sci., 13, 593–
613, https://doi.org/10.1007/s11629-015-3818-x, 2016.

Stigter, E. E., Wanders, N., Saloranta, T. M., Shea, J. M., Bierkens,
M. F. P., and Immerzeel, W. W.: Assimilation of snow cover and
snow depth into a snow model to estimate snow water equivalent
and snowmelt runoff in a Himalayan catchment, The Cryosphere,
11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, 2017.

Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J.:
Cloud masking for Landsat 8 and MODIS Terra over snow-
covered terrain: Error analysis and spectral similarity be-
tween snow and cloud, Water Resour. Res., 55, 6169–6184,
https://doi.org/10.1029/2019WR024932, 2019.

Takaku, J., Tadono, T., Tsutsui, K., and Ichikawa, M.: Qual-
ity Improvements of ‘AW3D’ Global Dsm Derived from
Alos Prism, IGARSS 2018 – 2018 IEEE International Geo-
science and Remote Sensing Symposium, Spain, 1612–1615,
https://doi.org/10.1109/IGARSS.2017.8128293, 2018.

Tang, Z., Wang, X., Deng, G., Wang, X., Jiang, Z., and
Sang, G.: Spatiotemporal variation of snowline altitude at
the end of melting season across High Mountain Asia, using
MODIS snow cover product, Adv. Space Res., 66, 2629–2645,
https://doi.org/10.1016/j.jhydrol.2022.128438, 2020.

Tang, Z., Deng, G., Hu, G., Zhang, H., Pan, H., and
Sang, G.: Satellite observed spatiotemporal variability
of snow cover and snow phenology over high moun-
tain Asia from 2002 to 2021, J. Hydrol., 613, 128438,
https://doi.org/10.1016/j.jhydrol.2022.128438, 2022.

Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: Wet and Dry
Snow Detection Using Sentinel-1 SAR Data for Mountainous
Areas with a Machine Learning Technique, Remote Sens., 11,
895, https://doi.org/10.3390/rs11080895, 2019.

Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and
Wada, Y.: Increasing dependence of lowland populations
on mountain water resources, Nat. Sustain., 3, 917–928,
https://doi.org/10.1038/s41893-020-0559-9, 2020.

Yang, W., Yao, T. D., Guo, X. F., Zhu, M. L., Li, S. H., and Kattel, D.
B.: Mass balance of a maritime glacier on the southeast Tibetan
Plateau and its climatic sensitivity, J. Geophys. Res.-Atmos.,
118, 9579–9594, https://doi.org/10.1002/jgrd.50760, 2013.

The Cryosphere, 19, 5283–5298, 2025 https://doi.org/10.5194/tc-19-5283-2025

https://doi.org/10.3390/rs8070575
https://doi.org/10.1038/nature20584
https://global-surface-water.appspot.com/
https://doi.org/10.3189/002214311796406013
https://doi.org/10.1038/s41586-019-1240-1
https://doi.org/10.3389/feart.2019.00220
https://doi.org/10.3390/earth4010001
https://doi.org/10.3389/frsen.2021.647154
https://doi.org/10.1002/hyp.70150
https://doi.org/10.1594/PANGAEA.891423
https://doi.org/10.5194/tc-13-2043-2019
https://doi.org/10.5281/zenodo.15718051
https://doi.org/10.1029/2018GL080158
https://doi.org/10.1126/sciadv.1701550
https://doi.org/10.1007/s11629-015-3818-x
https://doi.org/10.5194/tc-11-1647-2017
https://doi.org/10.1029/2019WR024932
https://doi.org/10.1109/IGARSS.2017.8128293
https://doi.org/10.1016/j.jhydrol.2022.128438
https://doi.org/10.1016/j.jhydrol.2022.128438
https://doi.org/10.3390/rs11080895
https://doi.org/10.1038/s41893-020-0559-9
https://doi.org/10.1002/jgrd.50760

	Abstract
	Introduction
	Methods
	Detection of snowline altitude
	Study sites
	Evaluation of the automated approach
	Analysis of SLA seasonality, trends, and controls

	Results
	Evaluation of detected snowlines
	Snowline seasonality
	Trends in SLA for 1999–2019
	Seasonal SLA aspect differences
	Decadal changes in seasonal SLA
	Relationships between trends in meteorology and SLA

	Discussion
	Seasonal pattern and controls
	Trends, decadal changes in seasonality, and controls
	Reliability of trend detection
	Limitations, advantages, and future perspectives

	Conclusion
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

