The Cryosphere, 19, 5259-5282, 2025
https://doi.org/10.5194/tc-19-5259-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Cryosphere

A prototype passive microwave retrieval

algorithm for tundra snow density

Jeffrey J. Welch and Richard E. J. Kelly

Geography and Environmental Management, University of Waterloo, Waterloo, Canada

Correspondence: Jeffrey J. Welch (jjwelch@uwaterloo.ca)

Received: 18 September 2024 — Discussion started: 7 October 2024
Revised: 2 June 2025 — Accepted: 8 August 2025 — Published: 30 October 2025

Abstract. Snow density data are important for a variety of
applications, yet, to our knowledge, there are few methods
for estimating spatiotemporal varying snow density in the
Arctic environment. This research proposes a passive mi-
crowave retrieval algorithm to estimate tundra snow density.
A two-layer electromagnetic snowpack model, representing
depth hoar underlaying a wind slab layer, was used to es-
timate microwave emissions for use in an inverse model to
estimate snow density. The proposed algorithm is predicated
on solving the inverse model at boundary conditions for the
simulated layers to estimate snow density within a plausi-
ble range. An experiment was conducted to assess the al-
gorithm’s ability to reproduce snow density estimates from
snow courses at four sites in the Canadian high Arctic. The
electromagnetic snowpack model was calibrated to end-of-
season conditions at each study site and a novel temporal pa-
rameterization was used to expand algorithm retrievals over
full winter seasons. Algorithm estimates have the potential,
under ideal conditions, to provide snow density information
comparable to that collected through in situ sampling. In its
current configuration, algorithm performance was best later
in the season, with mean absolute percentage error approach-
ing 10 % towards the end-of-season indicating snow density
estimation uncertainty was similar to the in situ samples.
With some modifications, and more extensive forcing data,
this algorithm could be applied across the pan-Arctic to pro-
vide snow density information at scales that are not currently
available.

1 Introduction

There are numerous applications for which the quantifica-
tion of snow density is important: for example, estimating
snow water equivalent (SWE) for water resources (Venildi-
nen et al., 2021, 2023), modelling atmosphere-land inter-
actions for energy balances (Gouttevin et al., 2012, 2018),
and ecological monitoring of Arctic fauna (Martineau et al.,
2022; Sivy et al., 2018); though, to the best of our knowledge,
there is no effective method for estimating spatiotemporally-
varying snow density in the Arctic. There are automated in-
struments to estimate snow density but they are not widely
implemented, instead density is typical estimated by weigh-
ing a known volume of snow (Kinar and Pomeroy, 2015).
This manual process is labour intensive and, as a result,
measurements are sparsely distributed making the prediction
of spatially distributed density estimates uncertain. In a re-
mote environment, like the Canadian Arctic, comprehensive
in situ sampling is not feasible due to logistical constraints,
so large-scale analyses involving snow density tend to rely
on modelled estimates. Recent studies have shown that cur-
rent snow density products, from meteorological reanalysis
or detailed snow models, are not adequate for use in Arctic
environments. The snow scheme in the ERAS-Land reanaly-
sis model overestimates snow depth and underestimates den-
sity, by considerable margins, in high-latitudes (Cao et al.,
2020, 2022). Similarly, detailed snow models (i.e. Crocus
and SNOWPACK) cannot estimate the expected vertical den-
sity profile in the Arctic tundra (Barrere et al., 2017; Domine
et al., 2019). Despite its intrinsic importance in Earth sys-
tems, snow density variability is currently not well under-
stood on large spatiotemporal scales.

One possible approach to estimate snow density at the
regional scale (i.e. 102 to 10*km?; Woo, 1998) is from
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satellite-based remote sensing. Satellite passive microwave
(PM) radiometry offers near-daily coverage of the North-
ern Hemisphere, under most weather conditions, with a data
record spanning back to 1978. Emitted microwave energy
can pass through a snowpack unattenuated at lower fre-
quencies or is attenuated at higher frequencies. For attenu-
ated emission, the primary microwave interaction within a
dry snowpack is volume scattering which is controlled by
the snowpack properties (i.e. snow depth, density, temper-
ature, and grain size radius; Chang et al., 1982). PM snow
emission retrievals using a frequency difference approach
(ATy) — the subtraction of higher frequency channel Ty, (vol-
ume scattering dominated) from a lower-frequency 7;, chan-
nel (subnivean emission dominated) — have been the basis
of empirical representations of PM estimates (e.g. Chang
et al., 1987) and more sophisticated assimilation-based re-
trieval schemes (e.g. Takala et al., 2011). Historically, snow
mass has been estimated with spaceborne (PM) radiometry
through retrieval algorithms focusing on snow depth (Kelly
et al., 2003, 2019; Takala et al., 2011; Tedesco and Jeyarat-
nam, 2016). In theory, the principles behind those existing
retrieval schemes could be exploited to estimate snow den-
sity rather than depth.

In general, the parameterization of snow density has been
simplified in large-scale PM SWE estimation models (Mor-
timer et al., 2022). There is a lack of snow density obser-
vations at the necessary scales to constrain density param-
eterization, primarily because of the difficulty in acquiring
spatially distributed in situ observations (Sturm et al., 2010).
As a result, snow depth has been the focus of most analyses
regarding SWE. In some cases, snow density is kept con-
stant across the domain (e.g. Luojus et al., 2021; Takala et
al., 2011) or conservative estimates are taken from empiri-
cal models of snow density evolution over time (e.g. Kelly
et al., 2003). However, such a simplified representation of
snow density may not adequately represent variability across
the large domains those models are designed to cover.

Other satellite-based PM snow density retrieval algorithms
have been proposed (Champollion et al., 2019; Holmberg
et al., 2024), though none have used a frequency difference
modelling approach like is commonly used to retrieve snow
depth. In this study, an experiment was conducted to evaluate
the potential use of satellite-based PM observations and ex-
isting in situ meteorological networks to estimate snow den-
sity in the high Arctic tundra using a frequency difference
modelling approach. Snow density estimates from the pro-
posed algorithm could provide a notable benefit over existing
snow density products, which do not account for densifica-
tion processes relevant to the tundra environment (Cao et al.,
2022; Domine et al., 2016a). Instead, the algorithm would be
informed by independent PM observations providing context
on in situ snow density conditions. Thus, estimates from this
approach could fill a gap in the understanding of snow den-
sity variability in remote areas that are unsuitable for inten-
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sive in situ sampling and where current snow density models
are not appropriate.

2  Study Area

The Canadian high Arctic was chosen to develop the proto-
type snow density retrieval algorithm for the following rea-
sons that tend to simplify the retrieval process. First, high
Arctic snowpacks are traditionally classified as tundra type
snow (Sturm et al., 1995; Sturm and Liston, 2021), though
much of the Canadian Arctic Archipelago would be more
accurately described as a polar desert (Royer et al., 2021).
Tundra snow has a characteristic two layer structure of dense
wind slabs overlaying depth hoar (Benson and Sturm, 1993)
— polar desert snowpacks are similar but are thinner, denser,
and have a smaller proportion of depth hoar (Royer et al.,
2021) — which provided priori information for model pa-
rameterization. Second, forest cover attenuation effects (Li et
al., 2020) are minimised in high Arctic environments which
are characterised by sparse, short vegetation or barren land-
scapes (Royer et al., 2021). Third, terrain effects should be
minimal compared to those found in more topologically com-
plex landscapes like alpine environments (Tong et al., 2010).
Last, there are relatively few lakes in the high Arctic, com-
pared to the subarctic tundra, reducing the radiometric effects
of water bodies (Derksen et al., 2010).

Four automatic weather stations (AWS) were identified
across a latitudinal range in the Canadian high Arctic for
this experiment (Fig. 1), selected because they are collocated
with manual in situ SWE sampling sites. Basic site char-
acteristics are provided in Table 1; including AWS clima-
tology, predominant vegetation types from the Raster Cir-
cumpolar Arctic Vegetation Map (Raynolds et al., 2019),
and area of nearby water bodies calculated with the Hydro-
LAKES database (Messager et al., 2016). Following Royer
etal. (2021)’s classification, three AWS sites — Alert, Eureka,
and Qausuittuq (hereafter Resolute Bay) — are situated in the
polar desert and Ikaluktutiak (hereafter Cambridge Bay) in
the polar tundra. Sites in the polar desert are mostly barren
and are exposed to harsh winter storms, but local topogra-
phy around Eureka protects the area from storms creating a
microclimate — described as a polar oasis, characterised by
higher temperatures, lower precipitation, and more vegeta-
tion (Woo and Young, 1997). The Cambridge Bay site has
more subarctic qualities featuring graminoid shrub vegeta-
tion and many small lakes nearby.

3 Data
3.1 Model Forcing Data

PM radiometry data were the main forcing for the proposed
snow density retrieval algorithm. Radiometry data were ac-
quired from the Advanced Microwave Scanning Radiometer
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Table 1. Characteristics of study sites (average AWS air temperature and snow depth from 15 March to 15 April).

Site Latitude  Vegetation = Water Area  Air Temperature ~ Snow Depth

(%) °0) (cm)
Alert 82°31’ barren <1 —28.3 349
Eureka 79°59 graminoid <1 -31.2 19.0
Resolute Bay 74°43'  barren <1 —24.6 21.3
Cambridge Bay  69°06/ graminoid 17 —25.0 31.8

Earth Observing System (AMSR-E) Calibrated Enhanced-
Resolution Passive Microwave Daily Brightness Tempera-
ture Version 2 dataset (Brodzik et al., 2024), resampled to
a 12.5km EASE-Grid 2.0. PM observations spanned eight
winter seasons (2003-2011) while the instrument was func-
tional (reference snow density data were not available for the
2002-2003 season). AMSR-E observations for each station
were extracted from an adjacent EASE grid cell to the AWS
(highlighted in Fig. 1) to minimise water area in observa-
tion scene due to their proximity to the coast. Nighttime ob-
servations from the descending orbit track (~ 01:30 a.m. lo-
cal time at the equator) were used since snow conditions
would be more likely to be cold and dry for optimal mi-
crowave retrievals (Derksen et al., 2005). Radiometry sam-
ples were smoothed with a 5d Gaussian weighted mean fil-
ter as described by Holloway (1958). The 18.7 and 36.5 GHz
vertically-polarised radiometer channels (hereafter 19 and
37 GHz, respectively) were used to estimate ATy, in the for-
ward model.

Meteorological measurements, acquired from the Environ-
ment and Climate Change Canada (ECCC) AWS network
were also used for model forcing. The electromagnetic snow-
pack model was parameterised with AWS data, which re-
quired daily measurements of snow depth and air tempera-
ture as prior snow conditions. AWS data were the limiting
factor in this experiment because the network is sparsely dis-
tributed in northern Canada limiting potential sites.

3.2 Insitu Reference Data

3.2.1 Canadian Historical Snow Water Equivalent
Dataset

The curated ECCC Canadian Historical Snow Water Equiva-
lent dataset (CanSWE: Vionnet et al., 2021) provided in situ
snow density data for algorithm calibration and evaluation.
CanSWE was chosen because of its broad spatial coverage
and relatively high temporal sampling frequency, although,
it is recognised that snow density information from CanSWE
is limited to bulk properties meaning they were unsuitable
to evaluate algorithm estimates for individual snow layers.
CanSWE included sampling locations collocated with AWS
sites which allowed for direct comparisons of estimated and
sampled snow density. Snow density data in CanSWE (con-
sidered in this study) were collected with ESC-30 SWE tubes
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Table 2. AWS and CanSWE snow depth comparison, which were
included or excluded for model forcing.

Dataset n  RMSE Correlation
(cm) (r)
included 554 5.8 0.869 (p <0.01)

excluded 108 15.8 0.446 (p < 0.01)

along 5 to 10 point snow course transects spanning 150 to
300 m, aggregated into bulk estimates of snow density. A
ten percent uncertainty range was applied to the snow den-
sity data in the reference dataset because of uncertainties in-
herent to manual snow density sampling (Conger and Mc-
Clung, 2009; Lépez-Moreno et al., 2020). Specific informa-
tion about sampling procedures was not available for the in-
dividual sites in the CanSWE dataset (e.g. where the snow
course is situated relative to the AWS was unknown).

The reference dataset was limited with respect to the al-
gorithm configuration (described in Sect. 4.4). Some yearly
AWS forcing datasets were deemed unsuitable for algorithm
forcing and were removed from the analysis. One winter sea-
son at the Eureka site (2008-2009) had insufficient snow
accumulation to permit PM retrievals (i.e. < 10cm). Other
datasets were excluded where snow accumulation trajecto-
ries reported by the AWS were substantially different from
snow depth samples in CanSWE: three seasons for Alert
(2007-2008, 2009-2010 and 2010-2011) and four for Res-
olute Bay (2003-2004, 2004-2005, 2005-2006, and 2006—
2007) — otherwise, there was fairly good agreement AWS
and CanSWE snow depths (Table 2). Individual CanSWE
snow density samples were removed under three conditions:
if they were out of the range of algorithm estimates (i.e. 150
to 450kgm™3), if they were sporadic and did not fit tempo-
rally with the seasonal trajectory of the other samples, or if
they were taken late in the season during the ablation period
when the snowpack would likely be in a wet state inhibiting
microwave retrievals.

3.2.2 Eureka Snow Survey Dataset
Due to the bulk nature of CanSWE density data, an addi-

tional dataset from Saberi et al. (2017) was used to evaluate
algorithm estimates in greater detail. Extensive surveys of
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Figure 1. (a) AWS/CanSWE sites, distributed across the high Arctic in Nunavut, Canada, with insets showing 12.5 km EASE-Grid (high-
lighted cells used in analysis) for (b) Eureka (snowpit numbers correspond to Table 3), (¢) Cambridge Bay, (d) Resolute Bay, and (e) Alert.

snow conditions were conducted near Eureka on the Fosheim
Peninsula from 12-20 April 2011. The survey protocol was
rather unique in terms of spatial extent covering four 25 km
EASE-Grid cells, including stratigraphic data from snowpits
and bulk snow properties from ESC-30 SWE tubes. Mea-
sured snow properties in each 25 km EASE-Grid cell were
aggregated using median values (Table 3) to force algorithm
retrievals and evaluate the algorithm configuration calibrated
to bulk density measurements. Although limited to a single
season, the Eureka snow survey dataset provided additional
context to interpret algorithm outputs.

4 Methods
4.1 Electromagnetic Model

The Snow Microwave Radiative Transfer model (SMRT: Pi-
card et al., 2018) was used as the forward model in the re-
trieval algorithm. SMRT was configured with the Improved
Born Approximation (IBA) electromagnetic model (Mitzler,
1998) and microwave grain size microstructure model (Pi-
card et al., 2022b), which have been demonstrated to be rep-
resentative of high-Arctic snow conditions (Meloche et al.,
2024). The substrate composition was parameterised to rep-
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resent cryosolic soil following Meloche et al. (2021) and at-
mospheric contributions were estimated as described by Pul-
liainen et al. (1993).

The physically-based forward modelling approach re-
quired the snowpack to be parameterised, so the relevant
characteristics needed to be quantified. A two-layer snow-
pack model was configured to account for the presence of
depth hoar underneath a wind slab layer to best represent the
microwave signature of tundra snow (Hall, 1987; Saberi et
al., 2017). Upon initial deposition the snowpack would likely
be in a homogenous state, with one layer, but that situation
was not considered in this approach. The strong environmen-
tal controls present in the tundra contribute to the develop-
ment of wind slab and depth hoar snow layers quickly after
deposition (Benson and Sturm, 1993; Sturm and Holmgren,
1998), and algorithm retrievals were performed after 10 cm
of snow had accumulated so the pack would be unlikely to
be in the initial homogenous state.

4.2 Sensitivity Test

Microwave retrieval algorithms have traditionally estimated
snow depth using a vertically polarised brightness tempera-
ture frequency difference (ATy =19-37 V), because of the
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Table 3. Median (interquartile range) snowpack properties from Saberi et al. (2017) in each 25.0km EASE Grid-cell — grid cell numbers

correspond to points in Fig. 1b.

Grid  Snowpits/SWE Snow Depth  Depth Hoar Thickness Bulk Density ~ Wind Slab Density =~ Depth Hoar Density
Cell Cores (n) (cm) (cm) (kg m_3) (kg m—3 ) (kg m_3)
1 13/39  25.0 (9.0 to 20.0) 10.0 (6.5t0 12.0) 283 (251 to 329) 346 (306 to 368) 231 (210 to 258)
2 6/18  21.0 (1.8 t0 20.3) 11.0 (9.3t0 14.3) 275 (244 to 315) 81 (313 to 407) 241 (223 to 290)
3 10/15  21.0(5.0to 17.1) 8.5(8.0to 12.5) 287 (277 to 382) 392 (364 to 399) 219 (213 to 235)
4 7/21  22.0 (2.8 to 16.8) 9.0(8.5t011.0) 261 (236 to 303) 383 (357 to 398) 227 (212 to 245)
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sensitivity (insensitivity) of the 37 GHz (19 GHz) channel to
snow accumulation, though we believe the same principle
could be used to estimate snow density. Generally, AT;, is
thought to increase with snow depth due to increasing vol-
ume scattering until a threshold after which the signal is
saturated by thermal emission originating in the snowpack
(Saberi et al., 2020). However, that is a simplified explana-
tion of snow microwave interactions (i.e. only considering
one layer) and can be complicated by stratification of nat-
ural snowpacks. For a tundra snowpack — with characteris-
tic wind slab overlaying depth hoar — volume scattering is
dominant for the depth hoar layer and non-scattering emis-
sion contributions originate from the wind slab (Sturm et al.,
1993). Thus, it is important to understand how the proper-
ties of each snow layer would impact microwave emissions
to design an effective snow density retrieval algorithm.

The electromagnetic model (described in Sect. 4.1) was
used to simulate microwave emissions from tundra snow-
packs to assess its sensitivity to various parameters. The elec-
tromagnetic model requires snowpack physical properties to
be quantified, including thickness, density, specific surface
area (SSA), polydispersity, and temperature of each layer. A
series of experiments were designed to illustrate the effects of
the various model parameters (representative of tundra snow,
see Meloche et al., 2022; Picard et al., 2022b) and Arctic
snow metamorphism; detailed descriptions of each experi-
ment are provided in Table 4.

Snow density is our primary variable of interest, so it is
important to understand how it effects microwave emissions.
In the IBA model, scattering and absorption coefficients are
in part related to snow density. The absorption coefficient in-
creases linearly with snow density because of a greater pro-
portion of ice-to-air in the microstructure representation al-
tering the effective permittivity (Picard et al., 2018). On the
other hand, the scattering coefficient has a non-linear rela-
tionship with snow density because of the interactions be-
tween individual scatterers in the snowpack. Volume scatter-
ing increases as more scatters are introduced (i.e. increasing
density), until the scatterers are close enough in proximity to
influence each other and the overall scattering efficiency de-
creases (Tsang and Kong, 2001). Thus, density of the wind
slab and depth hoar layers can affect ATy, in different ways
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Figure 2. Experiment 1, simulated brightness temperatures of iso-
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Figure 3. Experiment 2, same as Fig. 2 but shaded areas correspond
to range of polydispersity rather than SSA.

because of their properties that contribute to varying levels
of volume scattering and thermal emission.

Experiments 1 to 3 were designed to simulate microwave
emission from isolated wind slab and depth hoar layers,
accounting for variations in SSA, polydispersity, and layer
thickness, respectively (Figs. 2 to 4). The relationships
between snow density and brightness temperatures follow
skewed curves with minima at densities of 150kgm™3 and
frequency dependent amplitudes. Snow volume scattering is
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Table 4. Specific model parameters for wind slab (WS) and depth hoar (DH) layers in various sensitivity tests.

Parameter ‘ Experiment 1 ‘ Experiment 2 ‘ Experiment 3 ‘ Experiment 4
Density (kgm™3) WS: 1 to 500 WS: 250 to 400
DH: 1 to 500 DH: 250
SSA (m?kg™!) WS: 15 to 25 WS: 20
DH: 10to 12 DH: 11
Polydispersity (unitless) WS: 0.80 WS: 0.60 to 0.90 WS: 0.80
DH: 1.33 DH: 1.10 to 1.80 DH: 1.33
Thickness (cm) WS: 20 WS: 10 to 30 WS: 20 WS: 20 to 40
DH: 10 DH:5to0 15 DH: 10 DH: 10
Temperature (°C) Air: —30.0 WS: —28.6
DH: —26.3 Soil: —25.0
50 | I = less sensitive to 19 than 37 GHz, so the frequency differ-
40 1 1 DH ence (ATy) is approximately the reflected 37 GHz curve and
f 30 its magnitude depends on different microstructure properties
5 20 — (Picard et al., 2022b). Lower (higher) SSA values produce
10 1 greater (lesser) volume scattering, with minimal dependency
0 — on density, effectively translating the ATy, curves vertically
e e e e e ] - .

240 1 (depth hoar ~ 9K between 10 to 12m?kg~! and wind slab
< 550 4 gy ~ 3K between 15 to 25m? kg~!). Similarly, polydispersity
= 200 = vis 37V effectively scales SSA, also translating AT, curves (depth

=1 DH 37V hoar ~ 19K between 1.2 to 1.8 and wind slab ~ 3K be-

180 — T T T 1 — T 1T — T —1 tween 0.6 to 0.9). Alternatively, layer thickness amplifies the
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Figure 4. Experiment 3, same as Fig. 2 but shaded areas correspond
to range of thickness rather than SSA.
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Figure 5. Experiment 4, simulated brightness temperatures of two-
layer snowpack with variable wind slab density, mapped to bulk
density (thin slab/thick slab), shaded areas correspond to range of
wind slab SWE.
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relationship between snow density and simulated ATy, in-
creasing sensitivity to depth hoar density (~ 10K between
150 to 450 kgm ™3 at 5cm vs. ~ 28 K at 15 cm) and the wind
slab to a lesser extent (~ 0.5 K between 150 to 450 kgm ™ at
10cm vs. ~ 3 K at 30 cm). Seasonal snow density is typical
above the 150 kgm ™ inflection point (ignoring fresh snow),
so we can assume snow density has a negative relationship
with ATy, — with all other parameters equal, greater (lesser)
ATy, would indicate lower (higher) snow density.

While there was minimal model sensitivity to the isolated
wind slab in Experiments 1 to 3, the effect of the wind slab
on brightness temperature should be more apparent when pa-
rameterised over depth hoar. Experiment 4 was designed to
demonstrate brightness temperature sensitivity for the two-
layer snowpack representation, configured to replicate mid-
season wind slab compaction over an established depth hoar
layer. Wind slab thickness was parameterised to decrease
with compaction (i.e. densification) for SWE to remain con-
stant, and a range of initial SWE values (i.e. thicknesses)
were considered (shaded areas in Fig. 4). When introduced
over the established depth hoar layer, absorption and thermal
emission originating in the wind slab mask AT;, by several
K depending on its SWE (~ 2K for 50 mm vs. ~ 3K for
85 mm). Then, absorption increased linearly with snow den-
sity and ATy, was accordingly masked by the wind slab as
it compacted (~ 5K between 250 to 400kgm > for 50 mm

https://doi.org/10.5194/tc-19-5259-2025



J. J. Welch and R. E. J. Kelly: A prototype passive microwave retrieval algorithm for tundra snow density

vs. ~ 8K for 85 mm). Thus, wind slab formation resulting
from compaction or thickening should be apparent in AMSR-
E radiometry (i.e. evident from decreasing ATy), given its
radiometric sensitivity of +0.6 K. Furthermore, the magni-
tude of AT, masking by the wind slab is enhanced by the
snowpack thermal gradient and a relatively colder wind slab
compared to the substrate will increase AT, (~ 2 K between
0 to —10 °C, not shown).

4.3 Snow Density Retrieval Algorithm

The results from the various experiments in the sensitivity
test suggest there should be sufficient sensitivity to estimate
snow density conditions from space-based PM radiometry.
Further, PM radiometry was shown to be more sensitive to
the thickness of depth hoar than the wind slab (and in turn
overall snow depth) and, in terms of estimating Arctic snow
mass, might be better suited to retrieving snow density rather
than depth. PM retrievals of snow density were conducted
at each AWS site, where meteorological conditions dictated
when retrievals were performed. A minimum snow depth of
10cm was imposed for algorithm retrievals because of the
transparent nature of shallow snow to microwave emissions
(Hall et al., 2002). Similarly, algorithm retrievals were not
conducted when AWS air temperatures were above freezing
because of the likelihood of liquid meltwater in the snow-
pack attenuating microwave emissions (Foster et al., 1984).
With the AWS observations prescribed to the electromag-
netic model an inverse modelling approach was applied to
optimise the snow density parameters. The forward model
was inverted by minimizing the cost function (J)

J (Pws, pah) = (AT sim(Pws» Pan) — ATh,obs)” (1

representing the vertically polarised 19 and 37 GHz spectral
difference in the AMSR-E observation (A Ty, opbs) and the sim-
ulated SMRT signature at the same channels (AT, sim), given
the prescribed wind slab and depth hoar layer densities (ows
and pgp, respectively).

The solution to the two-layer snowpack model presented
was imprecise because different layer density combinations
could produce the same predicted AT;, in Eq. (1), resulting in
a system with no global minima. The practical impact of this
equifinality issue was that the algorithm may be confronted
by seemingly equally valid but different layer density com-
binations, producing the same microwave signature. Without
additional information there was no suitable way to identify
the optimal layer density combination, so the retrieval al-
gorithm was designed to solve for all microwave-plausible
layer density combinations for a given observation scene to
address equifinality in the inverse model.

To constrain the modelled layer density estimates to a
plausible range, boundary conditions were established to
limit the parameter space in which the algorithm could search
for solutions to the inverse model. The first boundary con-
dition was defined based on the strong environmental con-
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trols present in the tundra that result in a characteristic wind
slab snow layer overlaying less dense depth hoar (Benson
and Sturm, 1993). Logically, the wind slab layer should be
denser than the depth hoar layer, so all parameter combina-
tions where pws < pgn were discarded, and the lower bound-
ary situated where the densities of the two layers were equal.
The second boundary for the model was defined based on the
behaviour of microwave interactions in the electromagnetic
model. Simulated A T;, peaks at a snow density of 150 kgm ™3
(see Sect. 4.2), and the apparent permittivity in IBA is appli-
cable up to a volume fraction of 50 %, or 458.5kgm~> (Pi-
card et al., 2022a). Thus, the domain of each layer was lim-
ited to densities between 150 to 450 kgm ™ to ensure consis-
tent behaviour in the electromagnetic snowpack model, and
the upper boundary situated where either layer was at the
edge of that domain.

An important aspect of the retrieval algorithm was to ex-
ploit how the various minima on the cost surface, defined by
Eq. (1), were positioned throughout the parameter space to
reduce computational requirements. Figure 6 is an example
of how the minima formed a valley transecting the parame-
ter space. The microwave-plausible density range is shown in
Fig. 6a as the set of layer density combinations situated along
a straight line connecting the solutions at the two established
boundary conditions for the inverse model. Wind slab and
depth hoar density combinations were mapped to bulk values
in Fig. 6b, where the contours of iso-density will pivot clock-
wise (counterclockwise) around the lower solution when the
proportion of depth hoar thickness increases (decreases). It
should be noted that under some instances, the valley could
intersect the upper boundary related to the minimum depth
hoar density (i.e. left axis in Fig. 6a), though the situation
shown (intersecting the upper axis) was more common.

The lowest contour level (0.6 K) in Fig. 6a represents the
sensitivity of the AMSR-E radiometer at 19 and 37 GHz and
the grid spacing corresponds to algorithm retrieval accuracy
(10kgm™3). In theory, the lower boundary can produce a so-
lution with similar magnitudes of measurement uncertainty
and retrieval accuracy (the upper solution is less precise be-
ing situated in a broader part of the valley). However, the
stated radiometric sensitivity of the AMSR-E instrument is
related to measurements of surface emission and additional
uncertainty in the retrievals could be introduced because of
atmospheric contributions. The atmosphere was configured
to represent typical subarctic conditions (Pulliainen et al.,
1993) but the frequency dependent relationship with water
vapour content could change observed ATy, by ~2 to 3K
from typical conditions. Thus, trends in snow density condi-
tions should be apparent from spaceborne radiometry, with
fluctuations from varying atmospheric water vapour content
(partially mitigated with temporal filtering of PM radiome-
try); higher (lower) water vapour concentrations will cause
the solution to shift towards the bottom-left (top-right) in
Fig. 6a.
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Figure 6. (a) Algorithm solutions for Eureka on 15 April 2011, with various H values, on surface defined by the square root of Eq. (1) in
Kelvin, and (b) wind slab and depth hoar densities mapped to bulk values in kg m? with Eq. (4).

The range of microwave-plausible snow densities raised
the question of how to evaluate the algorithm estimates
against the reference data. A heterogeneity (H) parameter
was introduced into the algorithm to estimate densities for
the two snow layers and reduce the microwave-plausible
snow densities to a single estimate of bulk snow density —
ranging from O to 1 (i.e. the least and most heterogenous so-
lutions, respectively). Wind slab (pys) and depth hoar (pogn)
densities were estimated related to H with

Pws = Pws,lower T H + (Ows,upper — Ows,lower) 2
©dh = Pdh,lower — H - (0dh,lower — Odh,upper) 3

where (Pws,lowera /Odh,lower) and (pws,uppers pdh,upper) are the
lower and upper solutions, respectively, and bulk density
(pbulk) estimated based on the depth hoar thickness divided
by the total snow depth (depth hoar fraction, DHF)

Pbulk = Pws * (1 — DHF) + pgn - DHF )

Ultimately, the bulk snow density estimated with H was
treated as the final algorithm estimate with uncertainty de-
fined by the microwave-plausible range.

4.4 Temporal Snowpack Parameterization

All existing retrieval algorithms have considered a single
snow layer, so a new scheme was needed to parameterise
the two layer snowpack model over the course of a season.
Arctic snowpacks have been studied in detail during field
campaigns (see Derksen et al., 2014; Meloche et al., 2022;
Rutter et al., 2019), though they are mostly restricted to end-
of-season conditions around March-to-April and much less
is known about Arctic snowpack composition early in the
season. There have been some studies that focused on early
season conditions (Domine et al., 2016b, 2018), though they
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mainly provide qualitative descriptions of the temporal evo-
lutions of Arctic snowpacks. Thus, our approach started with
end-of-season conditions and worked backwards to parame-
terise the snowpack over the full season, with some param-
eters informed from available literature where possible and
others calibrated.

Our temporal parameterization of snowpack properties
was based on identifying trends in satellite PM and AWS
observations, which we assumed to indicate different stages
of snowpack evolution. Generally, two different behaviours
were identified in the forcing datasets which we attributed
to normal and restricted conditions for depth hoar develop-
ment. In normal cases, AT, increased rapidly over a short pe-
riod in the fall immediately after the first snowfall, coinciding
with an extended early season zero-curtain period producing
extreme vertical temperature gradients for rapid depth hoar
metamorphism (Domine et al., 2018). In restricted cases,
ATy, increased gradually over longer periods of the season,
consistent with high density layers slowly metamorphizing
slowly into depth hoar (Derksen et al., 2009). Later in the
season ATy would plateau, attributed to a halt in depth hoar
formation, before temperatures increase at end-of-season and
ATy, drops rapidly.

In total 4 different stages of snowpack evolution were
identified, presented in Table 5. The proposed stages are
numbered in the expected order of occurrence, but in prac-
tice their order can vary with some exceptions. Stage 0 is a
special circumstance (i.e. does not happen every season) and
must occur at the beginning of the season when temperatures
are still around freezing. Then, the snowpack can alternate
between Stages 1 and 2 throughout the season, owing to fluc-
tuations in air temperature that change the thermal regime of
the snowpack and snowfall events, prior to reaching equi-
librium in State 2 towards end-of-season. Finally, the snow-
pack begins to warm in Stage 3 at the end-of-season with
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increasing air temperatures inverting the temperature gradi-
ent before ripening and final melt. The relevant state vari-
ables (i.e. layer thickness, thermal regime, and microstruc-
ture) were estimated dynamically considering the identified
stage of snowpack evolution.

4.4.1 Depth Hoar Development

Basal depth hoar thickness is typically reported as a frac-
tion of end-of-season snow depth (depth hoar fraction, DHF)
and measurements during the early-mid season are limited
in the Arctic. However, parameterizing the snowpack model
accounting for DHF would cause issues. Forcing snow depth
data should be representative of the observation scene (i.e.
spatial resolution) and localised snow depth estimates (i.e.
AWS) could lead to considerable differences in algorithm
estimates given intrinsic variability in Arctic snow depth
distributions (Liston, 2004). Additionally, depth hoar thick-
ness parameterised with static DHF would likely be too thin
during early-to-mid season, assuming the depth hoar layer
should develop early on during shallower snow conditions
relative to later in the season. Thus, we believe depth hoar
should be parameterised with explicit thicknesses and a new
approach was required for the prototype algorithm.

Our primary indicator of depth hoar development was
based on seasonal trends in ATy, with prolonged increases
associated with depth hoar metamorphism (Derksen et al.,
2010). Identifying periods of depth hoar development al-
lowed rates of growth to be estimated. Rates were estimated
with a change detection method that calculated cumulative
increases in ATy, similar to the Snow Index proposed by
Lievens et al. (2019). The new index (depth hoar index, DHI)
was predicated on the assumption any sustained increase
(i.e. over multiple observations) in observed ATy, was pro-
portional to depth hoar development. We believe depth hoar
thickness should exhibit monotonic behaviour (i.e. increase,
or remain constant, but not decrease), and temporary ATy
fluctuations would result from changes in the snowpack tem-
perature gradient. The total contribution towards depth hoar
development was estimated at each time step (¢) with

__[DHI(t — 1) +a-[ATy(t) — ATy(t —1)] ifSD >0,
DHI(#) _{0 otherwise ®)
1 if ATy())>=ATy(t — 1)>ATy(t —2), ©)
a =
0 otherwise

where AWS snow depth (SD) was used as an indicator of
snow coverage and increases in ATy, must persist over mul-
tiple observations to mitigate effects from physical tempera-
ture fluctuations (handled with a from Eq. 6).

4.4.2 Layer Heterogeneity

The layer heterogeneity parameter (H) is abstract and was
designed to represent the seasonal evolution of snowpack
stratigraphy. Intuitively, values for H should begin near zero
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at initial deposition when the snowpack should be mostly ho-
mogenous and increase over time due to evolution of distinct
layers. So, H was set to zero the first day snow on the ground
was reported at the AWS and grew linearly to a maximum
value calibrated for end-of-season conditions.

4.4.3 Snow and Substrate Temperatures

Operational SWE retrievals (e.g. Luojus et al., 2021) do
not consider snow temperature gradient, though we believe
it is important when thermal emission originating from the
wind slab is considered. Thus, snow and substrate tempera-
tures were required for the electromagnetic model but were
not measured by AWS. Soil temperature from atmospheric
reanalysis models were considered but their uncertainty is
highest during cold seasons (Herrington et al., 2024). Instead,
a model was designed to estimate soil temperature relative to
measured air temperature and our identified stage of snow-
pack of evolution. In all stages, snow temperature was pa-
rameterised with a linear temperature gradient between air
and soil temperature.

AWS daily mean air temperatures were used to replicate
trends in substrate temperature at Arctic sites relative to air
temperature measured by Domine et al. (2018). First, air
temperatures were averaged over the previous 21d to rep-
resent the gradual and lagged changes in soil temperature
(general trend). Second, a 5d Gaussian weighted mean fil-
ter was applied to air temperatures to represent the immedi-
ate effect of air temperature fluctuations (local trend). Then,
the general and local trend estimates were assimilated with
a 3:1 weighting scheme, respectively, together replicating
how substrate temperatures should be partially decoupled
from the atmosphere (insulated by snow cover) with small
blips from large fluctuations in air temperature. Finally, the
assimilated temperature trends were modified to account for
the insulative properties of snow according to the identified
phase of snowpack evolution: substrate temperatures were
set to 0 °C during Stage 0, increased by 5 °C (2.5 °C) during
normal (restricted) depth hoar development, and decreased
by 5°C (2.5°C) during Stage 3, and the transitions between
stages smoothed. The 5 °C value was chosen to represent the
thermal insulation of normal depth hoar in line with mid-
season tundra snowpack temperature gradients (Benson and
Sturm, 1993), and an educated guess for the lower 2.5 °C
value because of higher thermal conductivity for indurated
depth hoar (Domine et al., 2016b). A comparison of esti-
mates from this model to those from Domine et al. (2018)
was provided in Appendix A.

4.44 SSA Decay
The microstructure model in SMRT (i.e. microwave grain
size) required estimates of the SSA of ice grains in the snow-

pack which are not measured by operational AWS. Like
depth hoar thickness, many more SSA measurements from
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Table 5. Identified stages of snowpack evolution.
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Stage Name Description Indicators
0 Extended zero Special conditions for early snow to — Rapid increase in ATy, after first
curtain morph into normal depth hoar under snowfall
e;treme tem;)erature gradient — Consistent snow on ground from
( ground > Thir)- deposition
1 Temperature Sufficient temperature gradient for — Gradually increasing AT,
gradient kinetic metamorphlsm (Tground > Tair)s — Decreasing trend in air
where wind slab slowly morphs into
. temperature
indurated depth hoar.
2 Isothermal Insufficient temperature gradient for — Steady or gradually decreasing
kinetic metamorphism (Tground ™ Tair)- AT,
.Snowpack. assumed to be in stfltls and _ Little-to-no trend in air
its properties stable (except wind slab
i temperature
compaction may occur).
3 Warming Warming air temperatures towards — ATy, begins to decrease, before

end-of-season invert temperature
gradient (Tground < Tair), before

dropping off

Increasing trend in air

snowpack ripens and begins to melt.

temperature

— Decreasing snow depth

Arctic snowpacks are available for end-of-season conditions,
so empirical models were used to estimate SSA decay earlier
in the season. New snow has relatively high SSA and decays
logarithmically over time as it metamorphoses (Legagneux et
al., 2003; Pinzer et al., 2012; Taillandier et al., 2007). Tem-
porally varying SSA for depth hoar and wind slab were esti-
mated using Egs. (9) and (13) from Taillandier et al. (2007),
respectively, with the general form

B—SSAq
SSA(h):B—A-ln(h—l—e T ) )

where  is time since deposition in hours and coefficients A
and B related to the mode of metamorphism, layer tem-
perature, and initial SSA (SSAg). Initial SSA was set as
50m? kg~! and average layer temperatures calculated for the
first 60d after deposition as described in Sect. 4.4.3. Esti-
mates of SSA from the empirical models were used until
they reached predetermined values, representative of end-of-
season conditions, to reflect the non-zero asymptotic trend in
the evolution of depth hoar SSA (Taillandier et al., 2007) and
very slow SSA decay in Arctic wind slabs observed later in
the season (Domine et al., 2002).

4.5 Calibration and Evaluation Procedure

Some algorithm parameters could not be based on observa-
tions and instead needed to be determined through a calibra-
tion procedure. The calibration procedure consisted of two
stages and ran each year from 15 March onwards, assuming
snowpack properties would be mostly stable then. Calibrat-
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ing for end-of-season conditions also allowed for parameters
to be compared to those measured during field campaigns.
First, wind slab SSA, depth hoar SSA, and depth hoar thick-
ness were adjusted to produce the greatest overlap between
the range of microwave-plausible snow density estimates and
the in situ reference samples, with an overlap metric:

overlap = —
ni= [{pest ()}

1 Z [{0est (1)} N { pobs (1) }| (8)

where {pesi()} is the set of microwave-plausible estimated
snow densities and {pobs(#)} the corresponding CanSWE
density sample with a £10 % uncertainty range, at time .
Thus, the overlap metric described the proportion of the
microwave-plausible snow density range that intersected the
uncertainty range of the in situ samples, averaged over n
time steps. Second, H was calibrated by converting the
microwave-plausible algorithm estimates, from the first step,
into discrete values to minimise mean absolute percentage er-
ror (MAPE). MAPE was chosen for this purpose, rather than
absolute or squared error, because of the heteroscedastic na-
ture of the uncertainty in the reference dataset.

At each site, algorithm snow density estimates were evalu-
ated with CanSWE bulk density samples using the same met-
rics as in the calibration stage (i.e. overlap and MAPE); bias,
root mean square error (RMSE), and correlation were also
reported as indicators of algorithm performance. MAPE was
treated as the primary measure of absolute accuracy of algo-
rithm estimates — if MAPE was within the uncertainty range
of the in situ samples (10 %) then snow density estimates
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from the algorithm could be comparable to those collected
with snow courses.

Calibrating the two layer snowpack model with bulk
density measurements (i.e. CanSWE) introduced some un-
certainty into the algorithm configuration parameters. As
demonstrated by the sensitivity test, depth hoar SSA and
thickness have complementary effects on simulated AT;, —
i.e. lower (higher) SSA can compensate if the depth hoar
is too thin (thick) — so various SSA and thickness combi-
nations could produce similar microwave emissions. At each
site, SSA parameters were kept constant over all seasons be-
cause inter-season variations in SSA should be relatively low
(Meloche et al., 2022; Woolley et al., 2024), but DHF was
free to account for varying environmental conditions. End-
of-season H values were also kept constant for each site due
to the lack of stratigraphic data to conduct a meaningful cal-
ibration and in an effort to reduce the number of free pa-
rameters in the calibration procedure. In the future, extensive
stratigraphic data from multiple sites should be used for cal-
ibration to increase confidence in specific algorithm parame-
ters.

5 Results

5.1 Calibrated End-of-Season Algorithm
Configurations

Algorithm configurations were calibrated to represent end-
of-season conditions, for each site some parameters were
kept static over all seasons (Table 6) and depth hoar thick-
nesses varied each season (Table 7). The sensitivity test
demonstrated the model was most sensitive to depth hoar pa-
rameters, so depth hoar SSA varied between 10.0 to 13.0 at
increments of 0.2 m? kg~!, and fewer options considered for
the wind slab of 15.0, 17.5, or 20.0 m2 kg_l. For the polar
desert sites (Alert, Eureka, and Resolute Bay) the calibra-
tion routine produced configurations that were fairly simi-
lar and in line with those expected in the polar desert, with
depth hoar SSA around 10 to 11 m?kg~! and average DHF
of approximately one third (Royer et al., 2021). On the other
hand, the configuration for Cambridge Bay was different,
with higher than expected depth hoar SSA and DHF for tun-
dra type snow (Meloche et al., 2022).

5.2 Eureka Snow Survey Data

Snow survey data from Saberi et al. (2017) were used to eval-
uate the calibrated model configuration for the Eureka site in
greater detail. The model was originally configured to repli-
cate bulk density measurements (i.e. CanSWE) making it dif-
ficult to evaluate individual parameters without stratigraphic
information. For example, simulated depth hoar thickness
and SSA could compensate for one another without dis-
cernible differences in bulk density. Although SSA was not
measured in the survey protocol, calibrated SSA values were
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Figure 7. Simulated and measured density for EASE-Grid cells
near Eureka. Vertical error bars correspond to the microwave-
plausible range of algorithm estimates and horizontal the interquar-
tile range of measured values.

evaluated by forcing the retrieval algorithm with measured
layer thicknesses and AMSR-E L2A observations at 25 km
(Ashcroft and Wentz, 2013), and the output compared to
measured bulk, wind slab, and depth hoar densities (Fig. 7).
Algorithm estimates showed good agreement with the mea-
sured values, though with slight overestimation for depth
hoar and underestimation for wind slab densities. Interest-
ingly, the valley of algorithm solutions for three gird-cells (1,
2, and 4) aligned with regions of iso-density in the parame-
ter space (Fig. 6b) so H could increase slightly to reduce
underestimation of wind slab density without affecting over-
all bulk density. While we cannot conclude from this limited
sample size that the algorithm is perfect, the similarity of the
algorithm estimates and layer densities to independent snow
surveys suggest the parametrization of SSA was effective for
Eureka.

5.3 Dynamic Depth Hoar Parameterization

Snow depth and DHF can be variable in the tundra (Meloche
et al., 2022), so parameterizing the snowpack model with
static parameters could lead to uncertainty. Algorithm per-
formance with calibrated depth hoar thicknesses were com-
pared to those using generalised representations (i.e. sea-
sonal thicknesses, average thickness, and average DHF from
Table 6). Parameterizing the depth hoar layer with aver-
age thicknesses for each site improved algorithm estimates
slightly compared to average DHF but the seasonal param-
eterization performed considerable better than either (Ta-
ble 8). Further, seasonal depth hoar thicknesses were the only
to bring algorithm estimates within the uncertainty range of
the reference dataset at all sites (10 %).
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Table 6. Model configuration parameters calibrated for end-of-season conditions.

Site Wind Slab SSA  Depth Hoar SSA  Heterogeneity

(m%kg™1) (m%kg™1) (unitless)
Alert 20.0 10.8 0.35
Eureka 17.5 10.4 0.30
Resolute Bay 17.5 11.2 0.45
Cambridge Bay 20.0 12.8 0.35

Table 7. Calibrated seasonal depth hoar thicknesses (cm) and percentage of end-of-season snow depth in parentheses.

Site 2003-2004  2004-2005  2005-2006 20062007  2007-2008  2007-2008  2009-2010  2010-2011 Ave.
Alert 1.5(6%) 159(48%) 89(24%) 12.7 (33%) —  18.6(45%) - - 11531%)
Eureka 552%) 72Q7%) 34(18%) 2.6(18%) 5.0 (36%) - 61(33%) 67(24%) 52(028%)
Resolute Bay - - - - 25(12%) 54Q27%) 32024%)  093%)  3.0(17%)
Cambridge Bay 20.6(72%) 11.6(42%) 145@42%) 207 (81%) 22.0(60%) 183(54%) 11.7(48%) 182(42%) 17.2(55%)

Calibrated seasonal depth hoar thicknesses were plotted
against end-of-season DHI from Eq. (5). to identify a rela-
tionship to estimate dynamic depth hoar thicknesses (Fig. 8).
Model configurations for each site should be equivalent
(specifically depth hoar SSA) for a robust comparison of
depth hoar thicknesses, so the configuration from Eureka
was applied to the other sites since it seems representa-
tive of in situ conditions (see Sect. 5.2). Calibrated depth
hoar thicknesses had a very strong relationship with DHI at
Alert (R? = 0.94, p < 0.01), moderate relationships for Eu-
reka (R? =0.68, p = 0.023) and Resolute Bay (R? = 0.64,
p = 0.20), and virtually no relationship for Cambridge Bay
(R*=10.01, p=0.82). There was considerable spread in
plotted values for Cambridge Bay and, when removed, the
polar desert sites together have a very strong relationship
(R?* =0.93, p < 0.01) fitted with a linear model

Teos = 0.349 - DHI 5 pvar — 3.75 )

allowing end-of-season depth hoar thickness (Tgos) to be es-
timated in cm from DHI on 15 March (DHI ;5 wMar).

5.4 Full Season Algorithm Runs

The temporal parameterization (described in Sect. 4.4) was
used to force algorithm retrievals over full winter seasons.
The calibrated configuration for Eureka was used for all sites
and dynamic depth hoar thickness (DT) estimated in cm with

DT() (T ( DHI() ) T )
= max EOS*| = ), 1EOS
DHIIS Mar

where DHI at time step ¢ was from Eq. (5) and Tgos from
Eq. (9), and the maximum operator did not allow for growth
after 15 March. Algorithm runs over all seasons at each
site were aggregated to calculated performance metrics, pre-
sented in Table 9. Results for the three polar desert sites were
similar with moderate MAPE (< 20 %), weak-to-moderate

(10)

The Cryosphere, 19, 5259-5282, 2025

20.0

e Alert

e Eureka
Resolute

e Cambridge Bay

= =
v ~
o 5

.

=
N
w

Depth Hoar Thickness (cm)
~ ©
w =

u
o

N
w

0.0

40 50 60

Depth Hoar Index (K)

10 20 30 70

Figure 8. Depth Hoar Index from Eq. (5) plotted against calibrated
depth hoar thicknesses and fitted linear models (lines).

positive correlations, and low magnitudes of bias, whereas,
Cambridge Bay had higher MAPE, larger positive bias, and
a weak negative correlation.

A collection of notable algorithm simulations was in-
cluded in Fig. 9 — some as examples of when the algorithm
performed very well and others to demonstrate limitations —
all simulations are included in Appendix B. Seasonal perfor-
mance at Eureka was mixed, where three seasons had low
MAPE (i.e. <10%, e.g. Fig. 9a), 3 had moderate MAPE
(i.e. <20 %, e.g. Fig. 9b), and one high MAPE (i.e. > 20 %,
Fig. 9c). The algorithm performed similarly at Alert, where
three seasons had low MAPE (e.g. Fig. 9d), one moderate
MAPE (not shown), and one high MAPE (Fig. 9e). Alter-
natively, algorithm performance at Resolute Bay was worse
overall, where only one season had relatively low MAPE (not
shown) and the other three had higher MAPE (not shown).
Results for Cambridge Bay were more nuanced and the rel-
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Table 8. Algorithm performance metrics compared to CanSWE using calibrated configurations with depth hoar parameterised with seasonal
thicknesses (seasonal), average thickness (avg. thickness), and average DHF (avg. DHF) from Table 6.

Temp (°C) Depth (cm) Density (kg m

SSA (m? kg™1)

ATb (K)

Density (kg m™>)

SSA (m?kg™') Temp(°C)  Depth (cm)

ATb (K)

Site MAPE (%) \ Overlap (%)

seasonal  avg. thickness avg. DHF ‘ seasonal  avg. thickness avg. DHF
Alert 6.7 134 14.2 81.8 48.4 41.5
Eureka 7.4 17.4 18.8 66.0 29.5 28.5
Resolute Bay 8.9 20.6 22.0 579 279 16.8
Cambridge Bay 7.0 12.5 13.0 74.1 45.2 50.2
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Figure 9. Example algorithm outputs (a—c) and forcing data (d—f), for (a) Eureka 2005-2006, (b) Eureka 2010-2011, (c¢) Eureka 2004-2005,
(d) Alert 2006-2007, (e) Alert 20032004, and (f) Cambridge Bay 2008-2009.
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atively high overall MAPE did not tell the whole story. In
all but one algorithm run simulated density started consid-
erably higher than reference samples in the early season but
matched in situ samples very closely from February onwards

(e.g. Fig. 9f).

6 Discussion
6.1 Assessment of End-of-Season Configurations

In the following subsections, key parameters (i.e. SSA and
depth hoar thickness) of the calibrated end-of-season config-
urations were compared against measured values from vari-
ous field campaigns.

6.1.1 Eureka

Detail snow surveys from Saberi et al. (2017) were used to
evaluate the algorithm configuration for Eureka. Calibrated
depth hoar thicknesses for the Eureka site were fairly con-
sistent ranging from 2.6 to 7.2cm (o = 1.6 cm) and within
the range of expected values for the polar desert (Royer et
al., 2021). Simulated depth hoar thickness for the 2010-2011
season (6.7 cm) was comparable to measured values from the
snow survey which had a median value of 9 cm (interquar-
tile range of 6-12 cm). We expected thicker depth hoar from
the snow survey dataset because it was focused around Hot
Weather Creak, where conditions in the polar oasis should be
more favourable for depth hoar formation. On the other hand,
the manual snow survey course (i.e. CanSWE) was approx-
imately 15km west of Hot Weather Creak (Fig. 1b), so we
believe conditions at the AWS should be somewhere between
those found in the polar desert and polar oasis (i.e. relatively
thinner depth hoar). Additionally, the calibrated SSA values
produced representative estimates for individual layer densi-
ties measured during the snow survey (Fig. 7), increasing our
confidence in the algorithm configuration for the Eureka site.

6.1.2 Alert

There were few snow survey data available for the Alert site
(e.g. Domine et al., 2002), so those from relatively close
Ward Hunt Island (~ 170 km northwest) were also consid-
ered (Davesne et al., 2022). SSA values were similar to those
measured by Davesne et al. (2022) but depth hoar was con-
siderably thicker in some cases than the typical 5 to 10 cm ex-
pected in the polar desert (Royer et al., 2021). Further, there
was considerable variability in simulated depth hoar thick-
nesses for Alert, with values ranging from 1.5 to 19.8cm
(0 =6.0cm). Initially, we believed the large variability in
depth hoar thickness to indicate an issue in the calibration
routine (specifically higher values approaching 20 cm). How-
ever, variable depth hoar conditions have been recorded at
Ward Hunt Island, which can be essentially devoid of depth
hoar some years (Domine et al., 2018) or near 20 cm in other
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cases (Davesne et al., 2022). Thus, it appears the algorithm
configuration for Alert was reasonable.

6.1.3 Resolute Bay

Snow survey data were available for Resolute Bay (Davesne
et al., 2022; Royer et al., 2021), though the information was
less specific than for other sites (i.e. no explicit depth hoar
thickness). Simulated SSA values for the Resolute Bay site,
like the others in the polar dessert, were with the range of
expected values, but average DHF (17 %) was slightly lower
than reported ~ 30£20% (Royer et al., 2021). Simulated
depth hoar thickness was fairly consistent ranging from 0.9 to
5.4cm (o0 = 1.6 cm) and DHF for all seasons (except 2010-
2011) were within the range of measured values. Further, the
area near Resolute Bay covered by the radiometer field-of-
view was likely relatively dry, given its location inland with
virtually no water bodies (Fig. 1d), and simulated DHF was
comparable to values for dry areas surveyed by Davesne et al.
(2022). Therefore, the algorithm configuration for Resolute
Bay also appeared reasonable.

6.1.4 Cambridge Bay

Comprehensive reports of snowpack properties from Cam-
bridge Bay (Meloche et al., 2022, 2024) allowed for de-
tailed analysis of the calibrated algorithm configuration. Un-
like the other sites, simulated depth hoar SSA and DHF were
different for Cambridge Bay than field measurements (Me-
loche et al., 2022, 2024). The discrepancy between simu-
lated and measured values could be related to water bodies
around Cambridge Bay affecting radiometry (Derksen et al.,
2010). However, we believe the issue to be mainly related
to the complementary nature of depth hoar SSA and thick-
ness towards volume scattering; with SSA values (wind slab:
20m? kg~ ! and depth hoar: 11 m?>kg~") from Meloche et al.
(2022) calibrated average DHF (36 %) was very close to the
reported value (38 %), and overall MAPE is only slightly
higher (by 0.4 %). The possibility for large discrepancies
between predicted and simulated parameters with little ef-
fect on simulated bulk density underscores the necessity for
stratigraphic data during model calibration and evaluation.

6.2 Assessment of Temporal Parameterization

Estimation skill over the full season (Table 9) was lower than
during the calibration stage (Table 8), though that was ex-
pected because the configuration for Eureka was used for
all sites and depth hoar thickness was parameterised with
Eq. (10) (rather than calibrated values for each site). In some
cases the temporal parameterization produced excellent esti-
mates of snow density over the whole season (e.g. Fig. 9a
and d) but in other cases struggled to reproduce the ob-
served densification trajectory (e.g. Fig. 9c and e). Yet, al-
gorithm estimation skill at each site consistently improved
over the course of a winter season and most algorithm esti-
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Table 9. Algorithm performance metrics for full season runs relative to CanSWE samples (mean normalised percentage values in parenthe-

ses).
Site n  Overlap MAPE Bias RMSE Correlation
%) (%) (kgm™) (kgm=?) (r)
Alert 67 55.7 14.4 23.2(6.5%) 61.9(17.4%) 0.280 (p = 0.02)
Eureka 81 322 149 —13.5(—4.1%) 62.4(18.9%) 0.393 (p < 0.01)
Resolute Bay 49 40.3 18.7 27.3(71.7%) 77.0 (21.6%) 0.130 (p = 0.37)
Cambridge Bay 233 344 21.2 359 (11.1%) 829(25.7%) —0.213(p <0.01)

mates were close to the in situ references samples later on. To
quantify this behaviour the reference dataset was partitioned
into three temporal sets — October—-November—December
(OND), January—February—March (JFM), and April-May—
June (AMJ) — and overlap, MAPE, and bias calculated for
each in Table 10. There were substantial improvements in
all metrics at all sites between OND to JFM and JFM to
AM]J, and AMJ MAPE for the polar desert sites were within,
or approaching, 10 % indicating the snow density estimation
uncertainty was similar to the in situ samples. Temporal re-
sults for Cambridge Bay were slightly different than polar
desert sites as there was a substantial improvement in all met-
rics from OND to JFEM (most notably the reduction in bias)
but MAPE increased in AMJ. Possible explanations for these
temporal behaviours in algorithm estimates are discussed be-
low.

The most likely reason for improved algorithm perfor-
mance towards the end-of-season during most simulations is
that the snow metamorphic state was captured effectively by
model dynamics that align with our understanding of snow-
pack metamorphism. Prior knowledge from available liter-
ature increased confidence in end-of-season algorithm con-
figuration, though much less was ready for the early-to-mid
season introducing uncertainty into the temporal parameteri-
zation. Specifically, some properties were effectively quanti-
fied with physical models over time (e.g. SSA) while others
were not because model representation is simply not devel-
oped (e.g. depth hoar thickness).

From the point of view of algorithm development, the most
difficult element to parameterise over time was depth hoar
thickness. The depth hoar model was generalised to not over-
fit to any specific forcing data, but edge cases were iden-
tified where there were issues. In some cases identified as
standard development, and with thicker initial snow depth,
Eq. (10) appeared to underestimate early-season depth hoar
thickness causing simulated bulk density to pin at the bottom
of the range to maximise volume scattering (e.g. Fig. 9c).
That early-season underestimation could be related to how
depth hoar was parameterised to grow vertically in thickness,
which would be logical for indurated development (growing
at the expense of wind slab thickness) but normal depth hoar
should form from early layers morphing simultaneously. On
the other hand, under the most restrictive conditions iden-
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tified for depth hoar metamorphism Eq. (10) overestimated
depth hoar thickness throughout the whole season casing al-
gorithm estimates to pin at the upper limit of the density
range to minimise volume scattering (e.g. Fig. 9e), despite
very similar simulated (2.0 cm) and calibrated (0.8 cm) end-
of-season thicknesses. Thus, our depth hoar model could be
improved to consider specific situations — for example, initi-
ating thickness with early-season snow depth measurements
during Stage 0 (assuming the entire layer would shortly be-
come depth hoar) and using a fixed thickness (~ 1 cm) when
very restrictive conditions are identified.

Even with the help of existing models there were chal-
lenges with the parameterization of SSA. Most notably, there
is practically no distinction in the literature between stan-
dard and indurate depth hoar microstructure in terms of SSA
and polydispersity, so we did not distinguish between their
prescribed microstructure properties. While physical grain
size of standard and indurated depth hoar are similar (Derk-
sen et al., 2009), non-metamorphosed wind slab grains can
be present in indurated depth hoar (Domine et al., 2016a);
possibly leading to higher SSA or lower polydispersity com-
pared to standard depth hoar, necessitating thicker simulated
indurated layers. Further, our snowpack representation did
not account for deposits of fresh snow, which have low den-
sity and high SSA, and, therefore, should be radiometrically
negligible (Saberi et al., 2017). However, new snow was im-
mediately incorporated into the simulated wind slab layer af-
fecting simulated, but not observed, brightness temperatures
— for example, mid-season snowfall events at Eureka in Jan-
uary 2011 (Fig. 9b) caused measured bulk density to decrease
but simulated bulk density increased. Identifying depth hoar
type with the proposed stages of snowpack evolution would
not only aid in parameterizing algorithm retrievals (should
their microstructure properties prove to be sufficiently differ-
ent) but could also support applications where snow hard-
ness and thermal conductivity are relevant — for example,
permafrost thermal regimes and conditions for subnivean life
(Domine et al., 2016a).

Algorithm estimates generally followed expected densifi-
cation trajectories (i.e. increasing density over time) in the
polar desert (e.g. Fig. 9b) but exhibited different behaviour
at Cambridge Bay. Early season density estimates were too
high in all, but one, simulations at Cambridge Bay and de-
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Table 10. Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October—November—December
(OND), January—February—March (JFM), and April-May—June (AMJ).

Site Overlap (%) \ MAPE (%) \ Bias (kgm—3)
OND JFM AMJ | OND JFM AMJ | OND JFM AMJ
Alert 159 681 706 | 325 77 89| 676 6.6 10.1
Eureka 230 219 533 | 193 166 98 | —384 —16.1 4.0
Resolute Bay 268 419 503 | 303 150 139 | 592 272 —23
Cambridge Bay 124 458 400 | 408 122 141 | 1023 176 —8.0

creased over time to move closer to in situ measurements
(e.g. Fig. 9f). Early season overestimation could be explained
by penetration depth at 19 GHz exceeding lake ice thickness
(Derksen et al., 2009), which reduced observed ATy, caus-
ing simulated density to pin at the upper limit to minimise
volume scattering. Then, estimates improved over the mid-
season when lake ice thickness should exceed the penetration
depth at 19 GHz, before thinning ice thickness reintroduced
uncertainty in observed brightness temperatures at the end-
of-season (Derksen et al., 2009). Additionally, the radiomet-
ric influence of water bodies made it more difficult to inter-
pret the stages of snowpack evolution at Cambridge Bay —
Stage 0 was only identified during a couple seasons, despite
tundra conditions being generally favourable for depth hoar
development (Royer et al., 2021). Furthermore, unfrozen wa-
ter bodies around Cambridge Bay caused pre-snow ATy to
be very low (i.e. negative ~ 10 K) artificially modifying DHI
values, likely contributing to the spread of points in Fig. 8.
After February, when ice thickness should exceed penetra-
tion depth (Derksen et al., 2009), algorithm performance for
Cambridge Bay was comparable to the polar dessert sites
(MAPE = 13.2 % and overlap =43.6 %).

6.3 Scalability Across the Pan-Arctic

The ultimate goal of this research is to develop a pan-Arctic
snow density retrieval algorithm, though the algorithm would
need to be modified for that purpose. The current retrieval
design is predicated on a two-layer snowpack with distinct
properties (i.e. found in the tundra/polar desert) and would
need to be modified to consider other Arctic snow types (e.g.
taiga). Traditional ecological knowledge of snow conditions
(e.g. Riseth et al., 2011) could help to identify important
snowpack parameters across various environments to be gen-
eralised for the electromagnetic model. Additionally, water
bodies could impede retrievals using a AT, approach (as de-
scribed for Cambridge Bay) and a single channel retrieval
using only 37 GHz might be more appropriate across the pan-
Arctic (Derksen et al., 2010). Also, the dynamic depth hoar
parameterization required PM observations from snow-on to
15 March limiting its use to retrospective analyses, though
the relatively long PM observation record would allow for
climatological analysis.
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After necessary modifications, additional datasets would
be required to expand the spatial extent of algorithm re-
trievals. Snow depth data are the most important to force
the algorithm (after radiometry) and the sparse distribution
of AWS across the pan-Arctic render them unsuitable for ex-
tensive model forcing. Spatially continuous snow depth esti-
mates could be derived from reanalysis models, even as a first
order effect, despite their uncertainty in high latitude areas
where data are sparse (Cao et al., 2020). Assimilation of re-
analysis snow depth estimates with AWS data for bias correc-
tion might be a promising way forward. Similarly, bias cor-
rected ground temperature estimates from reanalysis prod-
ucts (Herrington et al., 2024) could replace our simple model
based on AWS air temperature. Additionally, auxiliary wind
speed and soil moisture data could aid with parameterizing
the depth hoar layer (i.e. quantifying the potential for devel-
opment) as they restrict and promote development, respec-
tively (Davesne et al., 2022). Finally, a pan-Arctic snow den-
sity product would require extensive reference data to sup-
port algorithm calibration and evaluation which will need to
be curated, specifically regarding extensive datasets of snow
stratigraphy.

7 Conclusions and Future Work

A prototype algorithm was developed to estimate snow
density in the tundra environment using PM remote sens-
ing, given challenges in estimating spatiotemporally varying
snow density in the Arctic environment. An experiment was
conducted to assess the proposed algorithm’s ability to esti-
mate snow density at sites distributed in the Canadian high
Arctic. Results from those sites demonstrate algorithm es-
timates have the potential to provided information on snow
density comparable to those collected with in situ sampling.
In its current configuration, the algorithm performed best
at estimating snow density conditions later in the season,
with end-of-season MAPE within (i.e. Alert and Eureka),
or approaching (i.e. Resolute Bay and Cambridge Bay), the
+10 % uncertainty range of manual snow density sampling.
With some modifications and more extensive forcing data the
proposed algorithm could be applied across the pan-Arctic to
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provide snow density estimates at spatiotemporal scales that
were not previously available.

The experimental design for this study was opportunis-
tic due to the limited snow density data available for algo-
rithm calibration and evaluation. CanSWE was the only read-
ily available dataset which covered the required spatial and
temporal domain for algorithm development but was limited
to bulk estimates and, as result, estimates for the two dis-
tinct snow layers could not be sufficiently calibrated nor eval-
uated. Specifically, algorithm calibration with bulk density
measurements introduced uncertainty in the parameterization
of depth hoar thickness and SSA, because of their comple-
mentary effects on volume scattering. Future algorithm de-
velopment will focus on datasets from sites with distributed
stratigraphic measurements that will improve snow density
parameterization at the PM scale. Further, Arctic snow con-
ditions are known to be driven by terrain types (Rees et
al., 2014; Woo, 1998) and we hypothesise the microwave-
plausible snow density range for the PM scene could be dis-
aggregated using high-resolution active microwave data to
provide information on stratigraphic heterogeneity (replac-
ing the abstract H parameter).
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Appendix A: Comparison of measured and modelled
substrate temperatures
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Figure A1l. Air and substrate temperatures measured (adapted from Domine et al., 2018) at (a) Bylot Island 2016-2017 (normal depth hoar
conditions) and (b) Ward Hunt Island 2015-2016 (restricted depth hoar conditions), and from our model (described in Sect. 4.4.3) under
(¢) normal depth hoar conditions at Eureka 2010-2011 and (d) restricted depth hoar conditions at Alert 2003—-2004.
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Appendix B: Algorithm Outputs
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Figure B1. All algorithm simulations (top panel) and forcing data (lower panels) for Alert and Eureka sites (performance metrics same as

those listed in Table 9).
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Figure B2. All algorithm simulations (top panel) and forcing data (lower panels) for Resolute Bay and Cambridge Bay sites (performance
metrics same as those listed in Table 9).
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