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Abstract. In this study, we evaluate the statistical rela-
tionship between sea ice freeboard and C-band microwave
backscatter. By collocating observations between Sentinel-
1 images and Operation IceBridge (OIB) measurements in
April 2019, we evaluate their relationship under various sea
ice types and thickness regimes. We show that, at various
spatial scales relevant to synthetic aperture radar (SAR) ob-
servations, there exists an apparent significant correlation be-
tween C-band backscatter and sea ice freeboard. This relation
depends on physical parameters of the sea ice, including the
ice type, as well as sensor-specific parameters such as the ob-
servational incidence angle of the SAR satellite. As a result,
there is considerable variability in this apparent relationship
and its fitted parameters. Using the fitted relationship, two-
dimensional freeboard maps can be predicted at the scale
of SAR images’ effective resolution (i.e., ∼ 200 m). More
importantly, we demonstrate that although the resolution of
SAR images are relatively lower than OIB freeboard maps,
we can predict the high-resolution, meter-scale freeboard dis-
tribution where altimetry measurements are not available.
Thus the representation of altimetric measurements can be
improved with the upscaling based on the SAR image. The
proposed method can be further utilized for the upscaling of
satellite based sea ice topography measurements by the Ice,
Cloud, and land Elevation Satellite-2 (ICESat-2). Related is-

sues, including the limitation to spring data, scale depen-
dency and the locality of the statistical relationship, as well
as the upscaling of current and historical satellite campaigns,
are further discussed.

1 Introduction

Polar sea ice has undergone drastic changes in response to
global climate change (Kwok, 2018). As Arctic sea ice cov-
erage diminishes at a substantial rate, there has also been a
rapid decrease in ice thickness and volume (Sumata et al.,
2023). In particular, sea ice topography, characterized by the
small-scale sea ice height variability, has become smoother
(Krumpen et al., 2025). Satellite altimetry serves as the back-
bone for observations of the circumpolar sea ice freeboard
and thickness. For both laser and radar altimeters, the sig-
nals are sent from the satellites to Earth. By measuring the
time difference between the emitted pulse from the satellite
and the returned echo, the range between the satellite and
the reflecting surface on Earth is estimated. The differentia-
tion of the range of echoes returned from sea ice floes versus
interstitial leads gives the radar or laser freeboard, and the
sea ice thickness is then calculated from hydrostatic assump-
tions and the buoyancy relationship. In particular, NASA’s
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ICESat-2 (IS2) satellite is a photon-counting laser altimeter
that has carried out continuous observations in both polar re-
gions since 2018 (Markus et al., 2017). Six laser beams of
IS2 form into three strong-weak pairs, providing continuous
ground coverage in the satellite’s flight direction. Validation
efforts with airborne campaigns that collocate with IS2 beam
segments, including NASA’s Operation IceBridge (MacGre-
gor et al., 2021, OIB) and MOSAiC (Nicolaus et al., 2022),
show that IS2 is able to achieve highly accurate measure-
ments of the sea ice topography (Kwok et al., 2019; Ricker
et al., 2023).

Despite their advantages, satellite altimeters have limited
coverage over the sea ice cover. The spatial sampling is in-
herently confined within the nadir of the satellite’s track. For
example, the three IS2 beam pairs are within ∼ 3 km of its
ground track. In order to attain basin-scale coverage, samples
collected throughout the whole month are usually needed.
However, within a month’s time, the sea ice may have un-
dergone significant changes due to both thermodynamic and
dynamic processes. These changes cannot be represented by
the aggregated monthly freeboard and thickness maps. Fur-
thermore, the altimetric scans only cover limited area within
typical passive microwave imagers’ footprints, thus hinder-
ing the synergy with these observations (Xu et al., 2017).

In this paper we explore the potential of improving the
laser altimeter’s representation through a synergy with mi-
crowave backscatter measurements by synthetic aperture
radars (SAR). In particular, the C-band SAR payloads on-
board European Space Agency’s (ESA’s) Sentinel-1 (S1)
satellites provide pan-Arctic coverage since 2014 through the
Extra-Wide (EW) swath mode scans. In this study, we estab-
lish statistical relationships between OIB-based sea ice to-
pographic and freeboard measurements and SAR backscat-
ter normalized radar cross section (σ0) from S1 scenes using
collocated observations during April 2019. OIB flights dur-
ing this month, in particular the Airborne Topographic Map-
per (ATM) measurements, were intentionally collocated with
IS2 tracks. The ATM measurements feature higher resolu-
tion and wider swaths than IS2 measurements, enabling the
analysis of co-variability between freeboard and σ0 at mul-
tiple scales. Therefore, they are used to study the upscaling
of IS2 measurements. In Sect. 2 we introduce details of the
data used and the processing protocols. Using these statisti-
cal relationships, we further design an algorithm prototype
for SAR-based prediction and upscaling of laser altimetry,
as comprehensively described in Sect. 3. And Sect. 4 covers
the statistical analysis under various sea ice conditions. The
locality and limitations of the prediction algorithm are also
investigated, along with other related issues in Sect. 5.

2 Data and protocols

2.1 OIB campaigns in April 2019

During April 2019 four OIB campaigns were carried out in
the Arctic (Fig. 1), which were collocated with IS2 and con-
sequently provided validation data for the sea ice elevation
(ATL07, see also: Kwok et al., 2019) and freeboard prod-
ucts (ATL10). In particular, the flights on 8 and 12 April
were organized in a racetrack pattern and cover more than
200 km along the corresponding IS2 ground tracks, with
outbound (i.e., northbound) and inbound (i.e., southbound)
flight passes covering beam pair of #3–#4 and #1–#2, respec-
tively. Two different types of conic scans of ATM onboard
these OIB campaigns were carried out: the 15° wide swath
scan that covers about 500 m across the flight pass, and the
2.5° narrow swath scan that covers about 60 m. The scan an-
gle of the wide-swath scanners is 15°, resulting in a swath
width of 500 m. The scan angle of the narrow-swath scanners
is 2.5°, which enhances the shot density in the central part
of the wide swath. In addition, there are three flight passes
of the racetrack, and together they cover over 1 km in the
cross-track/flight path direction. Furthermore, the campaign
on 8 April dominantly covered areas with thick multi-year
ice (MYI), while that on 12 April sampled more interstitial
first-year ice (FYI) within the MYI. Two other flights on 19
and 22 April are longer tracks that traverse both MYI and
FYI (Fig. 1). Based on ERA5 data for the study period, the
large-scale atmospheric conditions were typical of the late-
winter conditions in the respective regions. There were no
sudden warming events or significant precipitation that po-
tentially changes the SAR backscatter signature of the sea
ice.

In order to fully utilize the ATM measurements on 8 and
12 April, we construct a merged sea ice freeboard map using
all three OIB passes. The left and middle passes were about
1.25 h apart, while the right and middle passes were about
2.5 h apart. Full details of the processing are covered in Ap-
pendix A. Briefly, first, we retrieve the total freeboard (de-
noted Fs) within the entire ATM swath for each pass, using
the raw elevation measurements by ATM. Second, we obtain
the 1 m-scale Fs map for each pass through spatial linear in-
terpolation. The scan pattern of the ATM results in a variable
number of shot spacings within the scan swath, with rela-
tively lower shot density in the middle (Petty et al., 2016).
To mitigate uncertainty introduced by this spatial sampling
non-uniformity, the irregularly spaced ATM elevation data
are converted to a regularly spaced 1 m Fs map. Finally, the
Fs maps of the three passes are stitched together after col-
location, producing the Fs map that covers ∼ 1500 m in the
cross-flight direction.

The standard OIB Level4 (L4) product includes Fs pa-
rameter derived from ATM measurements and geolocated
aerial photography. It employs a lead discrimination algo-
rithm, which utilizes geolocated aerial photography to iden-
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Figure 1. OIB campaigns during April 2019. S1 EW images col-
lected around 8 April are shown in the background, with the black
boxes outlining the images used for statistical analysis between C-
band backscatter and sea ice freeboard. The solid box marks the
boundary of the S1 image on 8 April, while the dashed (dot-dashed)
ones mark those on 7 April (9 April). The OIB ground tracks of the
4 d are marked by red lines, and the location of the 9 km sample seg-
ments are shown by the asterisks. The thick yellow line delineates
the boundary between the MYI and the FYI regions according to
the sea ice type product provided by the Ocean and Sea Ice Satellite
Application Facility (OSI-SAF).

tify local sea surface height, thereby enhancing the quality
and number of sea surface height determinations. The final
product is gridded to a 40 m along-track resolution and can
serve as a validation reference for the newly constructed 1 m-
scale Fs maps. Specifically, we coarsen the Fs map to match
the 40 m resolution and the location (nadir to the flight) of the
L4 product. Validations show strong agreement, with RMSE
of 0.15 m on 8 April and 0.1 m on 12 April at 40 m scale. At
400 m scale, RMSE further decreased to 0.04 m on 8 April
and 0.03 m on 12 April (Fig. S1 in the Supplement). Hence
the 1 m-scale Fs maps are used further for the statistical anal-
ysis with SAR images.

2.2 S1 EW images and sea ice type maps

Both S1A and S1B data are available during the study pe-
riod of April 2019. EW mode images with dual polarization
channels (HH and HV) are accessed and collocated with the
aforementioned OIB observations. The SAR incidence an-
gles (IA) across the swath range from 20 to 46° for S1’s EW
mode. EW mode images use TOPSAR techniques to achieve
a very large swath coverage (∼ 400 km), but TOPSAR ac-
quisitions are affected by the “scalloping effect” (De Zan
and Guarnieri, 2006). Additionally, the noise floor varies

with range position, creating discontinuous sharp intensity
changes known as the “banding effect” (Lohse et al., 2021;
Sun and Li, 2021). These issues are particularly prominent
in the HV-channel due to its low signal-to-noise ratio (SNR)
(Segal et al., 2020). Details of the SAR images, including
the image identifiers and the acquisition times, are provided
in Table B1. Each image is preprocessed using ESA’s Sen-
tinel Application Platform (SNAP, version 11.0.0). Process-
ing steps include the application of precise orbit files, thermal
noise correction, radiometric calibration, and terrain correc-
tion. Finally, we convert the backscatter intensities into σ0.
It is important to note that in this study we did not apply IA
corrections to the SAR images. There are several reasons:
First, the IA dependency is type-dependent, with deformed
ice showing lower sensitivity to IA than level ice (Makynen
et al., 2003). Given the variant ridge density within the SAR’s
footprint (∼ 100 m), a simple correction for IA is insufficient
in our study. Second, for the SAR image on 8 April, the IA
change was within 10° along the whole OIB track, and on
12 April, IA values were within 5°. Since the range of IA
is small, the correction has potentially limited effect on our
study. Third, the best angle for the IA correction should be
chosen to maximize the differentiation among different ice
types. What is the best angle remains an open question and
requires more systematic study.

Sea ice type information is derived from S1 images and
the sea ice classification algorithm used in this study is based
on: Lohse et al. (2020) and Guo et al. (2025). Lohse et al.
(2020) developed a supervised algorithm that accounts for
the class-dependent IA effects, known as the GIA classifier.
While this classifier performs well in addressing IA sensi-
tivity, some misclassifications and ambiguities remain. To
address these issues, Guo et al. (2025) enhanced the algo-
rithm by incorporating GLCM texture features, resulting in
improved class separation. This study uses this classification
approach to produce sea ice type maps on the selected S1
scenes.

In the classification process, seven GLCM textures are de-
rived from the HH-channel of each SAR image, with a tex-
ture window size of 11 pixels. Then, SAR intensities (HH
and HV) and GLCM textures (HH) are used as input to
the GIA classifier, which incorporates their IA dependen-
cies. Sea ice is classified into three types: level first-year ice
(LFYI), deformed first-year ice (DFYI), and multiyear ice
(MYI). To further refine the results, a Markov Random Field
based contextual smoothing process is applied with a win-
dow size of 3 pixels (Doulgeris, 2015). The final sea ice type
maps have a pixel size of 40 m, but their effective spatial res-
olution is significantly coarser due to SAR speckle filtering
and textural processing. Sea ice classification is carried out
for all the S1 images and the results are used for further anal-
ysis.

By default, the S1 images are projected to 40 m spatial res-
olution, which is the nominal pixel spacing of the S1 EW
medium GRDM mode data, though the effective resolution
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is approximately 90 m. In addition, the processing steps in
SNAP may further degrade the resolution of the σ0 map. This
is because a Single Product Speckle Filter with a sliding win-
dow of 7× 7 pixels wash applied during the speckle filtering
process (Mansourpour et al., 2006). We use the following no-
tations for the coarsened values: Fs

(s)
and σ0

(s), where s de-
notes the coarsening scale.

2.3 ICESat2 products

The official IS2 products (version 6) are accessed for the
collocating tracks with OIB campaigns on 8 and 12 April
(see Data Availability for details). Each of the beam seg-
ments are of about 150 aggregated photons, and the mean
sea ice elevation of each segment is provided in ATL07. Due
to the variable photon rates over the sea ice, the along-track
length of the beam segment is not constant, around 10–16 m.
It is also different between strong and weak beams, with the
beam segment length of the weak beams at about 50 m. In
this study, we use the footprints of both the strong and weak
beam segments to study practical issues limiting the upscal-
ing of IS2 measurements, extending our analysis from OIB
to lower freeboard resolution.

2.4 Ancillary datasets

The climate data record of global sea ice drift from the Ocean
and Sea Ice Satellite Application Facility (OSI-SAF, version
OSI-455) is used as the reference to the collocation of the
different datasets. The OSI-455 product is available for the
period of 1991–2020, and is derived from various passive
microwave sensors (SSM/I, SSMIS, AMSR-E, and AMSR2)
and wind field data from an atmospheric reanalysis. The sea
ice drift vectors are provided on the Equal-Area Scalable
Earth (EASE) grid with the spatial resolution of 75 km. How-
ever, they are not available near the shoreline (i.e., part of the
campaign on 8 April near the Canadian Arctic Archipelago).
The temporal scale of the drift vectors is 24 h, starting/ending
at 12:00 UTC (Lavergne and Down, 2023).

2.5 Collocation between OIB and S1 images

The collocation between the Fs maps and σ0 in the HH-
polarization channel is carried out to correct for potential
sea ice drift and geocoding uncertainties between the two
measurements. The OIB flight on 8 April was approximately
40 min apart from its corresponding S1 image acquisition,
whereas the OIB flight on 12 April was about 4 h apart from
its respective S1 image acquisition. For the OIB flight on
8 April, the ice surveyed was relatively immobile, while that
covered by the campaign on 12 April experienced a drift of
approximately 0.02 m s−1 according to the OSI-455 product.
We coarsen the 1 m-scale Fs maps to the nominal pixel size
of S1 EW images (i.e., 40 m), and maximize the correlation
(Pearson’s r) between the two fields by locally adjusting the
relative location between the two. The increments of the local

adjustments is 20 m (i.e., half of S1 EW pixel spacing). When
collocating OIB tracks with S1 images, we divided the OIB
tracks into 9 km segments. Collocation is performed indepen-
dently for each 9 km outbound and inbound segment, in both
the along-track and cross-track directions. In order to com-
pare to the drift corrections during the correlation maximiza-
tion (see Figs. 4a and 5a), the daily OSI-SAF drift vectors
are scaled to the time interval between the acquisition time
of the SAR image and that of the OIB. Afterwards, bilinear
interpolation is carried out in the spatial domain to attain the
drift vector at each location along the OIB flight path.

3 Methods

3.1 The statistical fitting between the Fs and σ0

To analyze the statistical relationship between Fs and C-
band backscatter, we employed a linear regression model for
each 9 km segment (both outbound and inbound), defined as:
Fs = a ·σ0+b. Sea ice type maps, which classify the sea ice
into LFYI, DFYI, and MYI, were used. During the classifica-
tion, a sliding window of 11 pixels was applied in the classifi-
cation process; if all pixels within an 11×11 window were of
the same type, the central pixel was classified as a pure pixel
(indicated by solid circles in Figs. 2d–i and 3d–i); otherwise,
it was labeled as a mixture(indicated by square symbols in
Figs. 2d–i and 3d–i). We specifically examined the relation-
ship between Fs and backscatter for pure MYI pixels. Due to
the limited number of pure FYI and DFYI pixels, these were
not included in further analysis.

Backscatter values were binned into 1 dB intervals. For
each bin, the mean Fs value within the interquartile range
(IQR) was calculated. The representative backscatter value
for each bin was determined as the mean of the bin bound-
aries. The statistical relationship between these mean Fs val-
ues and representative backscatter values was then analyzed.

Since the effective resolution of the backscatter used in
this study is larger than 40 m, coarser spatial scales adopted
for the computation of Fs, including 100 m (Fig. 2e and h)
and 200 m (Fig. 2f and i).

3.2 Fs distribution prediction

The prediction of Fs distribution is based on 1 m-scale sam-
ples for OIB and beam-segment scale for IS2. The training
of the prediction algorithm is carried out as follows:

1. Bin backscatter values into 1 dB intervals.

2. For each bin, calculate the mean Fs value within the
IQR.

3. Use the three-component Log-Logistic mixture distri-
bution to fit the Fs sample probability density function
(PDF) within each σ0 bin. The probability density func-
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tion of the three-component Log-Logistic mixture dis-
tribution is given by:

p(x)=

3∑
i=1

ωi ·
(βi/αi)(x/αi)

βi−1

(1+ (x/αi)βi )2

where ωi is the weight, βi is the shape parameter, and
αi is the scale parameter for the ith Log-Logistic com-
ponent.

4. Apply the maximum likelihood estimation (MLE)
method to fit the Log-Logistic mixture model. Iden-
tify the optimal parameter estimates by maximizing
the likelihood function of the sample data under the
hypothesized Log-Logistic mixture distribution. Trans-
form the problem of maximizing the likelihood function
into minimizing the negative of the likelihood function.
Then, solve this optimization problem using the sequen-
tial quadratic programming (SQP) algorithm.

To evaluate the goodness-of-fit between the sample dis-
tribution p(x) and the fitted three-component log-logistic
mixture distribution p̃(x), we employed the Kolmogorov-
Smirnov (K-S) distance, defined as:

sup
x
|P(x)− P̃ (x)|

Here, P(x) and P̃ (x) denote the cumulative density func-
tion of the sample and the fitted distributions, respectively,
and supx the supremum of the difference between the two.
The K-S distance ranges between 0 and 1, with higher value
indicating larger discrepancy between the distributions. We
further used the k-means algorithm for the clustering analy-
sis of these components in all σ0 bins, and related them to
different sea ice types.

For the test of the prediction algorithm, we train the pre-
diction model with the inbound segment, and carry out the
prediction and validation on the corresponding outbound seg-
ment. For OIB tracks, the 9 km segment length is adopted,
while for IS2, due to limited beam segment samples, the
longer segment length of 27 km is adopted. For each σ0 on
the outbound segment, we use the fitted Fs distribution on
the corresponding σ0 bin on the inbound segment for the pre-
diction. The predicted Fs distribution for each σ0 sample is
combined for all SAR pixels on the outbound segment. Fi-
nally, the prediction is validated by computing its K-S dis-
tance to the observed Fs distribution on the outbound seg-
ment. For comparison, the baseline for the validation is the
K-S distance between the observed Fs distribution on the cor-
responding segment pair on the inbound and the outbound
flight.

4 Results and analysis

4.1 Sample segments

We first examine two pairs of 9 km OIB segments and col-
locate them with SAR images (σ0 in HH-polarization), their
locations shown in Fig. 1. For the segments on 8 April, the
mean Fs was 1.0 m with a standard deviation of 0.45 m, and
the mean σ0 was −10.46 dB with a standard deviation of
2.77 dB. In contrast, the segments on 12 April had a mean
Fs of 0.57 m and a standard deviation of 0.18 m, with a mean
σ0 of −12.67 dB and a standard deviation of 1.52 dB. While
the 9 km segments covered on 8 April mainly consisted of
thick MYI, that on 12 April features relatively thinner MYI,
mixed with FYI and young ice.

4.1.1 Sample segments on 8 April

The first 9 km sample segments is shown in Fig. 2.
The three OIB outbound flight passes are separated by
about 75 min: 8 April 2019 12:34 UTC (middle pass),
8 April 2019 13:48 UTC (left pass), and 8 April 2019
15:01 UTC (right pass), respectively. The inbound flight
passes are: 8 April 2019 13:21 (middle pass), 8 April 2019
14:34 UTC (left pass), and 8 April 2019 15:46 UTC (right
pass), respectively. For both the outbound and the inbound
passes, the central pass overlaps with the left (or right) pass
by approximately 100 m in the cross-pass direction. The col-
location between the passes indicates minimum correction
(1–2 m), very high correlations (Pearson’s r over 0.95) and a
decorrelation length of less than 5 m (Fig. S2).

For comparison, the collocation between the merged Fs
map and the SAR image on the same day (details in Ta-
ble B1) shows statistically significant but lower correla-
tion coefficients (Fig. 2b). The decorrelation length is much
longer than that for 1 m-scale Fs (i.e., Fig. S2), mainly due to
that correlation between Fs and σ0 is carried out at the scale
of 40 m. Besides, the statistical relationship between Fs and
σ0 in the HV-polarization channel is also significant (details
in Appendix C).

As shown, the variability of Fs is drastically attenuated,
but the statistical correlation between Fs and σ0 (at origi-
nal resolution) sharpens at larger scales. Specifically, for the
segment on the outbound (inbound) flight, the Pearson’s r
increases from 0.61 (0.66) for the correlation at the 40 m-
scale Fs to 0.81 (0.84) for that at the 200 m-scale Fs. For
both cases, the slope of the linear fit also reduces slightly as
the scale increases.

4.1.2 Sample segments on 12 April

The other two 9 km sample segments are from the campaign
on 12 April, shown in Fig. 3. The major differences from the
sample segments on 8 April (Fig. 2) are as follows: (1) ac-
cording to the OIB Fs map, the MYI is much thinner; (2) it
contains higher areal fraction of FYI; and (3) the surround-
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Figure 2. Total freeboard (Fs, colored) and the S1 HH backscatter (σ0, background) over sample segments on 8 April, 2019 (a). Contour lines
delineate the boundary between different sea ice types, including MYI, level FYI (LFYI) and deformed FYI (DFYI). The ICESat-2 ground
tracks of the three strong beams (#1, #3 and #5) are also shown as thin black lines. Two 9 km segments on the outbound (i.e., northbound)
and the inbound flights are marked out by the solid and dashed red boxes, respectively. The correlation map (Pearson’s r) between σ0 and
Fs are shown with local corrections in 20 m steps in both the cross-track and the along-track direction (b, c). The yellow plus sign indicate
the displacements to maximize the correlation between S1 and OIB. The scatter plots between Fs and σ0 after collocation for the outbound
(inbound) flights are shown in panels (d), (e) and (f) (g, h, i). Three spatial scales for computing Fs based on the 1 m-scale Fs maps are
adopted: 40 m (S1 image resolution, (d) and (g)), 100 m (e, h), and 200 m (f, i). In panels (d) to (i), the dots are color coded according to
their ice types, with the solid (dashed) lines showing the linear fitting lines of Fs = a ·σ0+b for all samples (only MYI pixels) and the fitted
parameters. Also shown in each panel are the mean values of Fs and the IQR after binning with σ0 (1 dB per bin).

ing sea ice has undergone more evident drift and deformation
between the observations by OIB and S1, as indicated by the
OSI-455 product.

Although sea ice is generally much thinner (Fs mostly un-
der 2 m at 1 m-scale), a statistically significant relationship is
also present between Fs and σ0 (Figs. 3 and C2). For com-

parison, we also applied a 2nd-order polynomial regression:
Fs = a · σ

2
0 + b · σ0+ c. The nonlinear model yields slightly

better fitting compared to the linear regression model (see
Figs. S8 and S9). For both the outbound and the inbound
segments, OIB has attained sufficient sampling of MYI, but
the representation of FYI is not even. Specifically, on the
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outbound segment, SAR pixels with σHH0 under 18 dB are
scarce, and no level FYI is detected in the area sampled by
OIB. For the inbound segment, an apparent nonlinear rela-
tionship between Fs and σ0 is observed for FYI, due to the
effect of ice with different levels of development. LFYI has
a consistently low Fs around 20 cm but corresponds to σ0
that varies over a large range of 5 dB, whereas DFYI has
strongly varying Fs up to around 1 m over a small range of
σ0 around 2–3 dB. The linear fitting for MYI is comparable to
that for all sea ice types for the inbound flight (lower panels
of Fig. 3). At both 100 and 200 m-scale, the linear regressions
of Fs to σ0 show lower fitting slopes for MYI than for those
based on all samples. The variability of Fs at 40 m scale di-
minishes considerably as the scale increases. In comparison,
MYI always has much steeper regression lines for the sample
case on 8 April across all analyzed scales (Fig. 2). This re-
sult, although potentially affected by the accuracy of the sea
ice type map, highlights the importance of the sufficient sam-
pling of various sea ice types to ensure their representation in
the study of the statistical relationship.

Interestingly, for MYI which is well observed by both
sample segments on 8 and 12 April, the statistical fittings be-
tween Fs and σ0 show large differences. For the sample seg-
ments on 8 April, the regressions (40 m-scale) are steeper at:
Fs = 0.139 ·σ0+2.443 with Pearson’s r = 0.410 (outbound)
and Fs = 0.126 · σ0+ 2.236 with the regression’s R = 0.458
(inbound). In comparison, on 12 April, the fitting slopes
are shallower by about 50 %: Fs = 0.06 ·σ0+ 1.338 with the
regression’s R = 0.281 (outbound at 40 m-scale) and Fs =

0.051·σ0+1.204 with the regression’s R = 0.263 (inbound).
After binning the samples to σ0, the regression lines (i.e.,
between the mean values of Fs in each σ0 bin and σ0’s)
become flatter on 12 April: mean(Fs)= 0.051 ·mean(σ0)+

1.244, compared with mean(Fs)= 0.105 ·mean(σ0)+ 2.123
on 8 April. The potential causes of the different fittings in-
clude both: (1) differences in C-band backscatter sensitivity
to macro-scale topography due to different ice/snow proper-
ties of the two regions, and (2) different imaging configura-
tions of the SAR images. Related issues, such as the effect
of IA on the statistical relationships are further discussed in
Sect. 5.1.

4.2 Statistics of all segments on 8 and 12 April

For each of the 9 km OIB segment on 8 and 12 April, we
generate a merged Fs map and collocate it with the SAR im-
ages on the same day. The statistical correlations are shown
in Figs. 4 and 5, respectively.

On 8 April, the local corrections for collocating Fs and
σ0 are all within 40 m (Fig. 4a). The OSI-SAF drift prod-
uct indicates about 100 m drift within the northern part of
the OIB track, although the drift vectors are not significant
given the respective product uncertainties. SAR images from
the surrounding days (i.e., from 7 and 9 April, listed in Ap-
pendix B) also show little drift in the sea ice pack surveyed

by the OIB campaign (details not shown). In addition, we
have attained meter-scale corrections for the collocation of
OIB passes (see Fig. A1). Given the relatively coarser reso-
lution of the SAR images, we assume that sea ice drift and
deformation can be ignored when collocating Fs and σ0. The
detected local corrections in Fig. 4a may not indicate actual
sea ice drifts, but may be due to geolocating uncertainties,
such as those induced by geometric corrections of the SAR
images. The correlation between Fs and σ0 at 200 m scale is
statistically significant for all segments (Fig. 4b and d). Af-
ter binning Fs samples to σ0, the correlation coefficients the
mean values of Fs and σ0 within the bins are mostly over 0.9
(Fig. 4c and e).

For the OIB campaign on 12 April, statistically significant
large-scale sea ice drift are observed in the surveyed region
(see Fig. 5a). The lengths of the local corrections for collocat-
ing Fs and σ0 are about 250 m. The corrections are consistent
between the local segment pairs on the inbound and the out-
bound flights, and they also agree with the large-scale drift
in terms of both direction (north-east) and magnitude. There-
fore, these local corrections correspond to the actual sea ice
drift between the visits by the OIB campaign and S1.

After the corrections, the correlation coefficients are
higher and statistically significant for all segments (p = 0.05
level). Moreover, the correlation coefficients after binning
are mostly over 0.9 (Fig. 5c and e).

In Fig. 6 we show the linear regressions between σ0 and
200 m-scale Fs for all segments on 8 and 12 April. The re-
sults indicate that with σ0 and the regression relationships,
we can estimate the 200 m-scale Fs with high statistical con-
fidence (regressions’ R-values over 0.3 for all 9 km seg-
ments). Furthermore, the regression parameters show sig-
nificant variability among different segments, indicating the
physical relationship between Fs and σ0 varies locally. De-
spite this variation, the regression parameters from the in-
bound and outbound tracks are very similar. We further ex-
amine the relations for 27 km-long segments. As shown in
Fig. 6, the regression parameters for 27 km segments are
much less variant, although certain variability still exists
on different parts of the flight track. Specifically, for the
segments on 8 April, the variance of a (b) has decreased
by 48.6 % (36.5 %) when comparing 27 km-long segments
to 9 km-long segments. For the segments on 12 April, the
variance of a (b) decreased even more significantly, by
76.8 % (78.7 %). Besides, the regressions’ R-values are also
higher for 27 km-long segments for segments on both 8 and
12 April. This implies that, small-scale inhomogeneity of the
sea ice cover or errors in data co-location, which cause large
variability of a’s and b’s in Fig. 6, are effectively attenuated
at larger scales. The regression relationships in Fig. 6 can
be further used for the prediction and construction of 200 m-
scale Fs maps based on SAR (Figs. S10 and S11). In particu-
lar, given to the locality of the relationships, the prediction of
Fs map should also be carried out adjacent to the collocating
observations by SAR and altimetic scans.
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Figure 3. Same as Fig. 2, but for sample segments on 12 April.

4.3 Prediction of Fs distribution with σ0 map

Given that the altimetric scans by OIB (and IS2) have a
finer resolution than available SAR images, the regression in
Sect. 4.2 is inherently limited in the spatial resolution of the
predicted Fs. Moreover, although there is a significant cor-
relation between Fs and σ0, the variability of Fs is consider-
able, and no single predictor based on backscatter effectively
captures this variability. Therefore, we focus on the predic-
tion of meter-scale Fs distribution (i.e., at the full resolution
of the altimeter data) with SAR images based on their collo-
cating observations of Fs and relatively coarser σ0 data.

4.3.1 Study of sample segments

We first study the 9 km sample segments in Sect. 4.1.1 and
4.1.2. The distributions of Fs in typical σ0 bins of these two
9 km sample segments are shown in Figs. 7 and 8, respec-
tively. The sample Fs distributions after binning all show
the following characteristics. First, Fs follows a long-tailed,
skewed distribution, which is consistent with various find-
ings in existing studies (Xu et al., 2020; Duncan and Farrell,
2022). Second, for larger σ0 bins, the mean value and the
variability of Fs are both higher. Third, the Fs distributions
are multimodal, especially for σ0 bins that contain both FYI
and MYI samples (e.g., left panels in Figs. 7 and 8).

To capture the complex shape of the Fs probability density
function (PDF), we use the three-component Log-Logistic
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Figure 4. Statistical relationship between Fs and σ0 for OIB segments on 8 April 2019. The local corrections to maximize the correlation
between Fs and σ0 are shown for all 9 km segments with valid data on the outbound flight (blue) and the inbound flight (dark red). The
correlation coefficients before and after collocation are shown for the outbound (b, c) and the inbound flights (d, e) for all 9 km segments,
together with those after binning. Statistically insignificant correlations are shown by crosses (×) in the lower panels (p = 0.05 significance
level).

mixture distribution to fit the sample PDF in each σ0 bin.
The fitting results (i.e., Figs. 7 and 8) indicate that the differ-
ent PDF modes are well captured with very low K-S distance
to the sample PDF. We further carry out clustering analy-
sis of the various components, based on the modal Fs values
and the corresponding σ0 (right panels of Figs. 7 and 8). The
three clusters indicate continuous changes of the PDF pa-
rameter with respect to σ0, and they generally show a good
correspondence to these sea ice types: FYI, thin MYI and
thick MYI. For example, for the sample segments on 8 April,
there is prominent presence of MYI with Fs of over 3 m
and σ0 of over −5 dB (Fig. 7). This is captured by a sep-
arate Log-Logistic component which we manually catego-
rize as the thick MYI. This could corresponds to sea ice of
higher age than that of the thinner MYI which corresponds
to the second component. Another example is that compo-
nents with very small modal values of Fs manifest even at

very large σ0 bins (Figs. 7 and 8, lower panels). Due to the
relatively coarse resolution of S1 images, thin FYI may be
present in pixels with otherwise large values of both mean
Fs and σ0. These components are captured by the PDF fit-
ting, and we further manually categorize them as FYI. It is
important to note that these categorizations are introduced to
interpret the fitting results, as the specific categories (FYI,
thin MYI, and thick MYI) were not previously defined in our
analysis. Based on the per-bin Fs fittings on the inbound sam-
ple segments, we carry out the prediction of Fs distribution
on the corresponding outbound segments. Specifically, based
on the observed σ0 map on the outbound segment, we: (1)
formulate the distribution of σ0, (2) compute the Fs distribu-
tion according to the sample probability of each of the σ0 bin,
and (3) construct the overall Fs distribution on the outbound
segment. For the 9 km sample segments on 8 April, the per-
bin Log-Logistic mixture fittings demonstrate a high degree
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Figure 5. Same as Fig. 4, but for OIB segments on 12 April 2019.

of accuracy in fitting the observations for both the inbound
and the outbound segments, with K-S distances of 0.002 for
each segment. However, the inbound and the outbound seg-
ments differ in the sample Fs distribution (Fig. 9b), primarily
attributed to variations in the thickness of FYI and MYI, as
well as differences in their respective proportions. Notably,
the modal thickness values of both the thin MYI and the thick
MYI are 0.1 m higher on the outbound segment than on the
inbound segment. As a result, the predicted Fs distribution
also shows lower modal Fs values (Fig. 9a). Despite the un-
derestimation of the modal Fs, the prediction is closer to the
observation, with lower K-S distance: 0.072, compared with
0.076 between the inbound and the outbound segment.

For the 9 km sample segments on 12 April, the prediction
also shows lower K-S distance with the observed Fs distri-
bution on the outbound flight (K-S distance from 0.094 to
0.074). The major improvement is due to different portions
of thin FYI on the outbound and the inbound segments (see
also Fig. 3). By using the σ0 map on the outbound segment,

we achieve the correct representation of thin ice in the pre-
dicted Fs distribution.

4.3.2 Validation of prediction for all segments

We carry out the prediction of 1 m-scale Fs distribution for
all the 9 km outbound segments. Figure 10 shows that the
predicted Fs PDF is close to the observation, with the mean
K-S distance at 0.077. There is a 10 % reduction of the base-
line K-S distance, which indicates that the predicted Fs dis-
tribution better matches the observations. Especially, large
K-S distances are effectively attenuated with the prediction:
3 (10) out of the total 91 9 km segments show a K-S distance
over 0.15 between the predicted (inbound) Fs with the out-
bound observations.

Moreover, there exists a significant positive correlation
(Pearson’s r: 0.72, p-value: 2.48× 10−16) between the K-
S distance sequences in Fig. 10. This indicates that when
the Fs elevation is similar between the inbound and the out-
bound segments, the prediction is generally better. On the
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Figure 6. The linear regression from 40 m-scale σ0 to the 200 m-scale Fs for all segments on 8 April (a, b, c) and 12 April (d, e, f):
Fs = a ·σ0+b. The regression’s parameters, including a (a, d), b (b, e), and the R-value (c, f) are shown, respectively. Two segment lengths
are adopted: 9 and 27 km.

contrary, if the Fs distribution is more different between the
two segments, the prediction also deteriorates. Therefore, in
order to obtain better predictions, the observed Fs should
contain sufficient sampling of different sea ice types in the
range of the prediction. Representation issues for large-scale
retrievals are further discussed in Sect. 5.

5 Discussions and Summary

In this study we investigate the statistical relationship be-
tween sea ice freeboard and C-band microwave backscat-
ter, by using collocated OIB observations and S1 images.
Stronger SAR backscatter is observed for higher snow free-
board, which is attributed to the sensitivity of backscatter to
both the sea ice type, with generally high volume scatter-
ing for MYI in winter, and ice topographic features such as

ridges, with older ice having experienced stronger deforma-
tion (Krumpen et al., 2025). Moreover, the scale-dependency
of this statistical relationship, along with its spatial and tem-
poral locality, is further studied. An algorithm for predict-
ing and extrapolating sea ice topographic measurements with
SAR images is introduced that incorporates both: (1) the
ICESat2 footprint size, and (2) the higher variability for
larger sea ice total freeboard.

5.1 Physical mechanisms behind the statistical
relationship between σ0 and Fs

The statistical relationship between sea ice freeboard and C-
band microwave backscatter is rooted in the different mi-
crowave backscatter mechanisms of various ice surface fea-
tures. Thin, level ice typically exhibits low backscatter, with
two primary scattering mechanisms contributing to this: sur-
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Figure 7. Distribution of 1 m-scale Fs in typical σ0 bins of the inbound sample segment on 8 April, 2019. Fs sample PDFs, as well as the
fitted three Log-Logistic mixture components are shown for typical σ0 bins (left panels). Statistical PDF fitting (black solid line) based on
the 3-component Log-Logistic mixture model in each panel, along with each of the components (colored dash lines).

Figure 8. Same as Fig. 7, but for the inbound sample segment on 12 April 2019.

face scattering from the ice surface and volume scattering
from air voids (Manninen, 1992). However, with thicker ice
and larger Fs, both the backscatter and Fs variability are
higher, as evidenced by the larger spread of Fs IQR in higher
σ0 bins in Fig. 2. This suggests that more complex physi-
cal mechanisms govern the C-band backscatter variations in
thicker ice. In the case of older, rougher ice, the presence
of thicker snow cover and more extensive ice deformation
cause increased diffuse reflection and refraction of the inci-
dent radar signal (Onstott, 1992).

In addition to the wavelength-scale roughness, several
other factors can also influence backscatter, such as the effec-
tive radar incidence angle, radar azimuth which are greatly
affected by ridge geometry (Krumpen et al., 2025). For level

ice, the effective incidence angle is relatively constant, equal
to the radar incidence angle. However, for ridges, the lo-
cal IA varies depending on the radar and ridge geometries,
including the incident radar angle, the ridge slope, and the
orientation of the ridge. Even with constant ice properties,
these geometric differences alone can lead to higher surface
backscatter from ridges compared to level ice (Manninen,
1992). Consequently, the radar backscatter and its IA depen-
dency are highly dependent on the ice type and the observa-
tional geometry (Geldsetzer and Howell, 2023; Lohse et al.,
2021, 2020; Guo et al., 2022). We further explore the influ-
ence of IA on the statistical relationship for the OIB track on
8 April (no evident deformation or synoptic events around
8 April). By matching SAR images from April 7th, 8th, and
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Figure 9. Statistical prediction of Fs distributions on the outbound segment with: (1) the per-σ0 bin Log-Logistic mixture fittings on the
corresponding inbound segment, and (2) the σ0 map on the outbound segment. The observed and the predicted Fs distribution, as well as the
K-S distance between the two are shown for the sample outbound segment on 8 April (a) and 12 April (c). The Fs sample distribution on the
inbound and the outbound segments are also shown for comparison (b, d).

Figure 10. K-S distance between the predicted and the sample Fs distribution on all the 9 km outbound segments on 8 April (top panel)
and 12 April (bottom panel). The prediction on each 9 km outbound segment is carried out with the PDF fittings on the corresponding 9 km
inbound segment. The K-S distance between the inbound and the outbound sample Fs distributions are also shown.

9th to the OIB track on 8 April, we obtain the statistical rela-
tionships between Fs at different IAs. In general, the statisti-
cal fitting becomes steeper with decreasing IA (Fig. S4). This
trend is driven by the higher (lower) sensitivity of σ0 level
(ridged) ice to changes in IA (note the weaker σ0’s at larger
IAs in Fig. S4). Therefore, when IA changes, the statistically
significant relationship still holds, but IA has limited effect
on this relationship than other factors, such as the localized
sea ice conditions.

Furthermore, snow cover properties such as snow density
and wetness can also modulate the C-band scattering signa-
tures (Kim et al., 1984). For example, the change in snow
density affects the effective wavelength of the microwave
signals, therefore impacting the scattering at the snow-ice in-
terface. Since the OIB campaigns were carried out during
later winter/early spring, the snow cover is dry and there-

fore largely transparent to C-band signals. In order to apply
the statistical prediction algorithm for other seasons (i.e., late
autumn or spring), the snow conditions should be taken into
account to better use the SAR measurements (Livingstone
and Drinkwater, 1991).

5.2 Scale-dependency of the statistical relationship

Based on the OIB tracks on 8 and 12 April, we further ex-
plore the scale-dependent characteristics of the statistical re-
lationship. Specifically, both Fs and σ0 maps are coarsened
to three spatial resolutions: 100, 200 and 500 m. This coars-
ening was achieved by calculating the average values of Fs
and the S1 intensity within each coarsening grid cell at the re-
spective resolutions, rather than coarsening the OIB Fs alone
as previously shown in Sect. 4. By analyzing the coarsened
σ0 and Fs maps, we find that the relationship becomes more
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stable at large scales (Fig. 11). In several 9 km segments, the
Pearson correlation coefficient at 500 m scale is lower than
that at 40 and 200 m scale. This is likely because FYI frac-
tion diminishes for some segments after coarsening to the
500 m scale. On the OIB tracks on 8 April, there is a special
segment (∼ 55 km in along-track direction) where the Pear-
son correlation coefficient drops drastically across all three
scales. These segments are dominated by deformed and thick
ice, with a mean Fs of 1.04 m, a Fs std of 0.56 m, and MYI
coverage reaching 97.3 %.

Various studies have explored the relationships between
sea ice topography and microwave backscatter on different
scales, ranging from SAR-related scales (Macdonald et al.,
2024; Kortum et al., 2024) to scatterometry scale (Petty et al.,
2017). In Macdonald et al. (2024), the Radarsat Constella-
tion Mission (RCM, also C-band SAR) images and ICESat-2
products are used to study the relationship between sea ice
roughness and backscatter over land-fast sea ice in the Cana-
dian Arctic Archipelago. In particular, the statistical relation-
ship based on HV-polarization is stronger, and therefore used
to predict FYI roughness and the height of MYI. In our study,
we also find statistically significant relationships on the HV-
channel (see Appendix C). Although the HV-channel usually
has a lower SNR than the HH-channel, the higher correla-
tions with sea ice topography statistics may arise from the
higher dynamic range of σ0.

In Kortum et al. (2024) the authors explored the extrapola-
tion of IS2 freeboard (ATL10) , allowing for a time difference
of up to 24 h between S1 and IS2 measurements.

Similarly, in Macdonald et al. (2024), the HV-channel σ0
maps are also utilized. The prediction is carried out with the
pairing CDFs of Fs and σ0, and the Pearson correlation co-
efficient at 400 m scale reaches 0.82. In our study, the re-
gression model in Sect. 4.2 can also be used to predict Fs
maps at similar scales. To ensure consistency with (Macdon-
ald et al., 2024; Kortum et al., 2024), we aligned the scale
of statistical relationships and performed a quantitative anal-
ysis, with results presented in Table S1 in the Supplement.
However, compared to Kortum et al. (2024) and Macdonald
et al. (2024), our study focuses mainly on the prediction of
meter-scale Fs distributions (Sect. 4.3). In addition, we ex-
plored the effect of sea ice drift and deformation on the cor-
relation between altimetric scans and SAR images. As shown
in Sect. 4.2, third-party, large-scale drift products and local
adjustments can be used to facilitate the collocation between
the two. Related representation issues are further discussed
in Sect. 5.3.

In Petty et al. (2017) the authors studied the statistical
relationship between C-band backscatter measured by AS-
CAT and the variability of sea ice topography. The rela-
tionship is further used to estimate the atmospheric form
drag coefficients based on backscatter maps. Although the
scatterometers have relatively coarser resolution (25 km for
ASCAT), the underlying mechanism of the topography-to-
backscatter relationship is similar to our study. The macro-

scale roughness of the sea ice cover (i.e., topography) and the
sea ice type dependent surface properties affect microwave
backscatter, resulting in the statistically significant relation-
ship between the two.

5.3 Spatial and temporal locality of the statistical
relationship between Fs and σ0

The statistical relationships between Fs and σ0 in Sect. 4.1.1
and 4.1.2 are based on OIB data and SAR images acquired
on the same day. Furthermore, in Sect. 4.2, we demonstrated
that there is large variability in this relationship, potentially
caused by differences in sea ice/snow conditions and practi-
cal factors such as different observational geometries. There-
fore, the statistical relationship is spatially localized, which
implies that the extrapolation of freeboard measurements
(e.g., Sect. 4.3) should be carried out locally.

Furthermore, we explore the temporal transferability of
this relationship, by matching SAR images collected 1 week
from the OIB campaigns. Correspondingly, sea ice may un-
dergo significant drift and deformation, as well as thermody-
namic changes during a week-long interval between the OIB
and SAR observations.

For the 9 km sample segments on 8 April (Sect. 4.1.1), we
use SAR images from 1 and 15 April, and collocate both with
the Fs map on 8 April (Fig. S5). The analysis of the drift cor-
rections indicates that there is negligible sea ice movement
between 8 and 15 April, and the statistical relationships be-
tween Fs and σ0 are consistent (Fig. S5, lower panels). How-
ever, the maximum correlation coefficient between Fs and
σ0 is much lower at 0.4 for the SAR image on April 1st, as
compared to 0.6 for 8 April (Fig. S5, upper panels). The drift
corrections obtained from SAR images on 1 and 8 April con-
firm significant sea ice deformation, leading to suboptimal
collocation between not only SAR images, but also SAR and
OIB (note the scattered samples in Fig. S5b and c).

For the 9 km sample segments on 12 April (Sect. 4.1.2),
SAR images from 5 and 19 April are used for a similar anal-
ysis. Between 5 and 12 April, significant sea ice drift and
deformation is present for the sea ice cover around the sam-
ple segments (Fig. S6a). Correspondingly, the correlation co-
efficients between Fs and σ0 also witness significant drops:
from 0.28 to 0.15 for the outbound segment, and from 0.54
to 0.45 for the inbound segment. On the contrary, between
12 and 19 April, sea ice drift is evident, but very small de-
formation is present, as indicated by the collocation of SAR
images (Fig. S6d). The correlation coefficients between Fs
on 12 April and σ0 on 19 April largely remain the same as
that based on 12 April. Specifically, the coefficient is 0.27
for the outbound segment and 0.54 for the inbound segment.

Both cases indicate that the collocation between OIB and
SAR deteriorates at longer time intervals, and there are cor-
responding drops in the statistical relationships. This is pre-
sumably caused by synoptic scale forcings that drive sea
ice drift and deformations, which compromise the colloca-
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Figure 11. The statistical correlation between Fs and σ0 at three spatial scales: 40, 200, and 500 m. The coarsening is applied to both Fs and
σ0 at these scales. The results for the OIB track on 8 and 12 April are shown in panel (a) and (b), respectively. In order to accumulate enough
samples, especially at the 500 m scale, both the inbound and the outbound segments are used to compute the correlation coefficients. Note
that in order to accommodate the effective resolution of σ0 maps, in Figs. 2 and 3, we only applied spatial averaging to Fs but not to σ0.

tion. As indicated by both observations and modeling stud-
ies (Marsan et al., 2004; Rampal et al., 2008; Ning et al.,
2024), sea ice deformation is localized, and multi-fractal both
spatially and temporally. More importantly, there is strong
coupling between the spatial and the temporal domain. At
longer time intervals, there is lower spatial localization of
sea ice deformation, which potentially complicates the col-
locating of SAR and altimetry scans. Furthermore, thermo-
dynamic changes such as snowfall events, snow stratigraphic
changes, as well as newly formed sea ice ridges and leads,
can also greatly modulate both Fs and/or C-band backscat-
ter(Tsai et al., 2019; Manninen, 1992). These changes are
usually associated with synoptic events, which potentially
co-occur with sea ice drift and deformation. In summary,
there is a strong locality in the statistical relationship between
Fs and σ0. The spatial and temporal windows for collocating
SAR and altimetry scans and further upscaling the freeboard
measurements is an important research topic for future stud-
ies.

5.4 On the upscaling of IS2 measurements

Compared with the 1 m-scale Fs maps from OIB, the stan-
dard sea ice elevation (ATL07) and freeboard (ATL10) prod-
ucts of IS2 are provided in beam segments. Since each beam
segment consists of ∼ 150 aggregated photons, the nominal
resolution is between 10 and 20 m in the along-track direc-
tion for the three strong beams and∼ 11 m in the across-track
direction, the laser footprint’s diameter (Neumann et al.,
2020). For weak beams, the beam segment resolution is even
coarser by approximately 4 times. By constraining and coars-
ening OIB Fs maps to the footprints of IS2 strong and weak
beam segments, we find that the correlation maps between Fs

and S1 backscatter is in good agreement with those based on
the full OIB segment (results for the sample segments shown
in Fig. S7). Therefore, the collocation with S1 images can
also be carried out with IS2 elevation measurements.

We re-apply the prediction algorithm in Sect. 4.3 to IS2
footprints of the 9 km sample segments. Specifically, the pre-
diction is trained and validated on the IS2 beam segments
on the inbound and the the outbound OIB segments, which
cover the IS2 beam pairs #1–#2 and #3–#4, respectively.
However, compared to the 1 m-scale OIB Fs map, the fol-
lowing limitations of IS2 are present: First, the IS2 beam
segments are coarser, especially for the weak beams. Second,
the IS2 ground coverage is much narrower at 11 m, compared
with the ∼ 1.5 km width of the Fs map. As a result, on the
9 m sample segments, there is a very limited number of IS2
beam segments (i.e., Fs samples). Therefore, in order to ac-
cumulate enough samples for prediction, we extend the sam-
ple segments in both directions to 27 km (equivalent to the
length scale used in Fig. 6).

Specifically, we follow the three-step routine for the pre-
diction and evaluation of Fs. First, by using IS2 beam seg-
ments on the inbound segment (i.e., the #1–#2 beam pair),
we bin the Fs samples to σ0, and further carry out the PDF
fitting with 3-component Log-Logistic mixture model within
each σ0 bin. Second, we predict the Fs distribution on the
corresponding outbound segment, using the σ0 observations
on the IS2 footprints (i.e., the #3–#4 beam pair). Finally, we
validate the prediction with the observed Fs samples.

Figure 12 shows the results for the 27 km sample segments
on 8 and 12 April. Similar to the validation of the 1 m-scale
Fs in Fig. 9, the prediction on IS2 footprint also yields a good
match with the observed Fs distribution. In addition, the K-
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Figure 12. Same as Fig. 9, but for Fs on IS2 beam segments on the sample segments on 8 April (a–d) and 12 April (e–h). Since there are
limited number of IS2 beam segments, the length of the sample segments is enlarged to 27 km.

S distance is effectively reduced with the prediction: from
0.189 to 0.123 for the sample segment on 8 April, and from
0.182 to 0.119 for that on 12 April. Using the σ0 map on
Beams #3 and #4, we produce the Fs distribution that better
matches the observation than the default Fs distribution on
Beams #1 and #2. Especially, the representation of thin ice
(less than 30 cm thick) has greatly improved for both cases,
which is the major reason for the reduction in the K-S dis-
tance.

5.5 Outlook

Given the limitation of this case study, future work should
explore the freeboard-backscatter relationship under various
conditions using larger datasets. First, a more extensive cov-
erage of sea ice types is planned, including FYI and thin ice
at different stages of development. The historical records of
OIB in the Arctic contain many surveys over various ice con-
ditions especially in the western Arctic. The concurrent SAR
campaigns including S1 can be used to extend the study with
more complex ice types and mixtures. Second, the statistical
relationship and its variability under different weather con-
ditions need more investigation. Factors such as melt con-
ditions and heavy snowfall could potentially alter both the
microwave backscatter and the overall snow budgets. As
pointed out in Sect. 5.3, we need to account for potential
changes in the sea ice under synoptic events, and further ob-

tain the optimal spatial and temporal window to derive the
relationship and the upscaling of altimetry measurements.

For the upscaling of IS2 observations at basin scale, con-
current and spatially collocated SAR images should be used,
such as those from S1 and the RadarSat Constellation Mis-
sion (RCM, see: MDA, 2021). Specifically, we have demon-
strated both spatial and temporal locality of the derived statis-
tical relationships. For altimetry and SAR observations that
are separated by long temporal intervals, thermodynamic and
dynamic processes within the ice and overlying snow can de-
grade the relationships between macro-scale topography and
C-band backscatter. Another key factor is the spatial scale
for the upscaling of IS2 measurements. In Sect. 4.3 the pre-
diction is designed to incorporate meter-scale Fs maps. The
proper temporal and spatial scales for matching SAR images
and upscaling of IS2 measurements should be the subject of
detailed studies in the future.

The sea ice topographic roughness and the statistical fit-
tings are dependent on the scale of altimetric observations
(Sect. 4). Beyond the OIB ATM scans (1 m-scale) and the
IS2 beam segments (footprint size ∼ 11 m), various histori-
cal and future campaigns feature drastically different payload
design and resolutions. For example, the nominal footprint
size of ICESat is 65 m (Farrell et al., 2009), and at this scale
there also exist statistically significant relationships between
Fs and the C-band backscatter (Kortum et al., 2024; Mac-
donald et al., 2024). Besides, the concurrent SAR observa-
tions at both C- and L-bands, such as ALOS (Advanced Land
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Observing Satellite) and ALOS-2 (Shimada et al., 2009;
Kankaku et al., 2013), can be further used for the study of the
relationships and the upscaling of altimeter measurements.
For ICESat, by combining with data from SAR satellite pay-
loads such as ESA’s EnviSat ASAR (Miranda et al., 2013),
the upscaling of ICESat can be carried out for constructing
a wider coverage record of sea ice freeboard for the period
2003–2008.

Appendix A: Processing of OIB ATM elevations

The elevations of the original ATM samples are converted
into the total freeboard (or the snow freeboard, denoted Fs).
For OIB flights on 8 and 12 April which were organized in a
racetrack pattern(Fig. 1), we merge all OIB samples to con-
struct a merged map of Fs for both the northbound and the
southbound flight passes. Specifically, two steps are carried
out, as follows.

A1 Construction of the per-pass 1 m-scale Fs map

As the first step, for each OIB pass, we converted OIB ATM
samples into the Fs map which covers over 500 m across the
OIB flight path. Both wide scan and the narrow scan of the
OIB ATM are utilized. For a local segment along the OIB
flight (e.g., 10 m in length), we first project each ATM sam-
ple under the polar stereographic projection according to its
geolocation (i.e., its latitude and longitude). Then, we in-
terpolate the samples into a 1 m-scale elevation map, using
linear interpolation. Afterwards, we apply mean sea surface
(MSS) geophysical height corrections to the elevation based
on mean sea-surface height (DTU15 MSS model). Finally,
we treat the corrected elevation as elevation anomalies, and
apply the lowest elevation method to retrieve the freeboard.
Specifically, the lowest 1 ‰ of elevation samples within each
10 m segment are extracted and linearly interpolated to con-
struct the local water level (also at 1 m-scale) using the In-
verse Distance Weighting (IDW) method. The final 1 m-scale
Fs map is further validated with the standard 40 m-scale Fs
product from IDCSI (Fig. S1).

A2 Collocation between OIB passes and the
construction of the merged Fs field

We further merge the three OIB passes to form the Fs map
that covers over 1.4 km across the flight path. Since the cen-
tral pass and the left pass were separated by 1–2 h, and the
central pass and the right pass by 3–4 h, the sea ice cover po-
tentially had undergone drift and deformation. Therefore, we
first search for corrections between each of the two pairs of
OIB passes. For each 3 km segment, we maximize the corre-
lation of the overlapping part of the Fs maps of the central
and the left (or the right) pass, by adjusting the relative loca-
tion of the left (or the right) pass with respect to the central
pass. After the maximum correlation is attained, we record
the corrections in both the along-track and the cross-track di-
rections, and further merge the left and the right pass to the
central pass, in order to form a unified Fs map. In Fig. 2a
(Fig. 3a) we show the merged Fs maps for the sample seg-
ments on 8 April (12), and in Fig. S2 (Fig. S3) the correlation
maps between OIB passes.

For certain segments, the central pass and the left (or right)
pass do not overlap, and therefore they are not included in
further analysis (especially in Fig. 5). Figures A1 and A2
show the corrections and the maximized correlation of Fs
maps between OIB passes for all 3 km segments on 8 and
12 April, respectively. For 8 April, very high correlation co-
efficients were attained for all segments (Pearson’s r all over
0.94). Besides, meter-scale corrections were required, which
potentially arise from locating uncertainties. On the contrary,
on 12 April, evident corrections with length over 100 m were
needed to maximize the correlation, which are also consis-
tent with the large-scale drift provided by OSI-SAF (details
not shown). Therefore, we consider these corrections are as-
sociated with sea ice drifts. Evident changes of the sea ice
drift at the location of 120 km along the OIB flight path is
detected for both the inbound and the outbound flights, in-
dicting the presence of sea ice deformation. Especially, the
correlation coefficients for the 3 km segments also dropped
to lower than 0.9 where the deformation is detected. Collo-
cation and the resulting correlation coefficients at the scale of
500 m around the location of of the deformation further in-
dicate that the deformation are localized (i.e., within 500 m)
and present at several along-track locations (Fig. A2).
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Figure A1. Collocation between different OIB flight passes on 8 April 2019. The along-track segment length is 3 km. The local corrections
of the left and the right pass with respect to the middle pass for each segment on the outbound (inbound) flights is shown in panel (a) and (b)
(e, f), respectively. The correlation coefficients (Pearson’s r) after the collocation between the left and the middle pass and that between the
right and the middle are shown in panel (c) and (d) the for the outbound flight, respectively. Similarly, panel (g) and (h) show the results for
the inbound flights.
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Figure A2. Same as Fig. A1, but for the OIB campaign on 12 April 2019. Correlation coefficients lower than 0.8 are marked by filled symbols
in panels (c), (d), (g) and (h). For segments around the apparent deformation (at∼ 120 km along the track), the local drift correction is further
refined to 500 m in the along-track direction. The 500 m-scale drift corrections and the correlation coefficients are marked by circles and thin
lines.
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Appendix B: S1 EW images used for analysis for OIB
campaigns

Table B1 lists the visit times of the two OIB campaigns on 8
and 12 April, as well as the matching IS2 reference ground
tracks (RGTs) and Sentinel-1 EW mode images.

Table B1. OIB campaign and the corresponding S1 images. The corresponding ICESat2 ground tracks’ information, including its visit times
are also shown.

OIB ATM data 8 April 2019: 12:24:18 to 15:51:59 12 April 2019: 13:11:18 to 15:49:17

IS2 RGT

8 April 2019: 12 April 2019:
RGT 0157 RGT 0218
Beam 1,2,3,4 Beam 1,2,3,4
13:09:59 to 13:10:39 13:03:21 to 13:03:54

S-1 Images for OIB
Campaign on
8 April 2019

7 April 2019: S1B_EW_GRDM_1SDH_20190407T150052_20190407T150152_015702_01D768_1E98
7 April 2019: S1B_EW_GRDM_1SDH_20190407T145952_20190407T150052_015702_01D768_0AEC
8 April 2019: S1B_EW_GRDM_1SDH_20190408T140254_20190408T140354_015716_01D7D4_334A
9 April 2019: S1B_EW_GRDM_1SDH_20190409T144345_20190409T144445_015731_01D856_468A
1 April 2019: S1B_EW_GRDM_1SDH_20190401T141105_20190401T141205_015614_01D465_4CC6
15 April 2019: S1A_EW_GRDM_1SDH_20190415T144457_20190415T144602_026802_030317_2C1F

S-1 Images for OIB
Campaign on
12 April 2019

11 April 2019: S1B_EW_GRDM_1SDH_20190411T174333_20190411T174433_015762_01D955_0683
12 April 2019:
S1B_EW_GRDM_1SDH_20190412T182436_20190412T182536_015777_01D9D0_7AB9
13 April 2019:
S1B_EW_GRDM_1SDH_20190413T190536_20190413T190636_015792_01DA51_7539
8 April 2019: S1B_EW_GRDM_1SDH_20190405T201050_20190405T201154_015676_01D68A_61C3
19 April 2019:
S1B_EW_GRDM_1SDH_20190419T195430_20190419T195534_015880_01DD4B_40E2

Appendix C: Statistical relationship between Fs and
σHV

0 for the segments on 8 and 12 April

For the two pairs of sample segments on 8 and 12 April, the
statistical relationship between Fs and the C-band backscat-
ter in the HV-channel are shown below in Figs. C1 and C2.
Our results show general consistency with previous studies
(Macdonald et al., 2024; Kortum et al., 2024), that freeboard
generally correlates slightly better with the HV-channel than
with the HH-channel backscatter. The statistical relationship
between freeboard and backscatter in the HV-channel for
all the OIB segments are also analyzed in this section (see
Fig. C3).

The HV-channel backscatter is generally much weaker than
the HH-channel. This is particularly evident for FYI, where
HV backscatter often falls below the nominal noise floor (Se-
gal et al., 2020). Additionally, the sub-swath artifacts are
more evident in the HV-channel (i.e., abrupt transition of σ0
across the sub-swath boundaries) for Sentinel-1 EW mode
images (Lohse et al., 2021). Despite the stronger correlation
observed in the HV band, the qualitative statistical relation-
ship between freeboard and backscatter is similar when using
either the HH or HV channel. Given these consideration, this
work primarily concentrates on the S1 HH-channel.
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Figure C1. Scattered plot of the relationship between Fs and the Sentinel-1 C-band backscatter (σ0) in the HV-polarization channel for the
sample segments on 8 April 2019. Same as in Fig. 2, three spatial scales of Fs are adopted for matching to the 40 m-resolution σ0 product:
40 m (left column), 100 m (middle column) and 200 m (right column).

Figure C2. Same as Fig. C1, but for the sample segments on 12 April 2019.
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Figure C3. Same as Fig. 6, but for the HV-channel.

Data availability. The data from OIB campaigns in April 2019
are available from the National Snow and Ice Data Center:
https://doi.org/10.5067/19SIM5TXKPGT (Studinger, 2013), and
https://doi.org/10.5067/CXEQS8KVIXEI (Studinger, 2014). S1
EW images are accessed from the Copernicus Data Space Ecosys-
tem (available at https://browser.dataspace.copernicus.eu/, last ac-
cess: 6 September 2024) and processed them using the ESA Sen-
tinel Application Platform (SNAP) toolbox. The complete list
of used SAR images are provided in the Supplement with pub-
lic access. The ATL07 and ATL10 product from ICESat-2 (ver-
sion 6) are accessed at the National Snow and Ice Data Center
through https://doi.org/10.5067/ATLAS/ATL07.006 (Kwok et al.,
2023a) and https://doi.org/10.5067/ATLAS/ATL10.006 (Kwok
et al., 2023b). The OSI-SAF sea ice drift product is available at:
https://doi.org/10.15770/EUM_SAF_OSI_0012 (OSI SAF, 2022).
DTU15MSS_1min can be found at: https://www.space.dtu.dk/ (last
access: 12 February 2025).

The interpolated and stitched 1 m-resolution total freeboard fields
(in 3 m segments) of the sample segments on 8 and 12 April 2019
are achieved at: https://doi.org/10.5281/zenodo.14930672 (Liu
et al., 2025). Additionally, the sea ice type maps based on Sentinel-1
EW images can also be accessed at the same DOI.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-5175-2025-supplement.
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