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Abstract. Multidisciplinary drifting Observatory for the
Study of Arctic Climate (MOSAiC) observations span an
entire annual cycle of Arctic snow and sea ice cover. How-
ever, the measurements of atmospheric and ocean forcing,
as well as distributed measurements of snow and ice prop-
erties, were occasionally interrupted for logistical reasons.
The most prolonged interruption happened during the onset
of the summer melt season. Here we introduce and apply
a novel data–model fusion system that can assimilate rel-
evant observational data in a collection of modeling tools
(SnowModel-LG and HIGHTSI) to provide continuous high-
temporal-resolution (3-hourly) time series of snow and sea
ice parameters over the entire annual cycle. We used this
system to analyze differences between the three main ice
types found in the MOSAiC Central Observatory: relatively
deformed second-year ice, second-year ice with extensive
smooth refrozen melt pond surfaces, and first-year ice. Since
SnowModel-LG and HIGHTSI were used in a 1-D configu-
ration, we used a sea ice dynamics term D to parameterize
the redistribution of snow to newly created ridges and leads.
D correlated highly with the sea ice deformation (R2

= 59 %,
N = 33) in the vicinity of the observatory, and deformation
appears to explain as much as 15 % of all winter snow water
equivalent. In addition, we show, in separate simulations for
level ice, that snow bedforms with thin snow in the bedform
troughs largely control the ice growth. Here, the mean snow
depth minus 1 standard deviation was required to simulate re-
alistic sea ice thickness using HIGHTSI; we surmise that this
accounts for the control of relatively thin snow on local ice

growth. Despite different initial sea ice thickness and freeze-
up dates, the sea ice thickness of level ice across all ice types
became similar by early winter. Our simulations suggest that
the mean (spatially distributed) MOSAiC snowmelt onset be-
gan in late May but was interrupted by a snowfall event and
was delayed by 3 weeks until mid- June. The level ice started
to melt in the last week of June. Depending on the sea ice to-
pography, the ice was snow-free by late June and early July.

1 Introduction

Sea ice is an important regulator of the Arctic Ocean energy
budget. Sea ice limits the transfer of energy (McPhee, 2012)
and light (Arrigo et al., 2012) from the atmosphere to the
ocean and constrains the transfer of heat from the ocean to
the atmosphere (Maykut and Untersteiner, 1971). A strongly
controlling component of this flux-dampening effect of sea
ice is associated with the presence, quantity, and physical
properties of snow that may cover it. Snow on sea ice is
the main regulator of level sea ice thickness (Sturm et al.,
2002b; Perovich et al., 2011; Itkin et al., 2023). Snow has an
order of magnitude lower thermal conductivity than sea ice
and, in winter, inhibits ice growth by insulating it from the
relatively cold atmosphere (Maykut and Untersteiner, 1971;
Sturm et al., 2002b). In summer, snow slows down sea ice
melting by increasing the albedo (Perovich et al., 2011).
These roles of snow governing sea ice evolution have be-
come more evident with the general ice cover thinning tak-
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Figure 1. The drift of the Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAiC) from October 2019
through July 2020. The first observatory (CO1) lasted from October
to breakup in May. The second observatory (CO2) was established
in June and July. Autonomous buoys (i.e., drifters) recorded the en-
tire drift. The drift path was extended back to 1 August 2019 using
25 km spatial resolution ice motion vectors from the National Snow
and Ice Data Center.

ing place in association with recent climate change (Meredith
et al., 2019). Now, both first-year ice (FYI) and second-year
ice (SYI) can reach similar thicknesses at the end of the win-
ter ice growth season (Itkin et al., 2023) and can reach similar
melt pond distributions in summer (Webster et al., 2022).

Since the density and thermal properties of sea ice and
snow are so different, both need to be accounted for in or-
der to understand the state of the coupled snow–sea ice sys-
tem. This remains one of the major challenges of satellite re-
mote sensing of snow and sea ice in polar regions and, conse-
quently, impacts the validation of climate models that rely on
these data (Gerland et al., 2019). The drift of the Multidisci-
plinary drifting Observatory for the Study of Arctic Climate
(MOSAiC) in 2019–2020 (Fig. 1) was the largest research
expedition to the Arctic Ocean to date. It was implemented
to help fulfill this need and others and had a key goal of col-
lecting data relevant for climate process studies across the
entire snow and sea ice annual cycle and to do so with a spe-
cial focus on the less-studied winter period (Nicolaus et al.,
2022).

MOSAiC collected an unprecedented quantity of high-
spatial-resolution snow and sea ice property data over snow
and ice covers of various ages (Macfarlane et al., 2023b; Itkin
et al., 2023; Oggier et al., 2023b, a; Raphael et al., 2024). Sea
ice thickness and snow depth measurements were collected
along transect lines approximately 1 km long with measure-
ments made approximately every 7 d during the entire an-
nual cycle of Arctic sea ice cover from freeze-up, through
winter, and until the end of melt (Itkin et al., 2023). In ad-

dition, a system of distributed snow pit measurements was
used to measure snow density and other snow properties ap-
proximately every 7 d throughout the year (Macfarlane et al.,
2023b). While the measurements were generally collected
once a week, late ship arrival, late freeze up of the melt ponds
and FYI, crew exchanges, and sporadic weather and sea ice
deformation events caused discontinuities in the observation
time series of up to 2.5 months. These discontinuities in the
observation data time series (generally summarized as late
onset, winter and spring fragmentation, and early truncation),
limited its use for process studies and upscaling for satellite
remote sensing and numerical model applications.

In this study, we use atmosphere, ocean, ice, and snow
measurements from the MOSAiC Central Observatory (Itkin
et al., 2023; Cox et al., 2023; Matrosov et al., 2022; Macfar-
lane et al., 2023b) and autonomous instrument measurements
in the surrounding MOSAiC Distributed Network (Lei et al.,
2022; Rabe et al., 2024) as forcing and assimilation data to
drive a collection of one-dimensional, physics-based, data as-
similation, mass balance, and thermodynamic snow and sea
ice models as part of a process we call data-model fusion
(sensu Boelman et al., 2019; Reinking et al., 2022). This
data-model fusion methodology was used to fill in multi-
week gaps in the MOSAiC snow and ice data time series and
increase their observational data frequency from weekly to
temporally continuous (3 h time step), covering the full an-
nual cycle.

In addition, previous analyses of MOSAiC snow depth
data (Itkin et al., 2023) showed that snow depth on level ice
accumulated more slowly than on deformed ice and that oc-
casional decreases in mean snow depth were observed over
all sea ice types. The snow and sea ice thicknesses over vari-
ous ice ages at MOSAiC were similar at the end of the winter.
Here, we use physics-based snow and ice models to explain
this snow and ice mass balance evolution during the winter
snow and ice accumulation period and during the spring and
summer snow and ice melt period.

The two basic assumptions of this work are (1) that the
spatially and temporally distributed data collected at MO-
SAiC are of excellent quality and represent the general an-
nual snow and sea ice cycles and (2) that the numerical mod-
eling tools are able to simulate all the important first-order
climate and other environmental processes.

2 MOSAiC observation summary

2.1 Sea ice types at MOSAiC

The sea ice cover in the MOSAiC Central Observatory, sur-
rounding the research vessel (RV) Polarstern, was mainly
composed of three ice types:

1. Predominantly deformed SYI that survived the summer
melt. This ice type had very few level-ice surfaces. The
deformed ice (rubble and ridges) was consolidated dur-

The Cryosphere, 19, 5111–5133, 2025 https://doi.org/10.5194/tc-19-5111-2025



P. Itkin and G. E. Liston: Combining observational data with numerical models 5113

ing the summer melt period into hummocks and old
ridges. The ponds that developed on this ice type over
summer remained fresh and were not connected to the
seawater.

2. Predominantly level and ponded SYI. At the beginning
of October, this ice had very little snow cover, and bare
surfaces of refrozen melt ponds were visible. Many of
the refrozen melt ponds had previously been connected
to the ocean and had a salty surface (Macfarlane et al.,
2023b). The remaining ice between ponds was “rotten
ice” honeycombed by water before freeze-up.

3. Predominantly level FYI that was still forming through-
out October (Itkin et al., 2023). As the thinnest and most
level-ice type, this ice underwent frequent deformation
and was challenging to sample.

The exact spatial distribution of these three ice types is not
known, but based on ground measurements, visual observa-
tions, airborne maps, and satellite images, we reconstructed
the ice chart of the MOSAiC observatory shown in Fig. 2.

2.2 Observation transects

Snow depth and sea ice thickness data collected along re-
peated transect lines at MOSAiC were designed to cover
diverse ice surfaces that represented large areas of differ-
ent snow and ice characteristics (Itkin et al., 2023). These
repeated, long-transect measurements provided statistically
significant snow and ice property datasets over each of the
three main MOSAiC ice types and were specifically priori-
tized over point-wise, but temporally continuous, sampling
provided by individual or by clusters of autonomous instru-
ments as in, e.g., Lei et al. (2022), Perovich et al. (2023),
Raphael et al. (2024), and Salganik et al. (2023b). They are
also superior to large-scale helicopter transects which are
generally not repeated over the same sea ice, can be sporadic,
and cannot distinguish between snow and sea ice thickness
(von Albedyll et al., 2022).

The transects were sampled over all three ice types listed
in the section above. These transects are called Nloop, Sloop,
and Runway (Fig. 2)

1. Nloop: representing predominantly deformed SYI. This
transect was approximately 1.5 km long and sampled
between the second half of October 2019 and the be-
ginning of May 2020.

2. Sloop: representing predominantly level and ponded
SYI. This transect was approximately 1.5 km long and
sampled between the end of October 2019 and the be-
ginning of May 2020.

3. Runway: representing level FYI. This transect was ap-
proximately 1.0 km long. This transect was sampled
only 3 times in January and February 2020. Afterward,

it was not accessible and was partially destroyed by ice
motion.

In May the sampling along these wintertime transects
was discontinued and in mid-June a new Melt Mix transect
(Fig. 2) was established. Part of Nloop and the surrounding
FYI were integrated into this new line, but the majority of the
ice surfaces were deformed ice. This transect was approxi-
mately 3.0 km long and represented all ice types.

2.3 Point observation sites

In addition to transects, this paper relies on ice thickness,
snow depth, snow structure, sea ice deformation, ocean heat
fluxes, and meteorological data measured at individual point
observation sites in the MOSAiC Central Observatory and
surrounding Distributed Network (Nicolaus et al., 2022;
Rabe et al., 2024).

The Dark Sites (“Dark Site SYI” and “Dark Site FYI”,
Fig. 2) were ice coring sites where ice thickness and snow
depth were measured regularly between October and July
(Evgenii Salganik, personal communication, 2024 and Og-
gier et al., 2023b, a). The location of these sites was chosen
on level SYI and FYI away from the ship to avoid any light
or chemical pollution. The FYI at the Dark Site was formed
during freeze-up around 1 October and, as such, was a few
weeks older than the Runway FYI. Ice coring is a destructive
measurement, so the same ice can only be sampled once and
the next sample is taken a few meters away. Although only
level ice was supposed to be sampled, some samples con-
tained deformed ice that transiently increased the measure of
sea ice thickness. At these sites, the ice surface was level and
the snow depth was not affected by the vicinity of ridges, yet
the number of samples was small and exhibited some vari-
ability due to snow bedforms.

In addition, repeated (non-destructive) measurements over
exactly the same snow and ice were taken at snow stake and
ice hot wire clusters (Raphael et al., 2024). These clusters
were relatively small (approximately 10 stakes); herein we
only use two stake clusters on the level FYI to augment the
low quantity of transect data over this ice type. The two stake
sites we used were “Ridge Ranch Stakes” deployed in Jan-
uary close to Fort Ridge and “RunAway Stakes” deployed in
February at the Runway (Fig. 2).

Inside the MOSAiC Central Observatory, as well in the
Distributed Network surrounding it, 210 autonomous buoys
(drifters) were deployed (Rabe et al., 2024; Bliss et al.,
2023). While the majority of these buoys were deployed on
level sea ice that was stable at their deployment time in Oc-
tober (thick SYI), the sea ice between them was composed
of all three ice types described in the section above. A subset
of these buoys, 4 buoys transmitting a GPS signal throughout
October to May, and forming a square with sides of approx-
imately 5 km (Fig. 3), were used to estimate sea ice defor-
mation. In addition, a selection of 23 buoys within a radius
of about 15 km from the RV Polarstern, equipped with ther-
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Figure 2. Ice chart with three ice types, transect lines, and point observation sites in the MOSAiC Central Observatory. The transect lines
and point sites are all drift-corrected to overlay on the observatory location in October 2019. Transect line ice thickness is displayed in blue
shades. Individual snow pit point measurements are marked by symbols, and snow pit polygons are outlined by red dashed lines. The Dark
Site, where ice coring activities occurred, MET City, and RV Polarstern location (blue ship-shaped feature at map origin) are also marked.
RV Polarstern is located at the origin of the map coordinate system (0,0). The size of the map is 3.5 km by 2.0 km, with distances (m) from the
origin marked on the edge of the map. The ship’s heading in October 2019 (approximately south-southwest) determines the map orientation.
The north arrow shows true north in October 2019. The background is a RADARSAT-2 SAR image from 31 December 2019 (© raw data
CSA 2019, provided by NSC/KSAT 2020). The brighter features on the RADARSAT-2 image correspond to deformed ice and SYI. Darker
features are level SYI and FYI.

mistor chain measuring snow and sea ice temperature, were
used to estimate heat fluxes at the ice–ocean interface (Lei
et al., 2022). This network included three L-Sites that were
10 to 20 km from the Central Observatory, where some snow
pits were dug with assistance from the helicopter landings
throughout the MOSAiC drift (Macfarlane et al., 2023b).

The snow pit sampling sites at MOSAiC were distributed
over all three sea ice types (Fig. 2; Macfarlane et al., 2023b).
Within these ice types, the majority of the snow pits were dug
and measured on level ice, while some sites were in ridges.
Similar to ice coring, these measurements are destructive,
and every subsequent pit was dug meters away from the pre-
vious one and potentially in a different relative position in-
side a snow bedform. The snow pit locations representative
of each of the ice types in the section above were

1. Deformed SYI: Nloop, Dark Site SYI, Fort Ridge,
David’s Ridge, Allies Ridge, and L Sites.

2. Level and ponded SYI: Snow 1, Snow 2, Snow 3, and
RS Sites.

3. Level FYI: Runway, Stakes 1, Dark Site FYI, and par-
tially Optics and Radiation.

Temperature, relative humidity, wind observations used in
this paper were collected at METCity on a meteorological
tower (Fig. 2) at 10 m height (Cox et al., 2023). Precipitation
was measured by the precipitation radar on RV Polarstern
(Matrosov et al., 2022).

3 Observations used

3.1 Ship location data

MOSAiC Central Observatory location data were obtained
from autonomous buoy 2019I3 (Bliss et al., 2023). To per-
form our year-long snow and ice simulation, we required ice
parcel location information during the entire simulation year
(1 August 2019 through 31 July 2020). Only then could the
atmospheric reanalysis data be extracted. To define location
coordinates prior to October (first 70 d of simulation), a back-
trajectory model (Liston et al., 2018) was implemented and
driven with 25 km spatial resolution ice motion vectors from
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Figure 3. Broader MOSAiC area sea ice cover, GPS buoys, and deformation zones in the vicinity of the Central Observatory. The 4 GPS
buoys were at approximately 4–5 km distance from the RV Polarstern (at the map origin). Also shown are the Nloop, Sloop, and Runway
transects near the origin. Dashed lines show the approximate location of lead and pressure ridge (deformation) areas in October, November–
December, January–February, and March–April. The background is the same RADARSAT-2 SAR image from 31 December 2019 used in
Fig. 2 (© raw data CSA 2019, provided by NSC/KSAT 2020.)

the National Snow and Ice Data Center (Tschudi et al., 2020).
We identified the ice parcel the ship was anchored to and
traced it backwards in time to identify the likely ice parcel
location history prior to establishing the observatory. Simi-
larly, ice parcel location data were used to provide ice loca-
tion data after the buoy malfunctioned in late July (last 7 d of
simulation). These procedures resulted in a full-year time se-
ries of ice parcel location data (longitude, latitude, and date)
that corresponded to the drift of the observatory. As shown
in Fig. 1, all used drift trajectories coincide well with each
other and the reanalysis data are the same for all trajectories.

3.2 Atmospheric data

To drive our model simulations, we used 10 m meteorologi-
cal observations (air temperature, relative humidity, and wind
speed and direction) from the MetCity tower (Fig. 2) pro-
vided by Cox et al. (2023) and precipitation data from KAZR
radar (Matrosov et al., 2022) on board the RV Polarstern.
Any gaps in the observational data were filled using bias-
corrected NASA Modern Era Retrospective-Analysis for Re-
search and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017) reanalysis data. Following standard SnowModel-LG
procedures (Liston et al., 2020), the ice parcel coordinate
data (longitude, latitude, and date) described above were

used to identify the nearest MERRA-2 grid cell that the MO-
SAiC ice parcel corresponded to on each day of the simu-
lation year. This yielded a full year of meteorological forc-
ing data, with no missing values (Fig. 4). All of the MetC-
ity, KAZR, and MERRA-2 data were then aggregated to 3-
hourly values used in the model assimilations (averages for
air temperature, relative humidity, and wind speed and direc-
tion, and sums for total precipitation). MicroMet was used to
distinguish between snowfall and rainfall using the air tem-
perature formulation of Dai (2008) as described in Liston
et al. (2020).

The biases (offsets for air temperature and relative humid-
ity and multipliers for the U and V wind components and
precipitation) for each of the atmospheric variables were de-
termined by comparing the averages of the observational and
reanalysis data during time periods when both were avail-
able. Separate corrections were made for times when the
air temperature was above or below −5.0 °C. Periods with
air temperatures above this threshold were approximately
1 August–15 September 2019 and 15 May–31 July 2020.
For precipitation, we performed the precipitation drizzle ad-
justment described in Liston et al. (2020) following the trace
precipitation analysis of Boisvert et al. (2018). In this proce-
dure, the daily clipping threshold was set to 0.15 mm 3 h−1

(1.2 mmd−1) to create discrete, storm-related precipitation
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Figure 4. Atmospheric (10 m) and ocean forcing from MOSAiC observations and reanalysis data together with the sea ice deformation
data from buoys: (a) air temperature and ocean surface heat flux, (b) relative humidity, (c) precipitation rates and cumulative precipitation,
(d) total sea ice deformation εTOT and cumulative εTOT, and (e) wind speed and direction. Highlighted by color shading are the periods of
storms and increased sea ice deformation. The black values in the plots show missing values filled in by the adjusted reanalysis.
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Table 1. Bias correction factors were applied (added or multiplied) to MERRA-2 weather data during times when local meteorological
observations were not available.

Air temperature Air temperature Relative humidity U Wind speed V Wind speed Water
threshold (Tair) addition (°C) addition (%) component component precipitation

multiplier multiplier multiplier

Tair> 5.0 °C −0.6 +4 0.91 0.88 1.01
Tair≤ 5.0 °C −2.4 +2 0.95 0.86 1.01

events. Then the clipped precipitation was added to the re-
maining nonzero precipitation periods, thus conserving the
total, temporally integrated MERRA-2 precipitation quanti-
ties. The resulting precipitation time series was then bias-
corrected using the KAZR precipitation observations. The
bias corrections are provided in Table 1.

All the 10 m meteorological observations described above
were used as forcing in the MicroMet high-resolution atmo-
sphere model (Liston and Elder, 2006b). The MicroMet sim-
ulations also generated additional atmospheric forcing data,
including cloud cover, incoming solar radiation, incoming
longwave radiation, and surface pressure.

3.3 Initial sea ice thickness and snow accumulation
onset

Because the MOSAiC observations started after some sea ice
had formed, we defined the initial sea ice thickness and snow
accumulation dates based on the bias-corrected reanalysis air
temperatures (see Sect. 3.2) and qualitative information from
analysis of panoramic photography from MOSAiC during
October (Itkin et al., 2023). We assumed the following:

1. Predominantly deformed SYI was 0.5 m thick on 1 Au-
gust. This ice thickness was estimated based on the
modal sea ice thickness in October. Historical summer
deployments of ice mass balance buoys show that the
ice that survived the summer melt did not start grow-
ing before October and that the sea ice thickness in Oc-
tober is a good estimate of the end-of-summer sea ice
thickness (e.g., Planck et al., 2020). Snow started ac-
cumulating on this ice surface when air temperatures
were continuously below freezing, assuming that snow
accumulation on melting ice is transient. Based on the
10 m air temperature from reanalysis, and assuming the
ice surface may have been melting when air tempera-
tures were above −0.1 °C, the likely surface freeze-up
date was 18 August 2020 (Fig. 5). The snow cover ap-
peared thick at the beginning of October (Itkin et al.,
2023).

2. Predominantly level and ponded SYI was 0.1 m thick on
30 August. This ice thickness was estimated based on
the zero thickness in the melt ponds and the ice con-
tent of the rotten ice (modal thickness approximately
0.3 m at the end of October). After 30 August, the

Figure 5. 10 m air temperature from bias-corrected reanalysis from
1 August through 1 September 2019 with a 3 d running mean. The
date when air temperature departs continuously from the freezing
temperature of water is identified by a blue vertical bar. The date
when the air temperature running mean departs continuously from
the sea ice freezing point is identified by a purple vertical bar.

3 d running mean of air temperatures remained below
−1.9 °C (Fig. 5), the melted-through melt ponds with
seawater in them (Macfarlane et al., 2023b), and the cor-
respondingly low freezing point likely began to freeze,
and snow started to accumulate. The 3 d running mean
is used here to take into account the heat capacity of the
freezing water column, as opposed to freezing the ice
surface. The snow cover was thin enough that dark re-
frozen pond surfaces were still visible at the beginning
of October (Itkin et al., 2023).

3. Predominantly level FYI was initiated with 0.05 m
thickness (minimum sea ice thickness allowed by the
numerical model) on 20 October. The formation of the
FYI at the Runway was observed from panoramic pho-
tography (Itkin et al., 2023).

3.4 Snow depth and ice thickness

At MOSAiC, snow depth measurements along the transects
were collected using an automated snow depth probe, Mag-
naprobe, by SnowHydro LLC (Sturm and Holmgren, 2018).
The spacing interval of the snow depth measurements was
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1 to 3 m. The distance from the snow surface to the ice–ocean
interface (total snow and ice thickness) was measured using
a Geophex Ltd., GEM-2 broadband electromagnetic induc-
tion device (Hunkeler et al., 2015). The estimated precision
of such measurements is approximately 0.1 m. The sea ice
thickness was then calculated by subtracting gridded ver-
sions of the Magnaprobe snow depth and total snow and ice
thickness measurements (Itkin et al., 2023).

For all transects, the level sea ice thickness was estimated
from the mode of the ice thickness distribution as in Itkin
et al. (2023). To estimate the snow depth on level ice, we av-
eraged the snow depth from all sea ice measurement points
where the sea ice thickness was within 0.01 m of the modal
sea ice thickness. Depending on the transect, 100–500 mea-
surements were used in the calculations.

The snow depth measurements at the coring site were
read from a graded snow stake. Typically, one representative
snow depth measurement per ice core was taken, and three
ice cores were sampled during each approximately biweekly
measurement cycle. Sea ice thickness at the coring sites was
measured from the core sampling hole drilled through the
ice. Large deviations in sea ice thickness (larger than 1 m
from other measurements) were labeled as deformed ice and
removed from the analysis.

The snow depth at the stake field was read from snow
stakes. The stakes were installed in lines, or grids, approx-
imately 5 m apart. The stakes were initially paired with hot
wires (Raphael et al., 2024), but during the winter many
wires were lost.

Because during ice melt the ice surface is soft and granu-
lar, any stake measurements (including Magnaprobe) can er-
roneously detect melted ice surfaces as snow after melt onset
(Webster et al., 2022; Itkin et al., 2023). Therefore, no snow
depth measurements were used after mid-July 2020.

3.5 Snow density

Snow density at MOSAiC was measured in the snow pits
by three different methods: (1) by density cutters, (2) by
SnowMicropenetrometer (SMP), and (3) by snow core sam-
pler. All three snow density measurements have their advan-
tages and disadvantages. The measurements using density
cutters are the most precise but also the most labor intensive.
Taylor–LaChapelle density cutters of 3 cm height and 100 m3

volume were used. The density was sampled at 3 cm inter-
vals, covering the entire snow depth profile. All these cutter
measurements were then used to calculate the bulk snow den-
sity. A total of 243 bulk snow density measurements from
cutters were selected from the MOSAiC database (Macfar-
lane et al., 2023b) to represent the three ice types.

The advantages of the SMP measurements are that they
are fast and can efficiently increase the measurement spatial
distribution. The SMP measures the force needed to pene-
trate through the snow depth profile. These force measure-
ments are directly related to snow hardness and can be corre-

lated to snow density (King et al., 2020). It is known (Sturm
et al., 2002b), however, that the snow density also depends
on the snow texture (grain size, shape, and bonding), and
density estimates of large-grained depth hoar can be over-
estimated when approximated using SMP hardness measure-
ments (King et al., 2020). The SMP density profiles were
also used to calculate the bulk snow density (Wagner et al.,
2022). In this study, we used 182 SMP measurement sites.
Each of these sites was represented by an averaged value for
a cluster of five to dozens of distributed measurements at a
given location or transect.

Of all three methods, snow core samplers are the fastest
and easiest to use. A snow core sampler with a 9 cm diameter
was used to sample a vertical column of snow for total snow-
pack snow water equivalent (SWE). In addition, snow depth
was measured, and bulk snow density was estimated directly
from these two measurements. The snow core sampler bulk
snow density measurements are known to misrepresent the
density of a snow cover with large depth hoar crystals, be-
cause the depth hoar can collapse during the measurement
(López-Moreno et al., 2020). Here we used 166 snow core
sampler measurements.

For the study described herein, the snow density observa-
tions described above were used to produce a seamless an-
nual evolution (in a mean, representative in space and time
fashion) of bulk snow density over the MOSAiC Central
Observatory. To do this, we approximated the annual snow
cover snow density evolution (Fig. 6) by fitting a straight line
through the data

ρs = 0.22x+ 253, (1)

where ρs (kgm−3) is snow density and x is time in units
of days since 25 October 2019. As pointed out elsewhere
(e.g., Sturm et al., 2002a), the snow densification process
is generally slow. The increase of density by approximately
50 kgm−3 between October and May, shown in Fig. 6,
is relatively small compared to the approximately 100 to
150 kgm−3 density variability found at and between the sam-
pling locations, at any given time. The MOSAiC bulk density
is seemingly independent of the ice type, as found previously
for winter snowpacks (Sturm et al., 2002a; Merkouriadi et al.,
2017). In contrast, King et al. (2020) found more depth hoar
on topographically variable multi-year ice than on relatively
smooth FYI. The MOSAiC situation may be explained by
the relatively thin snowpack that is similar for all ice types
already by early winter (Itkin et al., 2023).

The seasonal development of bulk snow density episod-
ically deviated from this linear fit. For example, the bulk
density is lowest after the snowfall events in December and
March–May. While the decrease in December is short and
transient, the decrease in March–May is long and prominent
in the data. This decrease may be a consequence of a sam-
pling bias towards level ice (Fig. 6). The logistical challenges
connected to sea ice deformation, in that part of MOSAiC,
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Figure 6. Bulk snow density from density cutters (N = 243), SnowMicropenetrometer (SMP, N = 182), and snow core sampler (N = 166),
during the pre-melt period from MOSAiC snow pits. The red dashed line is a linear fit to all the data and the gray dashed lines are the limits
of the lower and upper 20 % values typical for depth hoar and wind slab. The yellow, blue, and green lines represent the best linear fits for
individual measurement subsets. Estimates from the snow core sampler are identified by a black cross. Estimates from cutters are shown with
a white dot. Individual cutter values are displayed as small gray dots.

limited the snow density sampling to the measurement loca-
tions at the starboard side of the ship, where only level-ice
sites on SYI were sampled. During spring, Snow 1, Snow 2,
and many other locations were rarely accessible. The final
sampling on Snow 1 provided deeper and denser snow values
coinciding with the linear fit. If these were real fluctuations
in snow density, they would cause, for the same SWE values,
about a 10 % increase in snow depth and correspondingly
lower thermal conductivity, further impeding ice growth on
all ice types. The amount, scatter, and sampling biases of the
data supports our choice of a linear fit; an alternative, higher-
degree curve could lead to over-interpretation. A dedicated
study of the spatiotemporal development of snow density at
MOSAiC is required but is beyond the scope of this paper.

3.6 Sea ice deformation

Hourly location data from 4 GPS buoys (2019P103,
2019P193, 2019P195, and 2019P204; Bliss et al., 2023)
within a radius of approximately 5 km from the RV Po-
larstern (Fig. 3) were used to quantify MOSAiC Central Ob-

servatory sea ice deformation. The total sea ice deformation
εTOT (Fig. 4d) was calculated from 3-hourly positions (ev-
ery third hour was extracted from the hourly data) following
Hutchings et al. (2012):

εTOT =

√
ε2

DIV+ ε
2
SHR, (2)

where εDIV is divergence and εSHR is shear calculated by line
integrals. This general sea ice deformation measure was used
to avoid the errors associated with deformation calculations
that separate the individual contributions from convergence,
divergence, shear, and the associated lead and pressure zone
processes (Hutchings et al., 2012; Itkin et al., 2017).

These 4 buoys are a subset of the distributed buoy network
deployed at MOSAiC (Nicolaus et al., 2022; Bliss et al.,
2023). They were selected because their spacing roughly
formed a rectangle throughout the entire period from October
through May.

The coarse-resolution sea ice deformation data obtained
from the 4 buoys were supplemented by qualitative analyses
of relative sea ice motion from ship radar images (Krumpen
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et al., 2021). The ship radar images cover an area with a ra-
dius of 5.4 km around the RV Polarstern and have a spatial
resolution of 8 m. These images were collected throughout
the MOSAiC expedition every 2 s. For this paper, we ana-
lyzed the temporal changes that occurred in hourly anima-
tions of these images to detect the approximate timing and
locations of major shear zones and lead openings within the
approximate 5 km buoy radius of the RV Polarstern.

Based on weather and sea ice deformation data, we de-
termined 4 periods when high winds, snowfall, high defor-
mation rates, and large relative motion in the MOSAiC Cen-
tral Observatory (Fig. 3) were observed. These periods are
marked in Figs. 4, 8, and 9 and will be used to discuss the
deformation-associated snow sinks. The periods are

1. October shearing and ridging from 16 October to
1 November: marked by blue shading.

2. November shearing and ridging from 14 November to
5 January: marked by yellow shading.

3. January lead from 22 January to 7 February: marked by
pink shading.

4. March–April leads from 15 March to 30 April: marked
by green shading.

3.7 Ocean heat flux

Ocean surface heat fluxes used in this study loosely fol-
low the estimates of Lei et al. (2022) based on a cluster
of 23 buoys, the “Sea Ice Mass Balance Array” (SIMBA),
designed by Jackson et al. (2013). SIMBAs are equipped
with thermistor chains that measure temperature through air,
snow, ice, and ocean. The time series was extrapolated with
constant values to cover the period prior to the buoy deploy-
ment (Fig. 4a). At the end of our analyzed period (9–29 July
2020), we adjusted the Lei et al. (2022) time series to in-
crease from 16 to 44 Wm−2. This was based on estimates by
Salganik et al. (2023a) using level-ice temperatures and bot-
tom melt rates in the Central Observatory. Several other re-
searchers have used SIMBA or similar data to estimate snow
depth and sea ice thickness evolution at MOSAiC (Lei et al.,
2022; Perovich et al., 2023; Salganik et al., 2023b).

4 Models used

4.1 SnowModel-LG

In this study, SnowModel was used to represent snow-on-
sea-ice processes and evolution. SnowModel has its ori-
gins as a terrestrial, multilayer, spatially distributed snow
evolution modeling tool (see Liston and Elder (2006a) and
the references contained therein). It is coupled to a high-
resolution atmospheric model called MicroMet (Liston and
Elder, 2006b) that provided surface forcing (based on the

10 m meteorological forcing summarized in Fig. 4) to Snow-
Model (Liston and Elder, 2006b) and SnowAssim that as-
similates available observations (Liston and Hiemstra, 2008).
Adaptation of these models to Lagrangian drifting sea ice en-
vironments and ice parcels (SnowModel-LG) was described
by Liston et al. (2018), Liston et al. (2020), and Mower et al.
(2024). In this study, we used a 1-D (vertical profile) version
of the multilayer modeling system to create high resolution
time series (3 h time increment) of MOSAiC snowpack de-
velopment and evolution. In SnowModel, the change of SWE
with time is calculated by solving the snow source and sink
equation

dSWE
dt
=

1
ρw
[(PR+PS)− (SSS+ SBS+M)±D], (3)

where SWE is snow water equivalent (m); ρw is water density
(1000 kgm−3); PR and PS represent sources of snow cover
from rainfall and snowfall; SSS, SBS, and M represent the
snow cover sinks through static sublimation, blowing snow
sublimation, and melt; and dt (s) is the model time increment
(= 10 800 s= 3 h in this application). Finally, D represents
the sea ice deformation snow sink or source. The units of
all sources and sinks are kgm−2 s−1. Snow depth hs (m) is
estimated as

hs = SWE
ρw

ρs
, (4)

where ρs (kgm−3) is snow density.
Because SnowModel-LG operates in SWE, while the MO-

SAiC observations provide hs (Sect. 3.4) and ρs (Sect. 3.5
and specifically Eq. 1 with continuous values for ρs), any
comparison can be made using Eq. (4) which determines the
relationship between the three variables.

4.2 HIGHTSI

In this study, a 1-D thermodynamic sea ice model called
HIGHTSI (Launiainen and Cheng, 1998; Cheng et al., 2008;
Merkouriadi et al., 2020) was used to simulate sea ice thick-
ness evolution. In this application, the snowpack used in
HIGHTSI was provided by our SnowModel-LG assimila-
tions. In HIGHTSI, the snow thermal conductivity, ks, was
parameterized using the snow density, ρs, based on a second-
order polynomial fit from MOSAiC snow pit data following
Macfarlane et al. (2023a):

ks = 2.62 × 10−6 ρ2
s + 1.54 × 10−33 ρs+ 3.04 × 10−2. (5)

This parameterization resulted in a seasonal bulk snow
thermal conductivity increase from 0.21 WK−1 m−1 in Oc-
tober 2019 to 0.27 WK−1 m−1 in May 2020. These values
coincided well with estimates of Raphael et al. (2024), who
provided an insightful discussion of the quality of the snow
thermal conductivity estimates at MOSAiC. The ice thermal
conductivity was constant in HIGHTSI throughout the winter
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and set to 2.03 WK−1 m−1. During the melt period, ice con-
ductivity depended on the surface temperature and salinity.
For our HIGHTSI simulations, during melt, it was set to vary
between 1.7 and 2.1 WK−1 m−1, following the ice surface
conductivity measurements made during MOSAiC (Macfar-
lane et al., 2023a).

5 Simulations and results

To satisfy our general goal of using a collection of model-
ing tools (SnowModel-LG and HIGHTSI) to fill in tempo-
ral gaps in MOSAiC field observations, we made the follow-
ing assumptions and performed the following tasks. First, we
assumed the MOSAiC field observations were perfect; we
made no effort to correct them for any potential measure-
ment errors, as others undertook those tasks (e.g., Cox et al.,
2023; Matrosov et al., 2022; Itkin et al., 2023). In addition,
we configured our modeling tools to fill data gaps between
those observations with modeled values that were as realistic
as possible. Our general vision was to produce snow and ice
time series information, with no missing data, covering a full
snow and ice evolution year at a 3 h time increment, contain-
ing MOSAiC snow and ice observations when they existed,
and physically realistic values during any periods when they
did not.

The procedures described below were implemented for the
three ice types described in Sect. 2.1.

5.1 Snow calculations

Our snow simulations began using SnowModel-LG to solve
Eq. (3), with the ice dynamics term, D, set to zero, with the
atmospheric forcing data described above.

5.1.1 Sea ice deformation snow sink and source
calculations

To understand the role of ice deformation, D, in the evolu-
tion of snow properties, the difference between modeled and
observed SWE was assumed to equalD in Eq. (3) (model mi-
nus observed; thus positiveD values represent an SWE sink,
or an SWE loss resulting from ice dynamics). Then, to create
a continuous D time series at the 3 h time increment, D was
linearly interpolated between the sea ice freeze-up date (zero
snow depth) and individual SWE observation times. Before
and after these dates,D was set to zero, under the assumption
that no blowing snow occurs when air temperatures are above
freezing and the snow may be melting (e.g. Li and Pomeroy,
1997). ThisD term was then subtracted from the model sim-
ulated SWE to create a temporally continuous SWE evolu-
tion that matched the SWE observations when they occurred
and filled in realistic SWE values during periods of no SWE
observations.

Figure 7a presents a comparison of the SWE observations
and the simulated SWE time series for the deformed SYI

ice type (Nloop transect); the other two ice types are similar
and not shown. Figure 8 presents the resulting time evolution
of D and SWE for the three types of MOSAiC ice.

5.1.2 Snow depth

To calculate the snow depth evolution, the final SWE evolu-
tion defined above was further modified using the MOSAiC
snow density observations. Equation (1) was used to define
the observed snow density at the SWE observation times. We
then calculated the ratio of this observed snow density to
the SnowModel-LG-produced snow density at those times.
This created a density correction parameter that, when mul-
tiplied by the model-simulated snow density, reproduced the
observed density. Similar to our SWE adjustments, these cor-
rection parameters were linearly interpolated between the ob-
servations, with the correction set to unity before the first
observation and after the last observation. This correction
time series was then multiplied by the model-simulated snow
density to create a temporally continuous density evolution
that matched the density observations when they occurred
and filled in realistic density values during periods with no
density observations. Figure 7b presents a comparison of the
snow density observations and the simulated density time se-
ries for the deformed SYI ice type (Nloop transect); the other
two ice types are similar and not shown. There were no den-
sity observations taken during the melt period.

Snow depths over the annual simulation period, with 3-
hourly time increment, were then created using Eq. (3), with
inputs of the 3-hourly SWE and snow density data described
above (Fig. 7c).

5.2 Thermodynamic ice growth calculations

The temporally continuous snow depth and density evolution
over the three ice types, the atmospheric forcing, and the ice–
ocean interface heat fluxes were used to force the HIGHTSI
thermodynamic sea ice model. The snow simulated in the
previous section represents the mean snow cover, including
both snow on level sea ice and snow on deformed ice. Be-
cause the modal sea ice thickness only represents level sea
ice thickness, and since HIGHTSI only simulates thermody-
namical sea ice growth, we performed separate SnowModel-
LG simulations over each of the three ice types, assuming
level ice only, to create the snow forcing for the HIGHTSI
sea ice simulations. This was done by repeating the calcu-
lations described in the previous sections while only using
SWE observations collected over level, undeformed ice.

In addition, to account for the role of meter-scale snow
depth variability resulting from snow bedform (e.g., snow
dunes and sastrugi) snow-depth variability found on level ice,
1 standard deviation of snow depth was removed from the
simulated level-ice snow. This step effectively accounts for
the role that thin snow, in the troughs between the snow bed-
forms on level ice, has on enhanced ice growth (Sturm et al.,
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Figure 7. Nloop SnowModel-LG snow assimilation time series and scatter plots (x axis for observations and y axis for model) for (a) SWE,
(b) bulk snow density, and (c) snow depth in each of the figure rows. Assimilated observed values are represented by purple circles. Non-
assimilated observed values (melt period) are represented by gray circles. In the right column, correlations for all data are printed in black,
and correlations for the melt period are written in gray. All correlations are significant.

2002b; Liston et al., 2018) and can be thought of as a simple,
bedform-scale heat transfer parameterization.

Approximately 16 % of all level-ice snow depth measure-
ments along the transects had snow depths at or lower than
the mean level-ice snow depth minus 1 standard deviation.
This corresponds to the proportion of troughs between the
snow bedforms in the MOSAiC snow transect observations.
Our simulations used observed MOSAiC snow depths and
observed snow and ice thermal conductivity (Macfarlane
et al., 2023a) to drive our ice growth simulations. Figure 9
presents the comparison of the ice thickness model simula-
tions and observations for the three types of MOSAiC ice.
For each ice type, model simulations with mean snow depth
(level and deformed ice), level-ice snow depth, and level ice
reduced by 1 standard deviation are presented.

6 Discussion

As demonstrated in over 200 publications, MicroMet, Snow-
Model, SnowModel-LG, and SnowAssim have been shown
to reproduce a wide range of snow-related observations
found in terrestrial and sea ice environments around the

world (e.g., see the references contained within Liston et al.
(2020) as a representative subset of these publications). This
study and the analyses presented herein provide four oppor-
tunities that are unique compared with those studies: (1) to
identify snow and ice processes and evolution that likely took
place during the MOSAiC snow and ice evolution year be-
fore the ship arrived and during winter, spring, and summer
periods when the ship was not stationed in the ice or when
snow and ice measurements were not possible for some rea-
son; (2) to help understand and quantify the role of ice dy-
namics on snow mass budgets; (3) to help understand and
quantify the role of the resulting snow distributions on sea ice
growth and decay; and (4) to help understand the processes
of the early melt season, including estimating the timing of
melt onset of snow, the first snow-free date, and melt onset
of ice. The following discussion analyzes these four issues.

6.1 Missing time periods during the MOSAiC
observation year

Using an atmospheric reanalysis that was bias-corrected by
MOSAiC observations, atmospheric observations from the
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Figure 8. Transect observations and SnowModel-LG simulations of SWE for (a) Nloop, (b) Sloop, and (c) Runway. Input precipitation from
snow accumulation onset and time derivatives of D ( dD

dt ) and εTOT ( dεTOT
dt ) are also displayed. Highlighted by color shading are the periods

of storms and increased sea ice deformation. Signs of dD
dt discriminate between source and sink.

MOSAiC observatory, and extrapolated ocean heat flux es-
timates, we used SnowModel-LG with assimilated snow ob-
servations and HIGHTSI to create a seamless snow and ice
property time series with a 3-hourly time step for the en-
tire ice year from 1 August 2019 through 31 July 2020. The
model simulations were critical to fill in three kinds of miss-
ing data: (1) the time period before the ship’s arrival and the
start of observations, (2) missing data due to weather and lo-
gistical reasons, and (3) times between the regular discrete
observations of snow properties and sea ice thickness.

Before the ship’s arrival, we used bias-corrected atmo-
spheric reanalysis data to estimate the snow accumulation
and freeze-up time for the three ice types (see Sect. 3.3).
Although the timing of freeze-up is critical for the snow
and ice cover, this period is logistically challenging for any

ship-based snow and ice observation expeditions (Nicolaus
et al., 2022) or autonomous instrument programs (Rabe et al.,
2024). In particular, by the onset of MOSAiC observations,
the difference between accumulated snowfall and SWE was
already nearly 50 %. Then, occasionally, during winter, the
continuous weather data collection or weekly snow and ice
sampling was interrupted due to ice break-up, weather, or lo-
gistical reasons, such as crew exchanges (Cox et al., 2023;
Matrosov et al., 2022; Itkin et al., 2023; Nicolaus et al.,
2022). However, the bias-corrected atmospheric reanalyses
data were of sufficient quality that SnowModel-LG simulated
physically credible values during these missing periods.

Another period without any measurements was between
7 May and 15 June. Still, SnowModel-LG simulated the tran-
sient melt onset at the end of May, when the first extensive
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Figure 9. Seasonal development of snow and ice cover from model
and observations for (a) Nloop, (b) Sloop, and (c) Runway. Sim-
ulations are represented by lines and observations by points. The
error bars of observations represent 1 standard deviation. The gray
shading around the sea ice thickness modes estimates indicates the
0.1 m precision of the GEM-2 method. Highlighted by color shad-
ing are the periods of storms and increased sea ice deformation.
The snow depth scale is exaggerated four times compared to sea ice
thickness.

melt ponds of the season were widely observable on satel-
lite images (Webster et al., 2022). In addition, the model ac-
curately reproduced the first observations collected in June,
more than a month after 7 May, when the last snow measure-
ment was assimilated (Fig. 7).

This means that, through the fusion of observational data
and numerical models, we successfully bridged the periods
when no spatially distributed data were collected at MO-
SAiC.

The 7 d observation period of the MOSAiC transects was
chosen to resolve the synoptic cycle of snow accumulation

and ice growth. The data-model fusion we implemented here
produced a full-year time series (1 August 2019 through
31 July 2020), at a 3 h time increment that resolves the timing
of any atmospheric events with high temporal precision. This
is relevant to understanding snow and ice processes, as well
as atmosphere–snow–ice–ocean interactions. In addition to
the suite of snow and ice related variables presented herein,
these simulations come with numerous other surface energy
flux and mass balance variables that are all internally consis-
tent with each other; this is a numerical requirement of all the
modeling tools used in this study.

6.2 Sea ice deformation can be an important snow
source or sink

Previously, Liston et al. (2020) demonstrated that sea ice de-
formation, calculated as a residual using coarse-resolution at-
mospheric and ice concentration and movement forcing data
at the pan-Arctic scale, was highly correlated to the sea ice
drift and the new ice formation associated with it. In this
study, we extend their findings to a local scale by examining
the connection between the snow mass balance term (herein
formulated as D; see Eq. 3) and sea ice deformation (Eq. 2).
Using observed and estimated atmospheric forcing data and
periodic SWE and snow density observations, SnowModel-
LG simulated physically credible snow evolution on the three
sea ice types with different ages and sea ice deformation
characteristics found at MOSAiC (Fig. 8).

On all three ice types, the strongest winter season sinks
in our simulations were static and blowing snow sublimation
(SSS and SBS), which, by 7 May, cumulatively removed 67 %,
68 %, and 71 % of SWE from snowfall (PS) in Nloop, Sloop,
and Runway, respectively. This is represented by the differ-
ence between “precipitation” and “model no D” in Fig. 8.
The magnitude of SSS and SBS depends on grain bonding,
which is, for SSS, determined by latent heat flux, while for
SBS, wind speed, humidity, and solar radiation are the main
factors (Liston et al., 2020). Note that, in this environment, if
the blowing snow is not captured by an ice-topographic drift
trap or blown into an open lead, it blows perpetually, and, in
air that has a humidity deficit, it eventually sublimates com-
pletely away (Tabler, 1975; Liston and Sturm, 2004). These
SSS and SBS values were about 3 times as large as in Liston
et al. (2020). This is likely due to the specific weather during
MOSAiC winter and location during the drift, including gen-
erally low snowfall (PS) after freeze-up, frequent storms with
high winds (Rinke et al., 2021), and relatively high sea ice
concentration (Krumpen et al., 2021) with low near-surface
relative humidity during winter. PS, SSS, and SBS operate at
synoptic temporal and length scales (on scales comparable
to, e.g., 3 h and 100 km) and were the same (or very similar
for SSS and SBS) for all ice types.

The differences in SWE evolution on the three ice types
were largely controlled by the ice (and snow) onset date
and the differences in the remaining wintertime snow sink
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or source – the ice dynamics term D. These factors operate
at much shorter local spatial scales, e.g., 10 m. This is repre-
sented by the difference between “model no D” and “model
with D” in Fig. 8. D is the only local simulated source or
sink; in the natural system, D produces ice roughness fea-
tures such as rubble ice and pressure ridges, as well as lead
timing, size, and distribution. Following any sea ice defor-
mation, a certain amount of airborne snow will be removed
to open water in the leads (Clemens-Sewall et al., 2022)
or stored in snowdrifts at the deformed ice roughness fea-
tures (Liston et al., 2018; Itkin et al., 2023). During winter,
the wind velocity is frequently above the blowing threshold
value (7.7 m s−1) following Li and Pomeroy (1997), which
provides the justification for our parameterization of D as a
sea ice deformation snow sink or source (see Sect. 5.1). After
melt onset, the snow grains are wet, and no drifting snow is
observed (sensu Pomeroy et al., 1997). Following this prin-
ciple, D was set to zero in May after the last transect mea-
surements.
D remained small throughout the simulations, but its ac-

cumulated effect by 7 May (the last winter observation) was
15 %, 8 %, and < 1 % in Nloop, Sloop, and Runway, respec-
tively. D is likely large right after freeze-up; this is a period
of thin ice with frequent deformation. More studies of this
fast-changing period with thin ice are needed to understand
what exactly is happening when the ice first forms. The im-
portance of erosion for SWE at MOSAiC was explored by
Wagner et al. (2022), who gave estimates of erosion based on
uncalibrated snowfall rates, wind speeds, and SWE in Sloop
and Nloop. While the magnitude of the combined snow sink
by Wagner et al. (2022) is similar to ours (53 %–68 %), their
study could not differentiate between erosion–deposition and
sublimation. Our study shows that D was predominantly a
sink (erosion) in the case of Nloop and Runway and, after
ridge formation in November, was occasionally a source (de-
position) in Sloop.

Strong winds are generally associated with synoptic events
that often cause sea ice deformation and bring precipitation.
For Sloop, high wind speeds had no significant statistical
correlation with the time derivative of D, but we found a
strong (R2

= 67 %, N = 16, p = 0.0001) linear correlation
between the absolute value of this derivative and the deriva-
tive in accumulated total sea ice deformation – εTOT esti-
mated from the GPS buoys (see Sect. 3.6). Nloop develop-
ment can be calculated over 23 derivatives, with 8 giving
meaningless rates falling between two consecutive deforma-
tion events and simply showing no change during quiescent
periods. Instead, those redundant steps and their derivatives
were removed from calculations in this analysis. When using
similar derivatives over sampling steps in time as for Sloop,
the correlation was similarly strong (R2

= 62 %, N = 15,
p = 0.0016). For Runway, the sample size was too small
(N = 2) to perform this analysis, but a combined analysis for
all locations shows a strong correlation as well (R2

= 59 %,
N = 33, p = 0.0001, Fig. 10). Note that we used the abso-

Figure 10. Scatter plot of derivatives of D and the cumulative to-
tal deformation. The time steps between observations in Nloop and
Sloop are the same (with some observations during quiescent pe-
riods are skipped in Nloop, which had more frequent observations
than Sloop).

lute values of the D derivative, since εTOT is also spatially
averaged, and differentiation between sink and source is not
possible with these data.

This analysis was only possible because the MOSAiC pre-
cipitation observations have sufficiently low errors that a mi-
nor signal such as snow redistribution due to sea ice deforma-
tion could be detected. This was, in turn, also only possible
because the in situ transect and sea ice deformation obser-
vations were frequent enough to resolve the synoptic cycle’s
contributions to snow and ice evolution.

To understand the reasons for these statistical correlations,
we tracked the timing and location of major leads and pres-
sure ridges (Fig. 3) occurring in the vicinity of the MOSAiC
transects on the ship radar images (see Sect. 3.6) during peri-
ods of increased winds, snowfall, and high deformation rates
(Figs. 4 and 8). Such qualitative analyses allowed us to distin-
guish between the sink and source direction of D. We found
that any close-upwind deformation was associated with an
SWE decrease. Any deformation inside the transect, or just
adjacent to it, was connected to an SWE increase that could
not be explained solely by snowfall. For example, in late Oc-
tober and November, pressure ridges formed north of Nloop
(blue line in Fig. 3). This was accompanied by SE winds that
accumulated snow in Nloop—just some 100 m upwind of
the new ridges. In November and December, a new lead and
ridge line were created between Sloop and Nloop (yellow
line in Fig. 3). This time, the winds were strongly SW. Nloop
was upwind, and a new ridge formed inside Sloop. Sloop
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gained SWE, and Nloop lost it. At the end of January and
beginning of February, a lead was active east of Sloop (pink
line in Fig. 3). The W winds first caused a local source of
snow in Sloop. When winds turned to E, the lead was the lo-
cal sink that caught snow and prevented deposition in Sloop.
Nloop was too far away to be affected. In March and April, a
large lead separated Nloop and Sloop once again (green line
in Fig. 3). The winds were mainly S along the lead but with
occasional W winds. The upwind Sloop lost a considerable
amount of snow. Because the winds were E in May, Sloop
again gained some snow during this time. Nloop was further
away from the deformation zone and mainly lost snow during
this period as well.

The strong correlation between derivatives of D and εTOT
for these major deformation events strongly suggests that
there was an immediate response to the creation of new
roughness elements and open water areas. This is in contrast
to the slow accumulation occurring in the old roughness fea-
tures created during previous deformation events. Spatially
distributed, 3-dimensional simulations, similar to those per-
formed by Liston et al. (2018), over a dynamic topography
that quantifies sea ice deformation at much higher resolution
than a handful of GPS buoys, are necessary to estimate how
much snow is stored on new rough ice, how much is lost to
open water, and how much sublimates away. Such a study
would also be able to confirm or reject a recent observational
study, based on spatially very constrained MOSAiC ice core
data in refrozen leads (N = 5), that indicated very little snow
was lost to leads (Clemens-Sewall et al., 2022). Liston et al.
(2020) presented a list of eight reasons why snow blowing
into leads is likely a minimal component of the snow-on-sea-
ice moisture budget. In contrast, loss of snow into leads is
used as a tuning parameter in some climate model simula-
tions (Petty et al., 2018; Schröder et al., 2019).

The large magnitude of D in Nloop may be a peculiar-
ity of MOSAiC. The MOSAiC snowpack was thinner than
the climatological mean (Itkin et al., 2023), and snowdrifts
in pressure ridges and deformed ice can store all snow vol-
ume if there is very little snow. This is a known phenomenon
well researched in terrestrial systems (e.g., Tabler, 1975;
Benson and Sturm, 1993; Sturm et al., 2001; Liston et al.,
2016, 2025). In windy environments with little snow, all
snow will be trapped in the ridges or other ice-surface rough-
ness features. Over the course of the winter, the fraction of
snow volume in topographic drift traps should decrease as
the trap fills to capacity and the snow depth in other (non-
snowdrift-trapping) areas increases. At MOSAiC, this never
happened because there was very little snow and newly de-
formed ice was frequently created. As evidence of this, the
snow depth standard deviation in the pressure ridges in-
creased throughout the winter, because they were never com-
pletely filled to their maximum snow-holding capacity (Itkin
et al., 2023).

The SWE on all ice types was different at the start of
the MOSAiC observations, but it became increasingly sim-

ilar towards the end of the snow accumulation season. Since
all three ice types were adjacent to each other and part of
the same turbulent wind field, air temperature conditions,
and precipitation forcing, some snow appears to be trans-
ported from the oldest and least dynamic ice type (Nloop) to
the most dynamic (Sloop) and youngest (Runway) ice types.
This is another hypothesis that could be explored by high-
resolution, spatially distributed simulations that cover vari-
ous sea ice types with different ice roughness characteristics.
Such a study would benefit from some kind of snow particle
transport accounting within the modeling system that would
identify and quantify the origins and deposition locations of
snow particles being redistributed by the wind.

6.3 Impact of snow on sea ice growth

As already shown by Itkin et al. (2023) and Raphael et al.
(2024), younger and thinner sea ice types at MOSAiC with
initially thinner snow (Sloop and Runway) had faster sea ice
growth rates early in the growth season than the oldest sea
ice type with initially deeper snow (Nloop). Similar findings
have been demonstrated in previous observational (Sturm
et al., 2002a; Provost et al., 2017; Rösel et al., 2018) and
modeling studies (e.g., Notz, 2009). At MOSAiC, the rela-
tively low initial sea ice thickness of the SYI (Sect. 2.1) and
the differences in growth rates led to FYI sea ice thicknesses
that were approximately equal to that of the SYI by as early
as mid-November 2019 (Fig. 9).

The importance of the snow accumulation onset for ice
growth and spring sea ice thickness is visible even for vari-
ous ages of FYI (Fig. 9c). There were two ages of FYI that
were sampled at MOSAiC. The FYI at the coring site was
formed at freeze-up, on about 1 September, and accumulated
practically the same amount of snow as Sloop. This is also
the FYI onset date used by von Albedyll et al. (2022) in
a large-scale MOSAiC study. The Runway and Fort Ridge
FYI formed about a month later in leads, and they missed the
snowfall during that period. The Ridge Ranch stakes at the
Fort Ridge were close to a ridge and accumulated snow the
fastest. The FYI with the thinnest snow grew the thickest by
the end of winter. This is visible in the observations (May)
and the model simulation and suggests that the variability of
the level FYI thickness can be larger than the variability of
the level SYI thickness.

The high correlation (R2
= 0.94, N = 44) of simulated

and observed winter sea ice thickness (Fig. 11) is clear ev-
idence of the importance of the local snow depth and density
for ice growth. Besides these two local variables simulated by
SnowModel-LG, HIGHTSI was also forced by atmospheric
temperature (Sect. 3.2) and ocean heat fluxes (Sect. 3.7) that
were assumed uniform for all MOSAiC ice types. In addi-
tion, two storms increased the snow-depth variability at MO-
SAiC: (1) the November storm (yellow shading in Fig. 9)
increased the standard variability in Nloop and Sloop, and
(2) the January–February storm (pink shading in Fig. 9) in-
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Figure 11. Scatter plot of modal sea ice thickness from transect
observations and simulated sea ice thickness. The linear correla-
tion coefficients are estimated only for the winter transects (Nloop,
Sloop, and Runway).

creased the standard variability on Runway. Both events were
followed by an increase in level-ice thickness. This indicates
that the developed snow bedforms promote loss of heat from
the ocean and highlights the relative importance that local-
scale (locally one-dimensional or fully three-dimensional)
heat fluxes, through the snow and sea ice, play in govern-
ing ice growth (as suggested by Sturm et al., 2002b, Liston
et al., 2018, and Itkin et al., 2023).

Our bedform parameterization (using the level-ice mean
snow depth minus 1 standard deviation as described in
Sect. 5.2) is an example of how these local-scale, sub-grid
phenomena and processes can be accounted for in climate
system models in order to accurately reproduce observed sea
ice growth. Instead, current climate models often use ther-
mal conductivity values that are approximately 50 % larger
than those measured (Macfarlane et al., 2023a; Raphael et al.,
2024) and used here (Eq. 5), effectively increasing the heat
transfer through the snow in an effort to reproduce observed
ice growth. The results presented herein suggest that climate
system models need to account for local-scale heat trans-
fers instead of adjusting the snow thermal conductivity away
from observed values. Sturm et al. (2002b) also came to this
conclusion over two decades ago. Spatially distributed, 3-
dimensional simulations of snow and sea ice are necessary
to study the heat fluxes and local consequences of snow for
sea ice growth.

The ocean surface heat fluxes during winter were low
(Fig. 4a), and the ocean surface was very cold or even super-
cooled (Katlein et al., 2020). During this time, the ice growth

was mainly governed by low atmospheric temperatures and
snow thermal conductivity.

Our estimates of initial thickness and snow accumulation
onset dates (Sect. 3.3) are unfortunately crude. More obser-
vations from that period, in addition to distributed model
runs, may provide better insights into snow and ice initiation
and evolution during that period. Another weakness of the
MOSAIC dataset is the lack of repeated transects on the FYI
(as discussed in Sects. 2.2 and 2.3). The data from the coring
sites and stakes are not directly comparable to the transect
location (see also discussion above) and can not be included
in the statistical analysis (Fig. 11).

6.4 Snowmelt and ice melt onset

Snowmelt began while RV Polarstern was not present in the
MOSAiC Central Observatory, during the time window be-
tween 10 May and 15 June (Nicolaus et al., 2022). Several
authors have attempted to estimate this date based on point
measurements from buoys with thermistor chains (Lei et al.,
2022; Perovich et al., 2023; Salganik et al., 2023b; Raphael
et al., 2024) or satellite imagery (Webster et al., 2022). In
our simulations, the snow depth started gradually decreasing
simultaneously with the snow density increase shortly after
the last transect measurement on 7 May (Fig. 7). This coin-
cided with a storm with strong winds and air temperatures
near zero (Fig. 4a) and a snow depth decrease detected by
thermistor chains (Salganik et al., 2023b). Other thermistor-
chain-based studies estimated snowmelt onset at much later
dates on 15 May (Lei et al., 2022) and 8 June (Perovich et al.,
2023). The air temperatures were positive for the first time
with the storm on May 27 (Fig. 4a), coinciding with rainfall
(Fig. 4c) and a decrease in both simulated SWE and snow
depth (Fig. 7). The simulated density increased abruptly on
27 May and reached its maximum value (550 kgm−3) on
28 May. At this point in the model, the snow was isothermal
and saturated with water. Melt ponds were detected by the
thermistor chains as early as 27 May (Salganik et al., 2023b)
and appear fully developed on satellite images starting on
28 May (Webster et al., 2022).

The second phase of the end-of-May storm brought cooler
air and snowfall (Fig. 4a and c) that stopped the melt. Sim-
ulated SWE recovered and even increased to its maximum
value between 7 and 17 June. However, simulated snow den-
sity remained at its maximum value and the simulated snow
depth continued to decrease despite transient increases with
snowfalls at the end of May and in early June (Fig. 7). Simul-
taneously with the simulated SWE maximum in early June,
simulated snow depth values were similar to early winter val-
ues. Both simulated SWE and snow depth fit well with the
Melt Mix transect measurements on 17 June – the first snow
measurements after the return of the RV Polarstern (Figs. 7
and 8). None of the Melt Mix transect measurements were
assimilated in our model run. The second and very abrupt
decrease in simulated SWE and snow depth started imme-
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diately after 17 June. All simulated snow melted by 8 July,
which fits well with the transect observations (Webster et al.,
2022; Itkin et al., 2023) and thermistor chains (Lei et al.,
2022). Figure 9 shows that, on level ice, the simulated snow
melted completely about 1 week earlier. On level ice with
snow reduced by 1 standard deviation, simulated snow fully
melted even earlier – about 3 weeks prior to the average snow
cover.

According to transect and point observations in Fig. 9, sea
ice growth rates dropped towards zero in mid-April. At the
same time, several previous MOSAiC studies indicated melt
of deformed ice (Raphael et al., 2024; Salganik et al., 2023b;
Itkin et al., 2023). The level-ice thickness in June, how-
ever, exceeded April/May values and showed that the ice was
growing again in the cold weather and snow depth maximum
of late May and early June. This is confirmed by our sim-
ulations that coincide with the measurements, despite them
not being assimilated. Simulated sustained ice melt started
at the end of June, coinciding with the simulated snow-free
date on level ice and preceding the abrupt increase in ocean
surface heat fluxes by about a week (see Sect. 3.7). This also
coincides with the analysis of the transect (Webster et al.,
2022; Itkin et al., 2023) and ice thickness measurements from
stakes and coring (Fig. 9). Simulated ice melt lagged be-
hind the thermistor chain data estimates by a couple of weeks
(Lei et al., 2022; Perovich et al., 2023), potentially indicating
preferential surface melt in the melt ponds and surrounding
highly conductive thermistor chains.

7 Conclusions

Virtually any field campaign may include time periods of in-
terest when observations were unable to be made. The MO-
SAiC field expedition was no exception in this regard. In par-
ticular, the MOSAiC sea ice environment included logistical
and safety considerations associated with weather, thin ice,
and late freeze-up. These often made direct sampling diffi-
cult and contributed to observation data gaps. In addition, as
the Arctic continues to warm, difficulties in measuring snow
and ice will likely continue. Our data–model fusion method-
ology presents a mechanism by which those data gaps can be
filled. Here, we have combined physics-based modeling tools
with temporally incomplete measurements to create a full an-
nual time series of 3-hourly snow and ice property values that
match the observations when and where they occurred. Fi-
nally, the time series data contain physically credible values
when observations were not available.

Our simulation results from the data-model fusion
methodology applied to MOSAiC indicated that

– The freeze-up date and initial ice thickness estimated
in Sect. 3.3 were physically realistic. The freeze-up
dates for the deformed SYI, ponded SYI, and FYI were
18 August, 30 August, and 20 October, respectively.

Their initial ice thicknesses were close to 0.5, 0.1, and
0.0 m, respectively.

– The sea ice thickness of level ice on all three ice types
became similar already in December and reached 1.8–
1.9 m in mid-April. Afterwards, the sea ice growth
stopped and then plateaued until the melt onset during
the last week of June. The maximum sea ice thickness
was 1.9 to 2.0 m for all ice types.

– The snow depth on level ice on all three ice types
reached its maximum value of between 0.33 and 0.35 m
in the first half of May. Afterwards, it decreased due to
the wetting of the snow. At the same time, the maximum
SWE values were reached in mid-June.

– The snow-free date was reached simultaneously on all
ice types, after a very rapid melt during the second half
of June. Level-ice areas became snow-free during the
first week of July.

– The sea ice started to melt first from the top surface,
with ice-melt onset coinciding with the snow-free date.

The correct initialization of our simulations proved to be
a critical aspect of our work. In this study, we defined the
ice and snow initial conditions by analyzing atmospheric re-
analysis data. Future snow and ice evolution studies, similar
to MOSAiC, would benefit from actual measurements of sea
ice, ocean, and atmosphere conditions during the freeze-up
period. These include challenging conditions like open wa-
ter and thin ice; such measurements are not easy to make but
would lend key insights into snow and ice formation and evo-
lution during this critical period – a period that we know very
little about.

In addition, this work identified two climate-relevant pro-
cesses that operate at relatively fine spatial scales. Here we
summarize them and suggest ways to use them in other
climate-system applications:

– Sea ice deformation was identified as a significant snow
trap or sink (Clemens-Sewall et al., 2022; Itkin et al.,
2023). High-quality precipitation data collected at MO-
SAiC led to simulations with a relatively small resid-
ual or difference between the simulated and observed
SWE. We found that this residual term can, in a large
fraction (R2

= 0.59, N = 33), be explained, in a statis-
tical sense, by the regional-scale deformation that oc-
curred over the broader area where the deformation ob-
servations were collected. This is further supported by
the analysis of the locations of active deformation zones
relative to the observed SWE measurements. In the pa-
rameterization developed here (see Sect. 5.1.1), we add
or remove the amount of snow in a way that the sim-
ulations and observations are numerically complemen-
tary. Over larger domains, the large-scale deformation
simulated by regional sea ice models could be used to
determine the magnitude of this term.
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– Snow bedform patchiness was identified as a key con-
trol influencing area-averaged heat fluxes through the
ice and ice growth (sensu Sturm et al., 2002b). Local
ice growth is likely a result of heat fluxes over footprints
on the scale of several meters; these footprints have di-
verse snow depths, where the shallowest snow depth has
the highest impact on ice growth. In the parameteriza-
tion developed here (see Sect. 5.2), we use the snow
depth reduced by 1 standard deviation to achieve the
heat fluxes required to produce realistic sea ice thick-
ness.

Further testing of both parameterizations mentioned above
is planned using a high spatial resolution snow and sea ice
model, forced by high-resolution sea ice deformation data
based on, e.g., quantitative analyses of relative sea ice motion
from the ship radar images similar to Oikkonen et al. (2017).

Our model configurations can be considered single-
column simulations, but each single column represents ap-
proximately 1500 point measurements designed to be repre-
sentative of a much wider area. This work accounted for the
three most typical sea ice types found in the MOSAiC Cen-
tral Observatory; these three ice types also represent the three
ice types most commonly found throughout the modern Arc-
tic. Combining the results and procedures presented herein
with the knowledge of their Arctic-wide spatial distribution
would allow for similar analyses to be performed and used to
estimate the annual evolution of the Arctic heat budget.
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