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Abstract. Glacier surges are spectacular events that lead to
surface elevation changes of tens of metres in a period of a
few months to a few years, with different patterns of mass
transport. Existing methods to derive elevation change as-
sociated with surges, and subsequent quantification of the
transported mass, rely on differencing pairs of digital ele-
vation models (DEMs) that may not be acquired regularly
in time. In this study, we propose a workflow to filter and
interpolate a dense time series of DEMs specifically for the
study of surge events. We test this workflow on a global 20-
year dataset of DEMs from the optical satellite sensor Ad-
vanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER). The multistep procedure includes linear
non-parametric locally weighted regression and smoothing
scatterplots (LOWESS) filtering and approximation by lo-
calized penalized splines (ALPS) interpolation. We run the
workflow over the Karakoram region (High Mountain Asia).
We compare the produced dataset to previous studies for
four selected surge events, on the Hispar, Khurdopin, Kya-
gar, and Yazghil glaciers. We demonstrate that our workflow
captures thickness changes on a monthly scale with detailed
patterns of mass transportation. Such patterns include surge
front propagation and dynamic balance line changes, among
others. Our results allow a remarkably detailed description
of glacier surges at the scale of a large region. The workflow
preserves most of the elevation change signal, with underes-
timation or smoothing in a limited number of surge cases.

1 Introduction

Surge events are extreme cases of the continuous spectrum of
glacier flow instabilities (Herreid and Truffer, 2016). Surges
are quasi-periodic events characterized by abnormally rapid
glacier flow, lasting from several months to years (Bham-
bri et al., 2017; Cuffey and Paterson, 2010). Large masses
of ice are transported during surge events, causing thick-
ness changes (Bhambri et al., 2017, 2022). They occur on
a limited number of glaciers known as “surge-type” glaciers,
which are clustered in a few regions of the globe, includ-
ing the Karakoram in High Mountain Asia (HMA) (Guil-
let et al., 2022; Sevestre and Benn, 2015). Surges can occur
on both land-terminating and tidewater glaciers, and on ei-
ther polythermal or temperate glaciers (Cuffey and Paterson,
2010). The mechanisms behind the surge phenomenon (ori-
gin, surge trigger, etc.) are not yet fully understood and are an
ongoing focus of theoretical investigations (e.g. Benn et al.,
2023; Crompton et al., 2018; Terleth et al., 2021; Thøgersen
et al., 2024).

Observations of glacier surface elevation change over time
are extremely useful in documenting glacier surges and can
give insight into the current state of a glacier within its surge
cycle. The surge period, i.e. the active phase of the surge-type
glacier, is characterized by thinning (a decrease of surface
elevation) in a reservoir area and thickening in a receiving
area, representative of the ongoing mass transfer. The quies-
cent period consists in strong thinning in the receiving area of
the previous surge and a thickness increase (mass build-up)
before the next surge and mostly in the future reservoir area.
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The difference in elevation maps permits one to compute the
volume of ice transferred during a surge event and determine
the spatial extent affected (e.g. Bhambri et al., 2022; Gao
et al., 2024; Steiner et al., 2018). A few surge-type glaciers
may begin surging after a critical mass has built up in the
reservoir, information that is accessible with elevation differ-
encing (Kotlyakov et al., 2018; Lovell et al., 2018). Elevation
data, and by extension surface slope, can be used to compute
and analyse basal shear stress, which may play a critical role
in the triggering of surges (Beaud et al., 2022; Thøgersen
et al., 2024).

Remote sensing analysis from satellite imagery can pro-
duce a large number of digital elevation models (DEMs),
providing observations of the elevation of the glacier surface
and its variation over time (e.g. Hugonnet et al., 2021). Such
data have been used in numerous studies, ranging from the
inventorying of surge-type glaciers to detailed case studies
(e.g. Bhambri et al., 2022; Guillet et al., 2022; Guo et al.,
2020; Round et al., 2017). However, the use of DEMs for the
study of surges is often limited to a few dates or specific case
studies because the temporal availability of DEMs does not
always match the surge phases. The retrieval of mass trans-
fer variations happening during such surge events requires
dense elevation time series with a resolution of one or only a
few months in principle. Meanwhile, temporally dense eleva-
tion time series from satellites covering a long period of time
have recently become available for studying glacier eleva-
tion change. Such acquisitions started around the year 2000,
with time series now spanning more than two decades, long
enough to capture a number of surge events and a few com-
plete surge cycles. In particular, the TERRA satellite with
its ASTER sensor is the only optical stereo mission that
provides systematic and global acquisitions (Berthier et al.,
2023).

Dense elevation time series from this sensor have been
successfully used to study long-term elevation trends and
multi-year glacier mass balance (e.g. Brun et al., 2017;
Hugonnet et al., 2021; Shean et al., 2020). It has also
been used multiple times for surge observation with selected
DEMs (e.g. King et al., 2021; Zhu et al., 2022; Mattea et al.,
2025) and with simple filtering (Lauzon et al., 2023; Li et al.,
2023). The DEMs derived from ASTER have an elevation
precision of about 5–20 m and can have large artefacts caused
by cloud sensitivity, satellite jitter, or lack of stereo corre-
lation on saturated/textureless terrain (Berthier et al., 2023;
Girod et al., 2017). Such noisy DEM time series require spe-
cific filtering techniques that preserve surge signals (i.e. el-
evation observations before, during, and after the surge), as
basic thresholds and linear methods used to assess long-term
elevation changes might misinterpret surge signals as out-
liers. Furthermore, the estimate of volume transported and
the surface slope are sensitive to data gaps and their interpo-
lation. As a consequence, they need to be computed at similar
dates across a whole glacier to ensure physical consistency.

Thus, a temporal interpolation of the elevation time series is
required.

Various approaches have been implemented in the con-
text of glacier elevation time series analysis. Hugonnet et al.
(2021) have implemented a complex workflow for ASTER
elevation time series over glaciers at global scale. It captures
a number of non-linear elevation changes, but fails to accu-
rately reflect sudden changes associated with surge events.
This is due to the filtering and interpolation methods which
involve Gaussian process regressions based on a multi-term
kernel defined by the variance of elevation changes retrieved
at global scale. This method is robust for assessing global
changes of glacier elevation, but fails to capture the rela-
tively rare surge behaviour. Recent methodological improve-
ments have allowed for sophisticated filtering that can pre-
serve abrupt changes in noisy time series of elevation. For
example, Wang and Kääb (2015) identified outliers in the
absence of a reference elevation using the RANSAC algo-
rithm, and Derkacheva et al. (2020) applied a linear non-
parametric local regression (LOWESS) to filter and interpo-
late non-surge glacier surface velocities. At a higher level of
complexity, Shekhar et al. (2021) developed a spline-based
approximation framework to model elevation changes with
heterogeneous data, which can also be used for filtering.
These methodological developments paved the way for pro-
cessing a large number of DEMs in a systematic way to study
glacier surges from the local to regional scale.

In this study, we develop a workflow to analyse outlier-
prone, moderate-precision and high-temporal-resolution el-
evation datasets adapted to the specificity of surge events.
We use established algorithms to filter outliers and inter-
polate elevations at monthly scale while preserving surge
elevation signals. We apply it to an ASTER DEM dataset
from Hugonnet et al. (2021) to produce a regional dataset
in the Karakoram region covering more than 100 surge-type
glaciers. We evaluate the performance of the workflow com-
pared to the results of Hugonnet et al. (2021) and other DEMs
(SPOT and HMADEM). We also compare the surge charac-
teristics such as timing and volumes transferred with other
studies (e.g. Bhambri et al., 2022; Steiner et al., 2018; Gao
et al., 2024).

2 Data

In this study, we focus on the Karakoram region (Fig. 1). We
use two existing surge-type glacier inventories that cover at
least the period 2000 to 2018 in this region (Guillet et al.,
2022; Guo et al., 2023). According to Guo et al. (2023),
which considers glaciers larger than 0.4 km2, there are 354
surge-type glaciers (with individualized tributaries) in the
Karakoram and 128 probable or possible ones, represent-
ing approximately 8.6 % of the regional number of glaciers
(39.5 % in terms of area). Guillet et al. (2022) identified
223 surge-type glaciers larger than 5 km2, not individual-
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izing tributaries. These two studies indicate that surge-type
glaciers represent 39 % to 45 % of the glacierized area in
the Karakoram. We use the DEMs produced in the global
study of Hugonnet et al. (2021) (hereinafter referred to as
H21), which ranged from July 2000 to September 2019 in
the Karakoram and were generated from satellite images of
the ASTER sensor. The DEMs have been processed at 30 m
resolution with the MMASTER workflow running under the
open-source photogrammetric library MicMac (Girod et al.,
2017; Rupnik et al., 2017). All DEMs have been reprojected
to 100 m spatial resolution and co-registered to the TanDEM-
X global DEM (Rizzoli et al., 2017). We use all ASTER
elevations estimated by MicMac for any stereo-correlation
score, with lower correlation associated with higher uncer-
tainty (H21). Finally, we apply a preprocessing step specific
to this dataset: (1) we filter pixels with a difference of more
than 400 m between the ASTER DEM and the GLO-90 refer-
ence DEM (European Space Agency and Airbus, 2022), and
(2) we merge the same-date 180 km DEM strips generated by
H21 by keeping, in each pixel, the elevation with the highest
correlation score. We use the Copernicus DEM GLO-90 as a
reference elevation for the coarse filtering of very large out-
liers. The Copernicus DEM GLO-90 is edited from data of
the TanDEM-X mission acquired between 2011 and 2015.
The impact of radar penetration in ice and snow (up to about
10 m), creating a bias in TanDEM-X elevation estimate, is
negligible compared with the threshold we use (hundreds of
metres) (Berthier et al., 2023; Rizzoli et al., 2017).

The sampling is not regular in time and space, and parts of
the mountain range have about twice as many DEMs as oth-
ers (Fig. 1). Overall, 30 % (62 %, respectively) of the dates
in the time series periods are between observations that are
less than 6 months apart (1 year, respectively) (Fig. 2, solid
orange line).

3 Methods

3.1 Workflow

We present a workflow to filter and interpolate stacks of
ASTER DEMs, specifically designed to handle surge events.
We use the ASTER DEMs of H21, but process them with
a different workflow, because the H21 workflow performs
weakly on surge events (see, for example, Fig. S1 in the Sup-
plement). We use the H21 workflow as a baseline to compare
with our own workflow to highlight improvements for surge
cases. Our workflow is divided into two main steps (Fig. 3).
First, we filter the dataset to remove remaining outliers in
three steps:

1. LOWESS workflow, core step of the filtering: we ap-
ply an iteration of the LOWESS algorithm (detailed in
Sect. 3.1.1).

2. Morphological 3× 3 erosion: we implement a morpho-
logical erosion with a 3× 3 kernel on the binary data
mask. It removes pixels adjacent to outliers, as they also
have reduced precision due to the photogrammetric pro-
cessing.

3. Removal of time series with less than 10 points: we con-
sider such time series to be not dense enough for our
application.

Second, we interpolate the time series at regular time inter-
vals using a B-spline method which includes an automatic
hyperparameterization algorithm (ALPS-REML), detailed in
Sect. 3.1.2. The interpolated elevations are provided as a
monthly time series.

3.1.1 LOWESS filter

We filter the elevation time series by two iterations of
the non-parametric LOWESS algorithm, which is a mov-
ing weighted regression (Cleveland and Devlin, 1988;
Derkacheva et al., 2020). We use the Python scikit-misc im-
plementation. For our dataset, the output of the regression is
too sensitive to noise overall and too smooth over surges to
be used directly as an interpolation of the elevation, so we
use it for filtering only. Here are the main parameters set for
each LOWESS iteration. They have been manually tuned af-
ter visual evaluation on a number of time series samples, both
with and without surge signals (Fig. 4). We caution that these
parameters were chosen specifically for the ASTER DEM
dataset and might not all be suitable for other datasets (as
discussed in Sect. 5.4).

– Span: smoothing parameter, expressed as the fraction
[0–1] of points of the time series used at each local re-
gression. A larger value leads to more smoothing. We
set it at 0.4 and 0.3 for the first and second iterations,
respectively.

– Degree: degree of the local polynomial regression. We
choose degree 2.

– Family: assumed distribution of the errors, with a
choice between “Gaussian” (fit is performed with least-
squares) and “symmetric” (fit is performed robustly by
redescending M-estimators). We use “symmetric”.

– Weights: weights to be given to individual observations
in the sum of squared residuals. We use the uncertainty
provided for each elevation in H21, which models het-
eroscedasticity (variable error) as a function of slope
and the quality of stereo-correlation based on elevation
differences on stable terrain.

We use the LOWESS algorithm in the following sequence
(Fig. 5): we run two iterations of the LOWESS regression
with a decreasing smoothing factor. At each iteration, we
compute a threshold envelope around the regression which
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Figure 1. Map of the study area in the Karakoram region, with the regional location indicated in the inset map. The colour scale shows the
number of pre-processed ASTER-derived elevation observations over the period 2000–2019 from H21. Glacier outlines from RGI7.0 are
shown in black (RGI Consortium, 2023). The glaciers with the surge events analysed in Sects. 4 and 5 are outlined in red.

Figure 2. Data gap and temporal coverage of the time series at dif-
ferent processing levels. In blue, the proportion of the interpolated
on-glacier data gap over the time series period, after the process-
ing workflow. In orange, the proportion of days that fall below the
time interval range (e.g. 62 % of any dates in the time series periods
are between pre-processed observations less than a year apart). The
x-axes are independent; the y-axis is shared.

is used to remove points falling outside of it. The envelopes
are derivative-varying to prevent the filter from removing
accurate observed signals close to surge events (see exam-
ple in Fig. 5). We assume that fast-varying elevation (high
derivative) is a potential surge and then use a larger thresh-
old. For the first iteration, the threshold is 150 m for fast-
varying elevation above a 50 m yr−1 derivative, and then lin-
early down to 45 m at lower elevation-change rates. The

threshold is lower for the second iteration: 100 m above a
50 m yr−1 elevation-change rate, down to 30 m below. Time
series with both large temporal data gaps and a noisy signal
can create computational errors for small smoothing param-
eters. Therefore, at each regression, we implement a step-
by-step increase in the smoothing parameter in case of such
errors, depicted as the fraction value in Fig. 5. In case of
computational error remaining after a +0.05 (resp. +0.10)
increase of the fraction parameter, we filter out the full time
series.

3.1.2 ALPS – REML interpolation

Approximation by localized penalized splines (ALPS) is
a unified time series modelling framework introduced in
Shekhar et al. (2021). ALPS builds on the localized nature
of B-spline basis functions to model time series with highly
non-uniform sampling. In this research, we use a mixed mod-
elling analogue of the statistical B-spline regression model
introduced in Shekhar et al. (2021). This is motivated by the
capability of the mixed models to segregate high-frequency
and low-frequency components of the overall model, thus al-
lowing us to narrow down the effect of the regularization/s-
moothing specifically on the high-frequency components.
The latter are responsible for the overfitting behaviour of the
model, i.e. the fact that it fits too closely or exactly to the
training data and becomes inaccurate for new data. This is
particularly problematic for noisy time series like ASTER
DEMs.

Another change inherent in our approach, compared with
the approach described in Shekhar et al. (2021), is the model
fitting algorithm. The original ALPS model used the general-
ized cross validation (GCV) metric for estimating the model
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Figure 3. Workflow of the elevation time series processing, with an example of time series processed; “it.” in the time series legend stands
for iteration (of the LOWESS algorithm). The location of the time series exemplified is labelled “TSa” in the caption and map of Fig. 7c. A
version of the filtering of the time series coloured by the elevation error estimate is provided in Fig. S8.

parameters. However, here we take an alternative route and
use the restricted maximum likelihood (REML) approach for
fitting our model. The GCV metric quantifies the generaliza-
tion error of the model by making predictions at data points
that were not used to fit the regression model. Hence, the
minimization of the GCV metric forces the model to predict
accurately at unseen locations, as described in Wahba (1990).
REML, on the other hand, formulates the problem from a sta-
tistical perspective and optimizes the regression parameters
so that the probability of observing the data is maximized. A
more detailed explanation of REML can be found in Ruppert
et al. (2009). The reason for choosing REML over GCV in
this work can be attributed to the fact that GCV is well known
to underestimate model uncertainty, thereby providing over-
confident predictions, which in some extreme cases can be
misleading. Additionally, for the time series under consider-
ation in this work, the ALPS model with the original GCV-
based model fitting was overfitting to noise, making it unsuit-
able. In order to produce interpolated results in this paper, we
use the ALPS-REML code provided. After visual tuning of
the parameters on a sample set of time series, we set the de-
gree of the basis functions p to 4 and the order of penalty q
to 1 (Fig. 4). Note that the confidence interval estimated with
the ALPS-REML algorithm and represented on the figures of
this article is valid for the interpolation only and not for the
whole workflow output.

3.1.3 Comparison with Gaussian process regression

Gaussian process (GP) regression is a non-parametric
method that relies on estimating the data covariance to pro-
vide an optimized interpolator (Cressie, 1993; Rasmussen
and Williams, 2005). Under certain assumptions, including
notably second-order stationarity, GP regression has been
shown to be the “best linear unbiased predictor”. It is the
method used by H21 on the same dataset to compute long-
term mass balance estimations worldwide. We use a GP co-
variance with terms estimated in H21 through a global vari-
ogram analysis. This analysis identified several kernel com-
ponents (periodic, local, linear, etc.) that are not specifically
tuned for surges.

We note that, contrary to GP regression, ALPS approxi-
mates the data with polynomials under the assumption of a
degree of smoothness of the data, with no need for us to in-
form the behaviour of the data. Although both GP regression
and ALPS need domain knowledge to decide the covariance
kernel and spline degree/penalty respectively, from a user’s
perspective, using GP can be more complex owing to the
well-studied difficulty of optimizing the kernel, mean func-
tion, and dimensionality (Pu, 2024). For ALPS, on the other
hand, we simply manually select degrees and penalty orders
from a small set of choices.

Reparameterization of the kernel used by H21 gave
slightly worse results than those obtained with the ALPS-
REML method. Our limitation with GP regression lies in the
kernel definition, which is done according to the variance of
elevation changes. Each surge event is different in terms of

https://doi.org/10.5194/tc-19-5075-2025 The Cryosphere, 19, 5075–5094, 2025



5080 L. Beraud et al.: Surge monitoring from ASTER DEMs

Figure 4. Impacts of the different LOWESS parameters (rows 1 to 4) and ALPS parameters (rows 5 and 6) on the regression/interpolation
solutions. Plain lines are the final selected values. The columns correspond to three different data points (TSa–c, locations shown on Fig. 7c).

variance, which is also very different from the data variance
in quiescent periods or on non-surge-type glaciers. We tried
different settings of the kernels, which differ from the study
of H21. We removed the seasonal term of the model. The
length scale and the magnitude parameters of the remaining
terms were manually tuned after testing. We added radial ba-
sis function terms of length scales of a few months and with a
variance of a few tens/hundreds of square metres. The kernels
that provided a suitable interpolation were slightly outper-
formed by the ALPS-REML algorithm. This could be reeval-
uated for other datasets (e.g. less noisy), more complex steps,
or adapted GP regression processes and future advances (e.g.
de-trending before GP regression or using other predictors).

3.2 Volume transfer estimate

We estimate the volume transferred during surge events by
assessing both the positive and negative glacier net volume
changes over specific areas. Unless specified, the extent is

the surge-affected area manually drawn from the elevation
change map calculated over the surge duration. We separate
the reservoir and the receiving areas into two distinct poly-
gons. It is difficult to constrain precisely the initiation and
termination of surges. The surge dates (Table 1) are estimated
visually from two sources: the pre-processed time series and
the interpolated elevation changes. Neither of these sources
permits us to be sure of the exact month of the start or end
of the surge. We estimate the dates from interpolated eleva-
tion change (e.g. Fig. 8) when computing volume transfers;
such “apparent” dates are less exact but capture the overall
mass transferred in our generated dataset. We may also esti-
mate the dates from pre-processed time series (not affected
by filtering and interpolation defects) for information or val-
idation, which permits us to be more exact, although we are
still limited by the number of observations. For example, for
the time series Fig. S2a (from the Khurdopin glacier), the
surge-period estimate at this location from the interpolated
time series would be around June 2016 to February 2019,
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Figure 5. Complete workflow of the LOWESS filter step. The envelopes are the maximum distance threshold allowed between the LOWESS
regression and the time series values, which vary with the LOWESS regression derivatives as shown in the inserted plot on the top left.

against December 2016 to around late 2017 (there is no ob-
servation between June 2017 and July 2018, thus time series
at other locations are required for a better estimate). To com-
pute the transferred volume, we subtract the interpolated ele-
vation at two dates. We then mask the surrounding areas. We
interpolate (small) data gaps in the elevation change maps
with a bilinear interpolation. Finally, we retrieve the volume
by multiplying the mean elevation change by the delineated
area. The sum of the volume changes in the two areas gives
the volume imbalance in cubic metres. We divide the volume
imbalance by the surge-affected area to provide the metric
imbalance in metres (as if the imbalance were uniformly dis-
tributed on the surge-affected area).

3.3 Uncertainty of volume transfer estimates

We calculate indicative uncertainties of the volume transfer
estimates. These uncertainties do not explicitly take into ac-
count possible errors introduced during the filtering and in-
terpolation of each event. Our uncertainty is estimated with
the following formula.

σ1V =

√
(σh1DEM(p+ 5(1−p))Aarea)2

+(max(d1V−100 m,d1V+100 m))2

The first member of the formula accounts for the uncertainty
in the average elevation difference. The term σh1DEM rep-
resents the uncertainty in the mean elevation difference ob-
tained by propagating the pixel-wise measurement uncer-
tainty. The pixel-wise uncertainty is estimated from eleva-
tion differences between the interpolated ASTER DEMs and
reference DEMs (SPOT5 HRS, SPOT6, and HMA DEM; de-
tails in Sect. 5.1), considered as the true elevation, over four
surge events (Hispar, two dates on Braldu, and Kunyang;
Fig. 10) within the surge-affected zone. It is therefore rep-
resentative of the error on glaciers during surge events. From
each dataset, we reconstruct an empirical variogram using
the SciKit GStat Python library, and all variograms are nor-
malized by their variance and aggregated by taking the mean.
We then fit the experimental variogram with a double-range
Gaussian model (estimated ranges of 1.4 and 19 km) and
estimate the mean elevation-difference uncertainty from the
number of effective samples calculated from the model with
the xDEM Python library (Fig. S11). The term Aarea denotes
the area of the delineated zone, and p denotes the proportion
of Aarea with valid observations (ranging from 0.92 to 1, me-
dian 0.99). This formulation assumes that the uncertainties of
spatially interpolated observations are 5 times larger than the
measurement uncertainties, as in Berthier et al. (2014). The
second member of the formula estimates the volume uncer-
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tainty due to the manual delineation of the area over which
the volume change is computed. The terms d1V−100 m and
d1V+100 m are the differences between the volume change
estimated over the delineated area and the volume change
estimated over an area with a buffer of −100 or +100 m, re-
spectively. This assumes an uncertainty in our manual delin-
eation of 1 pixel, which is reasonable given the strong con-
trast in elevation on the edges of the surge reservoir and re-
ceiving areas. We propagate the uncertainties to the volume
imbalance, assuming independent errors, with the following
equation.

σV _bal =

√
(σ1V _reservoir)2+ (σ1V _receiving)2

The uncertainty in metric imbalance is then expressed as
σV _surface_bal =

σV _bal
A_total , with A_total the total area consid-

ered.

4 Results

4.1 Performance of the outlier filtering

We compare the filter and the temporal interpolation devel-
oped in this study with those of H21 in locations that are
affected by surges, but also for all glaciers in the region
(Figs. 6, 7). In H21, the iterative GP regression filtering is
responsible for removing some high-amplitude surge signals
(Fig. 6c1–2, or abnormal gap A1 circled in red in Fig. 7a).
In H21, the kernel of the GP regression filter does not model
well the elevation change that is typically observed during
some of the surge events (e.g. Fig. 6c1). In our workflow, the
LOWESS filter behaves with varying performance, depend-
ing on the time series quality (noise, temporal density, surge
amplitude). It preserves well the surge signal of 3 of the 4
events we analyse in Sect. 4.3, and this observation seems to
extend to a number of surge events in the Karakoram. Peri-
ods of low temporal density during surge events are excep-
tions, especially when combined with strong melt before and
after the surge. A typical example of such erroneous filter-
ing is a part of the front of the Khurdopin glacier (Fig. S2a).
In this time series, two critical observations are filtered out
around 2017 during the short surge. The ALPS-REML inter-
polation smooths the signal even further, as both LOWESS
and ALPS fits are sensitive to the lack of elevation measure-
ments at abrupt trend changes. Strong melt in the receiving
area increases the elevation change smoothing effect of the
fits by reducing the average elevation change locally before
and after the surge.

The LOWESS workflow is also sensitive to the weight
estimate and noise in textureless and steep areas, for ex-
ample, resulting in the filtering being oversensitive to noise
compared with the original workflow (red circles B1-2 in
Fig. 7b). This filter oversensitivity occurs on time series with
scattered elevations, and it is often due to the correlation

score that is not very representative of the actual pixel qual-
ity: outliers may have lower uncertainties than more accu-
rate observations (e.g. Fig. S2e or S7 at 15 km). These types
of location are not predominant in surge-affected areas, and
a number of them are completely filtered out during sub-
sequent filtering steps. Thus, filtered areas (data gaps) and
spurious elevations are more prevalent with our method than
with the filter of H21 over textureless accumulation areas.

In summary, our filter better preserves the surge signals
that were filtered out in the workflow of H21. However, the
new filter is more noise sensitive over textureless accumu-
lation areas and rough terrain, leading to data gaps or arte-
facts with large elevation changes. The preprocessing step
removed 46 % of the original regional dataset (number of on-
glacier pixels), and the filtering step removed a further 42 %
of the preprocessed dataset (69 % removed in total compared
to the H21 dataset). After filtering, nearly 30 % (62 %, re-
spectively) of any dates in the time series periods are be-
tween observations less than 9 months apart (1.5 years, re-
spectively). Before filtering, for the same percentage, it was
half a year (1 year, respectively) (Fig. 2, solid orange line).
The time series are about half as dense as before, temporally.

4.2 Performance of the temporal interpolation

The interpolation of H21 is a GP regression with the same
kernel as for the filtering. Figure 6a–b1 shows edge effects
at the temporal bound of the time series due to the linear
term of the kernel. It is noteworthy to mention that by its
design, the original kernel is optimized to preserve a linear
trend to extrapolate out of the observation period of each
pixel. The seasonal term of the kernel creates the 1-year
periodicity. In comparison, our workflow shows only lim-
ited border effects. The workflow presented in this study
better fits changes in trends (see, for example, Fig. 6a1–2)
and preserves most of the surge signal (Fig. 6c2). However,
dense clusters of points are regularly overfitted, creating spu-
rious high-frequency oscillations spanning typically about 6
to 12 months, as illustrated in Fig. 6c2 around 2006 and 2011
and in Fig. 6a2 around 2006. Comparing the final interpo-
lated elevation changes over 2 years (Fig. 7c–d), our work-
flow can capture the complete surge signal of the Hispar and
Braldu glaciers (red circles C1–3 in Fig. 7c), which was not
the case for the previous workflow. At these locations, the
original method of H21 completely filters out the surge sig-
nal, filling the period with the global trend or a completely
smoothed trend (e.g. Fig. S1). Moreover, several reservoir or
receiving areas of the surges show smaller elevation changes
with the H21 method, which tends to smooth remaining surge
signals, both in time and in elevation (e.g. Figs. 6c1 and S2d).
The maximum spatial coverage of on-glacier interpolated el-
evation over the Karakoram is around 80 % from 2005 to
2015 (Fig. 2, solid blue line).
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Figure 6. Comparison of the filter and interpolation methods: (a1–c1) from H21 against (a2–c2) from the workflow presented in this study.
The three time series all show a surge around 2015. Their locations are represented on the map Fig. 7c (points TSa–c). We avoid overlaying
points for readability (i.e. points exist but are masked in lower-level time series, in legend order). The confidence interval is valid for the
interpolation only and not the whole workflow output: it is the 1σ standard deviation credible interval for GP regression (H21), and it is the
95 % confidence interval for ALPS-REML (Shekhar et al., 2021).

4.3 Analysis of selected surge events

To illustrate the outputs of our method, we analyse four
surge events that have been studied in the literature. They
occur on four glaciers: Hispar, Khurdopin, Kyagar, and
Yazghil. Figure 8 shows the spatio-temporal evolution of the
glaciers’ surface elevation along their centreline (green line
on Fig. 7d). Time series extracted at regular intervals along
the selected centrelines of each glacier are shown in Sup-
plement (Figs. S3 to S7), and surge volume transfers are re-
ported in Table 1 for each glacier.

4.3.1 Hispar glacier

We observe the influence of the Kunyang tributary surge
that reached the Hispar main glacier tongue (around kilo-
metre 40) in early 2008 (Fig. 8a, area a1). The surge front
propagates downstream for several years with a decreasing

propagation rate (2009–2012; Fig. 8a, area a1), while strong
thinning starts at the junction and approximately 5 km up-
stream of the surge front. Meanwhile, a slight and more reg-
ular build-up or thickening occurs above, upslope of 25 km
(Fig. 8a, area a6). The surge of the Hispar main trunk seems
to start in early to mid-2014 and end around June 2016 (area
between the lines a2 and a3 on Figs. 7d and 8), with small
mass displacement until the end of 2017, downslope of the
Kunyang junction. Sharp spurious high-frequency oscilla-
tions of positive and negative elevation changes from mid-
2013 to mid-2014, which we attribute to artefacts of our
method, are visible horizontally on Fig. 8a. The time series
shows dense and very scattered elevation observations at this
period even on stable ground (Fig. S2c), causing these arte-
facts. This spread may be due to tilts or undulations remain-
ing in the DEMs. The results indicate that the dynamic bal-
ance line location is not stable in time. On the branch of the
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Figure 7. (a–b) Maps of maximum elevation change after filtering. (c–d) Elevation change maps over 2 years (Hispar glacier surge period).
The green points and their labels (TSa–c) in (c) correspond to the localization of the time series in Fig. 6 (a–c). Their coordinates are
(EPSG:4326): TSa (75.863, 36.055), TSb (75.295,36.089) and TSc (75.861,36.200). The green lines on (d) are the centrelines of the studied
glaciers. The red circles (A1–C3) and the dotted lines (a2–4, d3) show or delimitate areas discussed in the text. The insets for the Kyagar
glacier have the same scale as the main frames.

Hispar Pass (head of one of the main branches, location on
Fig. 7d), the reservoir area extends from 5 km from the pass,
at an icefall (line a2 on Figs. 7d and 8), down to 20 km from
the pass at the junction with the Yutmaru tributary in the first
part of the surge. From the end of 2015 to the termination
of the surge, the reservoir area limit propagates down by 5–
10 km (below the junction) (line a5 on Figs. 7d and 8). We
plot an elevation time series at this location (Fig. 6b2, loca-
tion TSb on Fig. 7c). The receiving area extends from the
end of the reservoir area at 20–25 km from the pass along the
centreline, down to nearly 40 km from the pass at the junction
with the Kunyang tributary (line a3 on Figs. 7d and 8a).

4.3.2 Khurdopin glacier

The Khurdopin glacier has a strong mid-glacier thicken-
ing signal until the surge onset. The distinct area of posi-
tive elevation-change trend extends down-glacier for at least
15 years (Fig. 8b, area b1). This mass build-up may be the ge-
ometrical readjustment of the glacier in its quiescent phase,

after the previous surge in 1998 (Quincey et al., 2011). The
lower limit of this build-up area propagates downward from
about 25.5 km of the glacier head in 2001 to about 33.5 km in
2015. The limit advances approximately 600 m per year dur-
ing this period, which is about 7 times faster than the surface
velocity (measured 2 km upstream of the front), according
to velocities (temporal baseline from 300 to 430 d) from the
NASA MEaSUREs ITS_LIVE project repository (Gardner
et al., 2024, 2025). During this period, we do not observe a
clear mass transfer from an upper reservoir area, which thus
seems different from a slow surge onset. The upper limit of
the build-up area (which will mostly become the reservoir
area) is stable in time, at the bottom of two icefalls for the
two main branches just above their junction. The surge starts
in 2016, with the build-up front becoming a surge front with
a higher propagation rate. Both our filter and interpolation
methods here fail to fully capture the surge signal of the re-
ceiving area (see discussion in Sect. 5.3). This failure leads
to an apparent surge end in early 2019 on interpolated data,
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which is overestimated by about a year and a half according
to non-interpolated time series (Fig. S2a). A distinct and lo-
cal positive elevation change pattern is visible after the surge
around kilometre 23 (Fig. 8b, area b2).

4.3.3 Kyagar glacier

The Kyagar glacier is located about 110 km east of the other
glaciers (Fig. 1). A slight mass build-up is visible from the
beginning of the time series in the first 10 km of the glacier,
and extends down to about 14 km a few years before the surge
(Fig. 8c, area c1). The surge, as shown on the interpolated
data, starts in 2013 or the beginning of 2014 and ends around
2016 (Fig. 8c, area c2). However, the actual surge is certainly
shorter. The beginning of the surge appears sooner in the in-
terpolated time series, and the end is also represented nearly
a year later from what is visible on the non-interpolated time
series of most of the receiving area. During the surge period,
there are about 1–2 observations per year. An area of poor
quality in the ASTER time series results in artefacts after
processing at 5 km from the glacier head, which is located
around the equilibrium line of the glacier (Fig. 8c, area c3).
This area seems to be in the reservoir area, therefore causing
a bias in the volume transfer calculation. We manually draw
a mask to remove artefacts for a better estimate (Table 1).

4.3.4 Yazghil glacier

Our dataset captures a full surge cycle of the Yazghil glacier.
On this glacier, the surge signal has a low amplitude (approx-
imately 10 m) compared to the time series, and thus noise is
often overfitted, resulting in frequent interpolation artefacts.
Some seasonal signal seems also to be fitted, for example
during the period 2013–2016 thanks to denser and consistent
time series (horizontal lines on Fig. 8d). A surge starts around
August to November 2003 and ends around October 2006 to
February 2007 (Fig. 8d, area d1), and a new surge starts in
2016 or 2017 (the end is not captured; Fig. 8d, area d2). The
build-up phase of the second surge is visible, representing
about half of the quiescent phase (Fig. 8d, area d3, delim-
ited by dotted lines d3 on Fig. 7d). One of the tributaries of
the Yazghil glacier (junction at km 18) is also surge-type and
seems to have surged during our study period in about 2008–
2013.

5 Discussion

5.1 Processing quality

To assess the quality of our results, we (1) compare our inter-
polated elevations with external DEMs produced from high-
resolution satellite imagery, and (2) test the sensitivity of the
interpolation to data gaps.

We compare the interpolated elevation with external
DEMs produced from optical very-high-resolution satellite

imagery (Fig. 9). This comparison provides a validation of
estimated elevation during a few surge events. We use SPOT5
HRS and SPOT6 DEMs generated by Berthier and Brun
(2019), and along-track HMA DEMs (Shean, 2017) (list in
Table S2 of the Supplement). We co-register each external
DEM on the ASTER interpolation on stable terrain. The
normalized median absolute deviation (NMAD) after co-
registration ranges from 6.8 to 15.6 m (median 7.4 m), which
shows good agreement with discrepancies of a few metres.
Extreme cases occur locally, with differences reaching tens
of metres, but it is generally unclear which dataset is flawed.
The case study of the Khurdopin glacier surge shows that a
wrong estimate of a hundred meters can occur for our work-
flow on exceptional events and at precise dates during the
surge (Fig. S2a). The map of elevation differences on the
glaciers shows differences of a few metres overall, which is
moderate compared to the amplitude of the surge elevation
change (Fig. 10). The difference may be important, such as
several tens of metres locally at the surge front (e.g. Fig. 10a–
b at the Kunyang–Hispar junction). Across the entire glacier
areas, consistent discrepancies are observed. For instance, on
13 October 2015, the Hispar glacier exhibited a median dif-
ference of −4.3 m with a standard deviation of 9.7 m. Sim-
ilarly, on 28 November 2015, the Braldu glacier exhibited
a median difference of −5.2 m with a standard deviation of
8.7 m. Larger local differences are located around the surge
front: e.g. up to 24 m at the Hispar surge front on 13 Oc-
tober 2015. The elevation difference values during a surge
event and during quiescence do not show important differ-
ences at the scale of the surge-affected area (Fig. 11). The
discrepancy associated with a surge period is, overall, of the
same magnitude as other noise, considering the large disper-
sions.

One of the main limitations of our results comes from the
relative temporal sparsity of the input observations. Here, we
investigate the impact of data gaps on our interpolated time
series. Some parts of our study area are characterized by
a low temporal density of observations during surge events
(e.g. less than three observations per year) (Fig. 1). In such
situations, our method of filtering and interpolation usually
leads to an underestimate of the transferred volume and an
overestimate of the surge duration (e.g. twice its duration for
the Kyagar glacier). Onset and end dates cannot be deter-
mined precisely between two observations separated by more
than 6 months or a year, even on filtered series, as occurs for
the Kyagar glacier.

To test the sensitivity of the ALPS-REML method to data
gaps, we interpolate an elevation time series after removing
all points in a 450-day moving window (Fig. 12). Each itera-
tion results in a period of at least 450 days without observa-
tion, which is common in the filtered series. For instance, on
the surge-affected area of the Kyagar glacier, which is subject
to a lack of observation for our processing, there are on av-
erage three time intervals of 400–500 days without observa-
tions per time series (in comparison, there is one time interval
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Figure 8. (a–d) Interpolated surface elevation time series along the centreline of four glaciers (in green in Fig. 7d). Glaciers flow from left
to right on the different panels. Note that the colour scales represent different elevation-change-rate amplitudes and that they are non-linear.

for the Hispar glacier). For the selected time series Fig. 12a
and c, the test shows strong smoothing, although the surge
signal is still visible over large time frames. The interpolated
dates of the surge onset (respectively, ending) are advanced
(respectively, delayed) by up to 2 years compared with the
original interpolation. The surge elevation change can be un-
derestimated by up to 20 m. This can be larger for longer

time gaps or surges with stronger elevation changes before
or after the surge. The case shown on Fig. 12b is specific as
it lies close to the dynamic balance line (in the receiving area
at an early stage of the surge, and then in the reservoir area).
The surge signal is completely smoothed out when data gaps
occur in the middle of the surge. Other specific surge cases,
with limited elevation changes but with strong melt or strong
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Table 1. Timing and transferred volume of the surges of four glaciers in the study area. The main dates are given according to the interpolated
elevation time series on the centrelines (Fig. 8). We compute the transferred volume (“vol. change”) from interpolated DEMs at these dates to
estimate the corresponding volume change from both reservoir and receiving areas. The dates between brackets are those estimated visually
on non-interpolated time series and are thus less smoothed; they are given for indication. They are not accurate to the month due to ASTER
acquisition dates. The volume change and the imbalance computation method is detailed in Sect. 3.2. For these glaciers, the percentage data
gap after the workflow presented in this study ranges from 0 to 5.6 % (median 1.4 %), and after bilinear interpolation the range is 0 to 0.8 %
(median 0.2 %). The prefix of RGI codes is “RGI2000-v7.0-G-14-” (RGI Consortium, 2023).

Glacier Date start Date end Reservoir vol. change Receiving vol. change Imbalance
RGI 7.0 code [time series] [time series] [Surface area] [Surface area]

Hispar 2014-01 2016-09 −2421± 374× 106 m3 3108± 177× 106 m3 687± 414× 106 m3

21670 [2014-05] [2016-06] [106 km2] [48 km2] 4.46± 2.69 m

Yazghil 2003-07 2007-01 −32± 30× 106 m3 63± 26× 106 m3 32± 40× 106 m3

21865 [2004-01] [2006-08] [8 km2] [6 km2] 2.20± 2.77 m

Khurdopin 2016-03 2019-03 −813± 136× 106 m3 713± 64× 106 m3
−100± 150× 106 m3

21665 [2016-04] [2017-07] [33 km2] [15 km2] −1.9± 1.64 m

Kyagar 2012-11 2017-01 −271± 92× 106 m3 269± 55× 106 m3
−2± 107× 106 m3

14958 [2013-10] [2015-12] [21 km2] [8 km2] −0.07± 3.64 m

Kyagar – – −217± 116× 106 m3 269± 55× 106 m3 52± 128× 106 m3
without artefact [20 km2] [8 km2] 1.33± 3.54 m

build-ups before or after the surge, could be prone to the same
problem.

5.2 Comparison with elevation change from H21

We assess pixel-level differences in the elevation-change es-
timate between the processing workflow of H21 and this
workflow. Previous figures showed local differences; here we
compare the elevation changes of pixels belonging to eight
surge events (Fig. 13, individual graphs on Fig. S9). There is
a strong smoothing of the H21 dataset which tends to filter
the positive elevation changes occurring in surge receiving
areas. They are better interpolated by our workflow (Fig. 13
zone A). No symmetric pattern is visible for negative changes
in reservoir areas, probably due to the smaller rates of el-
evation changes. This erroneous filtering occurs mainly for
surges with important and rapid elevation changes: surges
of the Hispar, Braldu, and Kunyang glaciers (Fig. S9), and,
to a lesser extent, the Khurdopin glacier surge. For such
glaciers, major differences in total volume change are ex-
pected. This is clear in the transferred volume estimates from
the H21 dataset on the Hispar and Khurdopin glacier surges
(Table S1). Other glaciers also have smaller estimated vol-
umes than with our method, but with smaller discrepancies.
Compared with H21, our method finds larger absolute rates
of elevation changes (pattern B on Fig. 13), probably due to
the stronger smoothing of H21 (e.g. Fig. 6a1 or Fig. S2d). On
the other hand, our method creates some artefacts, especially
in the accumulation areas where elevation changes are close
to zero (zone C on Fig. 13). This is the case for the Kyagar
and Braldu glacier surges (Fig. S9). This figure also illus-

trates the unequal distribution of elevation changes between
the reservoir and receiving areas, which is observed for all
analysed surges (Fig. 13). Elevation changes are consistently
much larger in the receiving areas, whether the glacier front
is advancing or not. This is balanced by the extent of the
reservoir areas, which are larger than those of the receiving
areas.

On a larger scale, we compare the individual glacier aver-
age elevation change between H21 and this workflow for the
period 2005–2015 (Fig. S10). The mean elevation changes
are more negative with our workflow (by about 0.44 m for
the median value). The discrepancy is larger for surge-type
glaciers compared with non-surge-type glaciers (0.57 and
0.31 m with standard deviations of 1.1 and 1.02 m, respec-
tively). Considering the better retrieval of positive eleva-
tion changes of our workflow for surges, we would expect
a positive discrepancy for surge-type glaciers. A number of
glaciers have artefacts in our dataset, especially negative ele-
vation changes in accumulation areas. At regional scale and
possibly glacier scale, the impact of noise may exceed the
impact of the improved estimate in areas of positive changes,
due to the small number of surge events happening during
this period. For calculating geodetic glacier mass balance,
the H21 dataset is therefore the preferred choice for non-
surge-type glaciers or quiescent periods, and a validation of
the elevation interpolated by our method is recommended.
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Figure 9. (a–c) Comparison between elevations from SPOT DEMs
(SPOT5 HRS and SPOT6) and HMA DEMs and ASTER elevations
interpolated at the same dates. The time series are identical to previ-
ous ones (TSa–c in the panel order, Fig. 7c). The confidence interval
is valid for the interpolation only and not the whole workflow out-
put.

5.3 Comparison of surge characteristics with the
literature

5.3.1 Hispar glacier

Regarding the surge of the main trunk of Hispar described
in Sect. 4.3, our date estimates from both interpolated and
pre-processed time series (early 2014 to mid-2016) are close
to the date estimated in previous studies (autumn 2014 to
mid-2016), which were based on remotely sensed velocities
(Guo et al., 2020; Paul et al., 2017). Paul et al. (2017) no-
tice a 6 month stop of the surge front around 35 km up to
mid-2015, which is slightly visible here at a similar time
(Fig. 8a, line a3). The fact that the reservoir area does not
extend above the icefall has already been observed on other
glaciers, including Khurdopin in our study (Nolan et al.,
2021; Echelmeyer et al., 1987). The displacement of the dy-
namic balance line during this surge has not been mentioned
in other studies for Hispar, as the data they use (velocities
and a limited number of DEMs spaced in time) may not al-

low this phenomena to be observed (Guo et al., 2020; Paul
et al., 2017; Rashid et al., 2018). However, the phenomenon
has already been reported and attributed to variations in
driving stress (Burgess et al., 2012). Bhambri et al. (2022)
estimate volume changes over the period 2014–2020 from
ASTER DEMs of −2785× 106 m3 in the reservoir area and
2581.6± 465×106 m3 in the receiving area. Our estimate for
the reservoir area differs by 13 %, and by 20 % in the receiv-
ing area (Table 1). The smaller volume estimated by Bhambri
et al. (2022) may be explained by the melting of the deposited
ice volume during the 3 or 4 years that separate the surge
termination and elevation observations. If we extend the pe-
riod of volume change calculation from October 2014 to Au-
gust 2018 (the latest date before large data gaps in our time
series) to better match that of Bhambri et al. (2022), we esti-
mate a volume change of−2255± 181/2634± 410×106 m3

(19 % and 2 % difference, respectively), which is closer to
their estimate. The differences are within uncertainties, al-
though there is a 2-year difference between the two esti-
mate periods. The difference between our estimated volume
gain and loss is equivalent to a layer of 4.46± 2.69 m thick-
ness over the surge area. This imbalance is unexpected as
the surge occurs over a short time period and mass should
be roughly conserved. The imbalance is quite similar when
using two filtered ASTER DEMs over a similar period, in-
stead of the interpolated series, or when calculated over the
full glacier system instead of over the delineated reservoir/re-
ceiving areas. Another possible source of imbalance is the
impact of crevasse opening during the surge, which can rep-
resent a non-negligible volume change. As an example, the
opening of crevasses can be equivalent to up to 0.2 m thick-
ness at regional scale of the Greenland Ice Sheet (Chudley
et al., 2025). As inland parts of these regions are largely
crevasse-free, we can expect such impact on the volume to be
significantly larger over the highly crevassed post-surge sur-
face of Hispar glacier. By mid-2018 our imbalance is close
to zero, as is the imbalance of Bhambri et al. (2022) with
an end term in 2020, when a number of crevasses have al-
ready closed. The Khurdopin and Kyagar glaciers were al-
ready highly crevassed before the surge, and so the crevasse-
opening effect may be less important.

5.3.2 Khurdopin glacier

We now discuss the recent surge of the Khurdopin glacier
(March 2016 to March 2019; Table 1). The geometry read-
justment and the propagation of a build-up front during qui-
escence have not been described on this glacier, to our knowl-
edge. The existence of kinematic waves or surge fronts that
propagate the surge instability have regularly been observed
on other surges (e.g. Cuffey and Paterson, 2010; Kotlyakov
et al., 2018; Turrin et al., 2013), with an unclear definition
of the phenomena. For Khurdopin, the mechanism seems
different from both a kinematic wave and a slow surge on-
set. As opposed to these processes, here we observe a con-
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Figure 10. (a–d) Elevation difference between SPOT DEMs (SPOT5 HRS and SPOT6) and HMA DEMs against ASTER DEMs interpolated
at the same dates. The areas selected are the Hispar glacier (a, surge in 2014–2016), its Kunyang tributary (b, surge in 2007–2008), and two
areas of the Braldu glacier (c–d, surge in 2013–2016). The panels have the same colour range. The green dots show sampled time series
(Figs. 6, 7c and 9).

Figure 11. Histograms of the elevation difference between the reference DEMs and the DEMs of our workflow interpolated at the same
dates. We consider only surge-affected areas. Vertical dotted lines show the median of each histogram. The largest median is 5.18 m (resp.
−5.63 m) during surge (resp. during quiescence).

stant thickening after the downward extension of the build-
up area with no upper reservoir area drained. Turrin et al.
(2013) observed, with velocity data, the propagation of a
surge front (moving as a kinematic wave) several years be-
fore the surge of the Bering glacier, triggered by the passing
of the front through the reservoir area. The build-up lower
limit for Khurdopin also propagated faster than the surface

velocity. The surge started in October 2016 according to Im-
ran and Ahmad (2021), about 7 months later than our esti-
mate (Table 1), and late August 2015 according to Steiner
et al. (2018). The volume received in the receiving area is
estimated at 1182× 106 m3 during late August 2015 (eleva-
tion extrapolated linearly from TanDEM-X in 2011) to May
2017 (ASTER) data (Jakob Steiner, personal communica-
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Figure 12. Sensitivity of our interpolation method to large data
gaps. For the three selected time series (TSa–c of Fig. 6 and lo-
cation visible on Fig. 7c), we remove points during 450 continuous
days over a moving window and run the interpolation, displayed
with orange lines.

tion, 2024). Our estimate over a similar period (1 Septem-
ber 2015 to 1 June 2017) is 426± 34× 106 m3. The two es-
timates do not agree, although we do not have an uncertainty
estimate for the volume from Steiner et al. (2018). Our fil-
ter and interpolation methods fail to fully capture the surge
signal of the receiving area in the lower part of the glacier
(Fig. 8b area b3). This failure is due to a low point den-
sity combined with a strong thinning signal after the surge
(Fig. S2a, in 2017). The filtering workflow removes some of
the 2–3 DEM acquisitions over 2017 and 2018, which have
credible values. May 2017 is the month with the largest dif-
ference between the DEM observations and the interpolation,
with an elevation-change underestimation that reaches 100 m
compared with the pre-processed time series. Over a portion
of the receiving area, the apparent surge signal duration af-
ter interpolation is about 3 years, instead of approximately
1 year on pre-processed time series, and may miss locally a
maximum of 40 m (about 30 %) of the surge elevation ampli-
tude over these 3 years. Our estimate of the transferred vol-
ume in Table 1 is thus underestimated in the receiving area.
Our uncertainty estimate is also largely underestimated, as it
does not take into account the erroneous filtering. The differ-
ence of the pre-processed DEMs from 20 August 2015 and

Figure 13. Histogram of interpolated elevation-change comparison
over eight surges between the original processing from H21 and this
workflow. The superimposed histograms of the eight surge events
are represented individually in Fig. S9. The elevation changes are
retrieved over the surge-affected areas and the surge period is esti-
mated from the interpolated elevation time series on the centrelines.
The areas and trends designated in red are discussed in Sect. 5.2.
They highlight areas of large surge smoothing or removal (zone A)
or overall smoothing of elevation changes (trend B) by the origi-
nal method (H21), and artefacts created by the presented workflow
(zone C).

21 May 2017 shows a cumulative positive volume change of
650× 106 m3. This is 153 % more than with the interpola-
tion, yet nearly half of the estimate of Steiner et al. (2018),
which may be also partially overestimated due to their lin-
ear extrapolation, as the 2000–2011 trend does not account
for the later build-up front propagation that we observe. The
maximum thickness gain noted by Steiner et al. (2018) was
160 m over this period, against 122 m with our pre-processed
DEMs (70 m on interpolated DEMs). The case of the Khur-
dopin surge shows that our workflow may be inefficient in
preserving a surge signal in the case of a low number of ob-
servations, worsened by strong thinning outside the surge pe-
riod.

5.3.3 Kyagar glacier

The Kyagar glacier is located in an area of poor ASTER cov-
erage compared with other selected glaciers (Fig. 1). During
the surge period, there are about 1–2 observations per year,
which leads to a smoothing of the surge signal during in-
terpolation. Thus, the onset and ending are visible around
end 2012 and early 2017 on interpolated data, while pre-
processed time series lead to a more restricted estimate of
mid- or end 2013 (earlier observation in October after a
14 month data gap) to December 2015. Round et al. (2017)
use satellite imagery to compute velocities and precisely de-
scribe the surge development. They find a surge onset in May

The Cryosphere, 19, 5075–5094, 2025 https://doi.org/10.5194/tc-19-5075-2025



L. Beraud et al.: Surge monitoring from ASTER DEMs 5091

2014 after a pre-surge acceleration of 2.5 years and a surge
end between July and August 2015 with limited decelera-
tion later. Li et al. (2023) find very similar timings plus a
continuing deceleration in 2016–2019. Gao et al. (2024) re-
port similar timing, although they consider a re-acceleration
in 2016 as part of the surge. Gao et al. (2024) estimated
the volume transported from ASTER DEMs. During the pe-
riod from July 2012 to December 2017 they estimate the
received volume to be 321± 12× 106 m3, compared with
262± 46× 106 m3 for our interpolated data. Their reservoir
area volume-change estimate is−383± 30×106 m3, against
−326± 96× 106 m3 for our dataset over the same dates and
approximate area (−283± 104× 106 m3 with bilinear inter-
polation of the area affected by artefacts). It represents differ-
ences in the transferred volume estimate of 18 % and 15 %.

5.3.4 Yazghil glacier

The Yazghil glacier has not been extensively studied. Bham-
bri et al. (2017) date the last surge to 2006, with a gradual
increase in velocities before this year. The study estimates
from 1972–2016 data that Yazghil glacier has a cycle length
(surge repetition period, including quiescence and surge du-
rations) of about 8 years, among the shortest surge cycles in
HMA (Bhambri et al., 2017; Vale et al., 2021; Yao et al.,
2023). The next surge, which was expected to occur around
2014 based on the cycle length, had not started by the end of
2016, according to the study. Our data suggest that it started
1–2 years later, implying a quiescent phase of 11–13 years
for this cycle.

5.3.5 Conclusion of the case studies

Overall, the dataset produced by our workflow compares well
to existing observations from the literature. The surge dates
and the estimated transferred volume agree, except for the
date of the Kyagar surge and the transferred volume of the
Khurdopin surge (Table 1). The order of magnitude of the im-
balances corresponds to the order of magnitude of the mea-
surement uncertainty. For the two critical cases (Kyagar and
Khurdopin surges), the workflow shows its limitations in the
case of a low number of DEMs, worsened in the case of a
strong thinning signal outside the surge period (Khurdopin
surge). Our dataset offers new insights on some undescribed
processes in these studies, such as the displacement of the dy-
namic balance line of the Hispar surge or the propagation of
a surge front during the build-up phase preceding the Khur-
dopin surge.

5.4 Applicability to other datasets

Here we discuss the feasibility of applying the proposed
workflow to different datasets, possibly including several
data sources to increase temporal resolution (i.e. DEMs from
different sensors). Even in the case of a similar ASTER DEM
dataset processed differently, with lower noise/higher preci-

sion, several changes may be made to adapt the filtering. For
denser series, a diminution of the span parameter along with
a diminution of the filter threshold in the LOWESS workflow
should be tested. Abandoning morphological erosion should
also be considered. It addresses an issue specific to the pho-
togrammetric processing which tends to affect pixels neigh-
bouring outliers. Deleting this step would be beneficial given
the large number of pixels it removes. The use of weighting
could also be abandoned in the case of more precise DEMs,
as the uncertainty values are not completely representative of
the confidence in the measurement. The ALPS-REML pre-
diction parameters could remain unchanged, although the hy-
perparameter degree of the basis functions p and the order of
penalty q can be modified to adjust the smoothing and bor-
der effects. More complex considerations would be required
in the case of several data sources. More particularly, the
weighting may be defined differently to ensure consistency
between the datasets.

6 Conclusions

We present a new workflow for processing DEM time series
of high temporal resolution that is specifically designed to
preserve the elevation signal of glacier surge events. We ap-
plied the workflow to a dataset from the ASTER sensor over
the period 2000–2019. We filter the data with a LOWESS
algorithm, which preserves the surge signal. Some filter is-
sues can appear in difficult areas, which are often not located
in surge-affected areas (e.g. textureless accumulation areas,
steep slopes). The elevation interpolation (B-spline method
ALPS-REML) allows for the observation of surge dynam-
ics and the estimate of mass transfers at a monthly inter-
val. Surge events with too few DEM observations tend to be
smoothed, resulting in an underestimation of the surface el-
evation change and surge duration. In our study area in the
Karakoram (HMA), our method provides interpolated time
series for 80 % of glacier pixels. Our workflow better pre-
serves surge events compared with the original non-surge-
specific workflow. The data obtained are fairly comparable to
those from independent studies on several events, except in a
few cases. We find discrepancies in the estimated transferred
volumes compared with previous studies ranging from 2 %
to 19 % on two surge events and four volumes transferred,
and 64 % on the Khurdopin surge. The workflow, applied to
ASTER DEMs but which can be adapted to other datasets,
can generate a unique elevation time series able to repre-
sent thickness changes of surge events on a monthly scale
over a regional extent. It opens new possibilities for the com-
bined analysis of elevation and velocity change during surge
events, or more complex derivatives such as surface slope
and driving stress.
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Code and data availability. Although the study of Shekhar et al.
(2021) describes only the ALPS-GCV implementation, the code
provided with that study in the repository https://github.com/
p-shekhar/ALPS Shekhar (2020) also contains the implementa-
tion of ALPS-REML, which was used without changes in our
study except for parameters declared in Sect. 3.1.1. The code
of our workflow can be found at the following repository:
https://doi.org/10.5281/zenodo.14045604 (Beraud et al., 2024).
Sample data of elevation change and surge-affected areas for the
four selected glaciers are also available in that repository. Finally,
data including interpolated datasets covering the Karakoram and
other mountain ranges affected by surge events in HMA will be
added in future versions of the repository during the months fol-
lowing publication.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-5075-2025-supplement.
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