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Abstract. Snowfall is an important climate change indicator
affecting surface albedo, glaciers, sea ice, freshwater stor-
age, cloud lifetime, and ecosystems. Precise snowfall mea-
surements at high latitudes are particularly important for the
estimation of the mass balance of ice sheets; however, the
snowfall is difficult to quantify with in situ measurements
in those locations. In this context, spaceborne radar and ra-
diometer atmospheric missions can help in the assessment of
snowfall at high latitudes.

The decommissioned NASA CloudSat mission provided
invaluable information about global snowfall climatology
from 2006 to 2023. The CloudSat-based estimates of global
snowfall are considered the reference for global snowfall es-
timates, but these data suffer from poor sampling and the in-
ability to see shallow or retrieve heavy precipitation, which
limits their use, for example, as input to surface mass bal-
ance models of the major ice sheets. WIVERN (WInd VE-
locity Radar Nephoscope), one of the ESA Earth Explorer
11 selected missions, is equipped with a conical scanning
94 GHz Doppler radar and a passive 94 GHz radiometer, with
the main objective of measuring global in-cloud horizontal
winds, but also quantifying cloud ice water content and pre-
cipitation rate. Its conically scanning system, with a 42° inci-
dence angle, is expected to reduce the radar blind zone near
the surface (especially over the ocean) and allows the mission
to have a swath width of 800 km and 70 times more sampled
points than a fixed-looking instrument. The proposed radar
measurements tackle the current uncertainties in snowfall es-

timates, highly improving the sampling frequency and accu-
racy of snowfall measurements.

The uncertainty in snowfall measurements arises from var-
ious factors, including the diurnal cycle, uncertainty in the
Z–S relationship, and the sampling error. This study quanti-
fies each of these contributors individually and demonstrates
the improved sampling capabilities of the WIVERN coni-
cally scanning geometry for some specific regions (Antarc-
tica, Greenland) by computing the sampling error at different
spatial and temporal scales via simulations of WIVERN vs.
CloudSat orbits and scanning geometry, based on the snow-
fall rates produced by ERA5 reanalysis.

Results show that a WIVERN-like conically scanning sys-
tem significantly reduces the uncertainty in polar snowfall
estimates if compared to a CloudSat-like near-nadir fixed
viewing geometry. While CloudSat generates acceptable er-
rors at the annual zonal scales, WIVERN can produce es-
timates within the climatological variability for latitude–
longitude domain larger than 0.5°× 0.5° already at the
monthly timescale, making it a valuable product for regional
climate model evaluation and as an input to surface mass bal-
ance models of the major ice sheets and glaciers.
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1 Introduction

In polar regions and mid-latitudes, most precipitation is
formed through the ice phase as snowfall (Mülmenstädt et al.,
2015). For high latitudes and mountainous regions, it is the
dominating form of precipitation on the ground (Field and
Heymsfield, 2015). Therefore, snowfall not only removes
moisture form the atmosphere but also plays a crucial, inter-
linking role in the climate system. In the cryosphere, snowfall
is the only mass source term for glaciers and ice sheets and is
thus crucial for their mass balance (Souverijns et al., 2018a).
On sea ice, snow forms an insulating layer between sea ice
and the atmosphere, impacting sea ice lifetime (Perovich
et al., 2017). On land, snow modifies the surface albedo,
which is relevant for the ice–albedo feedback (Hall, 2004).
Furthermore, snow cover impacts ecology (Slatyer et al.,
2022), traffic safety (Strong et al., 2010), recreation (Steiger
et al., 2019), and freshwater storage, which is also relevant
for hydropower generation (Wasti et al., 2022). In a warming
climate, precipitation amounts and extreme events, includ-
ing heavy snowfall, are expected to increase (Quante et al.,
2021), but the estimates of the exact magnitudes are affected
by large uncertainties (Lopez-Cantu et al., 2020). This is be-
cause the exact pathways through which ice particles, liquid
water, cloud dynamics, and aerosol particles are interacting
during snow formation are not well understood (Morrison
et al., 2012; Griesche et al., 2021).

Better observations of the fingerprints of snowfall forma-
tion processes at sufficient spatio-temporal resolution are
needed to advance our understanding of ice- and mixed-
phase clouds and precipitation formation processes (Morri-
son et al., 2020). Traditionally, snowfall is measured with in
situ gauges, but high spatial variability (Scipión et al., 2013),
poor coverage (Kidd et al., 2017), and wind-related under-
catch (Yang et al., 1999) pose significant challenges.

The deficits of in situ snowfall observations require the use
of remote sensing techniques. Because ground-based remote
sensing with weather radar is available only in densely pop-
ulated areas, and few sites are equipped with radars in the
polar regions (e.g. Matrosov et al., 2008; Souverijns et al.,
2018b; Li et al., 2021; Schoger et al., 2021; Matrosov et al.,
2022; Tridon et al., 2022; Alexander et al., 2023), space-
borne remote sensing techniques are the prime method to
observe snowfall globally. Passive microwave sensors such
as the AMSU (Advanced Microwave Sounding Unit) offer
good spatial coverage due to their kilometre-scale imaging
capabilities, but passive microwave signals are also impacted
by surface properties (Chen and Staelin, 2003; Skofronick-
Jackson et al., 2004; Skofronick-Jackson and Johnson, 2011)
and the presence of supercooled liquid water (Wang et al.,
2013; Battaglia and Panegrossi, 2020; Panegrossi et al.,
2022), which are difficult to separate from atmospheric scat-
tering contributions by frozen hydrometeors.

Due to their unique profiling capabilities, radar can pro-
vide profile properties of hydrometeors and separate scatter-

ing by hydrometeors from the surface. Even though the con-
version into snowfall rates is associated with uncertainties re-
lated to indirect observation, spaceborne radars on low-orbit
satellites such as CloudSat (Stephens et al., 2002) and Earth-
CARE (Wehr et al., 2023) provide the best way to observe
snowfall globally (Milani and Kidd, 2023). CloudSat snow-
fall measurements have been successfully evaluated with
ground-based in situ (Hiley et al., 2011) and ground-based
radar networks (Smalley et al., 2014; Mroz et al., 2021). The
data have been used to produce snowfall climatologies (Liu,
2008; Palerme et al., 2014; Stephens et al., 2018; Bennartz
et al., 2019; Kulie et al., 2020), which are most relevant in
regions with sparse in situ observations such as Antarctica
or Greenland. Further, CloudSat data were used to study sea-
sonal cycles (Kulie and Milani, 2018), evaluate climate mod-
els (Palerme et al., 2017), and study the surface mass balance
of ice sheets (Boening et al., 2012; Milani et al., 2018). How-
ever, the combination of CloudSat’s revisit time of 16 d com-
bined with the 1 km footprint of the observations leads to a
sparse spatial sampling, causing noise in snowfall climatolo-
gies even when averaging over 10 years (Kulie et al., 2020).
Further, it was found that CloudSat’s snowfall retrieval has
biases for snowfall rates exceeding 1.0 mm h−1 (Cao et al.,
2014). Due to surface clutter contamination, CloudSat can-
not observe snowfall in the blind zone, which is up to 1200 m
thick and can lead to an underestimation of snowfall rate for
shallow events but also to an overestimation of snowfall rate
due to sublimation (Maahn et al., 2014).

In this study, we show the potential of the ESA Earth
Explorer 11 selected mission WIVERN (WInd VElocity
Radar Nephoscope; http://www.wivern.polito.it (last access:
15 June 2024); Illingworth et al., 2018; Battaglia et al.,
2018, 2022; ESA, 2025; Rizik et al., 2023; Tridon et al.,
2023) to monitor global snowfall. Different to CloudSat and
EarthCARE, WIVERN’s cloud radar will not measure at
nadir but will scan conically at a 38° off-nadir angle (for mea-
suring horizontal in-cloud wind) and also features a 94 GHz
passive channel. WIVERN will be characterized by a smaller
blind zone over ice-free ocean (Coppola et al., 2025) and has
the potential for improved snowfall retrievals due to the avail-
ability of a passive channel (Battaglia and Panegrossi, 2020).
However, over land and sea ice, WIVERN’s blind zone is an-
ticipated to be larger than that of CloudSat, potentially lim-
iting its capability to observe shallow-snowfall precipitation
events. This work focusses on how the conical scanning, with
70 times better coverage than for a nadir-pointing instru-
ment such as CloudSat or EarthCARE, improves snowfall
estimates. The analysis is based on three main assumptions.

– Blind zone effect. The impact of the blind zone is re-
lated to the snowfall regime. With shallow snowfall be-
ing the most common, a significant number of snowfall
events occur below CloudSat’s blind zone (Shates et al.,
2025). While WIVERN’s surface snowfall retrieval per-
formance would improve over ice-free oceans compared
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to CloudSat due to reduced blind zone effects, it would
decrease over land and sea ice. The blind zone effect
is not accounted for in the current snowfall estimate
analysis. However, the resulting impact on estimates is
examined in Sect. 4. Coppola et al. (2025) provides a
detailed discussion on the hydrometeor detection near
the Earth’s surface in WIVERN and CloudSat measure-
ments.

– Z–S relationship assumption. The Z–S relationship is
assumed to be unbiased. In practice, theZ–S is typically
application dependent.

– Attenuation is neglected, and its contribution is ex-
pected to reduce the SNR (signal-to-noise ratio) at very
high snowfall rates. Also, it is expected to be larger for
WIVERN due to its slanted observation geometry.

WIVERN and the methodology are introduced in Sect. 2, re-
sults are presented in Sect. 3, the ground clutter impact on
surface snow precipitation is discussed in Sect. 4, and con-
cluding remarks are given in Sect. 5.

2 Methodology

The basis for this work is the ERA5 hourly surface snow-
fall (water equivalent) reanalysis product (Hersbach et al.,
2023a), as it is considered to have realistic spatio-temporal
snow fields (Kouki et al., 2023). The ERA5 snowfall dataset
that was used in the analysis has a spatial resolution of
0.25°× 0.25° and covers a total time span of 20 years
from 2001 to 2020. We use it as a benchmark to com-
pare the accumulated snowfall retrieved by WIVERN-like
and CLOUDSAT-like radar instruments, both simulated with
the same ERA5 dataset. The sampling of the radar foot-
prints was computed based on the viewing geometry (see Ta-
ble 1) and the satellite orbits, which have been propagated
in the period of interest according to the orbital parameters
reported in Table 1. Then, for each time stamp of the se-
lected ERA5 dataset, a mask that indicates whether any given
0.25°× 0.25° grid point of the geolocated snowfall dataset
is sampled by the instrument is generated according to the
radar footprints’ positions on the ground. With a conically
scanning radar, several passes over the same grid point may
occur within minutes, but we count several passes within 1 h
as one.

The mask was applied to the ERA5 snowfall dataset to pro-
duce two datasets, with the snowfall simulated as observed
by the CloudSat and WIVERN instruments using the follow-
ing procedure. The hourly ERA5 snowfall, S, is converted to
the equivalent radar reflectivity factor ze according to a mean
climatological relationship as proposed by Hiley et al. (2011)
through

ze = ameanS
bmean amean = 21.6, bmean = 1.2, (1)

with ze in mm6 m−3. Typically, reflectivity is used in loga-
rithmic units, with dBZ converted according to Ze = 10×
log10ze. The reflectivity below the nominal radar sensitiv-
ity (−21 and −28 dBZ for WIVERN and CloudSat, respec-
tively) is set to 0 mm6 m−3, as below these thresholds, no
snow precipitation is expected to be detected. The Ze val-
ues are converted to snowfall rate by introducing random
noise associated with the uncertainty in the Ze–S relation-
ship. For this, Z, in dBZ, is assumed to be normally dis-
tributed. Consequently, S is sampled from a log-normal dis-
tribution, whose mean value corresponds to the ERA5 value
and whose standard deviations are computed as half the dif-
ference, S1σ −S−1σ , where S1σ and S−1σ are assumed equal
to

1. S+1σ = 0.0238 z0.909
e ;

2. S−1σ = 0.21 z0.769
e ,

which are the inverse formulas of ze = 61.2S1.1 and ze =

7.6S1.3, respectively, proposed by Hiley et al. (2011) as
lower and upper boundaries for the uncertainty in the Ze–
S relationship. This represents a worst-case estimate of the
uncertainty caused by the Ze–S relationship, as we assume
it varies randomly from grid box to grid box, whereas in re-
ality it may be spatially correlated. Here, we neglect errors
related to the fact that S is not observed at the surface, but at
a higher altitude due to the surface clutter (1200 m for Cloud-
Sat; Maahn et al., 2014). Also note that, typically, Z–S rela-
tionships cannot be unbiased for every regime, application,
and context. For instance, Hiley’s distributions are derived
for specific regimes (e.g. no riming). Therefore, outside those
regimes (e.g. in the presence of riming, supercooled particles,
or other particle shapes), other sources of uncertainty might
exist.

Figure 1 shows an example case of geolocated ERA5
snowfall rate (2 January 2020, 18:00 UTC) in comparison
to the corresponding simulated WIVERN and CloudSat re-
trievals. Despite its sparse sampling within its 800 km swath,
the WIVERN footprint samples all 0.25° grid points within
the swath, with an obvious benefit compared with the Cloud-
Sat nadir observations.

Finally, the snowfall retrieved in each 0.25°× 0.25° grid
box is aggregated at different timescales (e.g. a month, a
year). The results can then be further aggregated over coarser
spatial domains.

The simulated snowfall retrievals from the satellites are
compared with the ERA5 reference dataset to assess the re-
liability of the WIVERN (SWIV) and CloudSat (SCS) data
for estimating snowfall accumulation at different spatial and
temporal scales.

For each investigated spatial and temporal resolution, time
series data are accumulated for a total of 20 years. From
the three time series of SERA5, SWIV, and SCS, the bias
(ABWIV/CS), the root mean square error (RMSEWIV/CS), and
their normalized counterparts (NABWIV/CS, NRMSEWIV/CS)
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Table 1. WIVERN and CloudSat (Stephens et al., 2002) orbit and radar specifics. The shown configuration of WIVERN is the one currently
under Phase A study for the ESA Earth Explorer 11 programme.

Satellite WIVERN CloudSat

Spacecraft height, HSC 500 km 705 km
Spacecraft velocity, vSC 7600 m s−1 7600 m s−1

Orbit inclination, i 97.42° 98.2°
Orbit local time of the ascending node, LTAN 06:00 13:45
Orbit repeat cycle 5 d 16 d
Off-nadir pointing angle 38° 0.16°
Swath width at ground 800 km 1.4 km
Radar output frequency 94.05 GHz 94.00 GHz
Radiometer channel 94 GHz –
Antenna angular velocity, �a 12 rpm –
Footprint speed 500 km s−1 7 km s−1

Minimum detectable reflectivity −21 dBZ −28 dBZ

Figure 1. Example of a geolocated WIVERN and CloudSat snowfall rate retrieval obtained at a given hour. Panel (a) shows the geolocated
ERA5 accumulated snowfall rate on 2 January 2020 at 18:00 UTC, with the satellites’ ground track of WIVERN and CloudSat outlined with
the solid and dashed red lines, respectively. Panels (b) and (c) depict what would be the corresponding snowfall rate retrieval of WIVERN
and CloudSat, respectively. Uncertainty due to application of the Ze–S relationship has been included.

are estimated with

ABWIV/CS =
1
N

N∑
i=1

∣∣SWIV/CS[i] − SERA5[i]
∣∣ (2)

NABWIV/CS =

N∑
i=1

(∣∣SWIV/CS[i] − SERA5[i]
∣∣)/ N∑

i=1
SERA5[i] (3)

RMSEWIV/CS =

√√√√ 1
N

N∑
i=1

(
SWIV/CS[i] − SERA5[i]

)2 (4)

NRMSEWIV/CS =

√√√√∑N
i=1
(
SWIV/CS[i] − SERA5[i]

)2∑N
i=1(SERA5[i])

2
. (5)

The differences between the simulated fields and the ERA5
reference are mainly driven by three factors: the radar sensi-
tivity leading to the omission of low-reflectivity events, the
uncertainties in the Ze–S relationship, and the instrument

sampling (i.e. the fact that at any location S is sampled in-
termittently according to the revisit time). The latter contri-
bution can be further decomposed into the contribution asso-
ciated with the diurnal cycle of the orbit (i.e. the fact that at
any given location the satellite passes only at certain times
of the day) and into the sparseness of the measurements on
different days.

To study the impact of potential blind zone effects, which
are neglected in the following when using ERA5 surface
snowfall, we also use height-resolved ERA5 snow water con-
tent in Sect. 4.

3 Results

The number of annual samples collected by WIVERN and
CloudSat shown in Fig. 2 clearly demonstrates the advantage
of the WIVERN sampling, with an average of 6.696× 108
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Figure 2. Number of annual samples collected by WIVERN (b) and CloudSat (c) per 0.25°× 0.25° grid box. Note the different colour scales
for the two panels. Zonal overpasses averaged over 0.25° wide latitude bands are shown in panel (a).

total number of samples per year compared to 1.45×107 for
CloudSat. While WIVERN produces global coverage with a
resolution of 0.25° for absolute latitudes below 86°, Cloud-
Sat has gaps (white spots in the right panel of Fig. 2) due
to its periodic orbit and its viewing geometry. The WIVERN
reduction in the blind region near the poles up to 86° lati-
tudes means a coverage of 95 % of the Antarctic continent,
which is a significant improvement in comparison to Cloud-
Sat’s coverage of only 75 % of the continent. And, unlike
CloudSat, WIVERN can cover Greenland and the Southern
Ocean completely.

We set the estimated CloudSat and WIVERN errors in
perspective to the mean snowfall rate. Figure 3 shows the
mean annual accumulated snowfall according to the ERA5
dataset in panel (a) and the normalized inter-annual vari-
ability in such snowfall in panel (b). The figure also de-
picts the NRMSE of the WIVERN (panel c) and CloudSat
(panel d) annual accumulations. For WIVERN, the NRMSE
is lower than 0.5 for most regions, with higher values in re-
gions where the snowfall is rare so that the number of sam-
ples is low (i.e. in lower latitudes). The NRMSE tends to
decrease when moving toward the poles due to the improved
sampling (Fig. 2) and less intermittent snowfall observations.
For CloudSat, the NRMSE is above 0.5 almost everywhere,
rising to much higher values in regions where the snowfall is
very rare due to the strong intermittency of the phenomenon
and the poor sampling. The NRMSE constantly decreases as
the satellite approaches the polar regions due to the higher
number of samples collected by the satellite and the high sen-
sitivity of the CloudSat CPR (Cloud Profiling Radar). Fur-
thermore, the nadir-looking viewing geometry of CloudSat
CPR, together with the repetition of the satellite’s ground
track, generates gaps in the sampling of increased size as they
get closer to the Equator (see panel d in Fig. 3 or panel c in
Fig. 2).

3.1 Errors in snowfall accumulation at different spatial
and temporal scales

In order to answer the question of how the error varies when
the temporal scale of accumulation is changed, the anal-
ysis was conducted examining the estimated annual, sea-
sonal, and monthly accumulated snowfall. Similarly, for spa-
tial scales, global snowfall was aggregated into grids with
lat× long box sizes of 0.25°× 0.25°, 0.5°× 0.5°, 1°× 1°,
5.0°× 5.0°, and 10.0°× 10.0°. Zonal averages with a lati-
tude resolution of 0.5° have been studied to observe the zonal
mean behaviour of the error as well.

Across the entire 20-year dataset, and for each tempo-
ral and spatial scale, grid points are grouped into classes
based on the snowfall accumulation at the given timescale,
averaged within a size pixel of the given spatial scale. For
each class, the ERA5 mean snowfall, its standard devia-
tion, and the normalized root mean square error (NRMSE)
of WIVERN and CloudSat snowfall (relative to ERA5) are
computed. Additionally, the climatological variability – de-
fined as the class standard deviation normalized by the class
mean – is also used to benchmark results.

Figure 4 illustrates the NRMSE of WIVERN (blue lines)
and CloudSat (red lines) as a function of snowfall accumula-
tion for different temporal and spatial scales. The NRMSE
is presented both with and without applying a sensitivity
threshold and Z–S uncertainties. Trends indicate that uncer-
tainty decreases as snowfall accumulation increases. This is
because regions with low snowfall accumulations typically
experience infrequent snowfall events, which are more likely
to be missed, especially by CloudSat due to its coarser sam-
pling resolution.

Averaging over larger spatial domains (left vs. right figure
columns) and longer temporal scales (upper vs. lower figure
rows) reduces the NRMSE. Furthermore, Z–S uncertainties
diminish when averaging over broader spatial domains, lead-
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Figure 3. Panel (a) shows the mean annual accumulated snowfall according to ERA5 from 2001 to 2020. Panel (b) shows the normalized
standard deviation, hence the inter-annual variability in the snowfall. The corresponding normalized root mean square error in the 1-year
accumulated snowfall sampled by WIVERN and CloudSat is also shown in panels (c) and (d), respectively.

ing to a rapid convergence of the total NRMSE toward the
NRMSE value expected only from sampling errors.

These trends behave according to the central limit theo-
rem: the probability density function (PDF) being sampled
by the two instruments is the ERA5 hourly snowfall product
for each pixel. Each sampling process results in RMSE con-
vergence following the relationship RMSE∝ SD(S)

√
n

, where
n represents the number of samples collected by the instru-
ment (n1 for WIVERN and n2 for CloudSat, with n1 > n2).
As the temporal and spatial scales increase, n grows, and the
RMSE converges. WIVERN experiences faster convergence
than CloudSat due to its larger number of collected samples.

At the annual, seasonal, and monthly scales, the Cloud-
Sat NRMSE for zonal snow is lower than the climatological
variability (with exceptions at very low snowfall rates). How-
ever, when looking at CloudSat 5°× 5°, the error exceeds the
variability and is comparable to the WIVERN error at a much
finer scale (0.25°× 0.25°).

If the climatological variability is used as a threshold for
acceptable measurement uncertainty, then CloudSat annual
accumulations can only be used at the annual zonal domains.

Conversely, WIVERN produces errors lower than the natu-
ral variability at domains of at least 0.5°× 0.5°. WIVERN
0.25°× 0.25° can still be useful but only for annual, sea-
sonal, and monthly accumulations larger than 864, 270, and
108 mm, respectively.

As highlighted by Roberts et al. (2018), it is important to
have precipitation datasets with spatial resolution better than
100 km poleward of 50°; the WIVERN mission could signif-
icantly contribute to such a goal by providing snowfall rates
at spatial scales better than 0.5°.

3.1.1 Impact of sampling error

The sampling error associated with the intermittent sampling
of the snowfall (Fig. 4) is typically the dominant source of
error; it decreases if the number of samples increases, e.g.
when coarsening the spatial and/or the temporal scale and/or
if the snowfall becomes less intermittent (e.g. typically for
higher accumulations). As the WIVERN sampling is much
better than that of CloudSat, its sampling error is always
lower than that of CloudSat (by at least a factor of 2).

The Cryosphere, 19, 4875–4892, 2025 https://doi.org/10.5194/tc-19-4875-2025
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Figure 4. NRMSE for WIVERN (blue lines) and CloudSat (red lines) as a function of different snowfall accumulation classes and for different
lat× long grid box sizes and the zonal mean. The classes indicate the accumulated snowfall in the specified period, averaged in the specified
spatial resolution domain. The NRMSE considering only the sampling contribution (dashed lines) and all sources of error (solid lines) is
shown with different line styles. The monthly, seasonal, and annual timescales are shown in the top, middle, and bottom row, respectively.
The snowfall classes are defined as snowfall intervals; e.g. for the annual timescale, the first bin corresponds to snowfall accumulations
between 36 and 108 mm and the last bin to values ≥ 3772 mm. Results for the monthly (seasonal) case are shown when considering data of
January (DJF) in the Northern Hemisphere and July (JJA) in the Southern Hemisphere. In order to provide useful benchmarks, WIVERN
(or CloudSat) NRMSE must be lower than the normalized climatological variability in ERA5 snowfall (defined as the normalized standard
deviation), which is indicated by the shaded green area. The solid black line indicates the number of occurrences in the analysed ERA5
dataset for the specific class (with the y-axis scale drawn on the right side).

WIVERN and CloudSat orbits are both sun-synchronous,
with a mean local time of the ascending node (MLTAN) of
06:00 and 13:45 local time, respectively. This means that for
any given point on the Earth’s surface, the spacecraft will
always pass over that point at the same local time. The lo-
cal time of the observation is the same as the local time of
the satellite overpass. This is also true for WIVERN; how-
ever, the large swath width means that the same point can be
observed at different local times, especially at high latitudes
(e.g. at 80° S latitude there are on average 6.4 samples per
day; see Fig. 2). Sampling a given site at only a few specific
times of the day introduces an error in the snowfall accu-
mulation due to the snowfall diurnal cycle (Watters et al.,
2021; Milani and Wood, 2021), which is considered to be
part of the sampling error. Since for WIVERN measurements
at latitudes above 60° N and 60° S, the maximum revisit time
(worst-case scenario) is always less than 1 d (Battaglia et al.,
2022), WIVERN sampling errors are only induced by the di-
urnal cycle effect. However, this is not the case for CloudSat
CPR sampling, which is characterized by an orbit repetition
time of 16 d.

WIVERN’s sampling errors are always smaller than the
climatological variability at any spatial and temporal scale.

Conversely, averaging over domains larger than 5°× 5° is
required at all timescales to reduce CloudSat sampling er-
rors below the threshold dictated by the natural variabil-
ity, with the sampling errors in the zonal snowfall being
comparable with the WIVERN sampling errors for domains
0.25°× 0.25° in size.

3.1.2 Impact of the radar sensitivity

The effect of the sensitivity emerges at locations where the
snowfall rates generate reflectivities below the sensitivity of
the radar. When adopting the Ze–S relationship of Eq. (1),
the minimum detectable snowfall rate is 7.9× 10−3 and
1.6×10−3 mms−1 for WIVERN and CloudSat, respectively.
Due to WIVERN’s worse sensitivity, this effect is more pro-
nounced than for CloudSat and is only really significant for
specific regions where snow rates below the detection thresh-
old contribute significantly to the total accumulation. In par-
ticular, the error in the WIVERN accumulated snowfall in
the region of the Antarctic desert between 0° and 150° E
is strongly affected by this source of error, as can be seen
in Figs. 3 and 5. Other regions such as central Greenland
and western China are affected as well. However, globally,
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Figure 5. Normalized absolute bias between SWIV computed with
sensitivity=−21 dBZ and SWIV computed without the error in-
duced by the sensitivity, normalized by the latter.

or when looking at the snowfall zonal behaviour depicted in
Fig. 6 or at points clustered based on similar snowfall values,
as outlined in Fig. 4, this effect appears to be negligible.

3.1.3 Impact of uncertainties in the Ze–S relationship

Snowfall retrievals, especially those based on a single fre-
quency, are limited by various uncertainties such as the char-
acterization of the snowflake size distribution and the mod-
elling of the backscattering properties of the ice crystals (Hi-
ley et al., 2011; Kneifel et al., 2020; Tridon et al., 2019). At
large snowfall rates, non-Rayleigh effects at the 94 GHz band
cause further problems in the estimation of the snowfall rate.
Uncertainties associated with the retrieval of S from Ze are
considered in this study, as described in Sect. 2, but it is im-
portant to note that the estimate of the Ze–S is assumed to be
unbiased.

Figure 4 shows the contributions of the sampling error, the
Ze–S uncertainty, and the sensitivity to the total error. As
the latter contribution is negligible, the difference between
the sampling error and the total error highlights the impor-
tance of the Ze–S uncertainties in the snowfall retrieval. For
both WIVERN and CloudSat, the total NRMSE almost dou-
bles compared to when considering only the effect of sam-
pling at finer spatial scales, such as for the grid box size of
0.25°× 0.25°. Instead, when averaging the snowfall in larger
areas, e.g. increasing the size of the grid boxes, the impact of
the Ze–S is strongly mitigated, as expected from the assump-
tion of the Ze–S estimate being unbiased. For WIVERN,
thanks to the high number of collected samples, the contri-
bution of the Ze–S uncertainty becomes negligible starting
from a 1.0°× 1.0° spatial scale (not shown).

3.2 Errors in zonal snowfall: from annual to monthly
scales

For global precipitation studies, zonal precipitation estimates
are of particular interest for the observation of the Earth’s cli-
mate, the detection of climate change, and the evaluation and
constraint of historical and future climate simulations (Hage-
mann et al., 2006; Hegerl et al., 2015; Egli et al., 2022).

The zonal mean snowfall, where the latitude resolution
is 0.5°, is shown in Fig. 6. WIVERN and CloudSat can
capture the zonal climatological mean of the reference at
the monthly, seasonal, and annual timescales, with the sec-
ond being a bit more noisy than the first. CloudSat RMSE
is within the standard deviation of ERA5 only for annual
means. At the monthly and seasonal scales, CloudSat ex-
ceeds the standard deviation of ERA5 in the Northern Hemi-
sphere during the warm season between 60–65 and 25–40° N
and during the cold season between 25–60° N and 25–60° S.
CloudSat exceeds the inter-annual climatological variability
only at latitudes between 25–45° N and 25–45° S. Instead,
WIVERN RMSE remains within the climatological variabil-
ity at the three timescales.

3.3 Regional estimation of accumulated snowfall

Estimation of snowfall in polar regions is of primary impor-
tance for quantifying the ice sheet mass balance and moni-
toring potential ice loss. Typically, estimates at annual and
greater scales are useful to understand the ice sheet response
to multi-year climate modes (e.g. El Niño), ice flow changes
due to long-term melting or thickening, the impact of ice
sheet melting on the sea level rise, and the inter-annual vari-
ability in the ice sheet mass balance. On the other hand,
estimates at daily to seasonal timescales are useful to un-
derstand the seasonal variability, the grounding line migra-
tions, and short-term oceanic or atmospheric forcing. There-
fore, an analysis to quantify the regional effects of CloudSat
and WIVERN sampling has been carried out in regions of
Antarctica and Greenland defined by their drainage systems
in Zwally et al. (2012). In Zwally et al. (2012), each basin
is assigned an ID number, and the subdivision is shown in
Fig. 7. Antarctic regions of particular interests are the fol-
lowing:

– the Amundsen Sea sector, which consists of basins rang-
ing from 20 to 22 and is characterized by the strongest
ice mass loss on the continent, as described in Yang
et al. (2023);

– the Antarctic Peninsula, which consists of basins rang-
ing from 24 to 27 and has experienced a rapid warming
in recent years.

Such regions are also characterized by large snowfall accu-
mulations.

For Greenland, when considering the loss of ice sheet
mass, the conditions are less variable over the area
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Figure 6. The figure shows the zonal mean snowfall at the monthly (January in panel a and July in panel b), seasonal (DJF in panel c and
JJA in panel d), and annual (in panel e) timescales. The ERA5, WIVERN, and CloudSat mean values are depicted with a solid black line,
blue markers, and red markers, respectively. The inter-annual variability in the zonal mean (i.e. ERA5 standard deviation) is shown by the
dashed black line. The shaded areas outline the RMSE of WIVERN and CloudSat.

Figure 7. Division of Greenland and Antarctica into sub-regions based on the basins, according to Zwally et al. (2012).

(Mouginot et al., 2019), and the regions of interest corre-
spond to the basins 3.3, 4.1, 4.2, 4.3, and 5.0, which are
the ones affected by the highest snowfall precipitation (see
Fig. 3).

In order to provide useful measurements for estimating the
total snowfall accumulation in a certain region, the RMSE
must be significantly lower than the climatological variabil-

ity in the region. As shown in Fig. 8, when trying to estimate
the total snowfall in the regions of Antarctica, WIVERN can
provide very useful benchmarks at all timescales, as their
RMSE is low compared to the climatological variability in
the regions, with the WIVERN’s RMSE being systemati-
cally lower than the RMSE of CloudSat. Also, CloudSat’s
RMSE falls above the variability in regions 1, 2, 17, and
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Figure 8. For each of the Antarctic regions (x axis), the ERA5 mean snowfall accumulation (black line) and the climatological variability
(shaded grey area) are shown. The mean accumulated snowfall ± RMSE sampled by WIVERN and CloudSat is shown with blue and red
error bars, respectively. The result is shown for the monthly (a, b), seasonal (c, d), and annual (e) timescales. Results at the first two timescales
are shown for January, July, DJF, and JJA to highlight the different behaviour between the two seasons.

Figure 9. For each of the Greenland regions (x axis), the ERA5 mean snowfall accumulation (black line) and the climatological variability
(shaded grey area) are shown. The mean accumulated snowfall ± RMSE sampled by WIVERN and CloudSat is shown with blue and red
error bars, respectively. The result is shown for the monthly (a, b), seasonal (c, d), and annual (e) timescales. Results at the first two timescales
are shown for January, July, DJF, and JJA to highlight the different behaviour between the two seasons.
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Figure 10. Panels (a)–(c) show the mean monthly and annual snowfall on the Antarctic Peninsula according to ERA5 on a lat–long grid with
box sizes of 0.25°× 0.25°. Panels (d)–(f) and (g)–(i) show the corresponding NRMSE of WIVERN and CloudSat, respectively.

26 at seasonal and annual timescales and 1, 2, 17, 26, and
27 at monthly scales. Their estimates are thus both precise
and accurate enough to provide useful insights for short- and
long-term frequency effects on the ice sheets, with some ex-
ceptions for CloudSat.

In the regions of Greenland, as shown in Fig. 9, CloudSat’s
sampling results in a very large RMSE, strongly exceeding
ERA5 variability in some regions: 3,3, 4.1, 4.2, 4.3, 5.0, and
6.1 at all timescales and 3.2, 3,3, 4.1, 4.2, 4.3, 5.0, and 6.1
at the monthly scale. Instead, WIVERN can tackle short fre-
quency effects affecting all the regions.

Overall, WIVERN produces a significantly lower RMSE
than CloudSat (lower by at least a factor of 2), indicating that
WIVERN might provide more robust estimates of regional
snowfall variability.

Biases in the mean snowfall are introduced by the sam-
pling, indicating an overestimation or underestimation of the
snowfall, and are larger in Greenland than in Antarctica.
Overall, WIVERN produces smaller biases than CloudSat,
with some exceptions (e.g. region G:4.3 at the annual scale)
related to the sensitivity. The number of samples collected by
both satellites is higher in Antarctica than in Greenland (see
Fig. 2), causing the RMSE and the bias to be larger in the
latter.

WIVERN better captures the local variability within each
region; e.g. the snowfall hotspots in the Antarctica Peninsula
and along the south-eastern coast of Greenland are captured
by WIVERN at the monthly to seasonal timescale, but not
by CloudSat, as shown in Figs. 10 and 11 for the Antarctic
Peninsula and Greenland, respectively.

4 Influence of the ground clutter on the detection of the
surface snowfall precipitation

For spaceborne radar observations, precipitation at the sur-
face may be biased by ground clutter, with some very shal-
low events completely missed. Given the strong reduction
in the normalized surface backscatter cross-section over the
ocean at oblique angles of incidence (Battaglia et al., 2017;
Wolde et al., 2019), WIVERN is expected to reduce the blind
layer over ocean surfaces compared to nadir-looking radars
(Meneghini and Kozu, 1990; Coppola et al., 2025). For sea
ice and land surfaces, the importance of the clutter increases.
The ERA5 vertically resolved snow water content profiles
(Hersbach et al., 2023b) can be used in synergy with the
CloudSat and WIVERN ground clutter height retrieved in
Coppola et al. (2025) to determine the impact of the clutter
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Figure 11. Panels (a)–(c) show the mean monthly and annual snowfall on Greenland and Iceland according to ERA5 on a lat–long grid with
box sizes of 0.25°× 0.25°. Panels (d)–(f) and (g)–(i) show the corresponding NRMSE of WIVERN and CloudSat, respectively. Note that, in
July, the snowfall on the points above the ocean is very low and is characterized by very weak or very rare snowfall events, which cause the
NRMSE to be ∼ 1 for WIVERN and CloudSat.

on snowfall estimates. The ground clutter height, defined as
the height of the SCR (signal-to-clutter ratio) equal to 5 dB,
depends on the surface type and the hydrometeor effective
reflectivity at the surface, Zhydro

e,surf . Therefore, this analysis is
conducted for three different types of surfaces where snow-
fall is likely to occur, i.e. ice-free ocean, sea ice, and land
assuming, the attenuation caused by snowfall precipitation is
negligible. WIVERN ground clutter height is lower over ice-
free ocean and higher over land and sea ice than the clutter
height of CloudSat (Coppola et al., 2025). Over land and sea
ice, σ0 at the WIVERN incidence angle is assumed to be 5 dB
lower than the one measured at nadir for CloudSat.

The following procedure is implemented for each of the
types of surfaces of interest:

1. Radar reflectivity profiles are computed from the snow
water content (SWC) profiles given by ERA5 using the
reflectivity–ice water content (Z–IWC) relationship for
the 94 GHz in Liu and Illingworth (2000).

2. The ERA5 sea ice edge product (Aaboe et al., 2023) has
been used to determine if a given profile is located over
land, sea ice, or ice-free ocean.

3. For each snow Z profile, the ground clutter height (of
WIVERN and CloudSat) is retrieved based on the re-
flectivity at the surface, Zhydro

e,surf , as the median value of
the histogram of the ground clutter height for that given
Z

hydro
e,surf shown in Coppola et al. (2025).

4. Z at the ground clutter height, Zhydro
e,@ SCR=5 dB, is then re-

trieved, and statistics on the Zhydro
e,surf −Z

hydro
e,@ SCR=5 dB his-

togram are computed.

The mean and standard deviation of Zhydro
e,surf −Z

hydro
e,@ SCR=5 dB

are shown in Fig. 12. The variability inZhydro
e,surf−Z

hydro
e,@ SCR=5 dB

is very small for both WIVERN and CloudSat, with
WIVERN showing slightly better standard deviation results
than CloudSat over ice-free oceans, while the opposite occurs
over land and sea ice. CloudSat exhibits slightly lower biases
compared to WIVERN, including ice-free ocean regions, de-
spite WIVERN’s ability to observe closer to the surface. This
could be attributed to compensating effects of sublimation
and shallow precipitation, which cancel out at 1200 m better
than at 600 m (see also Maahn et al., 2014).
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Figure 12. Mean (solid lines) and standard deviation (dashed lines) values of Zhydro
e,surf −Z

hydro
e,@ SCR=5 dB as a function of Zhydro

e,surf for WIVERN
(blue) and CloudSat (red) for two different regions (a–c: Antarctica; d–f: Greenland) and three different surface types (a, d: land; b, e:
ice-free ocean; c, f: sea ice).

This analysis has some limitations: the resolution of the
ERA5 data is 0.25° in latitude and longitude and may be too
coarse to capture the vertical variability in the snow profiles.
Also, the vertical resolution near the surface is only∼ 190 m.
Together with known problems of ERA5 to represent the at-
mospheric boundary layer (Sinclair et al., 2022), this could
limit the validity of this analysis. To our knowledge, how-
ever, there is no alternative data product available that can
characterize the vertical profile of cloud properties reliably
all the way to the surface.

5 Summary and conclusions

Spaceborne cloud radars are essential tools for observing
snowfall globally (Stephens et al., 2018; Battaglia et al.,
2020). Snowfall measurements are relevant for providing es-

timates of the snowfall accumulation and thus for a wide
range of applications: from regional water cycle budgets to
quantification of the mass balance changes in the ice sheet,
the ice shelves, and the glaciers. However, the reliability of
such products can be severely compromised by the intermit-
tent and sparse sampling of snowfall carried out by the radar,
with the number of samples collected in a given region in a
given a time frame depending on the satellite orbit and on the
radar scan geometry. For example, the WIVERN conically
scanning radar (currently in Phase A of ESA’s Earth Explorer
programme) collects an order of magnitude more samples
than a CloudSat- or EarthCARE-like fixed near-nadir radar,
which also has gaps in coverage due to the narrow swath.

In this paper, the ERA5 hourly snowfall dataset has is used
as a reference to simulate 20 years of snowfall accumula-
tion, as would have been sampled by a 94 GHz radar with
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WIVERN and CloudSat sampling geometry. Such accumu-
lations are compared with the reference to assess the spa-
tial and temporal scales at which these sensors become use-
ful tools for estimating seasonal and/or regional accumulated
snowfall. The error introduced by the two radars can be de-
composed into the sampling error directly related to the in-
termittent sampling of the phenomenon, the error due to the
uncertainty in the Ze–S relationship (assumed to be unbi-
ased), and the error introduced by the minimum detectability
threshold of the radar. Each contribution to the error has also
been analysed separately. To provide useful measurements,
the error should be lower than the climatological variability,
which is set to be the threshold of acceptable errors. The re-
sults show the following.

1. For WIVERN and CloudSat, the sampling error is the
main cause of uncertainty. It decreases as the temporal
and spatial scale increase, with the error in WIVERN al-
ways being at least twice as small as the error in Cloud-
Sat (Fig. 4).

2. The radar sensitivity error is higher for WIVERN than
for CloudSat (−21 vs. −28 dBZ), but the error is gen-
erally negligible, except for WIVERN in the regions
where the snowfall rates are very low and snowfall
events occur very frequently in time (e.g. in the centre of
Antarctica; Fig. 5). As it is only relevant with respect to
marginal snowy areas, its effect is globally insignificant
for snowfall accumulation.

3. The error due to the Ze–S uncertainty is strongly mit-
igated when averaging spatially and temporally, as ex-
pected from the assumption of it being unbiased. For
WIVERN, the large number of samples collected makes
the error negligible starting from the 1.0°× 1.0° spa-
tial scale, with excellent results already at the monthly
scale.

Overall, total errors produced by WIVERN are below
the ERA5 climatological variability at the 0.5°× 0.5°
spatial scale already at the monthly scale. Conversely,
CloudSat needs to be averaged at annual zonal scales to
produce reliable estimates (Fig. 4).

4. In the context of assessing total accumulation in vari-
ous regions of Antarctica and Greenland (Figs. 8 and
9), WIVERN can provide reliable estimates already at
the monthly scale. Instead, CloudSat offers less precise
estimates, with RMSE exceeding the variability in some
of the regions. Furthermore, when examining the local
variability within these regions, CloudSat estimates are
highly imprecise (Figs. 10 and 11).

5. Based on ERA5 reanalysis profiles, the surface blind
zone generates a small bias in the reflectivity lower
than 2 dB for Z >−20 dBZ (i.e. for snowfall that is im-
portant for mass accumulation) (Fig. 12). CloudSat has

slightly lower biases than WIVERN over land, sea ice,
and ice-free ocean surfaces. The standard deviation is
also lower, except over ocean.

In conclusion, CloudSat is suitable for estimating snowfall
accumulation over large areas and longer timescales (e.g.
annual zonal), but its poor sampling capabilities limit the
possibility of deriving annual or monthly precipitation over
domains smaller than zonal scales. The recently launched
EarthCARE radar will face very similar sampling issues. On
the other hand, a conically scanning wide-swath radar, such
as the one proposed by the WIVERN team, could represent a
unique observing system due to its improved sampling capa-
bilities, contributing to the snowfall accumulation estimates
over domains smaller than 0.5°× 0.5° already at the monthly
timescale.

Finally, the WIVERN radar will have a low noise-
equivalent delta temperature radiometer mode and will pro-
vide (noisy) estimates of polarimetric variables such as dif-
ferential reflectivity and differential phase shifts (Battaglia
et al., 2025). This could further improve the estimation of
snowfall rates, e.g. by identifying the presence of rimed snow
and supercooled droplets (Maherndl et al., 2025).
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