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Abstract. Trustworthy estimates of snow water equivalent
and snow depth are essential for water resource management
in snow-dominated regions. While ensemble-based data as-
similation techniques, such as the Ensemble Kalman Fil-
ter (EnKF), are commonly used in this context to combine
model predictions with observations therefore to improve
model performance, these ensemble methods are computa-
tionally demanding and thus face significant challenges when
integrated into time-sensitive operational workflows. To ad-
dress this challenge, we present a novel approach for data as-
similation in snow hydrology by utilizing Long Short-Term
Memory (LSTM) networks. By leveraging data from 7 di-
verse study sites across the world to train the algorithm on
the output of an EnKEF, the proposed framework aims to fur-
ther unlock the use of data assimilation in snow hydrology
by balancing computational efficiency and complexity.

We found that a LSTM-based data assimilation framework
achieves comparable performance to state estimation based
on an EnKF in improving open-loop estimates with only a
small performance drop in terms of RMSE for snow water
equivalent (+6 mm on average) and snow depth (46 cm), re-
spectively. All but 2 out of 14 site-specific-LSTM configura-
tions improved on the Open Loop estimates. The inclusion of
a memory component further enhanced LSTM stability and
performance, particularly in situations of data sparsity. When
trained on long datasets (25 years), this LSTM data assimila-
tion approach also showed promising spatial transferability,

with less than a 20 % reduction in accuracy for snow water
equivalent and snow depth estimation.

Once trained, the framework is computationally efficient,
achieving a 70 % reduction in computational time compared
to a parallelized EnKF. Training this new data assimilation
approach on data from multiple sites showed that its perfor-
mance is robust across various climate regimes, during dry
and average water-year types, with only a limited drop in per-
formance compared to the EnKF (46 mm RMSE for SWE
and +18cm RMSE for snow depth). This work paves the
way for the use of deep learning for data assimilation in snow
hydrology and provides novel insights into efficient, scalable,
and less computationally demanding modeling framework
for operational applications.

1 Introduction

When studying the hydrological cycle, one cannot underes-
timate the key role played by snow (Pagano and Sorooshian,
2002); indeed, for snow-dominated catchments, today’s
snow is tomorrow’s water. Information on the state and distri-
bution of snow cover provides helpful information to charac-
terize seasonal water storage (Zakeri et al., 2024), seasonal
to annual water availability (Metref et al., 2023), and sev-
eral cascading socio-hydrologic implications (Avanzi et al.,
2024).
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Especially in cold regions, which are heavily affected by
climate change (Hock et al., 2019), the snowpack often func-
tions as the primary source of streamflow, particularly during
spring and summer (Bales et al., 2006). Moreover, consider-
ing the high spatial variability in these regions, the scientific
community agrees on the needs of reliable estimates of Snow
Water Equivalent (SWE) and snow depth in snow-dominated
environments, which are essential for effective and timely
management of water resources (Hartman et al., 1995).

However, the models used in operational snow hydrol-
ogy are hampered by uncertainties (Beven, 2012). Uncer-
tainties arise from the accuracy and reliability of the equa-
tions and their discretization used to numerically represent
physical processes on a computer (structural uncertainty), as
well as from model inputs (e.g., meteorological uncertainty)
and model parameters (parametric uncertainty, see Girotto
etal., 2020). To constrain this uncertainty, independent snow-
related data sources such as ground-based measurements
or remotely sensed measurements can be used (Tsai et al.,
2019), but all observations are also subject to inherent uncer-
tainty in the form of unknown observation and representation
errors (Gascoin et al., 2024; Van Leeuwen, 2015). Ground-
based snow measurements, for example, are limited to envi-
ronmental conditions at the point-scale, which are often in-
fluenced by instrumental noise as well as local distortions by
wind, topography, and vegetation, which pose challenges at
the scale of a model grid cell (Malek et al., 2017). It is also
worth mentioning that their representativeness is expected to
degrade in the future due to evolving climate and land sur-
face conditions, further limiting their utility for large-scale
modelling efforts (Cowherd et al., 2024b). In contrast, re-
mote sensing provides spatially explicit information, but its
measurements are frequently constrained by a coarse spatial
resolution and additional uncertainties in retrieval algorithms
(Aalstad et al., 2020).

Given the uncertainties inherent in both models and mea-
surements, data assimilation presents a promising framework
to optimally combine them (Evensen et al., 2022), so as
to provide a statistically optimal estimate of the snowpack
state. In the recent decade, snow data assimilation has pro-
gressed from a limited number of case studies to more es-
tablished and widely used techniques (Largeron et al., 2020;
Girotto et al., 2020; Alonso-Gonzilez et al., 2022), largely
driven by advancements in satellite data products and compu-
tational resources (Houser et al., 2012; Aalstad et al., 2018;
Deschamps-Berger et al., 2023; Lievens et al., 2022; Maz-
zolini et al., 2025). Commonly assimilated variables include
snow-covered area (SCA) (Margulis et al., 2016), snow depth
(Girotto et al., 2024) and SWE (Magnusson et al., 2014). Re-
cent research has also begun to explore the potential of ther-
mal infrared sensors and radar data (Alonso-Gonzalez et al.,
2023; Cluzet et al., 2024). From a methodological point of
view, while traditional methods such as direct insertion or
nudging (Boni et al., 2010) are still widely used, research in-
terest in this field is increasingly shifting towards Bayesian
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data assimilation techniques such as the Ensemble Kalman
Filter (EnKF) and the Particle Filter (PF) (Evensen et al.,
2022). These Bayesian methods, which account for uncer-
tainties both in the model and the observations, have demon-
strated significant improvements in predictions of snow and
streamflow variables (Huang et al., 2017; Alonso-Gonzélez
et al., 2022; Metref et al., 2023). On the other hand, they typ-
ically incur high computational costs (Girotto et al., 2020),
which are often incompatible with operational procedures
(Pagano et al., 2014).

The high computational cost of ensemble-based (Monte
Carlo) data-assimilation techniques such as the EnKF and the
PF arises from the need to perform a large ensemble (collec-
tion) of model predictions, which can strain computational
capacity and extend processing times (Evensen et al., 2022).
Consequently, the deployment of these ensemble-based tech-
niques in real-time applications can be challenging, necessi-
tating efficient algorithms and robust computing infrastruc-
ture to ensure timely and accurate results. Decreasing such
computational requirements would allow one to obtain es-
timates with a shorter turnaround and/or to increase model
complexity with the same computational burden. In this con-
text, it is worth mentioning the work of Oberrauch et al.
(2024), one of the few studies that addresses the challenge of
implementing a particle-based data assimilation scheme for
large-scale, fully distributed, near real-time snow modelling
applications, effectively balancing computational feasibility
with operational efficiency.

Recently, Deep Learning (DL) has gained attention for its
ability to model complex system dynamics without requir-
ing detailed knowledge of physical processes or relying on
strict structural assumptions (Sit et al., 2020). Based on in-
terconnected neural networks, these model architectures ex-
cel at learning system dynamics from large datasets, and
may overcome the structural limitations that challenge tra-
ditional physically-based models (LeCun et al., 2015; Mur-
phy, 2023). Among the most commonly used Deep Learn-
ing architectures, Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997), a type of recur-
rent neural networks, can memorize internal system states
and capture long-term dependencies between inputs and out-
puts. LSTM networks have demonstrated significant success
in predicting time-series data, particularly in hydrological ap-
plications, where they have shown comparable performance
to traditional physically-based models (Fan et al., 2020; Chen
et al., 2023; Kratzert et al., 2018, 2019). Due to the strong
temporal autocorrelation and memory of the snowpack (Fid-
des et al., 2019), these networks appear to be especially well
suited for snow analysis.

In the broader field of operational hydrology, Boucher
et al. (2020) pioneered a novel ensemble-based data assim-
ilation approach leveraging neural networks. However, the
use of Deep Learning for data assimilation remains largely
underexplored in the field of snow hydrology. One exception
is the recent study by Guidicelli et al. (2024), who combined
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ensemble-based data assimilation with Deep Learning to im-
prove spatio-temporal estimates of SWE using sparse ground
track data in the eastern Swiss Alps. This approach utilized
an Iterative Ensemble Smoother, an iterative batch-smoother
variant of the EnKF, in conjunction with a degree-day model
to reconstruct SWE temporal evolution, while a feedforward
neural network (FNN) facilitated spatial propagation based
on topographic features. As a more recent exception of com-
bining Deep Learning and snow data assimilation, Song et al.
(2024) developed an LSTM-based framework to assimilate
lagged observations of SWE or satellite-derived snow cover
fraction (SCF) over the western U.S., aiming to improve sea-
sonal snow predictions. While their approach further consol-
idates the potential of Deep Learning for data assimilation
in snow hydrology, it relied on a relatively simple assimila-
tion setup, dealing with long lagged time step rather than a
consequential and quasi real time approach. Other than these
initial attempts, and the body of work on stand-alone Deep
Learning for snow modelling (Cui et al., 2023; Daudt et al.,
2023), the potential of combining advanced Deep Learning
and data assimilation algorithms for predicting snowpack dy-
namics remains largely unexplored.

Building on the concept of Deep Data Assimilation in-
troduced by Casas et al. (2020) and Arcucci et al. (2021)
as well as a growing literature of related methods (Cheng
et al., 2023), this research aims to enhance data assimilation
methods in snow hydrology by proposing an alternative ap-
proach for assimilating snow-related quantities, specifically
SWE and snow depth, through the use of LSTM networks.
These networks will be trained on the output from an EnKF,
with the goal of improving snowpack estimations while min-
imizing computational efforts. Here we utilize S3M, a hy-
brid temperature-radiation-driven cryospheric model (Avanzi
etal., 2022), as our dynamical model combined with the state
analysis (updates) of an EnKF to train an LSTM to assimi-
late SWE and snow depth data in S3M for 7 disparate study
sites across the northern hemisphere. The study will focus
on investigating four main research questions: (i) What is the
performance of a LSTM network in filtering, especially in
comparison with an EnKF? (ii) How does the performance
of the network respond to data sparsity? (iii) Is it feasible to
transfer an LSTM algorithm trained on one site to other sites
without a significant loss in performance? (iv) How does the
performance of the model vary between different types of
water years?

2 Materials and Method

2.1 Data

When working with Deep Learning algorithms, the quality
of the dataset is crucial, as the performance of the trained

network will highly depend on it (He et al., 2019). Hence, in
this study we employed high-quality, pre-processed datasets
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from long-term, internationally acknowledged snow research
stations across the northern hemisphere (Fig. 1). The datasets
used where those of precipitation (mmh™'), solar radiation
(Wm™2), relative humidity (%), air temperature (°C), and
daily average temperature (°C) along with SWE (mmh~")
and snow depth (cm) ground measurements.

Here is a list of the station locations, along with their as-
sociated reference papers and abbreviations:

Torgnon, Aosta Valley, Italy — TRG (Filippa et al.,
2015).

Col De Porte, Isere, France — CDP (Lejeune et al.,
2019).

Weissfluhjoch, Davos, Switzerland — WFJ (Wever,
2017).

Kiihtai, Tirol, Austria — KHT (Krajci et al., 2017).

FMI-ARC Sodankyld Geophysical Observatory,
Finnish Lapland — FMI-ARC (Essery et al., 2016).

Nagaoka, Japanel — NGK (Avanzi et al., 2019).

Reynolds Mountain East, Idaho, USA — RME (Reba
etal., 2011).

The sites were selected to ensure geographic and climatic
diversity, spanning various regions that are exposed to a vari-
ety of snow climates (Sturm and Liston, 2021), (see Tables 1
and 2). The characteristics of the site vary widely, with eleva-
tions ranging from lowland areas such as Sodankyld (179 m)
to high alpine environments such as Weissfluhjoch (2540 m).
Annual and winter precipitation varies significantly across
different locations, ranging from relatively dry areas like
Torgnon, with an annual average of 794 mm, to much wet-
ter regions such as Nagaoka, which receives 2773 mm per
year. For this comparative analysis, winter is defined as the
meteorological winter in the northern Hemisphere, spanning
the months of December through February. Air tempera-
ture ranges reflect this environmental diversity, encompass-
ing cold alpine regions, temperate meadows, and wetlands.

The record period for each dataset varied depending on
the timeframes available at each site. To ensure uniform ap-
plication of the algorithm, all datasets were resampled to a
1 h frequency using linear interpolation. This hourly reso-
lution resolves day-night cycles of melting and refreezing,
revealing air temperature fluctuations and their relationship
with snowpack outflow. In addition, it enables the evaluation
of the precipitation dynamics, the primary mass input to the
seasonal snowpack (Avanzi et al., 2014).

Measurement errors used in the data assimilation process
(see Sect. 2.3) were assigned according to the specific instru-
mentation utilized at each site, drawing from a combination
of expert knowledge and relevant literature (see Table Al in
the Appendix).

The Cryosphere, 19, 4759-4783, 2025
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Table 1. Geographic and climatic characteristics (annual precipitation and air temperature statistics) at the selected study sites. MAP = mean
annual precipitation (mm), MWP = mean winter precipitation (mm), MAAT = mean annual average temperature (°C).

Site Description Altitude (m a.s.1) MAP (mm) MWP (mm) MAAT [min,max] (°C)
TRG Subalpine grassland 2160 794 161 3[-15,20]
CDP Grassy meadow 1325 1896 550 6[—13,17]
WEFI Almost flat area 2540 1631 391 —1[-21,17]
KHT Steep alpine valley 1920 1131 186 3[-18,22]
FMI-ARC  Large wetland area 179 551 125 0[-35,27]
NGK Flat meadow 97 2773 1104 12 [-5,36]
RME Unsheltered mountain area 2137 817 350 5[—20,30]
Table 2. Summary of snow characteristics at the selected study sites. Snow classification by Sturm and Liston (2021).

Site Peak SWE (mm) Peak Snow depth (cm)  Snow cover duration Snow Type

TRG 312 11 From October to May Tundra

CDP 414 14 From November to May Maritime

WFIJ 802 23 From October/November to August Tundra

KHT 347 15  From October/November to mid June  Tundra

FMI-ARC 197 8  From October to May Boreal Forest

NGK 381 14 From Novemeber to April Maritime

RME 529 17 From October to May Montane Forest

Based on data sparsity — defined as the presence of 80 % or
more of the record period containing missing data — or a low
temporal data granularity (i.e., temporal frequency coarser
than 1 h), the datasets were categorized into two groups:

— Low data sparsity: NGK, KTH, FMI-ARC, and RME
datasets.

— High data sparsity: CDP, TRG, and WFJ datasets.

2.2 The Model: S3M 1D

“Snow Multidata Mapping and Modelling (S3M)” is a spa-
tially distributed cryospheric model developed to compute
the snow mass balance and estimate snowmelt using a com-
bined temperature index and radiation-driven melt approach
(Avanzi et al., 2022). S3M also includes processes such as
snow settling, liquid water outflow, changes in snow albedo,
and the partitioning of precipitation phases. S3M is the cor-
nerstone of several operational chains managed by CIMA
Research Foundation, which provide real-time, spatially ex-
plicit estimates of snow cover patterns (Avanzi et al., 2023).

For this pilot application of a new deep data assimilation
scheme, a point-scale version of S3M has been employed.
This version retains all the features of the original S3M
model, such as precipitation-phase partitioning, snow mass
balance, snow metamorphism, and hydraulics, but it mod-
els snow dynamics at one point rather than in grid cells dis-
tributed across the landscape.

The Cryosphere, 19, 4759-4783, 2025

2.3 Ensemble Kalman Filter Assimilation Scheme

Aiming at mimicking an established ensemble-based data as-
similation algorithm with a Deep-Learning-based approach,
we chose a supervised learning approach to our problem
(Murphy, 2022). Hence, the training data had to be de-
rived from the state analysis output by such data assimila-
tion scheme. The assimilation algorithm used as training was
designed to focus on retrieving an accurate analysis of the
state vector (x € R" with n the number of states), includ-
ing both the wet and dry components of SWE, the density
of dry snow (kg m_3), and the snow albedo (-). Given the
nonlinear nature of S3M , it was decided to use an ensemble
method that approximates the posterior probability density
function of the analysis using the mean and covariance ma-
trix (Carrassi et al., 2018; Evensen et al., 2022). Given the
high robustness even with a relatively small ensemble (Aal-
stad et al., 2018), an EnKF scheme was developed in S3M.

Kalman Filters, which are sequential data assimilation
techniques, optimally combine linear model simulations and
observations based on their respective Gaussian error covari-
ances (Sarkkd and Svensson, 2023). The analysis state is ob-
tained by applying a correction to the model forecast (or
prior) state, weighted by the Kalman Gain, which incorpo-
rates information from both model and observation error co-
variance.

Mathematically, the Kalman filter cycles between a predic-
tion step, known as the forecast or the prior in DA, propagat-
ing the state from the pervious time f;_1 to the current time
t; using a dynamical model and a subsequent update step,

https://doi.org/10.5194/tc-19-4759-2025
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Figure 1. Geographical distribution of study sites used for snow modeling and data assimilation: (left) Reynolds Mountain East (RME) in
the United States, (center) European sites including Col De Porte, Isere, France , Weissfluhjoch, Davos, Switzerland (WFJ), Torgnon, Aosta
Valley, Italy (TRG), Kiihtai, Tirol, Austria (KHT) FMI-ARC Sodankyld Geophysical Observatory, Finnish Lapland (FMI-ARC) in Finland,
and (right) Nagaoka (NGK) Japan. Map created using the Free and Open Source QGIS.

known as the analysis or the posterior in DA, where the state
is updated by assimilating observations through (Evensen
et al., 2022; Sarkki and Svensson, 2023):

xi =xf + K (y —Hixf) | M
where:

- x£ € R" is the forecast (prior, background) mean model
state vector at time #.

- x} € R"is the analysis (posterior, updated) mean model
state vector at time .

— ¥ € R™ is the vector of the observations at time #
where the number of observations m > 0 may vary in
time.

— Hj € R™*" is a linear observation operator, that maps
from the model state space to the observation space. The
time index of this operator is a reminder that the number
of observations m may vary over time.

— K is the Kalman gain at time #;, defined as :

~1
K; =P/ HI (HP,{ ol + Rk) )
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— In the dynamic Kalman gain (2), P,{ € R™*" is the fore-
cast error covariance matrix and Ry € R™*™ is the ob-
servation error covariance matrix while T denotes the
matrix transpose.

The Kalman gain Ky in Eq. (2) acts as a weighting factor,
balancing the correction term (the innovation) by account-
ing for the relative uncertainties in the forecasted model state
through the forecast error covariance matrix P,{ and in the
observations through the observation covariance matrix Ry.

Although classical Kalman filters are still widely used in
signal processing and related fields (Sarkkd and Svensson,
2023), they require both linear and Gaussian models. De-
spite being based on the same linear Gaussian assumptions as
the Kalman filter, many nonlinear extensions of the Kalman
filter are able to overcome the strict requirement of a lin-
ear model. Among these extensions, the EnKF is particu-
larly well suited for high-dimensional nonlinear geoscientific
models by relying on an ensemble of simulations to estimate
the prior mean and covariance in the update step (1) (Carrassi
etal., 2018; Evensen et al., 2022). In particular, together with
particle methods, ensemble Kalman methods make up the
ensemble-based methods that are among the current state-

The Cryosphere, 19, 4759-4783, 2025
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of-the art methods for snow data assimilation (Aalstad et al.,
2018; Alonso-Gonzalez et al., 2022).

In the present study, a joint data assimilation scheme was
developed to update the system state by jointly assimilating
ground-based measurements of snow depth and SWE.

Despite albedo being another potential data stream to as-
similate (Navari et al., 2018), due to the lack of measure-
ments across the 7 sites, assimilation of albedo measure-
ments was not considered herein. Nonetheless, albedo was
updated indirectly, based on the assimilation of SWE and
snow depth. Moreover, as the model is a point-based sim-
ulation, we could not pursue fractional snow-covered area
assimilation and since the EnKF can not handle binary obser-
vations binary snow cover was not an option either. Finally,
since S3M does not solve the full energy balance or simulate
snow-temperature profiles, no surface temperature proxy was
assimilated.

Ensemble generation was performed by perturbing mete-
orological model forcing, which included total precipitation
(mmh~1), solar radiation (W m~2), relative humidity (%),
air temperature (°C), and daily average temperature (°C).

To each meteorological forcing data point, an ensemble of
multivariate errors was added. These errors were generated
as realizations of a multivariate stochastic process designed
to have a specified covariance matrix derived from the Gaus-
sianized historical meteorological series. The objective was
to produce a multivariate time series of meteorological val-
ues in a Gaussian space, ensuring that the imposed covari-
ance matrix matched C, the temporal covariance matrix of
the historical observations.

The procedure for constructing the stochastic process is
base on similar approaches implemented by Reichle et al.
(2007), Lannoy et al. (2010) and Durand and Margulis (2006)
and is described below:

1. Generation of a random covariance matrix: A random
covariance matrix, C,, was generated.

2. Construction of a Gaussian stochastic process:

a. A Cholesky decomposition was performed on C,,
yielding:

L, = Cholesky(C,).
b. The multivariate stochastic process was defined as:
ukt1 = ug + Lo€,

where € ~ AN (0,0.1) represents independent stan-
dard normal variables.

— Calculation of the covariance matrix: A realization of
the stochastic process was generated, and its covariance
matrix, C, was computed.

— Imposition of the target covariance matrix:

The Cryosphere, 19, 4759-4783, 2025
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a. The Cholesky decomposition of the target covari-
ance matrix, C, was computed:

L = Cholesky(C).

b. The stochastic process was constructed to impose
the covariance matrix C as follows:

Upy1 =ui+L,-€

Initially, this process was characterized by the covari-
ance matrix C. To transform it into a process with the
covariance matrix C, the following steps were taken:

a. The transformation:

| PR 778

where L = Cholesky((?), was applied, normalizing
the covariance matrix C to the identity matrix L.

b. A second transformation was applied:
upyr =L- (i . flk+1>

which transformed the identity matrix I into the tar-
get covariance matrix C.

— Perturbation Calculation: Finally, to compute the per-
turbations to be added to the meteorological values, the
following expression was used:

A =1y —mean(it 1)
where mean(z 1) represents the ensemble mean.

The use of a stochastic process to generate the ensemble of
errors was pivotal to ensure temporal coherence in meteoro-
logical perturbations. This procedure was location-specific,
tailored to the 7 study sites. The ensemble size was defined as
100 members. It was determined to be suitable for an EnKF,
based on literature (Aalstad et al., 2018) and testing.

To improve filter performance and stability, the forecast
model state vector xi at each time step #; was also perturbed.
To obtain the perturbation, a series of multivariate Gaussian
random error with imposed process noise covariance matrix
Q was added to each forecast model state vector point. The
matrix was retrieved from S3M open loop forecast over the
entire historical period for each site. Different versions of
the observation operator Hy were constructed to allow as-
similation with only one observed variable when necessary.
Post-processing was applied to the filter outputs to ensure
physical consistency, adjusting corrections to the filter out-
put while maintaining the physical relationships between the
elements of the state vector. This included constraining the
values within a physical range and modulating them accord-

ingly.

https://doi.org/10.5194/tc-19-4759-2025
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2.4 Long-short term memory neural network

The development of data assimilation using neural networks
was framed as a time series forecasting task, leading to the
use of Recurrent Neural Networks (RNNs). RNNs lever-
age internal memory to process sequences of data, making
them useful for time-dependent analysis. However, they of-
ten struggle with long-term dependencies due to vanishing
or exploding gradients (Tsantekidis et al., 2022). To address
this, LSTM networks introduce gate mechanisms (input, for-
get, output) to control information flow, effectively manag-
ing long-term dependencies (Hochreiter and Schmidhuber,
1997).

2.4.1 Data pre-processing

Effective data pre-processing is critical for the successful ap-
plication of LSTM networks, as it improves prediction ac-
curacy, reduces computational costs, and enhances model
robustness and repeatability (Isik et al., 2012). Proper pre-
processing not only accelerates network convergence, but
also helps the model capture essential patterns in the data.
For LSTM networks, which are sensitive to the distribution
and scale of the inputs, pre-processing plays a key role in
mitigating issues like exploding or vanishing gradients and
managing differences in feature magnitudes.
Data pre-processing in this study involved two key steps:

— Distribution adjustment: Snow related variables fre-
quently hit the lower physical boundary of O mm of
SWE or Ocm of snow depth, posing challenges for
the LSTM, which struggled to handle this behavior. To
overcome this, the data range was extended by redefin-
ing the lower limit to a value below zero.

— Scaling with historical data: After adjusting the distri-
bution, the input values were also standardized using the
mean and standard deviation calculated from historical
records at each site. This standardization ensured that
all input features were on a consistent scale.

2.4.2 Custom loss function

To ensure compliancy of the LSTM predictions to specific
problem domain constraints, a custom loss function was de-
veloped.

This loss function comprises two main components:

— Root Mean Square Error (RMSE): This measures the
difference between the LSTM predictions x{* and the
analysis state vectors generated by the EnKF, x}. By
minimizing RMSE, the model was trained to closely
follow the reference trajectory provided by the EnKF.

— Physics-based Regularization Term: An additional U-
shaped penalty function was introduced to enforce ad-
herence to physical constraints and guide the model to-
wards specific physical behaviors. This term penalizes

https://doi.org/10.5194/tc-19-4759-2025

4765

the network for making predictions that violate prede-
fined physical boundaries. The function is expressed as:

Loss(x}*) =

3)

where x3* is the analysis mean state predicted by the LSTM,
n is the number of state vector components xz)*l. and a; and
b; are the minimum and maximum physical bounds, respec-
tively, of the ith element of the state vector, defined as the
minimum historical and maximum historical records.

Furthermore, any LSTM prediction that fell below zero
was forced back to zero, effectively managing the intermit-
tent nature of snow data.

This combined loss function is inspired by Physics-
Informed Deep Learning (Cheng and Zhang, 2021), where
domain-specific physical constraints guide the learning pro-
cess.

2.4.3 Algorithm development and test configurations

The LSTM algorithm was trained using the analysis state
vectors generated by the EnKF -xi- to predict the cor-
rected analysis mean state vector, xz*. As a supervised learn-
ing task, the training process utilized both input features
and target outputs. The input features included meteorolog-
ical forcing variables, the model’s forecast mean state vec-
tor x,{ , and the observation vector, while the target outputs
consisted of the analysis mean state vectors x} from the
EnKF. To evaluate its effectiveness, the LSTM predictions
were compared to the analysis state vectors generated by
the EnKF. To develop the LSTM algorithm, we used Python
3.9.21 programming language and the open source libraries
Keras v.2.10.0 (Chollet, 2015) and Scikit-learn
v.1l.1.1 (Pedregosaetal., 2011).

To assess the LSTM robustness and transferability, four
experimental setups were tested:

1. Site-Specific LSTMs for State Correction Seven LSTMs
were independently trained and tested on each site to
optimize hyperparameters. For the site with > 95%
missing SWE data (WFJ), the LSTM was trained us-
ing an observation vector containing only snow depth,
which instead were not missing. Site-specific limits, de-
rived from historical data, were applied to constrain the
training process. Since the training process relies on a
cost function that combines the RMSE with a penalty
term enforcing physical bounds, the site-specific lim-
its for each state component — namely, the dry and wet
components of SWE, snow density, and albedo — were
derived from historical data records. These records were
pre-processed following the distribution adjustment and
scaling procedures described in Sect. 2.4.1. Since direct
historical observations of wet SWE were not available,
we assumed this variable to be proportional to the ratio
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between LWC and total SWE, with dry SWE estimated
as the complementary term.

The available data were split by continuous time spans,
using the hydrological year (from the 1 October to the
30 September) as the reference unit. Specifically, first
80 % of the data, in terms of hydrological years, was al-
located for training and testing using a 4 : 1 ratio, while
the remaining 20 % was reserved for operational testing.
In the operational setup, the framework combined S3M
model prediction and state updating with the LSTM
(see Fig. 2). At each time step #, the prior state vec-
tor x,i = S3M (xzil) from the S3M model’s forward
simulation was provided as input to the LSTM, along
with meteorological forcing and the observation vec-
tor y,. The LSTM outputs the updated analysis state
vector xz*, which served as the initial condition for the

subsequent S3M prediction step x [ 41 =S3M (xz*) and
so on, cycling between S3M prediction and LSTM up-
dating. The framework was validated using root mean
square error (RMSE) metrics for snow depth and SWE
between ground observations and model predictions. It
is important to stress that, while the training phase was
performed in the conventional way of training neural
networks -meaning multiple timestep as input to obtain
a sequence of outputs - the operational testing phase was
performed giving to the LSTM trained models only one
timestep at a time, to be coupled with the forward step
of the cryospheric model. The metrics were computed
for both the test and the operational set; while the first
was used to set hyperparameters, the second was used
to analyse the performance of the model.

. Incorporating Memory to the Site-Specific LSTMs The
second test configuration introduced an additional fea-
ture component to call back on the use of the “long”
memory component of the LSTM during the operational
test phase. The memory component includes the fore-
cast from the previous timestep x£_1 as well as the me-
teorological forcing from the previous time step k — 1
(relative to the current step k). The input vector I at time
step k, is constructed as follows:

I = [mk ,my_ ,Xi_l] (€))
where:

- my € R¥: the vector of meteorological forcing vari-
ables at time step k where d = 6 is the number of
forcing variables.

- my_; € R?: the meteorological forcing at the previ-
ous time step k— 1 (see Fig. 2 memory components)

- leﬁl € R": the model forecast at the previous time
step k — 1 (see Fig. 2 memory components)
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3. Testing Transferability of Site-Specific LSTMs While
in the Configuration 1, separate LSTM models were
trained and tested individually on each site using only
site-specific data, in Configuration 3, we assessed the
spatial transferability of these site-specific models by
applying each LSTM trained on the low data spar-
sity sites (NGK, KHT, RME, FMI-ARC) to new data
from (i) the remaining 20 % holdout portion of the low-
sparsity sites not used during training, and (ii) high data
sparsity sites (CDP and TRG). The WFJ site was ex-
cluded from this evaluation due to extensive gaps in
its SWE time series. In this test we chose to use the
LSTM setup with the best performances among prior
tests, hence the one with memory components (see point
2)

4. Multisite LSTM with Global Limits A multisite LSTM
was trained using data from the four low data spar-
sity sites (NGK, KHT, RME, FMI-ARC), with global
scaling derived from the combined datasets. The train-
ing dataset comprised 80 % of the data from these four
sites, while the remaining 20 % alongside all data from
the high data sparsity datasets (CDP, WFJ, TRG) were
used to test the model generalization capacity over wa-
ter year type, using the operational setup. Data split was
made by randomly sampling whole hydrological years.
The water year types were classified based on the to-
tal snow depth and include wet years, dry years, and
average conditions. Additionally, the results where also
analysed comparing the performances per each site with
the performances of the best site-specific LSTM-DA al-
gorithm.

Site-specific EnKF results were always used as input for
training the LSTM, even in the case of multisite LSTM test-
ing the EnKFs used to generate the training data were always
site-specific.

2.4.4 LSTM structure and hyperparameters

In this study, we manually tuned the hyperparameters of the
model, selecting the optimal configuration for each LSTM
network. Below are the hyperparameters we fine-tuned:

— Batch size: The batch size determines the number of
training samples processed in a single forward and
backward pass. A critical consideration when choos-
ing the batch size is balancing computational efficiency
with the quality of model outputs. To match the size of
the observation datasets for each site, we used a stan-
dard batch size of 128 for the sites of KHT and NG,
and we reduced it each time selecting the most suitable
value for optimal training performance on all the other
datasets (Bishop and Bishop, 2023).

— Epochs: The number of epochs refers to the total num-
ber of complete passes through the training dataset.

https://doi.org/10.5194/tc-19-4759-2025
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While a higher number of epochs allows the model to
better capture complex patterns in the data, it also in-
creases the risk of overfitting and computational cost.
After experimenting with various configurations, we set
the number of epochs to 500, allowing for sufficient
learning while balancing efficiency .

Early Stopping: Early stopping is a technique used to
prevent overfitting by halting training when the valida-
tion performance fails to improve for a specified number
of epochs. In our case, we set the patience to 100, mean-
ing that training would terminate if no improvement was
observed in the validation performance for 100 consec-
utive epochs (Prechelt, 2002).

Initial Learning Rate: The learning rate controls the step
size during the optimization process. A higher learning
rate accelerates convergence but may lead to instability,
while a lower learning rate can slow down the learning
process. Given the relatively small size of our datasets,
we chose an initial learning rate of 0.01 to ensure rapid
convergence during the early stages of training (Smith,
2015).

— Learning Rate Decay: To enhance convergence stability

and prevent overshooting, we applied a learning rate de-
cay factor of 1.5 periodically throughout training. This
decay reduces the learning rate over time, allowing the

https://doi.org/10.5194/tc-19-4759-2025
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Figure 2. Operational Setup for deep data assimilation. This diagram illustrates the operational workflow for integrating observational data
with the S3M (CIMA’s Cryospheric Model) framework, through data assimilation via a Long-Short-Term-Memory neural network.

model to fine-tune its parameters more effectively in the
later stages of training.

— Dense Layers: Each LSTM network used a single dense

layer as the output layer. This dense layer was used to
map the LSTM outputs to a fixed-size state vector. The
number of neurons in this layer was set to 4, correspond-
ing to the required output dimensions for each network
(Murphy, 2023).

— Hidden LSTM Layers: We employed two distinct LSTM

architectures based on the data sparsity at different sites.
For data-dense sites, we used a single LSTM layer fol-
lowed by a dense output layer, resulting in a simple
2-layer architecture. This configuration was chosen un-
der the assumption that the data contained enough pat-
terns for the model to learn effectively without requir-
ing excessive model depth. In contrast, for sparse sites,
a deeper 3-layer LSTM architecture was implemented,
which included two LSTM layers and a dense output
layer. This approach aimed to capture more complex
dependencies within the data, thereby improving the
model’s ability to learn from sparser temporal patterns
(LeCun et al., 2015).

— Hidden units per LSTM Layer: The number of hidden

units in each LSTM layer determines the memory ca-
pacity of the model. For dense sites, the number was
set to 500, allowing the model to learn from more intri-
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cate temporal dependencies. For sparse sites, the num-
ber was reduced to 100 to prevent overfitting, given the
smaller and sparser datasets (Murphy, 2023).

A note to the reader: In the following section, the term
LSTM refers to the computation of the analysis mean model
state vector, denoted as xz* € R, using the LSTM approach.
On the other hand, the term EnKF refers to the computation
of the analysis mean model state vector, denoted denoted
as xz € R", using ensemble-based data assimilation via the
EnKF scheme.

3 Results

This section presents the results from the four configura-
tion tests, based on the operational testing setup (see Fig. 2).
Our objective was to replicate the actual algorithm coupling
mechanism required in a real-time setup, where the LSTM is
used at each time step k to perform filtering.

3.1 Performance with varying data sparsity

At sites where data is plentiful (that is, available data cover
more than 80 % of the period of record: NGK, KTH, FMI-
ARC, RME), the LSTM demonstrated robust performances,
meaning that they were generally comparable to the origi-
nal EnKF (Fig. 3). This, however, came with a considerable
nearly 70 % decrease in computing time. For instance, one
year of simulation using the parallelized EnKF took on aver-
age 20 min, while using the trained LSTM took only 6 min.
Only in the case of NGK site, the LSTM-DA was able to
outperform both the open loop simulation and the EnKF-
DA; At all the other dense sites ( KTH, RME, FMI-ARC),
the mean RMSE increase relative to the EnKF for SWE es-
timation made by site specific LSTMs was within 10 mm
(Fig. 3, panel e). Similarly, the mean RMSE increase- av-
eraged across sites- compared to the EnKF for snow depth
estimation made by site specific LSTMs was equal to 6cm
(Fig. 3, panel f). The only exception is the site of FMI-ARC
were the LSTM-DA still underperformed compared to the
EnKEF, although the absolute values of RMSE are 1 order of
magnitude lower than the ones on the other sites. The bias
analysis (Fig. 3, panel g and h) showed that snow depth ex-
hibited a near zero bias, while the LSTM tended to overes-
timate SWE compared to the EnKF. However, both patterns
were consistent in the EnKF and in the S3M open loop.

In the case of datasets with high data sparsity (CDP, WFJ,
TRG), the performance of the LSTM was markedly worse
than the EnKF estimation of both SWE and snow depth
(+50mm RMSE for SWE and +19cm RMSE for snow
depth, Fig. 4 panel e and f).

On the other hand, the timing of SWE and snow depth
peaks, as well as the magnitude of snow depth peaks, are
generally captured correctly, even in these challenging data
sparse scenarios (see Fig. 4 panels a, b, ¢, d). However, mi-
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nor discrepancies were noted, even in the case of low data
sparsity, including an underestimation of peak snow depth
(Fig. 3, panels ¢ and d) and a slight temporal shift in the
SWE peak (Fig. 3, panel a).

Both the EnKF and LSTM networks improved SWE and
snow depth predictions over the Open Loop model, at least
in the case of low data sparsity; indeed the LSTM resulted
in a reduction of 25 mm in RMSE for SWE, while the EnKF
achieved a better reduction of 31 mm. On the other hand, in
case of high data sparsity, the LSTM increased the RMSE
by 15 mm, while the EnKF reduced the RMSE by 38 mm.
For snow depth, the LSTM reduced RMSE by 4 cm in low
sparsity, while the EnKF showed a greater reduction of 9 cm.
Under high sparsity, the LSTM reduced RMSE by 8 cm, with
the EnKF providing a larger reduction of 27 cm.

When it comes to evaluating the Kling-Gupta Efficiency
(KGE) (Gupta et al., 2009), for sites with denser measure-
ments (on average 0.72 for both SWE and snow depth), the
values are comparable to those obtained with the EnKF-DA
(on average 0.75 for SWE and 0.85 for snow depth), support-
ing the observed improvement trend over the open loop sim-
ulation(on average 0.75 for SWE and 0.68 for snow depth).
Conversely, in the case of sparse datasets, the lower KGE
values (on average —0.4 for SWE and 0.25 for snow depth)
highlight the limitations of the LSTM in achieving perfor-
mances comparable to the EnKF-DA (on average —0.5 for
SWE and 0.35 for snow depth). Nevertheless, the LSTM
still outperformed the open loop, which recorded even lower
KGE scores of —0.50 for SWE and —0.06 for snow depth.

Overall, the LSTM demonstrates a reduction in bias com-
pared to the Open Loop under low data sparsity conditions,
with a bias reduction of 7mm in SWE and 3 cm in snow
depth (Fig. 3, panel h). This improvement becomes even
more pronounced in high data sparsity scenarios, where the
bias decreases by 15.96 mm in SWE and 5 cm in snow depth
(Fig. 4, panel h). However, despite these improvements, the
LSTM still exhibits a higher bias compared to the EnKF.

3.2 The role of the memory component

For datasets characterized by low data sparsity (NGK, KTH,
FMI-ARC, RME), incorporating a memory component into
the LSTM improved its ability to capture the seasonal dy-
namics of SWE and snow depth, particularly in accurately
representing the timing and magnitude of peak SWE (see
Fig. 5, panels a and b). However, in some instances (see
Fig. 5, panels ¢ and d), the memory component did not lead
to a significant performance gain. Instead, it primarily acted
as a smoother, dampening short-term fluctuations without
substantially enhancing predictive accuracy. Additionally, no
significant changes were observed in the snow depth estima-
tion, with a mean RMSE increase of 6 cm compared to the
EnKF (Fig. 5, panel f).

When considering sites with high data sparsity (CDP,
WFJ, TRG), a LSTM with the addition of a memory com-
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Figure 3. Results for sites with low data sparsity, site spefic LSTM. Panels (a), (b), (c), (d): comparison between ground observation (red)
of Snow Water Equivalent (top) and snow depth (bottom) and model estimates by S3M in the open loop (black), using an Ensemble Kalman
filter (grey), and using a Long Short Term Memory neural network (blue) in Kuhtai (row 1) and Nagaoka (row 2). Panels (e), (f), (g), (h),
(i), (j): box plots of RMSE, bias and KGE for SWE (panel e for RMSE, panel g for bias and panel i for KGE) and snow depth (panel f for
RMSE, panel h for Bias and panel j for KGE); points represent sites with less than 3 years of validation data.

ponent improved both quantitative and timing estimations of
peak SWE and peak snow depth, compared to the LSTM es-
timates without memory. In fact, we found a mean reduction
in RMSE equal to 10 mm for SWE estimates and equal to
0.5 cm for snow depth estimates. However, for datasets with
extremely high levels of missing data (e.g., 95 %, WFJ and
TRG — where the assimilated observations consist of man-
ually measured SWE data, as detailed in the corresponding
site references), improvements were still insufficient to ob-
tain scores comparable to the EnKF (see Fig. 6, panels e and
f). Nevertheless, the introduction of the memory component

https://doi.org/10.5194/tc-19-4759-2025

reduced model instability and improved snowmelt timing,
particularly at sites with sparse observations.

Overall, considering both scenarios, biases (Fig. 6, panel
g) were not affected by the introduction of a memory com-
ponent.

The inclusion of a memory component narrowed the per-
formance gap between the EnKF and LSTM compared to the
Open Loop. For low sparsity, the LSTM reduced RMSE for
SWE by 29 mm, while in high sparsity, it limited the increase
in SWE RMSE to just 3mm. In terms of snow depth, the
LSTM reduced RMSE by 13 cm in low sparsity and by 7 cm
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Figure 4. Results for sites with high data sparsity, site spefic LSTM. Panel (a), (b), (c), (d): comparison between ground observation (red) of
Snow Water Equivalent (top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter
(grey), and using a Long Short Term Memory neural network (blue) in Col de Porte (row 1) and Weissfluhjoch (row 2). Panels (e), (f), (g),
(h), (i), (j): box plots of RMSE, bias and KGE for SWE (panel e for RMSE, panel g for bias and panel i for KGE) and snow depth (panel f
for RMSE, panel h for Bias and panel j for KGE); points represent sites with less than 3 years of validation data.

in high sparsity. However, the EnKF still outperformed this
LSTM configuration in both cases, highlighting its superior
performance despite the added memory and runtime cost.

The KGE values, for both dense and sparse datasets, con-
firm that the memory component primarily acts as a smoother
and enhances performance in most scenarios.

3.3 Spatial transferability

The LSTM trained on KHT emerged as the only one trans-
ferable across sites (Fig. 7). For SWE estimation this LSTM

The Cryosphere, 19, 4759-4783, 2025

showed small drops in performances across other sites be-
low 20% and, in some cases, even a performances boost
(see LSTM on FMI-ARC, RMSE AND TRG on Table 3).
On the other hand, performance drops for snow depth esti-
mation varied considerably, from 60 % to —1 % (Table 3).
Other LSTMs, such as those trained in NGK and FMI-ARC,
performed less consistently, showing notable increases in
RMSE when transferred to several sites. While recent stud-
ies (Kratzert et al., 2024) have strongly advocated for multi-
basin training to achieve robust and generalizable LSTM
streamflow models, we intentionally present the single-point
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Figure 5. Results for sites with low data sparsity. Panel (a), (b), (c), (d): comparison between ground observation (red) of Snow Water
Equivalent (top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter (grey), using
a Long Short Term Memory neural network (blue) and using a Long Short Term Memory neural network with memory (light blue) in Kuhtai
(row 1) and Nagaoka (row 2). Panels (e), (), (g), (h), (i), (j): box plots of RMSE, bias and KGE for SWE (panel e for RMSE, panel g for
bias and panel i for KGE) and snow depth (panel f for RMSE, panel h for Bias and panel j for KGE); points represent sites with less than 3

years of validation data.

case here for snow hydrology to establish a performance
lower bound for snow spatial transferability — highlighting
whether even such a constrained model can outperform the
open loop and compare with traditional data assimilation ap-
proaches.

Tests on correlations between LSTMs performances and
biases with various climatological variables showed no sta-
tistically significant correlation (see Figs. Al and A2 in the
appendix).

https://doi.org/10.5194/tc-19-4759-2025

3.4 Multi-site Long-Short Term Memory

To guarantee a meaningful and practical evaluation of the
multi-site LSTM performances, the analysis was performed
by comparing RMSE distributions for SWE and snow depth
across water year types. Figure 8 presents the RMSE dis-
tribution for SWE and snow depth under varying water year
types, comparing the performance of the S3M open-loop run,
the estimates retrieved from the analysis of EnKF, and the
LSTM estimates.
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Figure 6. Results for sites with high data sparsity. Panel (a), (b), (¢), (d): comparison between ground observation (red) of Snow Water
Equivalent (top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter (grey), using
a Long Short Term Memory neural network (blue) and using a Long Short Term Memory neural network with memory (light blue) in Col
de Porte (row 1) and Weissfluhjoch (row 2). Panels (e), (f), (g), (h), (i), (j): box plots of RMSE, bias and KGE for SWE (panel e for RMSE,
panel g for bias and panel i for KGE) and snow depth (panel f for RMSE, panel h for Bias and panel j for KGE); points represent sites with

less than 3 years of validation data.

A multi-site LSTM generally demonstrated improvements
in performance compared to the S3M open-loop run, partic-
ularly for SWE. For dry and average years (Fig. 8, panels
b and c¢), the SWE estimates from the LSTM showed com-
petitive performance over EnKF, with a performance drop of
less than 6 mm on average. On the other hand, the LSTM
SWE estimation RMSE values were higher during wet years
(+15mm). Reduced performances of the Multi-site LSTM
simulation on SWE over wet years may be because in wet
years, an increased number of snowfall events may introduce
additional complexity and uncertainty, both due to the cas-
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cading effects of uncertainties in initial conditions and pre-
cipitation phase partitioning (Harder and Pomeroy, 2014).
Moreover, the formation of several snow layers may not be
fully captured by S3M.

For snow depth, the improvements were less clear across
all water year types. The RMSE reduction remained modest,
with an average loss of 1.8 cm.

Comparing the multi-site LSTM DA with the site-specific
LSTM DA trained over KHT, results show comparable per-
formance for SWE, with neither approach consistently out-
performing the other (see Fig. 9). In some cases, the site-
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Figure 7. Spatial transferability of site-specific LSTMs for SWE and snow depth estimation. Panel (a) shows a comparison between the
RMSE for SWE obtained by using each LSTM at the training site (x-axis) and the RMSE obtained when transferring the same LSTM to
other sites (y-axis). Panel (b) shows the same information, but for snow depth. The bisectors in the two panels represent the one-to-one lines
comparing the RMSE values for SWE and between the site-specific LSTM and the LSTM trained on a different site. The dotted lines in both
panels serve as benchmarks, indicating the RMSE values achieved by the site-specific LSTM models. Colors represent training sites, while
shapes correspond to the to sites where each LSTM was applied. The lowest granularity site, WFJ, is excluded.

Table 3. Percentage change in snow water equivalent and snow depth RMSE when using a transferred LSTM assimilation scheme compared
to a locally trained LSTM. Positive and negative values indicate improvements or degradation in performance, respectively. A values are
obtained as the difference between the RMSE of a locally trained LSTM and that of a transferred LSTM, respectively for SWE and snow
depth.

SWE RMSE [mm] ‘ Snow Depth RMSE [cm]
Site RMSE;ocal, Ag KTH Ag NGK Ag FMI-ARC  Ag, RME ‘ RMSE; ocaL [em]  Ag KTH Ag NGK Ag FMI-ARC Ag RME
NGK 14.09 +8 - +125 +199 8 +34 - +90 +126
KHT 14.10 - +271 +329 +155 22 - —13 +34 +2
FMI-ARC 9.06 —45 +119 - +32 11 +47 +25 - +78
RME 39.92 —51 +35 +59 - 17 —54 +14 +7 -
CDP 67.61 +18 +68 +74 +66 12 +60 +62 +253 +128
TRG 73.70 —76 —58 —37 —68 22 -1 +2 +19 +11
Average - -29 +87 +110 +77 - +17 +18 +81 +69

specific model achieves lower errors, while in others the
multi-site model performs equally well or slightly better.
For snow depth, however, the multi-site LSTM DA tends
to outperform the site-specific LSTM DA across most sites,
although the improvements are generally modest (e.g. see
Fig. 9 pannel d).

4 Discussion

In snow-dominated regions, accurate snow estimations are
crucial for water resources managing, floods forecasting (An-
dreadis and Lettenmaier, 2006), and for assessing the im-
pact of climate change on the hydrological cycle (Siirila-
Woodburn et al., 2021). Nonetheless, significant uncertain-
ties in model predictions and observational data make accu-
rate snow estimates challenging (Bloschl, 1999). Data assim-
ilation, which integrates both sources, is arguably one of the
most effective methods for improving snowpack-model reli-
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ability. However, state-of-the-art ensemble-based techniques
like the EnKF are computationally intensive, potentially lim-
iting their use in operational contexts. Furthermore, one can
argue that it is not just the computational expense but also
the time and effort required for parameter tuning, setup, and
execution that pose significant challenges to their widespread
adoption in such applications.

This paper suggests an alternative assimilation framework
for snow, which relies on having a LSTM neural network
(Adnan et al., 2024; Song et al., 2024) to learn how to per-
form the filtering updates performed by an EnKF.

The key hypothesis underlying this research was that,
leveraging Deep Learning, it is possible to preserve the skill
of an EnKF, while significantly reducing computational ef-
forts. This paper outlined four key findings in this regard.

First, site-specific LSTMs achieved comparable perfor-
mances to an EnKF, both in predicting SWE and snow depth,
as well as their seasonal patterns, with also a significant re-
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RMSE Probability density functions for multi-site LSTM
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Figure 8. RMSE distribution for SWE and snow depth across water year types RMSE distribution for SWE on wet, dry and average years
type (panels a, b, ¢) and snow depth (panels d, e, f) under varying water year types: wet, dry, and average conditions.

duction in computational time. Besides this temporal effi-
ciency, the LSTM enabled leveraging a complex tool like the
EnKF only for initial training, then replicating its capabilities
in operational settings using a faster, simpler data assimila-
tion framework.

To evaluate the computational efficiency of the proposed
framework, it was benchmarked against a parellized EnKF.
Even though the EnKF already benefits from parallelization
during the ensemble prediction step using 15 CPU cores,
once trained the LSTM-based approach provided a further
70% reduction in computational time. This result under-
scores the potential of the framework to significantly lower
computational overhead, particularly in scenarios with lim-
ited resources or parallelization capabilities.

In line with the work of Guidicelli et al. (2024), this find-
ing reinforces the potential of Deep Learning for data as-
similation in snow hydrology. Yet, the LSTM performance
was found to be highly sensitive to the temporal resolution of
the input data, which is consistent with findings from other
machine learning studies (Xu and Liang, 2021; Gong et al.,
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2023). These results emphasize the importance of acquiring
high-frequency snow data to ensure optimal performance and
accuracy of modern data-assimilation approaches (Dedieu
et al., 2016), highlighting the need for investments in this
direction (Cui et al., 2023).

Second, the introduction of memory into the algorithm
improved both stability and performance, particularly when
working with the inherently noisy outputs of the EnKF and
in locations where data sparsity was a major issue. Future ef-
forts could explore additional pre-processing of input data to
reduce noise (e.g., smoothing or moving averages), though
care must be taken to preserve snow intermittency, which is
critical in certain hydrological contexts.

Third, the LSTM trained on a long dataset (KHT) demon-
strated some potential for spatial transferability with mini-
mal performance loss, opening avenues for distributed ap-
plications of deep data assimilation provided that such long
datasets are used in training. Although using limited datasets
in both temporal and spatial coverage compared to recent
studies (Song et al., 2024), our approach proved to be effec-

https://doi.org/10.5194/tc-19-4759-2025



G. Blandini et al.: Learning to filter

4775

Comparison of RMSE between Multi-site and Site-specific LSTM-DA across site
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tive in speeding up traditional data assimilation techniques
while maintaining comparable performance. Additionally,
our framework, designed to test the operational viability of
a quasi—real-time pilot point method, still proved the feasi-
bility of an alternative use of LSTM algorithm without loss
in performances. The encouraging results provide a founda-
tion for extending this framework to broader, more diverse
networks in future research. The lack of statistically signif-
icant correlations between performance and specific clima-
tological variables further supports transferability. Accord-
ing to Karniadakis et al. (2021), Deep Learning, which usu-
ally requires a large amount of data to optimally generalize
over samples, has a stronger generalization capability, even
in small data regimes, if such algorithms are developed with
a physics-informed learning approach. In light of this, we in-
troduced soft physical constraints into the cost function as
a way to incorporate an inductive bias. Although this par-
ticular approach did not prove effective in significantly en-
hancing generalization, considerable potential remains in en-
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forcing snow physical constraints in LSTMs (Charbonneau
et al., 2024). Further research is needed in this direction to
better understand how such constraints can support model
generalization and physical consistency. This finding could
contribute to the ongoing debate around the unresolved ques-
tion of Deep Learning models transferability (Pakdehi et al.,
2024).

With few exceptions, the comparison of RMSE reductions
from the Open Loop to the analysis of the LSTM demon-
strated substantial improvements. All but 2 out of the 14 site-
specific LSTM frameworks significantly outperformed the
Open Loop, although none outperformed the EnKF. Never-
theless, the LSTM ability to deliver marked improvements
over the Open Loop underscores its promise as a computa-
tionally efficient and effective alternative, even under chal-
lenging conditions.

Regularization  in  particular, and  uncertainty-
quantification more generally, could be improved by
using Bayesian Deep Learning (Murphy, 2023). For exam-
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ple, a recent cryospheric study used an ensemble Kalman
method (rather than stochastic gradient descent) to train
Bayesian neural network with an architecture that was
tailored to the problem at hand (Pirk et al., 2024). The
contrast between our study, where a neural network learns
to mimic the EnKF update, and Pirk et al. (2024) where an
EnKF method trains an uncertainty-aware neural network,
are just some recent examples of the synergies that exist
between Bayesian data assimilation and Deep Learning.
The aforementioned study of Guidicelli et al. (2024) also
explored how DA and Deep Learning could be combined for
better uncertainty quantification, not only by having a neural
network learn the posterior spread from an EnKF method but
also by adopting a simple dropout technique for approximate
uncertainty quantification in the neural network outputs. The
links between Deep Learning and Bayesian data assimilation
are well established in the literature (Arcucci et al., 2021;
Cheng et al., 2023; Murphy, 2023), but we emphasize them
once more in this discussion because they are perhaps less
known to the snow science community.

The fourth and last key aspect that this study highlighted
was no dependency of the performance of this algorithm on
dry and average water years, despite a diminished robust-
ness in wet years. Nonetheless, this limitation is shared with
both the EnKF and S3M in open-loop, as shown by the dis-
tributions in these scenarios. Given the predicted decline in
snow cover over the coming decades and the emergence of
more frequent snow droughts (Larsson Ivanov et al., 2022),
the reduced performance of the algorithm in wet years may
have a relatively minor overall impact. Under such a fast-
paced changing climate, a climatically robust LSTM could
account for physical processes changing faster than scientists
change their models (Cowherd et al., 2024a). Additionally,
considering a comparison between two approach, neither the
site-specific nor the multi-site LSTM-DA consistently out-
performs the other. While multi-site training is theoretically
expected to improve generalization by exposing the model
to a broader range of conditions, this benefit is not clearly
observed for SWE. A likely reason could be an uneven rep-
resentation of sites, combined with variability in snowpack
properties, meteorological drivers, and measurement meth-
ods, which may bias the model and introduce noise, lead-
ing to underfitting. Snow density also plays a crucial role;
SWE is defined as W =dp, where W is SWE [kg m’z], d
is snow depth [m], and p is bulk snow density [kg m3].
A site-specific model such as KHT may implicitly capture
a representative density evolution that transfers well across
sites, whereas a multi-site model must attempt to generalize
density dynamics across all environments, often with less ac-
curacy. Overall, the multi-site LSTM-DA and the EnKF-DA
perform similarly, with the latter only marginally better. This
is encouraging, as it highlights the potential of the multi-site
LSTM-DA to achieve comparable performance while sub-
stantially reducing the computational cost associated with
ensemble-based methods.
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It is important to note that the algorithm showed a signifi-
cant drop in performance when handling missing or sparse
data, contrary to an Ensemble Kalman Filter.Future work
in this regard should focus on improving performance un-
der circumstances of high data sparsity, exploring advanced
smoothing techniques, and extending transferability even to
ungauged catchments. Finally, while our results are based
on high-quality forcing and observational datasets, we ac-
knowledge that operational applications may involve lower-
quality inputs. In such cases, pre-processing strategies (e.g.,
bias correction, gap-filling) and hybrid DA-AI frameworks
could help mitigate performance loss, with the potential to
selectively down-weight unreliable inputs rather than propa-
gating their errors through the model. Recent work by Gauch
et al. (2025) demonstrates the effectiveness of imputation and
correction methods for handling missing or degraded data in
operational environments, while generative models such as
those explored by Dhoni (2024) offer promising avenues for
enriching and augmenting incomplete datasets.

5 Conclusions

We proposed a data assimilation framework based on Deep
Learning, leveraging a LSTM to perform data assimilation
for state estimation in a hybrid temperature-and-radiation
driven hydrology-oriented cryosphere model. The LSTM
framework showed performances in snow depth and SWE
estimation that were comparable to an EnKF, while signifi-
cantly reducing computational time. Furthermore, a LSTM
trained on a long dataset, proved to be spatially transfer-
able, with only a ~ 20 % reduction in SWE estimation perfor-
mance when applied to regions outside the training domain.
LSTM robustness during dry and average water years further
underscores the generalization capacity of such a framework.
Using the LSTM as an emulator of the ensemble Kalman Fil-
ter allows us to significantly reduce the computational cost of
ensemble-based data assimilation. This is particularly advan-
tageous in a spatially distributed configuration, where run-
ning a full ensemble over large domains could otherwise be
prohibitively expensive. In our current setup, ensembles are
required only during the LSTM training phase, not at infer-
ence time — resulting in a more efficient approach for opera-
tional use.

Preliminary tests with multi-sitte LSTM configurations
have shown promising results: a single LSTM model trained
on data from multiple locations can generalize well to other
sites. Building on this idea, we envision extending the appli-
cation of LSTMs from single-point setups to multiple rep-
resentative points within a catchment. This spatially sparse
assimilation could then be combined with an interpolation or
spatial mapping strategy to propagate the correction across
the entire domain.

Such an approach would provide a practical compromise
between the need for spatially distributed corrections and the
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computational limitations of full-domain deep data assimila-
tion. This transition from point-based to distributed correc-
tion — leveraging spatial generalization and interpolation —
will be a key focus of our future work.

The LSTM, however, showed limitations when dealing
with sparse data scenarios. Addressing these limitations
could involve exploring advanced smoothing techniques to
be applied to input data or evaluate the benefit from merging
different kinds of data sources (e.g., remotely sensed data).

These results open a window of opportunity for spatially
distributed deep data assimilation; hence future work should
focus on testing such a spatio-temporal configuration. More-
over, it would be valuable to assess the impact of Deep Learn-
ing in the assimilation of snow data for water resources ap-
plications, such as streamflow estimation. This study con-
tributes to the relatively under-explored literature on Deep-
Learning-based data assimilation by suggesting Deep Learn-
ing algorithms as efficient and computationally less intensive
data assimilation frameworks for operational snow hydrol-

ogy.

Appendix A: Coordinates information of the 7 study
sites

TRG (Torgnon, Aosta Valley, Italy): 45°50'N, 7°34’E
CDP (Col De Porte, Iseére, France): 45°3' N, 5°77'E

WFIJ (Weissfluhjoch, Davos, Switzerland): 46°82'N,
9°8'E

KHT (Kiihtai, Tirol, Austria): 47°20'71” N, 11°00'6” E

FMI-ARC (FMI-ARC Sodankyld Geophysical Obser-
vatory, Finnish Lapland): 67°36'8" N, 26°63'3” E

NGK (Nagaoka, Japan): 37°25'N, 138°53'E

— RME (Reynolds Mountain East, Idaho, USA):
43°11'9.36” N, 116°46'58.9" W
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Table Al. Measurement Characteristics Across Sites. TRG = Torgnon, Aosta Valley, Italy. CDP=Col de Porte, Isere, France.
WFJ = Weissfluhjoch, Davos, Switzerland. KHT = Kiihtai, Tirol, Austria. FMI-ARC = FMI-ARC Sodankyld Geophysical Observatory,
Finnish Lapland. NGK = Nagaoka, Japanel RME = Reynolds Mountain East, Idaho, USA.

Site SWE Obs. (mm) HS Obs. (cm)  Frequency  Error (SWE/HS) [mm/cm]  Time Range

TRG 6h, missing (2012-2013, 2014-2015) Vv 30° +15/£10 Oct 2012-Mar 2023
CDP From 2002 v 1h +5/+£1 Oct 1993-Sep 2022
WEF] Manual, sporadic v 60’ +10/£20  Oct 1999-Sep 2018
KHT v v 15° +1/+£10  Oct 1990-Sep 2015
FMI-ARC  Manual, sporadic v 60’ +15/£10  Oct 2007-Jul 2014
NGK v v 60’ +10/£10  Oct 2006-Aug 2023
RME v From 1999 60’ +10/+£10  Oct 1984-Sep 2008
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Figure Al. Analysis of RMSE dependency on site characteristics for SWE and snow depth across different parameters. Subplots (a)—(b)
show RMSE vs. peak SWE, (¢)—(d) vs. altitude, (e)—(f) vs. annual precipitation, (g)—(h) vs. latitude, and (i)—(l) vs. longitude. Blue and cyan
markers represent estimations from LSTM with and without memory, respectively. Correlation coefficients, confidence intervals, and p-values
indicate weak or negligible dependence of RMSE on these site characteristics, suggesting general independence of model performance from

these factors.
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Figure A2. Bias analysis of SWE and snow depth with respect to site characteristics. Subplots (a)—(b) illustrate bias vs. peak SWE, (¢)—(d)
vs. altitude, (e)—(f) vs. annual precipitation, (g)—(h) vs. latitude, and (i)—(1) vs. longitude. Blue and cyan markers represent estimations from
LSTM without and with memory, respectively. Correlation coefficients and p-values suggest minimal or no significant bias dependency on
these site characteristics, except for a moderate correlation in specific cases, such as SWE bias with annual precipitation in (e).

Code availability. The S3M snow model is available at the CIMA
Foundation’s Hydrology and Hydraulics repository at https://github.
com/c-hydro/s3m-dev (last access: 21 January 2025). S3M is
also available on Zenodo https://doi.org/10.5281/zenodo.4663899
(Avanzi and Delogu, 2021).

Data availability. Sources of data used in this paper are reported in
Sect. 2.1. Data from the site of Nagaoka were provided by the Snow
and Ice Research Center, National Research Institute for Earth Sci-
ence and Disaster Resilience, Nagaoka, Japan.
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