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Abstract. Glacier velocity is a crucial observation as it con-
trols the mass redistribution and future evolution of the ge-
ometry of a glacier. While glacier annual velocities are now
available in open data worldwide, sub-annual velocity time
series are still highly uncertain and available at heteroge-
neous temporal resolutions. This hinders our ability to un-
derstand flow processes such as basal sliding and surges, as
well as the integration of these observations into numerical
models. The latest could help to better constrain future pro-
jections of sea level rise. We introduce an open source and
operational Python package called TICOI (Temporal Inver-
sion using linear Combinations of Observations, and Interpo-
lation). TICOI fuses multi-temporal and multi-sensor image-
pair velocities produced by different processing chains, us-
ing the temporal closure principle. In this article, we provide
extensive examples of TICOI applications on the ITS_LIVE
dataset and in-house velocity products, to generate monthly
velocity time series. The results are evaluated against GNSS
data collected on three glaciers with different dynamics in
Yukon and western Greenland, including a surging glacier.
Comparison with GNSS observations demonstrates a reduc-
tion in error by up to 50 % in comparison with the raw
image-pair velocities and other post-processing methods.
This increase in performance comes from the development
of methodological strategies to enhance TICOI’s robustness
to temporal decorrelation and abrupt non-linear changes. In
addition, TICOI can retrieve monthly velocity using annual

image-pair velocities only, when there is sufficient temporal
redundancy. This package opens the door to the harmoniza-
tion of various datasets, enabling the creation of standardized
sub-annual velocity products.

1 Introduction

Glacier velocity monitoring is key to understand how glaciers
are changing in a warming climate. Global glacier thinning
(The GlaMBIE Team, 2025; Hugonnet et al., 2021) is ex-
pected to lead to large changes in ice flow, which, in turn, af-
fect glacier mass redistribution and future geometry (Dehecq
et al., 2019; Morlighem et al., 2011). Documenting ice veloc-
ity and changes in ice velocity is thus important to understand
the future evolution of glaciers. Regional to global mapping
of glacier surface velocity from remote sensing helped to
constrain estimates of glacier thickness (Millan et al., 2022)
and ice fluxes into the ocean (Kochtitzky et al., 2022; Moug-
inot et al., 2019; Gardner et al., 2018), which led to reduc-
tions on present and future glacier contribution to sea level
rise.

While these applications rely on multi-annual velocity av-
erages, many glacier processes should be studied at sub-
annual scales, in particular to study calving events (Provost
et al., 2024; Riel et al., 2021), glacier response to lake
drainage (Maier et al., 2023; Main et al., 2023; Wendleder
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et al., 2024), surface runoff (Wendleder et al., 2024), changes
in the efficiency of subglacial hydrological networks (Nanni
et al., 2023; Maier et al., 2023) or glacier surges (Beaud et al.,
2022; Quincey et al., 2015; Copland et al., 2011). Sub-annual
ice velocity is crucial for the monitoring of natural hazard
such as glacier detachment (Kääb et al., 2021; Gilbert et al.,
2018), glacier lake outburst flood (Rashid et al., 2020; Round
et al., 2017) and potentially volcanic eruption, when glaciers
are located nearby (Martin et al., 2025). Additionally, several
recent methodological and modeling developments stress the
need for precise and temporally resolved velocity products to
infer basal conditions (Goldberg et al., 2015; Jay-Allemand
et al., 2011) or near-future projection (Choi et al., 2023), for
example using transient inverse methods (Choi et al., 2023;
Goldberg et al., 2015). This could help to better constrain
future sea-level rise.

So called image-pair velocities are derived by calculating
the displacement of features between two images. Recent im-
provements in satellite image quality and resolution, with the
launch of Landsat-8 in 2013, Sentinel-1 in 2014 and Sentinel-
2 in 2015, among others, have made it possible to derive
image-pair velocities, with an enhanced signal-to-noise ratio
at a relative high frequency (5 to 16 d at the best). Despite the
recent increase in available velocity datasets, post-processed
time series of sub-annual glacier surface velocities, sam-
pled on fixed time intervals, are not yet available at a global
scale. Only individual image-pair velocities have been re-
leased, such as those from the ITS_LIVE project, which pro-
vides velocities derived from correlating Landsat-4,5,6,7,8,
and Sentinel-1,2 image pairs, separated by temporal base-
lines of 5 to 546 d. These products remain noisy and sparse,
especially over mountain glaciers. Moreover, image-pair ve-
locities are difficult to interpret because they contain veloc-
ities measured using image pairs from different satellites,
with different temporal baselines. For these reasons, many
research teams processed their own image-pair velocities in-
stead of using existing datasets (Provost et al., 2024; Nanni
et al., 2023; Halas et al., 2023; Wallis et al., 2023; Yang et al.,
2022; Beaud et al., 2022; Derkacheva et al., 2020), to reach
a better signal-to-noise ratio and interpretability. However,
this requires high computational and storage resources, and
often suffers from a lack of reproducibility. For the same rea-
son, image-pair velocities with variable dates are difficult to
include into models, whereas seasonal velocity could aid in
retrieving basal conditions (Derkacheva et al., 2021) or ice
rheology properties (Bolibar et al., 2023). This calls for a
standardized framework dedicated to the processing of avail-
able image-pair velocity products to produce consistent sub-
annual time series of glacier surface velocity.

Several methods have been proposed to produce velocity
time series: cubic spline or LOWESS regression (Derkacheva
et al., 2020), regression using a dictionary of B-splines (Riel
et al., 2021), sinusoidal regression (Greene et al., 2020),
Bayesian recursive smoother (Wallis et al., 2023), iterative
weighted monthly averaging (Van Wyk de Vries and Wick-

ert, 2021), or temporal closure (Altena et al., 2019; Charrier
et al., 2022b). However, most of these methods use only a
subset of the available data, such as velocities quantified us-
ing short temporal baselines (< 100 d) (Nanni et al., 2023;
Wallis et al., 2023; Riel et al., 2021; Derkacheva et al., 2020),
or use strong assumptions about glacier behavior, such as si-
nusoidal variations in seasonal motion (Greene et al., 2020).
Moreover, even though efforts have been undertaken to com-
pare some of the image correlation algorithms (Zheng et al.,
2023; Jawak et al., 2018; Heid and Kääb, 2012), no study has
tried to fuse datasets produced by different research teams to
obtain sub-annual time series. Finally, few of these methods
are open source.

The objective of this study is to propose an open source
and operational package able to fuse image-pair veloci-
ties computed using different satellite images, with different
temporal baselines, and possibly using different processing
chains, in order to obtain regular (i.e., sampled at regular time
steps) velocity time series with an associated uncertainty and
relative quality indicators. To do this, we rely on a method
based on the temporal closure of the displacement network,
also known as a Small BAseline Subset (SBAS)-like ap-
proach, which originated from the Interferometric Synthetic
Aperture Radar (InSAR) community (Doin et al., 2011; Be-
rardino et al., 2002). These approaches have previously been
adapted and applied to glaciers to retrieve 2D or 3D veloc-
ity time series (Provost et al., 2024; Charrier et al., 2022b, a;
Samsonov et al., 2021; Guo et al., 2020), but have not been
applied in an operational framework because: (1) they re-
main sensitive to temporal decorrelation (i.e., very low ve-
locity values which can be measured when strong surface
changes occur, or near the margins of the moving object. This
phenomenon is especially visible when the temporal baseline
is large and/or when the velocity is low.); (2) they often in-
clude a regularization term which assumes acceleration to be
zero in time (which is not true for surging glaciers or glaciers
with a strong seasonality pattern), or a pre-defined mathe-
matical model (i.e. a periodical model) which requires a pri-
ori knowledge on the glacier dynamic; (3) they have never
been evaluated against Global Navigation Satellite System
(GNSS) data; and (4) computational costs are high.

To overcome these issues, we present a new method called
Temporal Inversion using linear Combinations of Observa-
tions, and Interpolation (TICOI) to derive regular glacier
velocity time series. First, we detail our methodological
strategy to increase the robustness of previous develop-
ments against temporal decorrelation and abrupt non-linear
changes. We also propose three criteria to evaluate the qual-
ity of our results, including an error propagation, that is based
on a robust theoretical framework. Then, we validate this new
approach against seven GNSS (Global Navigation Satellite
System) stations located on three different glaciers, includ-
ing one with an active surge phase, and two others showing
seasonal variations. We carry out a sensitivity analysis, and
illustrate our results along glacier center flowlines. Then, we
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show that TICOI is able to retrieve sub-annual velocity time
series from annual image-pair velocities only. To finish, we
discuss the interest of fusing datasets originating from differ-
ent processing chains, and the potential application of TICOI
at a regional and global scale.

2 Method

In this section, we describe the TICOI workflow (Fig. 1). The
first part builds on previous developments (Charrier et al.,
2022b, a), the second part presents methodological strategies
to improve the computational performance and robustness of
the method to temporal decorrelation and abrupt non- linear
changes in surface velocities. The aim is to provide a robust
post-processing package that does not require a priori knowl-
edge of the ice flow behavior.

2.1 Previous developments

2.1.1 Temporal closure’s principle

The temporal inversion is based on the temporal closure of
the displacement measurement network (Berardino et al.,
2002). Temporal closure links n measured displacements in
Y to p estimated displacements in X (Fig. 1), by a system of
linear equations. This system of linear equations can also be
written as AX = Y , with A the design matrix linking X to Y .
To understand the structure of A, let’s take an example with
three displacements represented in Fig. 1. Assuming that the
displacement is cumulative in time, it can be written that:
dt0,t6 = d̂t0,t4 + d̂t4,t5 + d̂t5,t6
dt0,t4 = d̂t0,t4
dt4,t6 = d̂t4,t5 + d̂t5,t6

(1)

with dti ,tj a measured displacement between dates ti and tj ,
and d̂tk,tl a displacement estimated between dates tk and tl .

This is equivalent to AX = Y , which is in this example:1 1 1
1 0 0
0 1 1

d̂t0,t4d̂t4,t5
d̂t5,t6

=
dt0,t6dt0,t4
dt4,t6

 (2)

It is important here to highlight the temporal redundancy
between the measured displacements dt0,t6 , dt0,t4 and dt4,t6 .
The estimated displacement d̂t0,t4 can be obtained from these
three displacements. This is the main interest of using tem-
poral inversion: reducing the noise by using the redundancy
between displacement measurements computed with differ-
ent temporal baselines. Note that X contains either the East-
/West displacements or the North/South displacements.

2.1.2 Inversion of the system

Most of the time, the system AX = Y is ill-posed, i.e.
rank(A) < p (the number of linearly independent rows of

the matrix A is lower than the number of estimations p), and
the system has an infinite number of solutions. To overcome
this problem, the system can be solved either with a Singu-
lar Value Decomposition (SVD) (Berardino et al., 2002), a
Least Square (LS) approach (Bontemps et al., 2018; Sam-
sonov and d’Oreye, 2017; Doin et al., 2011) or a L1-norm
solution (Lauknes et al., 2010). The L1-norm is more robust
to outliers, but computationally expensive, as it requires com-
puting the absolute of the residuals, which is not a differen-
tiable piece-wise function. The SVD solution is equivalent
to the minimum-norm LS solution (i.e. it tends to minimize
the norm of X) (Berardino et al., 2002). In order to have
a more flexible regularization strategy, we use a Weighted
Least Square (WLS) approach. The cost function is:

argmin
(
||W(AX−Y )||2+ λ||0(X−X0) ||

2
)

(3)

where W is a n×p matrix standing for the weight given to
each value in Y , λ is a scaling constant and 0 is a p×p
matrix representing the regularization matrix, and X0 is first
guess solution detailed in Sect. 2.2.2.

Different regularization matrix 0 and weights W can be
used. The choice of 0 will be discussed in Sect. 2.2.2. As
for the weights, W could be equal to the identity (Berardino
et al., 2002), in which case the WLS solution is equivalent to
an Ordinary Least Square. But this ignores the heteroscedas-
ticity of the measurements (i.e. the fact that they have un-
equal variances). Therefore, it is common to use a priori
knowledge of the data quality, for example the InSAR co-
herence (Yunjun et al., 2019), the shape of the similarity
map used in image correlation (Bontemps et al., 2018), errors
computed over stable areas, the cosine of the angle between
each displacement vector and the spatio-temporal median, or
the modified zscore (Charrier et al., 2022a). However, these
metrics do not always accurately represent the errors of the
measurements. Another complementary strategy is to use the
inverse of the residuals (Bontemps et al., 2018; Liang et al.,
2020), which can be expressed as the vector of dimension n:

R = AX̂−Y (4)

In the TICOI workflow, the weights can be a combination
of a priori knowledge of the data quality (e.g., image correla-
tion score or velocity in stable areas Gardner et al., 2018) and
residuals. To be more robust to outliers, we use an Iterative
Re-weighted Least Square (IRLS) approach, i.e. we update
the weights iteratively using the residuals from the previous
inversion.

In the first iteration of the inversion, if the data quality
is known, the diagonal elements of the weights, W0, corre-
sponds to the errors scaled between 0 and 1.

In the second iteration, and all following iterations, each
diagonal element of the weighted matrix, at the position
(m,m) and iteration u is updated as:

Wu
m,m = ψ

(
Zum,c

)
(5)
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Figure 1. TICOI workflow. In this example, displacements have been measured using images from satellites 1 and 2, which have a repeat
cycle of 2 and 5 d, respectively. Outliers have been removed in the displacement dataset, for example from areas impacted by clouds (shown in
yellow on the image subsets). The TICOI workflow is applied pixelwise (in this example on the pixel P ). First, the systemAX = Y is inverted
to obtain an irregular time series (Sect. 2.1.2). Second, the time series is interpolated to obtain a regular time series with a homogeneous and
optimal temporal sampling (Sect. 2.1.3). Note that the temporal sampling of the final time series τ can be chosen by the end-user.

In this equation, Z is a standardized residual vector of di-
mension n computed as:

Z =
R

NMAD(R)
(6)

with NMAD being the Normalized Median Absolute Devia-
tion of the residuals, equal to 1.483 MAD.
ψ is the Tukey’s biweight function, which is a common

down-weight function (Liang et al., 2020) robust to large out-
liers, defined as:

ψ
(
Zum,c

)
=


[
1−

(
Zum/c

)2]2
, |Zum|< c

0, |Zum|> c
(7)

where c is a tuning constant which is usually set to 4.685,
producing 95 % efficiency for a normal distribution (Huber,
1992).

The iterations stop when (mean (|X̂u−X̂u−1
|) < δ or (u >

10)) where X̂u corresponds to the results of a given iteration
u and X̂u−1 the results of the previous one. δ is set to 0.1 m.

2.1.3 Interpolation of the irregular time series

The inversion results in an irregular displacement time se-
ries, i.e. the vector X contains displacement between each
measured dates (all dates with an image acquisition minus
dates rejected by outlier removal) (Fig. 1). However, we need

regular time series to study glacier dynamics. To study vari-
ations of fast moving objects such as glaciers we are inter-
ested in velocity time series (Derkacheva et al., 2020; Greene
et al., 2020), more than cumulative displacement time se-
ries (Lacroix et al., 2019; Doin et al., 2011). When look-
ing at velocities, it is necessary to compare velocities with
the same temporal sampling for three main reasons: (1) ve-
locities with different temporal sampling are not comparable
because they correspond to the average of the instantaneous
velocity over different time intervals (e.g., annual image pair-
velocities are close to the annual average of the instantaneous
velocity whereas short temporal baseline velocity are close
to the instantaneous velocity) (Charrier et al., 2022a); (2) ve-
locities with very short temporal sampling can be very noisy
because noise decreases with increasing temporal sampling
(Millan et al., 2019); and (3) the dates between which the
displacements are inverted can be different from one pixel to
another because of outliers removal.

To overcome this problem, some studies have proposed
to use fractions of displacements inside the network (Sam-
sonov et al., 2021). However, this assumes the velocity to
be constant over the corresponding temporal sampling. This
assumption is most of the time inaccurate, particularly over
long time periods or in cases of surge behavior or seasonal
variations, as demonstrated in Charrier et al. (2022c). There-
fore, we propose to: (1) compute the cumulative displace-
ment time series by summation of the irregular time series;
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(2) interpolate this cumulative displacement time series (here
using a cubic spline); and (3) obtain a regular time series with
a given temporal sampling, using a discrete derivative. See
Charrier et al. (2022a) for more details.

The resulting time series has a constant temporal sam-
pling, for example 4 d in Fig. 1. The larger the temporal sam-
pling, the smoother the time series, i.e. the signal-to-noise
ratio increases, but the temporal resolution decreases. By an-
alyzing the Root Mean Square Error (RMSE) over stable ar-
eas, we have shown that the RMSE according to the tem-
poral sampling has an asymptotic behavior which converges
after around 30 d for glaciers with medium average veloc-
ity (∼ 100 to 200 m yr−1) (Charrier et al., 2022a, b). Note
that this asymptote could be reached with a smaller temporal
sampling for faster glaciers.

2.2 Improved robustness and computational
performance

An IRLS with a first order Tikhonov regularization term per-
forms poorly in some extreme cases, such as temporal decor-
relation or abrupt non-linear changes, especially when there
are few image-pair velocities. Below, we show improvements
to the method that overcome these challenges.

2.2.1 Robustness to temporal decorrelation

Using a LS approach to solve AX = Y assumes the errors
of Y to be normally distributed. However, this assumption
is not always true in a real case scenario (Fig. A1). Robust
LS regression, like IRLS using Tukey’s bi-weight function,
helps to reduce the effect of outliers in case of random er-
rors (Charrier et al., 2022b; Liang et al., 2020) but may be
inefficient for systematic errors. For example, when tempo-
ral decorrelation occurs, the measured displacement is sys-
tematically close to 0, instead of the true glacier velocity,
which results in a heavy-tailed distribution of errors with a
strong kurtosis (Fig. A1). To overcome this problem, we pro-
pose to carry on a first LS with short temporal baselines only
(lower than 180 d), to automatically detect temporal decor-
relation. We compute the residual between each observation
(with short and long temporal baselines), to this first small
baseline LS solution. Displacements impacted by temporal
decorrelation have large residuals, because they do not sat-
isfy temporal closure.

2.2.2 New regularization term robust to abrupt
non-linear changes

A crucial choice is the regularization matrix (0 in Eq. 3).
The most common regularization matrix is the first order
Tikhonov regularization, which assumes the acceleration to
be null in time (Charrier et al., 2022b; Samsonov et al., 2021;
Lacroix et al., 2019; Bontemps et al., 2018). For this reg-
ularization, 0 corresponds to a first order derivative opera-
tor. The diagonal elements of 0 in Eq. (1) are: 0k,k = 1/1τ

and the element above the diagonal will be 0k,k+1 =−1/1τ
with 1τ the temporal sampling of time series. When us-
ing the Tikhonov regularization, X0 is a vector filled with
0 in the cost function shown in Eq. (3). In other words,
this strategy minimizes the difference between adjacent esti-
mated velocities, i.e. the acceleration. However, the assump-
tion of an acceleration close to 0 is not always valid, espe-
cially when abrupt non-linear changes occur (e.g., for surge-
type glaciers, or those with strong spring speedups). Pepe
et al. (2016) and López-Quiroz et al. (2009) proposed to use
a model-based regularization, but it also requires a priori
knowledge of the displacement behavior.

Therefore, we propose a new regularization strategy. We
constrain the acceleration of the estimated time series, X,
with the acceleration of an initial guess,X0. In the regulariza-
tion term ||0(X−X0)||

2) from Eq. (3), 0 is identical to the
Tikhonov regularization matrix but X0 is not null anymore.
The latest is estimated from the spatio-temporal smoothing
of linearly interpolated measurements, to ensure that X0 and
X correspond to the same time intervals. We have tested dif-
ferent filters and have obtained the best results with a spa-
tial window of 3×3 pixels and a third-order Savitzky–Golay
filter with a temporal window of 90 d (see Appendix B2).
We use only velocity measurements with temporal baselines
<180 d to avoid long temporal baselines, which will be close
to the long-term average of velocity, resulting in an over-
smoothed solution (see Fig. A2).

2.2.3 Improved computation time

When velocities are derived from images acquired by dif-
ferent satellites, spanning different temporal baselines (e.g.,
from 5 to 546 d in the ITS_LIVE dataset), the length of Y can
be very large (e.g., on the order of 10 000 over Kaskawulsh
Glacier, Yukon, between 2013 and 2022). This will result in
very long computation time (several seconds per pixel). To
mitigate this challenge, we solve the Least Square problem
using LSMR, a conjugate-gradient method for sparse least-
squares problems, that leverages the fact that the matrix A is
generally sparse, i.e. contains mainly 0. Additionally, we im-
plement embarrassingly parallel processing at the pixel level.
Besides, the lazy mode from Dask, an open source Python li-
brary for parallel computing, allows the user to directly apply
TICOI on ITS_LIVE data sets stored in the Amazon cloud
(Gardner et al., 2025), without the need to download the data
locally. Dask also allows out-of-memory processing by split-
ting the data in chunks.

2.3 Automatic selection of the regularization coefficient

The choice of the regularization coefficient λ in Eq. (3) can
be empirical (Lacroix et al., 2019; Bontemps et al., 2018)
or based on an L-curve (Samsonov et al., 2021), which aims
to compare ||W(AX−Y )||2 and ||0(X−X0)||

2 in Eq. (3).
However, L-curves do not always converge (Vogel, 1996). As
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an alternative solution, we propose to use the Velocity Vector
Coherence (Dehecq et al., 2015) defined as:

VVC=mean(i,j)∈ω

∥∥∥∥∥ N∑
t=0

V (i,j, t)

‖V (i,j, t)‖

∥∥∥∥∥ (8)

with ω the area over which the VVC is computed. The VVC
varies from 0 to 1, with 1 corresponding to a perfect coher-
ence of the direction in time.

When the regularization coefficient increases, the solution
tends to be smoother. Therefore, the direction of the velocity
vectors tends to be constant in time, and the VVC tends to
be close to 1. To find a compromise between smoothing and
improved signal-to-noise ratio, we need to find the inflection
point of this function, which is approximated by:

VVCoptimal_coef =max(VVC)− 0.05 ·
(

max(VVC)

−min(VVC)
)

(9)

If there is a real change in velocity direction over time, the
VVC curve will converge before 1, but the curve will still
have an inflection point. For better robustness, it is advisable
to calculate the VVC over a relatively large area.

2.4 Uncertainty

Three metrics are proposed to evaluate the uncertainties of
the estimated velocity time series: (1) the VVC of the time
series; (2) the number of image-pair velocities that have con-
tributed to each estimation; and (3) the a posteriori covari-
ance matrix.

The VVC has been defined in Eq. (8). The number of
image-pair velocities that have contributed to each estima-
tion is defined as:

Xcount= ATW (10)

This is computed for North/South and East/West components
separately. Then, the number of image-pair velocities of the
velocity magnitude is taken as the average number of image-
pair velocities of two velocity components.

The a posteriori covariance matrix is defined by assum-
ing the errors to be independent (Gavin, 2023; Liang et al.,
2020):

6
X̂
=N−1ATW6

Ŷ
WAN−1 (11)

with N = ATWA+ λ0T 0, which contains a data fidelity
term ATWA, and a regularization term λ0T 0. 6

Ŷ
is the co-

variance matrix of the image-pair velocities, which contains
the square of the errors provided with the raw image-pair ve-
locities, converted in meters. If the errors are independent,
this matrix is diagonal. The demonstration of this formula is
provided in Appendix A.

The a posteriori covariance matrix is computed for each of
the components separately and interpolated using the same
strategy described in Sect. 2.1.3. Then, the a posteriori co-
variance matrix of the velocity magnitude is computed fol-
lowing the propagation of uncertainty:

6v̂ =

√(vx
v
·6v̂x

)2
+

(vy
v
·6v̂y

)2
(12)

with vx and vy the x- and y-velocity component, v the veloc-
ity magnitude and 6k the a posteriori covariance matrix of
the variable k.

Finally, the confidence intervals are defined for each esti-
mated velocity as: ±t(1−α/2),n−p

√
6v̂ , with t(1−α/2),n−p the

value of the student’s t-distribution for a degree of freedom
of n−p at a confidence level of 100(1−α)%. Here, we chose
α to be equal to 0.05, i.e., we provide a 95 % confidence in-
terval.

3 Data and study sites

The package is validated on glaciers with low to medium
velocity magnitude (∼ 100 to 200 yr−1) (Fig. 2). We chose
these glaciers because they have been monitored with contin-
uous GNSS data over multi-year periods and represent both
seasonal and surge type dynamics. The possible sites avail-
able for this comparison are rare since few glaciers are mon-
itored this way. In the following section we describe each of
the glaciers, their associated GNSS data, and surface velocity
measurements derived from remote sensing.

3.1 Lowell and Kaskawulsh glaciers in Yukon, Canada

Lowell and Kaskawulsh glaciers are two large valley glaciers
located in Kluane National Park, at the eastern edge of the
St Elias Mountains, in Yukon, Canada. Lowell glacier, also
known as Nàłùdäy in Southern Tutchone, is a ∼ 65 km long
surge-type glacier. It is composed of a southern and a north-
ern arm divided by a medial moraine. The northern arm joins
the main trunk by a ∼ 200 m high icefall, whereas the south-
ern arm originates from a large high-accumulation basin. The
terminus of Lowell is divided in two by a large nunatak (Bev-
ington and Copland, 2014). The last 6 surges have been ob-
served in 1948–1950, 1968–1970, 1983–1984, 1997–1998,
2009–2010 (Bevington and Copland, 2014), and 2021–2022
(Van Wychen et al., 2023). During the 5 surges that occurred
between 1948 and 2009, the length of the surge active phase
ranged from 0.6 to 2 years and the quiescent phase from 11 to
18 years. Bevington and Copland (2014) note that the surge
cycle (quiescent+ active phase) seems to have decreased in
time, which was supported by the start of the most recent
surge in 2021. Surges show a rapid terminus advance starting
in summer to early fall (late June to early October), continu-
ing through the winter, and ending in June or July of the fol-
lowing year. Velocity peaks during the surge phase are typi-
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cally > 3500 m yr−1 in the terminus region, and the fastest-
recorded motion is of 11 000 m yr−1 in the lowest part of the
south arm during the 1983–1984 surge (Bevington and Cop-
land, 2014).

Kaskawulsh, called Tänshį in Southern Tutchone lan-
guage, is approximately 70 km long, with altitudes rang-
ing from 800 to 2500 m above sea level (a.s.l) and flowing
eastwards. It is divided into three main tributaries (North,
Central, and South Arms) (Flowers et al., 2014; Foy et al.,
2011). It is believed to be temperate, at least across its abla-
tion area, and has been monitored for many decades (Clarke,
2014; Flowers et al., 2014; Foy et al., 2011; Arendt et al.,
2002), starting with the Icefield Ranges Research Project
in the 1960s and the 1970s (Anderton, 1973; Clarke et al.,
1967). Annual velocities are about 10 to 50 m yr−1 near the
terminus, and range between 100 and 200 m yr−1 over the
rest of the centerline (Main et al., 2023; Millan et al., 2022;
Waechter et al., 2015). Its surface velocity remained sta-
ble between 1960 and 2012, except for the lower part of
the ablation area (up to ∼ 10 km upstream of the terminus;
Waechter et al., 2015). Annual average velocities across the
lower glacier increased at a rate of 5.5 m yr−2 between 2010
and 2015, followed by a decrease between 2016 and 2018
of about 8 m yr−2, mainly in the northern lobe (Main et al.,
2023). The main cause of these changes can be explained by
the drainage of proglacial Slims lake, located northwest of
the terminus, according to Main et al. (2023).

3.2 Land-terminating margin in western Greenland

The land-terminating region in western Greenland is char-
acterized by an absence of marine outlet glaciers where an-
nual velocities are on the order of 100–200 m yr−1 (Joughin
et al., 2018). The considered study area is located inland of
Issunguata Sermia, a land-terminating outlet glacier, particu-
larly well studied over the last two decades using both satel-
lite and in situ instrumentation. Data from this region serves
as the foundation for a better understanding of hydrology-
dynamic coupling in Greenland, where melt-forced velocity
changes have been observed from daily to decadal timescales
(Davison et al., 2019). Surface lake drainage and intense
melt events drive flow accelerations as high as 10 times
above background across daily to weekly timescales as the
subglacial drainage system is temporarily overwhelmed by
the rapid influx of meltwater (Doyle et al., 2015; Tedstone
et al., 2013). Seasonal velocity cycles (two-three times win-
ter velocities) driven by summer melt production have been
well-documented and attributed to basal pressure changes
modulated by melt supply variability and seasonally evolv-
ing drainage (Maier et al., 2022; van de Wal et al., 2015;
Sole et al., 2013; Bartholomew et al., 2012, 2010). Across
decadal timescales, gradual velocity decreases (20 %) have
been found in response to periods of elevated melt rates (Ted-
stone et al., 2015; Halas et al., 2023; Williams et al., 2020).
These variations are hypothesized to be caused by increases

in summer drainage efficiency, which gradually depressur-
izes the ice-base (Williams et al., 2021; Tedstone et al.,
2015).

3.3 Surface velocity measurements

3.3.1 Datasets

We demonstrate the TICOI method with two datasets of
surface flow velocity: (1) the Institut des Geosciences de
l’Environnement (IGE) dataset (Halas et al., 2023; Millan
et al., 2022; Halas et al., 2022; Derkacheva et al., 2020; Mil-
lan et al., 2019), available on-demand and (2) the NASA
MEaSUREs project Inter-mission Time Series of Land Ice
Velocity and Elevation (ITS_LIVE) dataset (Gardner et al.,
2018, 2022), available on-line. The first one derived dis-
placement using a modified version of the Normalized Cross-
Correlation (NCC) algorithm AMPCOR from ROI_PAC
(Mouginot et al., 2019; Millan et al., 2019). In the Yukon,
it is based on images from Sentinel-2 and Landsat-8 and the
correlation window size is 16x16 pixels (Mouginot et al.,
2023) and corresponds to the dataset published by Millan
et al. (2022). In Greenland, the image-pair velocities are
based on Landsat-7, Sentinel-2, Landsat-8 and Sentinel-1
data and corresponds to datasets published by Halas et al.
(2023); Derkacheva et al. (2020). Image-pair velocities span
temporal baselines from 5 to 100 d and from 330 to 400 d in
Yukon, from 5 to 32 d (Derkacheva et al., 2020) and from
330 to 400 d over western Greenland (Halas et al., 2023).
The spatial sampling of the velocity maps is 50 m in Yukon
and 150 m in Greenland. In the dataset, a previous outlier fil-
tering has been performed: displacements that deviate more
than three pixels from the median velocity computed over a
spatial window of 9× 9 pixels are considered to be outliers
(Millan et al., 2019; Mouginot et al., 2012). The uncertainties
depend on the spatial resolution of the images and the tempo-
ral baselines as explained in Millan et al. (2019), by assuming
the uncertainty in displacement to be around 1/10 pixels.

The second dataset, ITS_LIVE v2.0 (Gardner et al., 2022),
contains velocities measured using the NCC algorithm “au-
toRIFT” (autonomous repeat image feature tracking) on im-
ages from Sentinel-1, Sentinel-2, Landsat-7 and 8. Results
from the sparse search guide a dense search (Gardner et al.,
2018). The size of the correlation window is increased iter-
atively according to a treshold on the Normalized Displace-
ment coherence, an indicator of the quality of the correlation
(Gardner et al., 2018) (i.e., there are uneven correlation win-
dow sizes which could lead to unveven smoothing in space).
The temporal baselines range between 5 and 546 d. The spa-
tial sampling of the velocity maps is 240 m resampled at a
resolution of 120 m using a cubic spline approach (Lei et al.,
2022). Only velocities that agree within 4 times the centered
5× 5 mean absolute deviation are retained. The uncertainty
of each image-pair velocity corresponds to the standard error
of velocities relative to the stable or slow moving areas.
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Figure 2. Study areas of three selected glaciers: Kaskawulsh and Lowell glaciers in the Yukon; Issunguata Sermia Glacier in western
Greenland. Black lines represent the center flow-line of Kaskawulsh and Lowell glaciers according to the Randolph Glacier Inventory
version 7 (RGI 7.0 Consortium, 2023). It has been slightly modified for Kaskawulsh to reach Slims lake. Orange lines represent the glacier
outlines from RGI v7. Blue dots show time evolving locations of GNSS stations. The three main GNSS locations are named Kask L, M,
U for the lower, middle and the upper of Kaskawulsh glacier, and Lowell L, M, U for the lower, middle and upper of Lowell glacier. Blue
squares represent areas including all GNSS stations for each site. They are used in Sect. 4. The background of each site is the 2017–2018
average velocity from Millan et al. (2022) overlaid over Sentinel-2 images.

The strength of ITS_LIVE is to be available worldwide in
open access from 1980s to 2023, while the IGE dataset, pub-
lished in Millan et al. (2019), covers only two years. The
strength of the IGE dataset is its spatial resolution (50 m
against 240 m) which allows velocities of relatively small
glaciers to be captured. A more detailed comparison is be-
yond the scope of this paper.

3.3.2 Pre-processing of datasets

In the TICOI method, we optionally apply a filtering to the
input data. Two main types of strategies for deleting outliers
are implemented : the Modified Zcore (Mzscore), which fil-
ters the velocity components 3.5 NMAD away from the me-
dian of the entire time period (Maronna et al., 2019), and the
Median Angle (MA) that removes image-pair velocities that
deviate more than 45° from the median vector (Rabatel et al.,
2023; Charrier et al., 2022a). In this study, we use the MA
filter.

The IGE and ITS_LIVE datasets are reprojected using a
nearest-neighbor interpolation on the same coordinate sys-

tem: the polar stereograpghic North projection (EPSG code
3413) for both Greenland and Yukon. This process requires
reprojecting both the grid coordinates and the values of the
EW and NS velocity components. These velocity compo-
nents are defined relative to the orientation of the grid, i.e.,
the EW (NS) component is the projection along the x (re-
spectively y) axis. Consequently, it is necessary to reproject
the grid and recalculate the velocity vector projections along
the new axes. To achieve this, we first compute the coordi-
nates of the start and end points of each velocity vector in
the new coordinate system. We then calculate the difference
between these coordinates along the axes of the reprojected
grid to obtain the new component values.

3.4 GNSS data

On Kaskawulsh and Lowell glaciers (Yukon), up to six dual
frequency GNSS receivers recorded their position at 15 s in-
tervals for 2 or 3 hours per day in winter, and 24 hours per day
in summer (Van Wychen et al., 2023; Waechter et al., 2015),
from 2013–2022. The positions were post-processed using
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Natural Resources Canada’s Precise Point Positioning ser-
vice (http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.
php, last access: 1 June 2023), resulting in an accuracy of
∼ 1–2 cm in horizontal and ∼ 5 cm in vertical. We removed
any position derived from a daily record of < 1.5 h, which
sometimes occurs in winter due to low battery power. Prior
to 2017, the stations were Trimble R7 units mounted on poles
drilled into the glacier surface. From 2017 onwards, the sta-
tions were replaced with Trimble NetR9 units mounted on
tripods “floating” on the glacier surface. They were manu-
ally moved up glacier every few years to compensate for the
glacier displacement, to ensure that they remained in approx-
imately the same location. This creates artifacts in the posi-
tion time series, which we remove using the Local Outlier
Filter (LOF) (Breunig et al., 2000), which computes the lo-
cal density deviation of a given data point with respect to its
neighbors. We apply it on the gradient of the East/West and
North/South position. A daily position is considered to be
an artifact if LOF> 5. Then, velocities are derived from the
discrete derivative of the position time series, and averaged
using a temporal window of 5 d, which corresponds to the
minimal repeat cycle of the satellites used. Time spans with
less than 80 % available daily velocities are removed.

In western Greenland, we derived velocities from 15 s po-
sition data collected at a field site located 33 km from the ter-
minus of Issunguata Sermia using five Trimble NetR9 GNSS
receivers mounted on a poles frozen into the ice. The posi-
tion data from each receiver was processed against an off-ice
base station using TRACK v1.29 differential kinematic pro-
cessing software (previously detailed in Maier et al., 2022;
Maier et al., 2019). From the GNSS positions, ice velocity
is estimated on a daily basis (Halas et al., 2022). While the
collection period was from 2014–2017, no data are available
from each winter due to power limitations.

Since the Yukon GNSS stations typically move around
100–150 m yr−1, we compare them to remote sensing veloc-
ities or TICOI results located at the averaged GNSS location
of the corresponding year. The GNSS station in Greenland
is supposed to be stable spatially because the period of mea-
surements is shorter and the sampling of the velocity maps
coarser (considering a spatial sampling of 150 m, an average
velocity of 125 yr−1, the GNSS stations have likely moved
by 2.5 pixels between 2014–2017). Then, we average daily
GNSS velocities to match the same temporal baselines as re-
mote sensing velocities, or the temporal sampling of TICOI
time series, which in this study is 30 d.

4 Results

4.1 Robustness of TICOI method

4.1.1 Robustness to temporal decorrelation

One of the main improvements of TICOI compared to pre-
vious methods is its ability to eliminate artifacts caused by
temporal decorrelation in the input datasets. The strategy de-
tailed in Sect. 2.2.1 rejects long temporal baseline velocities
which are biased. These velocities tend to have large errors
when compared to the temporal closure solution derived us-
ing only short temporal baseline velocities. This results in
large residuals (Eq. 4) relative to the initial solution with
short temporal baselines, and as a result, Tukey’s biweight
function assigns a weight of 0 to these raw image-pair veloc-
ities.

To evaluate the performance of this strategy, we applied
TICOI to a large area around Kaskawulsh Glacier for the
period 2013–2022 considering two implementations: with
and without an automatic detection of temporal decorre-
lation. Then, we computed the averaged velocity magni-
tude of TICOI results obtained with the two implementa-
tions (Fig. 3a). The median difference between TICOI with
and without an automatic detection of temporal decorrela-
tion is −0.53 m yr−1. However, the difference can reach up
to 100 m yr−1 near glacier margins or in narrow, steep ar-
eas, where temporal decorrelation is more likely to occur
(Fig. 3a), as in point A (Fig. 3c). To assess the uncertainty
of each strategy, we compute the NMAD and the median
of velocities over stable areas (i.e. areas outside of glaciers
boundaries defined by the RGI v.7) for each date of the time
series. These indicators are traditionally used to assess the
uncertainty of the observations. The maximum and the me-
dian value in time of both the NMAD and the median slightly
decrease (Fig. A3) with the use of the automatic detection
of temporal decorrelation, highlighting a reduction of uncer-
tainty. Note that the conclusions are similar if we calculate
the statistics for the EW and NS components instead of the
magnitude.

Notably, TICOI remains robust to temporal decorrelation
without this specific strategy, when decorrelated image-pairs
are in the minority (Fig. 6). In such cases, the Tukey bi-
weight function is able to effectively filter out the decorre-
lated image-pairs.

4.1.2 Robustness to strong changes in velocity

The traditional regularization penalizes abrupt changes in ve-
locity, and is thus unable to resolve the peak of velocity for a
surge event. For instance, for the surge of the lower station of
Lowell glacier, the traditional regularization retrieves a con-
tinuous increase in velocity from mid-2021 onward, while
TICOI captures well a sudden increase in velocity and the
rapid glacier slow-down in summer 2022 (Fig. 4). In this
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Figure 3. Illustration of the robustness to temporal decorrelation over Kaskawulsh glacier: (a) represents the difference between the averaged
velocity magnitude computed using TICOI with and without an automatic detection of temporal decorrelation. Grey lines correspond to
glacier outlines according to RGI v.7 (RGI 7.0 Consortium, 2023). (b) ITS_LIVE image-pair velocities on the point A represented in (a). (c)
time series of TICOI without (purple) and with an automatic detection of temporal decorrelation (“TICOI_detect_temp”, red) over the same
point A. The coordinates of point A is 139.6458° W, 60.6991° N). The coordinates of the grid correspond to the projection EPSG:4326.

example, few velocity measurements are available in 2022–
2023, because the outlier removal step of ITS_LIVE rejected
many image-pair velocities (see Sect. 3.3), therefore the so-
lution is strongly impacted by the regularization term, which
minimizes the acceleration in the traditional approach. The
TICOI regularization (described in Sect. 2.2.2) relaxes this
assumption of minimal acceleration by using an initial guess
for the acceleration, which makes it possible to capture the
peak of the surge even with limited image-pair velocities
(Fig. 4).

4.2 Validation with GNSS time series for different
glacier dynamics

We evaluate TICOI time series with seven GNSS time se-
ries on three different glaciers (Table 1). The metrics for the
evaluation are the RMSE (in m yr−1) and Kling–Gupta effi-
ciency (KGE) (no unit) (Gupta et al., 2009). The KGE is a
goodness-of-fit indicator, widely used to calibrate hydrologi-
cal models, in order to make sure that they well capture peak

flows, as well as the seasonality of the flow. It is defined as:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2 (13)

with r the Pearson’s coefficient, α = σe
σo

with σe and σo the
variance of the estimated and observed time series, respec-
tively, and β = µe

µo
with µe and µo the mean of the estimated

and observed time series, respectively. α represents the vari-
ability of the estimation and β is the bias term. The KGE val-
ues range between −∞ and 1. A perfect agreement between
two time series would lead to a KGE of 1.

TICOI leads to a reduction in RMSE from 9 %, in the
least favorable case, to 69 %, in the most favorable case, in
comparison with the image-pair velocities. The median im-
provement is of 52 % (corresponding to a reduction from 5 to
47 m yr−1, with a median reduction of 34 m yr−1). The KGE
increases up to 1.87, with a median improvement of 0.57 (Ta-
ble 1). This improvement is less important for the Lowell L
and M stations, due to a larger density of TICOI estimation
during the surge, when the velocity magnitude is higher, in
comparison with the image-pair velocities. Besides, TICOI
leads to a reduction of RMSE from 11 to 81 % in comparison
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Figure 4. (a) Image-pair velocities from ITS_LIVE at Lowell L. Dots and bars represent the central date and temporal baseline, respectively,
of each image-pair velocity. (b) Example of velocity time series retrieved on the lower part of Lowell glacier (Lowell L GNSS station) with
TICOI regularization term based on an initial guess about the acceleration (red crosses) and with the traditional regularization term (blue
triangles), i.e., the first order Tikhonov regularization. The orange dots show the GNSS data averaged to match TICOI temporal sampling.

with a rolling median, with a median improvement of 40 % (3
to 250, 14 m yr−1 in median). The KGE increase up to 0.44,
with a median improvement of 0.27. For the point Lowell U,
the rolling median provides better results than TICOI. This
could be due to the low signal-to-noise ratio of image-pair
velocities over this area. A strategy to improve this result is
discussed in Sect. 5.2.

We note that a rolling median applied on all temporal base-
line velocities gives slightly better RMSE than a rolling me-
dian with small baselines only, for some of the considered
points, as illustrated in Fig. A2. However, the solution using
all baselines tends to underestimate the largest velocities, be-
cause they include annual temporal baselines which are close
to the annual average of the signal. These results show the
strength of TICOI: taking advantage of all temporal base-
lines, without over-smoothing the solution.

4.3 Sensitivity analysis and automated choice of the
hyperparameters

TICOI was developed as a flexible method, with processing
options that can be changed by the user. Several options can
be modified: the coefficient of regularization, the possibility
to set an initial weight, the strategy to delete outliers, the type
of spatio-temporal filter, and the solver.

The regularization coefficient has the greatest impact on
the TICOI solutions. To illustrate this, we compute the me-
dian RMSE and KGE for the velocity magnitude at the six
Yukon GNSS stations (Fig. B1a). Both RMSE and KGE im-
prove drastically, by factors of 3 and 8 respectively, when
the regularization coefficient increases from 0.1 to the op-
timal value of 100. This optimal coefficient corresponds to
1.1min(RMSE) and 0.9max(KGE).

Notably, the RMSE increases slightly and the KGE de-
creases slightly (by about 5 %) when the coefficient is further
increased to 10 000, indicating the relative stability of the so-

lution even with large regularization coefficients in general
scenarios. However, for surge-type glaciers, using a coeffi-
cient greater than 1000 increases the risk of over-smoothing
the solution (Fig. B2).

The comparison between TICOI results and GNSS data
helps to identify an optimal regularization coefficient of 100.
In many cases, though, GNSS observations are unavailable
to optimize the regularization coefficient. In such cases, we
suggest that the optimal coefficient can also be determined as
the approximate point of inflection of the VVC curve, defined
in Eq. (9). This method similarly yields an optimal value of
100 for the coefficient. Thus, the VVC approach provides a
reliable method for selecting an optimal regularization coef-
ficient (Fig. B1b).

We analyzed the sensitivity of the results to various op-
tions in Appendix B. Our analysis shows that the choice of
weight and solver has no impact on the results for the tested
cases. The selection of spatio-temporal filters introduces a
standard deviation in RMSE of approximately 2.6 m yr−1 on
average between filters (i.e. 8 % of the averaged RMSE). For
non-surge glaciers, using MA filters reduces the RMSE by
up to 2 m yr−1 compared to a strategy that does not filter out-
liers. This is largely because the Tukey biweight function,
which is applied, already acts as an outlier filter.

4.4 Uncertainty of the final product

To provide insights into the uncertainty of TICOI velocity
time series, we first use the VVC per pixel. This highlights
areas where the direction of TICOI results has a poor tempo-
ral coherence. In Fig. 5 we can see that the VVC is lower near
the terminus, the borders and the upper parts of the glaciers.
We also notice low VVC values (around 0.7) just before the
confluence between the southern arm and the main trunk of
Lowell glacier. This corresponds to the approximate position
of the equilibrium-line altitude, therefore leading to strong
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Table 1. Comparison of the RMSE (in m yr−1, left) and KGE (unitless, right) of the velocity magnitude between GNSS and: (1) TICOI time
series; (2) image-pairs with a temporal baseline lower than 180 d, and (3) a moving 30 d median applied on image-pairs with a temporal
baseline lower than 180 d. The lowest values are in bold. The surface velocity measurements used are the ITS_LIVE data in the Yukon, and
IGE data in Greenland.

RMSE KGE

TICOI Image-pairs Moving median TICOI Image-pairs Moving median

Kask L 21.3 68.4 28.3 0.84 −0.27 0.71
Kask M 28.4 62.5 31.8 0.78 −0.14 0.72
Kask U 43.1 90.5 55.5 0.08 −1.79 −0.36
Lowell L 58.8 64.5 308.7 0.92 0.86 0.5
Lowell M 44.7 60.2 155.7 0.93 0.94 0.66
Lowell U 78.7 119.9 53.7 0.49 0.53 0.74
Iss 12.5 28.8 28.2 0.86 0.63 0.59

changes in surface state (between wet snow, dry snow and
bare ice) (NASA Earth Observatory, 2018) that are difficult
to tackle. Besides, this is the only part of the glacier that faces
north. It is therefore more susceptible to changes in shad-
ows and illumination. (Lacroix et al., 2019). Note that real
changes in velocity direction are expected over time in areas
of variable flow, such as near confluences, glacier edges or
terminus. It could cause a low VVC which is not related to
measurement error.

Therefore, to estimate the uncertainty of each TICOI re-
trieved velocity, in time and space, we propagate the co-
variance matrix as described in Sect. 2.4. We tested this ap-
proach on simulated data with correlated noise described in
Appendix C, for different percentage of image-pair velocities
and different noise levels. In controlled conditions, the 95 %
confidence interval includes both estimated and true veloc-
ity (i.e. are correct) for more than 95 % of the estimation,
in cases of a low percentage of data and a low noise level,
where the confidence interval tends to be slightly underesti-
mated (Fig. B4). This synthetic case provides confidence of
the validity of the theoretical framework.

In order to test the validity of the uncertainty calculation,
we calculate the 95 % confidence intervals for the real dataset
of Kask L (Fig. 6). Confidence intervals are larger before
the launch of Sentinel-2 in 2015/2016, when the number and
quality of data were lower. They are also larger in wintertime
for the same reason. However, only 48 % of the confidence
intervals include both the estimated and the GNSS velocities
(i.e. are correct), which is much below the expected 95 %.
On average, over the six GNSS stations, the percentage is
27 %. The confidence intervals fail to include estimated and
true velocity, especially when the number of image-pair ve-
locities is low, and the solution is less strongly constrained.
This is a limitation of our approach to calculate confidence
intervals that is discussed in Sect. 5.2.

4.5 Application to different glacier dynamics

In this section, we apply TICOI to pixels sampled regularly
along the centerlines of Lowell and Kaskawulsh glaciers
(Fig. 7). On Lowell glacier, we observe an upward propa-
gation of the surge in 2021–2022 (Fig. 7a). This surge was
first reported by Van Wychen et al. (2023) using Radarsat
Constellation Mission data. However, since this data was
only available from winter 2022, the start of the surge was
poorly defined. From TICOI results, it is clear that there is
a strong positive velocity anomaly in June 2021, with max-
imum anomalies of 400 m yr−1 at around 2 km from the ter-
minus (Fig. 7a). Velocity anomalies range between 100 and
400 m yr−1 from 1 to 7 km upglacier from the terminus. They
remain positive up to 27 km from the terminus, at a loca-
tion which corresponds to the confluence between the north-
ern and southern arm of Lowell. This positive anomaly re-
mains approximately stable until December 2021 (with an
average monthly acceleration of 15 m yr−2) except in the 2
last kilometers before the terminus, where the average accel-
eration was of 1500 m yr−2. The entire glacier starts to ac-
celerate in December 2021, with an acceleration front prop-
agating upglacier. Anomalies > 300 m yr−1 are recorded up
to 27 km from the terminus, just one month later, in January
2022. However, this acceleration front seems to propagate
at a slower rate in the southern arm of Lowell glacier, even
if this observation has to be interpreted cautiously regarding
the low VVC values obtained in this area (Fig. 5). In Octo-
ber 2022, anomalies > 300 m yr−1 are recorded up to at least
47 km from the terminus. In addition, we observe slight pos-
itive anomalies occurring each spring before the surge. The
intensity of these anomalies increases from 2016 until the
start of the surge, especially near the terminus, with annual
maximum velocity magnitudes raising from 90 m yr−1 be-
tween 2014–2016 to 275 m yr−1 in 2020, at a rate of 9, 33, 70
and 70 m yr−2 in 2017, 2018, 2019 and 2020 (Fig. 8a). The
annual maximum over the entire glacier rises later in time
(Fig. 8a). The surge event ends near the terminus in winter
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Figure 5. Spatial variability of VVC, overlaid with the glacier outlines in white according to the RGI v.7 (RGI 7.0 Consortium, 2023), over
the same areas as in Fig. 2. (a) and (b) represent Lowell and Kaskawulsh glaciers, respectively. The coordinates of the grid correspond to the
projection EPSG:4326.

2022, while anomalies remain high in the upper part of the
glacier.

On Kaskawulsh glacier, there is a long-term trend towards
decreasing velocities (Fig. 7b), particularly over the lower
part of the ablation area, which is likely related to the thin-
ning of the glacier (Main et al., 2023; Dehecq et al., 2019).
In the 0 to 5 km section upglacier from the terminus this
decrease in velocity between 2015 and 2018 is particularly
marked, from 170–180 to 120 m yr−1 (Fig. 8b). This is con-
sistent with the results of Main et al. (2023), who found a
large change in velocity near the terminus after drainage of
the adjacent proglacial Slims Lake in 2016. We also observe
a marked seasonal velocity increase every spring (around
April), with maximum of yearly anomalies between 30 and
70 m yr−1. The anomalies propagate up glacier, but the in-
terpretation is more difficult above 30 km from the terminus
because the signal becomes noisier (Fig. 7b). The high tem-
poral resolution also reveals very abrupt positive anomalies
in March at a position situated from 6 to 9 km from the ter-

minus. This is especially the case for the year 2019, but it
can be also noticed in 2017, 2020, 2021, and 2022. This phe-
nomenon is also visible in the GNSS time series (Fig. 6).

4.6 Estimating monthly velocities from annual
velocities

The TICOI method can be used to study sub-annual veloci-
ties even if long temporal baseline velocities only are avail-
able. This is important because in slow moving areas, veloci-
ties quantified with short temporal baseline mainly show low
signal-to-noise ratio, and are frequently filtered out in open
data datasets such as ITS_LIVE (Millan et al., 2019; Gard-
ner et al., 2018). For these reasons, previous research chose
to perform image correlation on images separated by long
time intervals only, for example between 330 and 400 d (Ha-
las et al., 2023), privileging accuracy over temporal resolu-
tion. This strategy is adapted when assessing multi-annual
or decadal velocity trends, but hinders the seasonal varia-
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Figure 6. (a) 95 % confidence interval for velocities on the point Kask L. The blue dots and bar correspond to the central date and temporal
baselines of the image-pair velocities. GNSS data are represented by orange crosses. Light magenta intervals represent the 95 % confidence
intervals defined in Sect. 2.4. The colors from light red to dark red correspond to the number of image-pair velocities used to constrain the
velocity estimations. The upper and lower limits of the y-axis are defined according to the average± the standard deviation of the image-pair
velocities. (b) TICOI velocity magnitude as a function of the GNSS velocity magnitude. Vertical grey bars correspond to the confidence
intervals, which should intersect the red line 1 : 1 (i.e., encompass the true velocity value) if they are not underestimated. Underestimated
confidence intervals are displayed in red, correct one are represented in grey.

Figure 7. Spatio-temporal evolution of monthly velocity anomalies with respect to the averaged velocity magnitude over the period (as
defined in Dehecq et al., 2019) over the centerline of (a) Lowell glacier, and (b) Kaskawulsh glacier, plotted as distance from the terminus.
The centerline is represented in black on Fig. 2. The y-axis correspond to the central date of each monthly velocity.

tions and rapid summer velocity changes (Fig. 9). In the
case of Issunguata Sermia glacier, satellite observations show
an average velocity of ∼ 125 m yr−1 with slight variations
from year to year (Fig. 9). The application of TICOI to this
dataset provides monthly velocities that match very well with
the GNSS data after 2016, when Sentinel-2 images become
available (Sentinel-2A was launched in June 2015), result-

ing in an increasing number of image-pair velocities (red
and dark red in Fig. 9). The RMSE between GNSS and
TICOI time series is 25.8 m yr−1 between 2014 and 2017,
and 17.7 m yr−1 between 2016 and 2017, with stronger errors
in winter time when optical images are impacted by night and
clouds. Hence, TICOI can retrieve monthly velocities using
only image-pair velocities with long temporal baselines. It
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Figure 8. Average yearly maximal velocity magnitude over the entire glacier in blue, and near the terminus in red, for (a) Lowell glacier, (b)
Kaskawulsh glacier. Note the logarithm scale in (a).

takes advantage of the temporal closure that relies on redun-
dancy of annual velocities. However, it still requires a suf-
ficient amount of observations (> 500) to obtain a reliable
time series (Figs. 9 and C1). This is also illustrated over the
Lower part of Kaskawulsh glacier using ITS_LIVE dataset
(Fig. C1).

5 Discussion

5.1 Fusion of velocity measurements from different
processing chains

Datasets from several processing chains can be included as
input in TICOI, with the datasets reprojected on the same
grid as explained in Sect. 3.3.2. Fusing different datasets, like
the ones from IGE and ITS_LIVE, can particularly improve
the signal-to-noise ratio in the upper parts of glaciers (Ta-
ble 2). For example, this provides an improvement in RMSE
of 11 % for the upper part of Lowell glacier, and 32 % for the
upper part of Kaskawulsh glacier. Over these two areas the
surface is snow-covered most of the year, which produces
poor results from image correlation algorithms. Fusing ve-
locity results from different processing chains takes advan-
tage of the different sets of correlation parameters used and
strategies to delete outliers. However, we do not see improve-
ments in the middle and lower parts of the glaciers when ap-
plying this technique; the RMSE even slightly increases (Ta-
ble 2). Considering the increasing computation time when in-
cluding additional dataset, this technique may only be suited
for very noisy areas or areas with a low number of image-pair
velocities.

Table 2. Comparison of the RMSE of the velocity magnitude (in
m yr−1) between GNSS and TICOI time series, with datasets from
(1) ITS_LIVE and (2) IGE & ITS_LIVE over upper and middle
GNSS stations of Lowell and Kaskawulsh glaciers. We consider the
time-period which is common between the two datasets, i.e. 2016–
2022. The lowest values are in bold.

ITS_LIVE IGE & ITS_LIVE

Lowell U 46.2 41.5
Kask U 46.7 35.3
Kask M 26.0 28.5
Lowell M 30.1 33.7

5.2 Uncertainty

Despite providing satisfying confidence intervals on syn-
thetic data, our framework to calculate TICOI confidence in-
tervals underestimates uncertainties on real data when com-
pared to GNSS measurements (see Sect. 4.4). Here, we dis-
cuss the different limitations in our approach that could ex-
plain these discrepancies. First, the error of the input image-
pair velocities may be underestimated. These errors are com-
puted either using stable areas, which may not be represen-
tative of the glacier texture (Zheng et al., 2023; Altena et al.,
2022, 2019) or by assuming a 1/10 pixel error, which corre-
sponds to an error of 1 m for Sentinel-2 and 3 m for Landsat-
8. To estimate the underestimation of the errors provided
with image-pair velocities, we consider the true error as the
difference between ITS_LIVE and GNSS data. The aver-
aged RMSE between the errors provided by the ITS_LIVE
dataset and the true errors are 9 m and 7 m for the East-
/West and North/South components, respectively. The dif-
ference between the average true error and ITS_LIVE er-
ror is of 1.8 and 2.6 m, highlighting a clear underestimation
in ITS_LIVE errors. Moreover, there are no strong temporal
correlations between the provided errors and the true errors,
with Pearson’s coefficient of 0.27 on average for both com-
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Figure 9. Example of monthly velocity time series (in red) retrieved using annual velocities from Halas et al. (2023) (in blue) on the
Issunguata Sermia glacier. GNSS data are represented by orange crosses. The colors from light red to dark red correspond to the number of
image-pair velocities used to constrain the velocity estimations.

ponents. Second, the underestimation of our confidence in-
tervals could be caused by biases in the image-pair velocities,
for example due to shadows or seasonal illumination changes
(Lacroix et al., 2019). The errors in the ITS_LIVE dataset are
based on the standard error in component velocities relative
to stable surface velocity; they characterize random errors.
Therefore, our confidence intervals only account for random
errors and not systematic biases. Third, the real errors may
have a stronger correlation in time than what has been simu-
lated in Sect. 4.4, for instance due to seasonal source of errors
(shadows, surface changes), since we only take into account
the correlation of errors between displacement with common
acquisition dates. In case of highly correlated errors, the a
priori covariance matrix cannot be diagonal anymore, lead-
ing to much higher computational cost. The cost of explicitly
computing the inverse of the error covariance matrix is pro-
portional to n (the number of image-pair velocities) if the
matrix is diagonal and to n3 in the general case (Ruggiero
et al., 2016).

To address this issue, a potential solution involves scal-
ing the confidence interval by a specific correction factor.
This factor could be a function of the VVC, as the VVC
serves as an effective proxy for the relative uncertainty be-
tween pixels. Indeed, the RMSE decreases linearly with the
VVC, until reaching a vertical asymptote close to 1, which is
the VVC maximum value (Fig. B5a). To estimate this correc-
tion factor, we determine the 95th quantile of the theoretical
95 % confidence intervals divided by the true errors, for each
GNSS stations (Fig. B5b). We then perform a linear regres-
sion on the resulting seven points. Although the RMSE of
the linear regression is around 3 and the sample size is small,

this method provides an empirical correction factor. By mul-
tiplying the confidence intervals by this factor, the confidence
intervals contain both estimated and GNSS data with an av-
erage percentage of 86 % (against 27 % without a correction
factor). Additionally, the reliability of the confidence inter-
vals derived with the correction factor appears to improve
with the number of observations used. For example, when
selecting only TICOI estimations with more than 500 obser-
vations, the confidence intervals encompass both estimated
and GNSS data with an average coverage of 91 %.

Another strategy could be to augment the observation vec-
tor with the first- and second-order spatial derivatives of the
original observations, as described in Ruggiero et al. (2016);
Brankart et al. (2009). However, this requires proper char-
acterization of the spatial and temporal correlation of errors
of surface velocities, which could be the scope of future re-
search.

With the current state of knowledge in velocity errors, we
recommend relying on the VVC and number of contributed
image-pair velocities. The VVC is a quality metric which
characterize random errors, by analazing the temporal coher-
ence of the direction. The number of contributed image-pair
velocities indicates the robustness of the TICOI estimation:
the solution seems to be correctly constrained by the obser-
vations when this number is higher than 100.

Note, that the TICOI package also offers the possibil-
ity to compute the Normalized Median Absolute Deviation
(NMAD) over stable areas. This is a widely used and ro-
bust metric for characterizing random errors in glacier ve-
locity fields (Dehecq et al., 2015). However, as previously
demonstrated for ITS_LIVE scene-pair velocities, such er-
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rors are often underestimated due to the differences in tex-
ture between glacier surfaces and stable ground. Moreover,
the NMAD over stable ground do not capture the spatial vari-
ability in errors because they provide only one value for the
entire scene at a given time. For example, the RMSE be-
tween TICOI and the GNSS is about 43 m yr−1 on the upper
of Kaskawulsh glacier, which is 20 m yr−1 below the maxi-
mal NMAD obtained in the area (Fig. A3b). To enhance the
flexibility of the package, the application of the along-flow
shear strain rate proposed by Zheng et al. (2023) is also im-
plemented. It provides insight into the smoothness of the ve-
locity solution.

5.3 Large scale application

Here, we discuss the possibility of applying TICOI at a large
scale. We have shown that it can be applied to all kinds of
glacier dynamics because it does not include any a priori
information about the glacier behavior, unlike a wide range
of post-processing approaches (Riel et al., 2021; Samsonov
et al., 2021; Greene et al., 2020; López-Quiroz et al., 2009).
This flexibility also allows for the detection of unexpected
events and trends, such as the annual acceleration in March
over Kaskawulsh glacier. However, data-driven approaches
may encounter limitations when data density is very low. In
this case, a priori information, if available, may help to con-
strain the time series. The regularization term can be modi-
fied to include a model, similar to López-Quiroz et al. (2009).
An example is given in Eq. (C1). By doing so, the inversion
solves both the temporal closure and a parametric regression
problem. For more flexibility, it may also be possible to use
a dictionary of functions (Riel et al., 2021; Hetland et al.,
2012).

TICOI can be applied in a nearly automatic way, at a rea-
sonable computational cost. We proposed a general strat-
egy to automatically select the regularization coefficient.
Moreover, the computation time of the TICOI processing
chain including loading, pre-processing, inversion and sav-
ing is about 0.1 s per pixel by using 32 CPUs (on a Intel(R)
Xeon(R) Gold 6426Y with a processing rate of 3.3 GHz),
for datasets containing 80 000 layers in time (corresponding
to the period 2013–2024). This means that the processing
over a region of 100 km× 100 km requires around 19 h using
32 CPUs only. Note that the processing time per pixel scales
with the size of the data in time, and that the 2013–2024 pe-
riod has high density of measurements compared to previous
years. This computation time remains affordable at the re-
gional scale, and even at the global scale with a large number
of CPUs. The computation time could be further reduced,
for instance, by taking advantage of GPUs, or by reducing
the number of input data with a stricter outlier filter.

With these two points in mind, it appears relevant to apply
TICOI at a large scale. First, it reduces the size of the data in
comparison with raw image-pair velocities by removing re-
dundant information. On average, for our study sites, the size

of the data is reduced by a factor 100. Second, it produces
regular velocity time series, with relevant quality indicators.
This would make the integration of sub-annual velocities in
numerical models much more affordable.

6 Conclusions

To derive sub-annual velocity variations over glaciers, we
propose an operational Python package, called TICOI, based
on the temporal closure principle. This package fuses multi-
temporal and multi-sensor image-pair velocities computed
by different processing chains to generate regular velocity
time series (i.e., sampled at regular time steps).

We improved previous methods based on two strategies:
(1) a regularization term based on a coarse initial estimate,
which enhances the resilience of the temporal closure in-
version to abrupt non-linear changes; and (2) an iteratively
reweighted approach, which automatically detects tempo-
ral decorrelation. TICOI is entirely data-driven (i.e., it does
not require strong a priori information on the glacier dy-
namic), making it applicable to any glacier dynamics. The
validation of TICOI results using GNSS data highlights an
improvement in RMSE and KGE of around 50 % and 0.4,
respectively, compared to both the raw image-pair veloci-
ties and a rolling median. Furthermore, it is able to retrieve
monthly velocities using annual image-pair velocities only
when there is sufficient temporal redundancy in the dataset.
This could be especially useful for slow moving areas, where
annual image-pair velocities may be of better quality than
image-pair velocities with short temporal baselines. More-
over, TICOI can be used to combine datasets from different
processing chains. This has the potential to reduce the uncer-
tainty in the upper part of glaciers, such as in the accumula-
tion area, where image-pair velocities are more noisy.

We recommend using three criteria to assess the quality of
the retrieved velocity series: (1) the VVC, a proxy of the tem-
poral coherence of the direction; (2) the number of contribut-
ing image-pair velocities, and (3) a 95 % confidence interval
derived from the a posteriori covariance matrix. The appli-
cation of TICOI provides velocity time series with an un-
precedented temporal resolution. On Lowell glacier (Yukon,
Canada), we are able to observe that summer velocities near
the terminus started to increase five years before the surge.
On Kaskawulsh glacier (Yukon, Canada), we are able to re-
solve velocity peaks in March in a very localized part of the
lower ablation area.

Finally, the TICOI workflow offers reasonable computa-
tion time for application at the regional to global scale (0.1 s
per pixel for large dataset with 80 000 layers in time on
32 CPUs). The code is open source and can be applied to any
datasets and regions. This paves the way for the integration of
a wide range of image-pair velocities and the production of
standardized post-processed sub-annual velocity time series.
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Appendix A: Demonstration of the posteriori covariance
matrix formula

We demonstrate how the posteriori covariance matrix for-
mula (Eq. 11) has been derived. First, the analytic solution of
a least square problem with a Tikhonov regularization is:

X̂ =N−1ATWY (A1)

with N = ATWA+ λ0T 0
The posteriori covariance matrix is:

6
X̂
=

[
∂X̂

∂Y

]
6
Ŷ

[
∂X̂

∂Y

]T
(A2)

It corresponds to:

6
X̂
=N−1ATW6

Ŷ
WAN−1 (A3)

Figure A1. Distribution of the errors estimated by comparing measured displacements from remote sensing images and GNSS displacements.
The left column shows errors in East/West (Dx ) and North/South (Dy ) displacements according to the temporal baseline. The right column
shows the distribution of this error. Skewness is a measure of the symetry of a distribution, a value of 0 indicates a symetric distribution.
Kurtosis refers to the degree of “tailedness” of a distribution relative to a normal distribution. Strong kurtosis (> 3) reveals heavy-tailed
distribution.
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Figure A2. Scatterplot of GNSS velocity magnitude and 30 d rolling median applied to velocity magnitude observations, (a) with a temporal
baseline lower than 180 d and (b) with every temporal baseline. The RMSE is better while using all temporal baselines, but there is a clear
underestimation for velocities larger than 180 m yr−1.

Figure A3. Normalized Median Absolute Deviation of the velocity magnitude over stable areas represented in Fig. 3 using TICOI without
(a) and with (b) an automatic detection of temporal decorrelation. Median of the velocity magnitude over stable areas using TICOI without
(c) and with (d) an automatic detection of temporal decorrelation, which hilight an oversmoothing of the solution.
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Appendix B: Sensitivity analysis and automated choice
of the hyperparameters

B1 Regularization coefficient

The regularization coefficient is the parameter that has the
greatest impact on the results. We proposed using the VVC to
strike a balance between enhancing the signal-to-noise ratio
and avoiding oversmoothing (Fig. B1).

B2 Spatio-temporal filter

We compared the performance of five types of spatio-
temporal filters: Savitzky–Golay, Gaussian, Locally
Weighted Scatterplot Smoothing (LOWESS), and median.
The choice of filter results in a standard deviation in RMSE
of about 2.6 m yr−1 on average (i.e., 8 % of the averaged
RMSE), except for the GNSS station Lowell L, where
the LOWESS filter produces an RMSE approximately
170 m yr−1 higher than the other filters (Table B1).

LOWESS is a non-parametric moving regression that fits
a model to the k nearest points (Derkacheva et al., 2020),
which tends to over-smooth data during periods with low ob-
servation density. For example, the LOWESS solution flat-
tens the surge peak of Lowell L, due to the limited number
of observations available during that time (Fig. B3a).

We note that both the LOWESS and median filters can
provide slightly better results for non-surge type glaciers,
with improvements ranging from 0.8 to 4.5 m yr−1 (i.e., 3 %
to 10 %). However, they can also lead to over-smoothing
(Fig. B3b) and LOWESS require 1.5 times more computa-
tional time. Therefore, we recommend using the Savitzky–
Golay filter, which offers a good balance between computa-
tional efficiency and accuracy in general scenarios.

Table B1. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different spatio-temporal
filters (columns) and GNSS stations (rows). The averaged computional time betwwen all the GNSS stations are given in the last row in s.
The filter svagol corresponds to the Savitzky–Golay filter. The LOWESS filter correspond to the statsmodel.nonparametric implementation
and the Savitzky–Golay to scipy.signal implementation. The Standard Deviation (SD) at each GNSS for the different filters is given in the
last column. The fraction used for the LOWESS filter is 60/N with N the number of observations over the period. The temporal window
of the Savitzky–Golay, median and gaussian filters are of 90 d. We note that the better performance obtained by the median and LOWESS
filters on Lowell M is mainly due to the absence of GNSS data during the maximum of the surge.

savgol gaussian median LOWESS SD

Lowell L 61.4 76.7 72.9 229.6 70.7
Lowell M 43.5 46.1 36.5 31.7 6.0
Lowell U 85.7 86.0 88.4 87.4 1.0
Kask L 22.3 23.8 20.1 20.0 1.8
Kask M 26.0 27 25.2 25.4 0.8
Kask U 42.2 46.1 37.7 39.7 3.6
Computional time [s] 67.8 67.2 69.4 101.6

B3 Solver

We compare four differents solvers: the Least Square solver
(LS), LSMR, LSMR with an initialisation and LSQR. The
RMSE between GNSS and TICOI time-series are really sim-
ilar among GNSS stations. However, the computational time
of the LS is twice larger than for the other solvers. There-
fore, we recommend using LSMR, LSMR_ini or LSQR for
a question of computational time.

B4 Strategy to delete outliers

We compared two strategies for outlier removal: the Mod-
ified Z-score (Mzscore), which filters out values more than
3.5 NMAD away from the median of the entire time period,
and the Median Angle (MA), which removes observations
deviating by more than 45° from the median vector (Charrier
et al., 2022a). We strongly advise against using the Mzscore
for surge-type glaciers. For non-surge glaciers, the improve-
ment is at most 2 m yr−1 compared to a strategy that does not
filter outliers, largely because the Tukey biweight function,
which is used, already acts as an outlier filter. Nevertheless,
we recommend applying at least the MA filter to reduce the
number of observations input into TICOI.
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Table B2. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different solvers (columns)
and GNSS stations (rows). The average computional time between all the GNSS stations are given in the last row in s. The solver Least
Square (LS) corresponds to the function lstsq of numpy.linalg, the solvers LSMR and LSQR are respectively the functions lsmr and lsqr of
scipy.linalg and scipy.sparse. LSMR_ini corresponds to the solver LSMR with an initialisation, corresponding to the spatio-temporal filtering
observations X0 defined in Appendix 2.2.2.

LSMR LSMR_ini LSQR LS

Lowell L 61.16 61.39 61.11 61.13
Lowell M 46.0 45.99 46.0 46.0
Lowell U 86.24 86.24 86.24 86.25
Kask L 20.9 20.89 20.9 20.91
Kask M 25.03 25.03 25.03 25.04
Kask U 40.12 40.15 40.13 40.14
Comptutional time [s] 40.8 48.8 43.0 85.2

Table B3. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different strategy to delete
outliers (columns) and GNSS stations (rows). The minimal values are displayed in blod.

median_angle mz_score no_delete_outliers

Lowell L 58.79 711.44 59.15
Lowell M 44.71 511.52 44.8
Lowell U 78.72 96.74 81.72
Kask L 21.27 23.2 21.93
Kask M 28.37 25.46 27.36
Kask U 43.15 41.25 43.2
Iss 12.53 15.1 15.4

Figure B1. (a) Evolution of the RMSE and KGE of TICOI results with respect to the six Yukon GNSS stations according to the regularization
coefficient. (b) Evolution of the VVC computed over the six red squares shown in Fig. 2 as a function of the regularization coefficient. The
optimal coefficient corresponds to max(VVC)−0.05·(max(VVC)−min(VVC)). The optimal coefficient found is 100 using both approaches
(a) and (b), which confirms the value of using VVC for selecting the regularization coefficient.
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Figure B2. Evolution of the RMSE and KGE of TICOI results with respect to GNSS data for station Lowell L, where a surge occurs. When
the coefficient increases the acceleration of the TICOI estimations tend to be close the initial guess of acceleration, which in this case slightly
oversmooths the peak of the surge. This is why the RMSE and KGE reach a plateau after a coefficient of around 5000.

Figure B3. (a) Visual comparison of the spatio-temporal filters for the point Lowell M. (b) Visual comparison of the spatio-temporal filters
for the point Lowell L.
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Figure B4. Percentage of the estimated 95 % confidence intervals that include both the estimated and the true displacement values (i.e.
the valid confidence intervals), using simulated data described in Appendix C. The displacement noise factors correspond to a factor of
the simulated instantaneous velocity amplitude. A factor of 1, 0.1 and 0.02 are equivalent to a standard deviation of 4.6, 0.4 and 0.09 m,
respectively. The percentage of data corresponds to the percentage of simulated image-pair displacements in comparison with the total
number of possible image-pair displacements. The value of each configuration of displacement noise factor and percentage of image-pair
displacements relies on 50 experiments.

Figure B5. (a) Scatter plot of VVC and RMSE over the seven stations analyzed in this study, from 2013–2022. The RMSE corresponds to
the comparison between TICOI results and GNSS data, while the VVC is an indicator of the temporal coherence of the directions of the
TICOI results. (b) Correction factor that should be applied to the theoretical 95 % confidence intervals so that they include both the TICOI
estimate and the GNSS data.
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Appendix C: Simulated data

C1 Synthetic instantaneous velocity and position
time-series

The synthetic instantaneous velocity is taken as:
v(t)= a+ b sin( 2π

T
t)+ ccos( 2π

T
t) with T = 365.25 as

in Greene et al. (2020). To make sure that the coefficients
a,b and c represent well the data, instead of an arbitrary
choice, these coefficients are estimated by an IRLS in-
version by adding a regularization term corresponding to
a displacement model with the coefficients a,b and c as
parameters as performed in López-Quiroz et al. (2009). The
corresponding system of equations is given in Eq. (C1). The
system is solved for Sentinel-2 data on the point represented
in blue in Charrier et al. (2022c) Fig. S1. The coefficients
are found to be: a =−0.49, b =−0.0788 and c = 0.018.

(C1)
where T is the period of the sinusoidal signal. a, b, c, d are
the coefficients of the model.

The position time-series is defined as the integral of the
instantaneous velocity.

C2 Selection of acquisition dates

Then, we randomly select the acquisition dates in a list
of dates ranging from the 1 January 2015 and 31 Decem-
ber 2020, every 5 d. By doing so, some dates between the
1 January 2015 and 31 December 2020 will not be included
in the simulated dataset. It represents the effect of clouds: the
pixels covered by clouds will be systematically rejected.

C3 Noise

For each acquisition date, we add a Gaussian noise to the po-
sition value. This accounts for the fact that the noise depends
mainly on the image texture (clouds, snow, crevasses, etc.).
Therefore, the noise of each displacement is the sum of the
noises of each date of the pair.
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C4 Image-pair velocity

We randomly select a temporal baseline between 5 and 400.
Then, we compute image-pair velocity by taking the differ-
ence between the position at the second date of acquisition
and the first date of acquisition.

Figure C1. Example of monthly velocity time series (in red) retrieved using annual velocities from ITS_LIVE image pair-velocities, with a
temporal baseline from 200 to 400 d (in blue) on the Lower part of the Kaskawulsh glacier (Kask L). GNSS data are represented by orange
crosses. The colors from light red to dark red correspond to the number of image-pair velocities used to constrain the velocity estimations.

Code and data availability. The TICOI package is avail-
able on github (https://github.com/ticoi/ticoi) and Zenodo
(https://doi.org/10.5281/zenodo.17209282, Charrier et al., 2025).
ITS_LIVE data are available on https://its-live.jpl.nasa.gov/, last
access: September 2023.

Author contributions. LaC, AD, FB, and RM designed the study.
LaC, LG, AD, and FB proposed the methodological improvements.
LaC, LG and NL worked on the python package with advice from
AD. LaC generated the velocity time series and analyzed the re-
sults with feedbacks from AD, FB and RM. LuC and CD provided
processed GNSS data over Yukon, and helped with analysis of the
results. LaC carried out the post-processing of Yukon GNSS data.
NM provided processed GNSS data over western Greenland. LaC
led the writing, and all authors contributed to it.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Also, please note that this paper has not
received English language copy-editing.

Acknowledgements. We acknowledge Antoine Rabatel for his help
in designing the study and his relevant feedbacks, Ghislain Picard
and Fabien Gillet-Chaulet for their advice concerning the code op-
timization and the regularization term. We acknowledge the use of
ChatGPT and DeepL for assistance in rephrasing and proofreading
some sentences in the manuscript.

Financial support. Laurane Charrier acknowledges support from
the Centre National d’Etudes Spatiales for her postdoctoral fellow-
ship. Amaury Dehecq and Laurane Charrier acknowledge support
from the French Programme National de Télédétection Spatiale
(PNTS). Lei Guo thanks to the China Scholarship Council (grant
no. 202306370154) for his scholarship. Luke Copland and Christine
Dow thank the Natural Sciences and Engineering Research Coun-
cil of Canada, Polar Continental Shelf Program, Canada Foundation
for Innovation, Ontario Research Fund, and New Frontiers Research
Fund for funding to purchase and operate the Yukon GNSS stations,

https://doi.org/10.5194/tc-19-4555-2025 The Cryosphere, 19, 4555–4583, 2025

https://github.com/ticoi/ticoi
https://doi.org/10.5281/zenodo.17209282
https://its-live.jpl.nasa.gov/


4580 L. Charrier et al.: TICOI presentation

and the staff of Kluane Lake Research Station and graduate students
from University of Ottawa and University of Waterloo for assistance
and support in the field.

Review statement. This paper was edited by Johannes J. Fürst and
reviewed by Benjamin Wallis and Maximillian Van Wyk de Vries.

References

Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extract-
ing recent short-term glacier velocity evolution over south-
ern Alaska and the Yukon from a large collection of Landsat
data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-
13-795-2019, 2019.

Altena, B., Kääb, A., and Wouters, B.: Correlation disper-
sion as a measure to better estimate uncertainty in remotely
sensed glacier displacements, The Cryosphere, 16, 2285–2300,
https://doi.org/10.5194/tc-16-2285-2022, 2022.

Anderton, P. W.: Structural glaciology of a glacier confluence,
Kaskawulsh glacier, Yukon Territory, Canada, Tech. rep., Re-
search Foundation and the Institute of Polar Studies, The Ohio
State, 1973.

Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S.,
and Valentine, V. B.: Rapid wastage of Alaska glaciers and their
contribution to rising sea level, Science, 297, 382–386, 2002.

Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A.,
and Sole, A.: Seasonal evolution of subglacial drainage and ac-
celeration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411,
2010.

Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and
King, M. A.: Short-term variability in Greenland Ice Sheet
motion forced by time-varying meltwater drainage: Implica-
tions for the relationship between subglacial drainage sys-
tem behavior and ice velocity, J. Geophys. Res.-Earth, 117,
https://doi.org/10.1029/2011JF002220, 2012.

Beaud, F., Aati, S., Delaney, I., Adhikari, S., and Avouac, J.-P.:
Surge dynamics of Shisper Glacier revealed by time-series cor-
relation of optical satellite images and their utility to substanti-
ate a generalized sliding law, The Cryosphere, 16, 3123–3148,
https://doi.org/10.5194/tc-16-3123-2022, 2022.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A
new algorithm for surface deformation monitoring based on
small baseline differential SAR interferograms, IEEE Trans-
actions on geoscience and remote sensing, 40, 2375–2383,
https://doi.org/10.1109/TGRS.2002.803792, 2002.

Bevington, A. and Copland, L.: Characteristics of the last five surges
of Lowell Glacier, Yukon, Canada, since 1948, J. Glaciol., 60,
113–123, 2014.

Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters,
B., and Pérez, F.: Universal differential equations for glacier
ice flow modelling, Geosci. Model Dev., 16, 6671–6687,
https://doi.org/10.5194/gmd-16-6671-2023, 2023.

Bontemps, N., Lacroix, P., and Doin, M.-P.: Inversion of deforma-
tion fields time-series from optical images, and application to the
long term kinematics of slow-moving landslides in Peru, Remote
Sens. Environ., 210, 144–158, 2018.

Brankart, J.-M., Ubelmann, C., Testut, C.-E., Cosme, E., Brasseur,
P., and Verron, J.: Efficient parameterization of the observation
error covariance matrix for square root or ensemble Kalman fil-
ters: application to ocean altimetry, Mon. Weather Rev., 137,
1908–1927, 2009.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J.: LOF:
identifying density-based local outliers, in: Proceedings of the
2000 ACM SIGMOD international conference on Management
of data, 93–104, https://doi.org/10.1145/342009.335388, 2000.

Charrier, L., Yan, Y., Colin Koeniguer, E., Mouginot, J., Mil-
lan, R., and Trouvé, E.: FUSION OF MULTI-TEMPORAL
AND MULTI-SENSOR ICE VELOCITY OBSERVATIONS,
ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, V-3-2022, 311–318,
https://doi.org/10.5194/isprs-annals-V-3-2022-311-2022, 2022a.

Charrier, L., Yan, Y., Koeniguer, E. C., Leinss, S., and Trouve,
E.: Extraction of velocity time series with an optimal tempo-
ral sampling from displacement observation networks, IEEE
Transactions on Geoscience and Remote Sensing, 60, 1–10,
https://doi.org/10.1109/TGRS.2021.3128289, 2022b.

Charrier, L., Yan, Y., Trouvé, E., Koeniguer, E. C., Moug-
inot, J., and Millan, R.: Fusion of Multitemporal Multi-
sensor Velocities Using Temporal Closure of Fractions of
Displacements, IEEE Geosci. Remote Sens. Lett., 19, 1–5,
https://doi.org/10.1109/LGRS.2022.3227413, 2022c.

Charrier, L., Guo, L., and Dehecq, A.: TICOI Software (v.0.1.1).
Zenodo [code], https://doi.org/10.5281/zenodo.17209295, 2025.

Choi, Y., Seroussi, H., Morlighem, M., Schlegel, N.-J., and
Gardner, A.: Impact of time-dependent data assimilation on
ice flow model initialization and projections: a case study
of Kjer Glacier, Greenland, The Cryosphere, 17, 5499–5517,
https://doi.org/10.5194/tc-17-5499-2023, 2023.

Clarke, G. K.: A short and somewhat personal history of Yukon
glacier studies in the twentieth century, Arctic, 1–21, 2014.

Clarke, G. K. C., Bushnell, V., and Ragle, R.: Geophysical measure-
ments on the Kaskawulsh and Hubbard Glaciers, Arctic Institute
of North America, 1967.

Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong,
Y. B., Owen, L. A., Bush, A., and Kamp, U.: Expanded and re-
cently increased glacier surging in the Karakoram, Arct. Antarct.
Alp. Res., 43, 503–516, 2011.

Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and
Nienow, P. W.: The influence of hydrology on the dynamics of
land-terminating sectors of the Greenland Ice Sheet, Front. Earth
Sci., p. 10, https://doi.org/10.3389/feart.2019.00010, 2019.

Dehecq, A., Gourmelen, N., and Trouvé, E.: Deriving large-scale
glacier velocities from a complete satellite archive: Applica-
tion to the Pamir–Karakoram–Himalaya, Remote Sens. Environ.,
162, 55–66, 2015.

Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D.,
Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé,
E.: Twenty-first century glacier slowdown driven by mass loss in
High Mountain Asia, Nat. Geosci., 12, 22–27, 2019.

Derkacheva, A., Mouginot, J., Millan, R., Maier, N., and
Gillet-Chaulet, F.: Data Reduction Using Statistical and Re-
gression Approaches for Ice Velocity Derived by Landsat-
8, Sentinel-1 and Sentinel-2, Remote Sens., 12, 1935,
https://doi.org/10.3390/rs12121935, 2020.

The Cryosphere, 19, 4555–4583, 2025 https://doi.org/10.5194/tc-19-4555-2025

https://doi.org/10.5194/tc-13-795-2019
https://doi.org/10.5194/tc-13-795-2019
https://doi.org/10.5194/tc-16-2285-2022
https://doi.org/10.1029/2011JF002220
https://doi.org/10.5194/tc-16-3123-2022
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.5194/gmd-16-6671-2023
https://doi.org/10.1145/342009.335388
https://doi.org/10.5194/isprs-annals-V-3-2022-311-2022
https://doi.org/10.1109/TGRS.2021.3128289
https://doi.org/10.1109/LGRS.2022.3227413
https://doi.org/10.5281/zenodo.17209295
https://doi.org/10.5194/tc-17-5499-2023
https://doi.org/10.3389/feart.2019.00010
https://doi.org/10.3390/rs12121935


L. Charrier et al.: TICOI presentation 4581

Derkacheva, A., Gillet-Chaulet, F., Mouginot, J., Jager, E., Maier,
N., and Cook, S.: Seasonal evolution of basal environment con-
ditions of Russell sector, West Greenland, inverted from satel-
lite observation of surface flow, The Cryosphere, 15, 5675–5704,
https://doi.org/10.5194/tc-15-5675-2021, 2021.

Doin, M.-P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret,
G., Grandin, R., Pathier, E., and Pinel, V.: Presentation of the
Small Baselin NSBAS Processing Chain on a Case Example: The
Etan Deformation Monitoring from 2003 to 2010 Using Envisat
Data, in: Fringe Symposium, HAL-02185213, 2011.

Doyle, S. H., Hubbard, A., Van De Wal, R. S., Box, J. E., Van As,
D., Scharrer, K., Meierbachtol, T. W., Smeets, P. C., Harper, J. T.,
Johansson, E., et al.: Amplified melt and flow of the Greenland
ice sheet driven by late-summer cyclonic rainfall, Nat. Geosci.,
8, 647–653, 2015.

Flowers, G. E., Copland, L., and Schoof, C. G.: Contemporary
glacier processes and global change: recent observations from
Kaskawulsh Glacier and the Donjek Range, St. Elias Mountains,
Arctic, 22–34, https://doi.org/10.14430/arctic4356, 2014.

Foy, N., Copland, L., Zdanowicz, C., Demuth, M., and Hopkin-
son, C.: Recent volume and area changes of Kaskawulsh Glacier,
Yukon, Canada, J. Glaciol., 57, 515–525, 2011.

Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M.,
Ligtenberg, S., van den Broeke, M., and Nilsson, J.: In-
creased West Antarctic and unchanged East Antarctic ice dis-
charge over the last 7 years, The Cryosphere, 12, 521–547,
https://doi.org/10.5194/tc-12-521-2018, 2018.

Gardner, A. S., Fahnestock, M., and Scambos, T.: MEaSUREs
ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface
Velocities, Version 1, https://doi.org/10.5067/IMR9D3PEI28U,
2022.

Gardner, A. S., Greene, C. A., Kennedy, J. H., Fahnestock, M. A.,
Liukis, M., López, L. A., Lei, Y., Scambos, T. A., and Dehecq,
A.: ITS_LIVE global glacier velocity data in near-real time, The
Cryosphere, 19, 3517–3533, https://doi.org/10.5194/tc-19-3517-
2025, 2025.

Gavin, H. P.: Fitting Models to Data: Generalized Linear Least
Squares and Error Analysis, https://api.semanticscholar.org/
CorpusID:145046314 (last access: 1 November 2024), 2023.

Gilbert, A., Leinss, S., Kargel, J., Kääb, A., Gascoin, S., Leonard,
G., Berthier, E., Karki, A., and Yao, T.: Mechanisms leading
to the 2016 giant twin glacier collapses, Aru Range, Tibet, The
Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-
2018, 2018.

Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Commit-
ted retreat of Smith, Pope, and Kohler Glaciers over the next 30
years inferred by transient model calibration, The Cryosphere, 9,
2429–2446, https://doi.org/10.5194/tc-9-2429-2015, 2015.

Greene, C. A., Gardner, A. S., and Andrews, L. C.: Detecting
seasonal ice dynamics in satellite images, The Cryosphere, 14,
4365–4378, https://doi.org/10.5194/tc-14-4365-2020, 2020.

Guo, L., Li, J., Li, Z.-w., Wu, L.-x., Li, X., Hu, J., Li, H.-l., Li, H.-y.,
Miao, Z.-l., and Li, Z.-Q.: The Surge of the Hispar Glacier, Cen-
tral Karakoram: SAR 3-D Flow Velocity Time Series and Thick-
ness Changes, J. Geophys. Res.-Sol. Ea., 125, e2019JB018945,
https://doi.org/10.1029/2019JB018945, 2020.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, 2009.

Halas, P., Mouginot, J., de Fleurian, B., and Langebroek,
P. M.: Southwest Greenland Ice Sheet Yearly Ice Velocities
dataset from 1984 to 2020, Version 1, Zenodo [data set],
https://doi.org/10.5281/zenodo.7418361, 2022.

Halas, P., Mouginot, J., de Fleurian, B., and Langebroek, P. M.: Im-
pact of seasonal fluctuations of ice velocity on decadal trends
observed in Southwest Greenland, Remote Sens. Environ., 285,
113419, https://doi.org/10.1016/j.rse.2022.113419, 2023.

Heid, T. and Kääb, A.: Evaluation of existing image matching meth-
ods for deriving glacier surface displacements globally from op-
tical satellite imagery, Remote Sens. Environ., 118, 339–355,
https://doi.org/10.1016/j.rse.2011.11.024, 2012.

Hetland, E. A., Musé, P., Simons, M., Lin, Y. N., Agram, P. S.,
and DiCaprio, C. J.: Multiscale InSAR Time Series (MInTS)
analysis of surface deformation, J. Geophys. Res.-Sol. E., 117,
https://doi.org/10.1029/2011JB008731, 2012.

Huber, P. J.: Robust estimation of a location parame-
ter, in: Breakthroughs in statistics, 492–518, Springer,
https://doi.org/10.1007/978-1-4612-4380-9_35, 1992.

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C.,
Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., et al.:
Accelerated global glacier mass loss in the early twenty-first cen-
tury, Nature, 592, 726–731, 2021.

Jawak, S. D., Kumar, S., Luis, A. J., Bartanwala, M., Tummala, S.,
and Pandey, A. C.: Evaluation of geospatial tools for generat-
ing accurate glacier velocity maps from optical remote sensing
data, Multidisciplinary Digital Publishing Institute Proceedings,
2, 341, https://doi.org/10.3390/ecrs-2-05154, 2018.

Jay-Allemand, M., Gillet-Chaulet, F., Gagliardini, O., and Nodet,
M.: Investigating changes in basal conditions of Variegated
Glacier prior to and during its 1982–1983 surge, The Cryosphere,
5, 659–672, https://doi.org/10.5194/tc-5-659-2011, 2011.

Joughin, I., Smith, B. E., and Howat, I. M.: A complete map of
Greenland ice velocity derived from satellite data collected over
20 years, J. Glaciol., 64, 1–11, 2018.

Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel,
C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S.,
Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel,
J. S.: Sudden large-volume detachments of low-angle mountain
glaciers – more frequent than thought?, The Cryosphere, 15,
1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.

Kochtitzky, W., Copland, L., Van Wychen, W., Hugonnet, R., Hock,
R., Dowdeswell, J. A., Benham, T., Strozzi, T., Glazovsky,
A., Lavrentiev, I., Rounce, D. R., Millan, R., Cook, A., Dal-
ton, A., Jiskoot, H., Cooley, J., Jania, J., and Navarro, F.:
The unquantified mass loss of Northern Hemisphere marine-
terminating glaciers from 2000–2020, Nature Communications,
13, https://doi.org/10.1038/s41467-022-33231-x, 2022.

Lacroix, P., Araujo, G., Hollingsworth, J., and Taipe, E.: Self-
Entrainment Motion of a Slow-Moving Landslide Inferred From
Landsat-8 Time Series, J. Geophys. Res.-Earth, 124, 1201–1216,
https://doi.org/10.1029/2018JF004920, 2019.

Lauknes, T. R., Zebker, H. A., and Larsen, Y.: InSAR deforma-
tion time series using an L_{1}-norm small-baseline approach,
IEEE transactions on geoscience and remote sensing, 49, 536–
546, https://doi.org/10.1109/TGRS.2010.2051951, 2010.

https://doi.org/10.5194/tc-19-4555-2025 The Cryosphere, 19, 4555–4583, 2025

https://doi.org/10.5194/tc-15-5675-2021
https://doi.org/10.14430/arctic4356
https://doi.org/10.5194/tc-12-521-2018
https://doi.org/10.5067/IMR9D3PEI28U
https://doi.org/10.5194/tc-19-3517-2025
https://doi.org/10.5194/tc-19-3517-2025
https://api.semanticscholar.org/CorpusID:145046314
https://api.semanticscholar.org/CorpusID:145046314
https://doi.org/10.5194/tc-12-2883-2018
https://doi.org/10.5194/tc-12-2883-2018
https://doi.org/10.5194/tc-9-2429-2015
https://doi.org/10.5194/tc-14-4365-2020
https://doi.org/10.1029/2019JB018945
https://doi.org/10.5281/zenodo.7418361
https://doi.org/10.1016/j.rse.2022.113419
https://doi.org/10.1016/j.rse.2011.11.024
https://doi.org/10.1029/2011JB008731
https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.3390/ecrs-2-05154
https://doi.org/10.5194/tc-5-659-2011
https://doi.org/10.5194/tc-15-1751-2021
https://doi.org/10.1038/s41467-022-33231-x
https://doi.org/10.1029/2018JF004920
https://doi.org/10.1109/TGRS.2010.2051951


4582 L. Charrier et al.: TICOI presentation

Lei, Y., Gardner, A. S., and Agram, P.: Processing methodology
for the ITS_LIVE Sentinel-1 ice velocity products, Earth Syst.
Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-
2022, 2022.

Liang, H., Zhang, L., Ding, X., Lu, Z., Li, X., Hu, J.,
and Wu, S.: Suppression of Coherence Matrix Bias for
Phase Linking and Ambiguity Detection in MTInSAR,
IEEE Transactions on Geoscience and Remote Sensing, 59,
https://doi.org/10.1109/TGRS.2020.3000991, 2020.

López, L. A., Gardner, A. S., Greene, C. A., Kennedy, J. H., Liukis,
M., Fahnestock, M. A., Scambos, T., and Fahnestock, J. R.:
ITS_LIVE: A Cloud-Native Approach to Monitoring Glaciers
From Space, Comput. Sci. Eng., 25, 49–56, 2023.

López-Quiroz, P., Doin, M.-P., Tupin, F., Briole, P., and Nicolas, J.-
M.: Time series analysis of Mexico City subsidence constrained
by radar interferometry, J. Appl. Geophys., 69, 1–15, 2009.

Maier, N., Humphrey, N., Harper, J., and Meierbachtol, T.: Sliding
dominates slow-flowing margin regions, Greenland Ice Sheet,
Sci. Adv., 5, https://doi.org/10.1126/sciadv.aaw5406, 2019.

Maier, N., Humphrey, N., Meierbachtol, T., and Harper, J.: Defor-
mation motion tracks sliding changes through summer, western
Greenland, J. Glaciol., 68, 187–196, 2022.

Maier, N., Andersen, J. K., Mouginot, J., Gimbert, F., and Gagliar-
dini, O.: Wintertime supraglacial lake drainage cascade triggers
large-scale ice flow response in Greenland, Geophys. Res. Lett.,
50, https://doi.org/10.1029/2022GL102251, 2023.

Main, B., Copland, L., Smeda, B., Kochtitzky, W., Samsonov, S.,
Dudley, J., Skidmore, M., Dow, C., Van Wychen, W., Medrzycka,
D., Higgs, E., and Mingo, L.: Terminus change of Kaskawulsh
Glacier, Yukon, under a warming climate: retreat, thinning, slow-
down and modified proglacial lake geometry, J. Glaciol., 69,
936–952, 2023.

Maronna, R. A., Martin, R. D., Yohai, V. J., and Salibián-Barrera,
M.: Robust statistics: Theory and methods (with R) (2nd ed.),
John Wiley & Sons, https://doi.org/10.1002/9781119214656,
2019.

Martin, M. D., Barr, I., Edwards, B., Spagnolo, M., Symeon-
akis, E., Mallalieu, J., Adamson, K., Mullan, D., and de Vries,
M. V. W.: Glacier speed-up as a possible precursor to vol-
canic eruptions at Mount Veniaminof, Alaska, J. Glaciol., 1–18,
https://doi.org/10.1017/jog.2024.107, 2025.

Millan, R., Mouginot, J., Rabatel, A., Jeong, S., Cusican-
qui, D., Derkacheva, A., and Chekki, M.: Mapping Sur-
face Flow Velocity of Glaciers at Regional Scale Using
a Multiple Sensors Approach, Remote Sens., 11, 2498,
https://doi.org/10.3390/rs11212498, 2019.

Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice ve-
locity and thickness of the world’s glaciers, Nat. Geosci., 15,
124–129, https://doi.org/10.1038/s41561-021-00885-z, 2022.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia,
H., and Aubry, D.: A mass conservation approach for
mapping glacier ice thickness, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL048659, 2011.

Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of ice motion
in Antarctica using synthetic-aperture radar data, Remote Sens.,
4, 2753–2767, 2012.

Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Mil-
lan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.:

Forty-six years of Greenland Ice Sheet mass balance from 1972
to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, 2019.

Mouginot, J., Rabatel, A., Ducasse, E., and Millan, R.: Optimiza-
tion of cross correlation algorithm for annual mapping of alpine
glacier flow velocities; application to Sentinel-2, IEEE Trans.
Geosci. Remote Sens., 61, 1–12, 2023.

Nanni, U., Scherler, D., Ayoub, F., Millan, R., Herman, F., and
Avouac, J.-P.: Climatic control on seasonal variations in moun-
tain glacier surface velocity, The Cryosphere, 17, 1567–1583,
https://doi.org/10.5194/tc-17-1567-2023, 2023.

NASA Earth Observatory: Snow Swamp on Lowell
Glacier, https://earthobservatory.nasa.gov/images/92699/
snow-swamp-on-lowell-glacier (last access: 20 September
2025), 2018.

Pepe, A., Solaro, G., Calo, F., and Dema, C.: A minimum acceler-
ation approach for the retrieval of multiplatform InSAR defor-
mation time series, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 9, 3883–3898, 2016.

Provost, F., Zigone, D., Le Meur, E., Malet, J.-P., and Hi-
bert, C.: Surface dynamics and history of the calving cy-
cle of Astrolabe Glacier (Adélie Coast, Antarctica) de-
rived from satellite imagery, The Cryosphere, 18, 3067–3079,
https://doi.org/10.5194/tc-18-3067-2024, 2024.

Quincey, D. J., Glasser, N. F., Cook, S. J., and Luckman, A.: Het-
erogeneity in Karakoram glacier surges, J. Geophys. Res.-Earth,
120, 1288–1300, https://doi.org/10.1002/2015JF003515, 2015.

Rabatel, A., Ducasse, E., Millan, R., and Mouginot, J.:
Satellite-derived annual glacier surface flow velocity prod-
ucts for the European alps, 2015–2021, Data, 8, 66,
https://doi.org/10.3390/data8040066, 2023.

Rashid, I., Majeed, U., Jan, A., and Glasser, N. F.: The January
2018 to September 2019 surge of Shisper Glacier, Pakistan, de-
tected from remote sensing observations, Geomorphology, 351,
106957, https://doi.org/10.1016/j.geomorph.2019.106957, 2020.

RGI 7.0 Consortium: Randolph Glacier Inventory –
A Dataset of Global Glacier Outlines, Version 7.0,
https://doi.org/10.5067/f6jmovy5navz, [Data Set]., 2023.

Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves
in glaciers with remote sensing: new flexible time series methods
and application to Sermeq Kujalleq (Jakobshavn Isbræ), Green-
land, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-
15-407-2021, 2021.

Round, V., Leinss, S., Huss, M., Haemmig, C., and Hajnsek, I.:
Surge dynamics and lake outbursts of Kyagar Glacier, Karako-
ram, The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-
11-723-2017, 2017.

Ruggiero, G. A., Cosme, E., Brankart, J.-M., Le Sommer, J., and
Ubelmann, C.: An efficient way to account for observation error
correlations in the assimilation of data from the future SWOT
high-resolution altimeter mission, J. Atmos. Ocean. Technol., 33,
2755–2768, 2016.

Samsonov, S., Tiampo, K., and Cassotto, R.: Measuring the state
and temporal evolution of glaciers in Alaska and Yukon us-
ing synthetic-aperture-radar-derived (SAR-derived) 3D time se-
ries of glacier surface flow, The Cryosphere, 15, 4221–4239,
https://doi.org/10.5194/tc-15-4221-2021, 2021.

Samsonov, S. V. and d’Oreye, N.: Multidimensional Small Baseline
Subset (MSBAS) for Two-Dimensional Deformation Analysis:

The Cryosphere, 19, 4555–4583, 2025 https://doi.org/10.5194/tc-19-4555-2025

https://doi.org/10.5194/essd-14-5111-2022
https://doi.org/10.5194/essd-14-5111-2022
https://doi.org/10.1109/TGRS.2020.3000991
https://doi.org/10.1126/sciadv.aaw5406
https://doi.org/10.1029/2022GL102251
https://doi.org/10.1002/9781119214656
https://doi.org/10.1017/jog.2024.107
https://doi.org/10.3390/rs11212498
https://doi.org/10.1038/s41561-021-00885-z
https://doi.org/10.1029/2011GL048659
https://doi.org/10.5194/tc-17-1567-2023
https://earthobservatory.nasa.gov/images/92699/snow-swamp-on-lowell-glacier
https://earthobservatory.nasa.gov/images/92699/snow-swamp-on-lowell-glacier
https://doi.org/10.5194/tc-18-3067-2024
https://doi.org/10.1002/2015JF003515
https://doi.org/10.3390/data8040066
https://doi.org/10.1016/j.geomorph.2019.106957
https://doi.org/10.5067/f6jmovy5navz
https://doi.org/10.5194/tc-15-407-2021
https://doi.org/10.5194/tc-15-407-2021
https://doi.org/10.5194/tc-11-723-2017
https://doi.org/10.5194/tc-11-723-2017
https://doi.org/10.5194/tc-15-4221-2021


L. Charrier et al.: TICOI presentation 4583

Case Study Mexico City, Can. J. Remote Sens., 43, 318–329,
https://doi.org/10.1080/07038992.2017.1344926, 2017.

Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Ted-
stone, A., and King, M. A.: Winter motion mediates dynamic re-
sponse of the Greenland Ice Sheet to warmer summers: INTER-
ANNUAL GREENLAND ICE FLOW CHANGES, Geophys.
Res. Lett., 40, 3940–3944, https://doi.org/10.1002/grl.50764,
2013.

Tedstone, A. J., Nienow, P. W., Sole, A. J., Mair, D. W., Cow-
ton, T. R., Bartholomew, I. D., and King, M. A.: Greenland
ice sheet motion insensitive to exceptional meltwater forcing, P.
Natl. Acad. Sci. USA, 110, 19719–19724, 2013.

Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Gold-
berg, D., and Hanna, E.: Decadal slowdown of a land-terminating
sector of the Greenland Ice Sheet despite warming, Nature, 526,
692–695, 2015.

The GlaMBIE Team: Community estimate of global glacier
mass changes from 2000 to 2023, Nature, 639, 382–388,
https://doi.org/10.1038/s41586-024-08545-z, 2025.

van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van
Kampen, R., Doyle, S. H., Wilhelms, F., van den Broeke, M. R.,
Reijmer, C. H., Oerlemans, J., and Hubbard, A.: Self-regulation
of ice flow varies across the ablation area in south-west Green-
land, The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-
603-2015, 2015.

Van Wychen, W., Bayer, C., Copland, L., Brummell, E., and
Dow, C.: Radarsat Constellation Mission Derived Winter
Glacier Velocities for the St. Elias Icefield, Yukon/Alaska:
2022 and 2023, Can. J. Remote Sen., 49, 2264395,
https://doi.org/10.1080/07038992.2023.2264395, 2023.

Van Wyk de Vries, M. and Wickert, A. D.: Glacier Image Ve-
locimetry: an open-source toolbox for easy and rapid calcula-
tion of high-resolution glacier velocity fields, The Cryosphere,
15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021, 2021.

Vogel, C. R.: Non-convergence of the L-curve regulariza-
tion parameter selection method, Inverse Problems, 12, 535,
https://doi.org/10.1088/0266-5611/12/4/013, 1996.

Waechter, A., Copland, L., and Herdes, E.: Modern glacier veloc-
ities across the Icefield Ranges, St Elias Mountains, and vari-
ability at selected glaciers from 1959 to 2012, J. Glaciol., 61,
624–634, 2015.

Wallis, B. J., Hogg, A. E., van Wessem, J. M., Davison, B. J., and
van den Broeke, M. R.: Widespread seasonal speed-up of west
Antarctic Peninsula glaciers from 2014 to 2021, Nat. Geosci.,
16, 231–237, 2023.

Wendleder, A., Bramboeck, J., Izzard, J., Erbertseder, T., d’Angelo,
P., Schmitt, A., Quincey, D. J., Mayer, C., and Braun,
M. H.: Velocity variations and hydrological drainage at
Baltoro Glacier, Pakistan, The Cryosphere, 18, 1085–1103,
https://doi.org/10.5194/tc-18-1085-2024, 2024.

Williams, J. J., Gourmelen, N., and Nienow, P.: Dynamic response
of the Greenland ice sheet to recent cooling, Sci. Rep., 10, 1647,
https://doi.org/10.1038/s41598-020-58355-2, 2020.

Williams, J. J., Gourmelen, N., and Nienow, P.: Complex multi-
decadal ice dynamical change inland of marine-terminating
glaciers on the Greenland Ice Sheet, J. Glaciol., 67, 833–846,
2021.

Yang, R., Hock, R., Kang, S., Guo, W., Shangguan, D., Jiang,
Z., and Zhang, Q.: Glacier surface speed variations on the Ke-
nai Peninsula, Alaska, 2014–2019, J. Geophys. Res.-Earth, 127,
e2022JF006599, https://doi.org/10.1029/2022JF006599, 2022.

Yunjun, Z., Fattahi, H., and Amelung, F.: Small baseline
InSAR time series analysis: Unwrapping error correc-
tion and noise reduction, Comput. Geosci., 133, 104331,
https://doi.org/10.1016/j.cageo.2019.104331, 2019.

Zheng, W., Bhushan, S., Van Wyk De Vries, M., Kochtitzky, W.,
Shean, D., Copland, L., Dow, C., Jones-Ivey, R., and Pérez, F.:
GLAcier Feature Tracking testkit (GLAFT): a statistically and
physically based framework for evaluating glacier velocity prod-
ucts derived from optical satellite image feature tracking, The
Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-
2023, 2023.

https://doi.org/10.5194/tc-19-4555-2025 The Cryosphere, 19, 4555–4583, 2025

https://doi.org/10.1080/07038992.2017.1344926
https://doi.org/10.1002/grl.50764
https://doi.org/10.1038/s41586-024-08545-z
https://doi.org/10.5194/tc-9-603-2015
https://doi.org/10.5194/tc-9-603-2015
https://doi.org/10.1080/07038992.2023.2264395
https://doi.org/10.5194/tc-15-2115-2021
https://doi.org/10.1088/0266-5611/12/4/013
https://doi.org/10.5194/tc-18-1085-2024
https://doi.org/10.1038/s41598-020-58355-2
https://doi.org/10.1029/2022JF006599
https://doi.org/10.1016/j.cageo.2019.104331
https://doi.org/10.5194/tc-17-4063-2023
https://doi.org/10.5194/tc-17-4063-2023

	Abstract
	Introduction
	Method
	Previous developments
	Temporal closure's principle
	Inversion of the system
	Interpolation of the irregular time series

	Improved robustness and computational performance
	Robustness to temporal decorrelation
	New regularization term robust to abrupt non-linear changes
	Improved computation time

	Automatic selection of the regularization coefficient
	Uncertainty

	Data and study sites
	Lowell and Kaskawulsh glaciers in Yukon, Canada
	Land-terminating margin in western Greenland
	Surface velocity measurements
	Datasets
	Pre-processing of datasets

	GNSS data

	Results
	Robustness of TICOI method
	Robustness to temporal decorrelation
	Robustness to strong changes in velocity

	Validation with GNSS time series for different glacier dynamics
	Sensitivity analysis and automated choice of the hyperparameters
	Uncertainty of the final product
	Application to different glacier dynamics
	Estimating monthly velocities from annual velocities

	Discussion
	Fusion of velocity measurements from different processing chains
	Uncertainty
	Large scale application

	Conclusions
	Appendix A: Demonstration of the posteriori covariance matrix formula
	Appendix B: Sensitivity analysis and automated choice of the hyperparameters
	Appendix B1: Regularization coefficient
	Appendix B2: Spatio-temporal filter
	Appendix B3: Solver
	Appendix B4: Strategy to delete outliers

	Appendix C: Simulated data
	Appendix C1: Synthetic instantaneous velocity and position time-series
	Appendix C2: Selection of acquisition dates
	Appendix C3: Noise
	Appendix C4: Image-pair velocity

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

