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Abstract. Many changes in cold regions are amplified by
nonlinear processes involving ice and have important con-
sequences locally and globally. We show that the average en-
semble spread of the mean annual air temperature (1.5 °C)
in the reanalyses is 90 % greater in cold regions compared
to the other regions and shows pronounced disagreement in
the trend. The ensemble spread in the mean annual maximum
snow water equivalent is found to be greater than the ensem-
ble mean. The reduced quality of reanalyses in cold regions,
coinciding with sparse in situ observations and low popula-
tion, points to challenges in how we represent cold-region
phenomena in simulation systems and limits our ability to
support climate research and services.

1 Introduction

Cold regions are experiencing the planet’s strongest warm-
ing (IPCC, 2023). This has local consequences for ecosys-
tems and people, as well as global consequences by affecting
weather patterns elsewhere through teleconnections (Over-
land et al., 2016; Cohen et al., 2021) and through feedbacks
and potential tipping elements (Richardson et al., 2023) af-
fecting climate. Despite their sparse population and remote-
ness, cold regions disproportionately affect climate change
and its consequences everywhere (Abram et al., 2019).
Understanding cold regions is important for informing lo-
cal climate change adaptation and climate action globally.
However, the climate conditions and dynamics can be sub-
ject to disagreement. For example, previous studies have sug-
gested that the climate signal in cold regions could be dif-

ferent depending on the datasets used (Huang et al., 2017;
Wang et al., 2017) and concluded that the “warming hiatus”
in the Arctic may be an artifact. This is because many cold-
region processes react nonlinearly to changes near 0 °C due
to the ice—water phase transition. Their analysis and simu-
lation are extra sensitive to errors. In addition to these chal-
lenges, sparse in situ observations increase the need for and
importance of atmospheric reanalyses as a tool for supporting
climate research and services. While a few studies report the
performance of reanalyses for specific variables and places
(e.g., Graham et al., 2019; Cao et al., 2020; Fang et al., 2023;
Lan et al., 2025), their quality in cold regions is also less well
known than elsewhere.

This study uses a simple and intuitive analysis to illustrate
and contextualize a critical gap in knowledge and capabilities
for representing and analyzing the Earth system. We quan-
tify the relative quality of five state-of-the-art reanalyses in
cold regions to inform the application of reanalysis products
and to motivate further improvements specific to cold envi-
ronments. We use the average ensemble spread (e.g., Fortin
et al., 2014) as an observation-independent measure of rel-
ative quality. We focus on the mean annual air temperature
(MAAT) and maximum snow water equivalent (maxSWE)
because of their dominant control over cold environments
and their intuitive interpretation.
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2 Materials and methods
2.1 Reanalyses

Five state-of-the-art reanalyses — JRA-3Q, ERAS, MERRA-
2, JRA-55, and NCEP2 - are investigated (Table S1 in the
Supplement). The 10-member ensemble of ERAS, which
quantifies uncertainties in the ERAS assimilation and mod-
eling system, was also included here for comparison. The
ERAS5 ensemble provides an opportunity to show how pa-
rameter uncertainty in one reanalysis system compares with
the spread between structurally different reanalyses. While
JRA-3Q, ERAS, and JRA-55 are produced using the most
advanced four-dimensional variational (4DVar) assimilation,
NCEP2 and MERRA-2 use the three-dimensional variational
method (3DVar). As better performance is expected from the
newer 4DVar reanalyses, we also analyzed them separately.
The three most recent decades, 1991-2020, which had im-
proved satellite observation and data assimilation (Hersbach
et al., 2019), were used.

The in situ observations and population information are
from Copernicus Climate Change Service (C3S) Climate
Data Store (CDS) (2021) and Center for International Earth
Science Information Network-CIESIN-Columbia University
(2018), respectively, representing conditions in 2020. Pop-
ulation information is not available for Antarctica, and no
population is assumed for these regions.

2.2 Near-surface air temperature downscaling

The ERAS grid has the highest spatial resolution (0.25°) and
was used as the common grid for this analysis. We conducted
a 3D downscaling on the other reanalyses to produce the
surface air temperature at ground elevation with a consis-
tent spatial resolution by adopting the algorithms presented
by Cao et al. (2017, 2019). Surface and upper-air (pressure
level) temperatures are first regridded to the ERAS grid with
2D linear interpolation. Then, the 2D interpolated surface
air temperature was refined by adding the lapse rate derived
from a linear extrapolation of the lowest two pressure levels
above the ground. If an inversion was present, a zero lapse
rate was used. The downscaling algorithm significantly re-
moves the influences of inconsistent resolution and improves
the data comparability (Fig. S1 in the Supplement).

2.3 Snow water equivalent

The snow water equivalent (SWE) is derived by multiply-
ing snow density and snow depth where it is not available as
a variable directly. Only areas with a mean maximum snow
depth during 1991-2020 greater than 0.05 m (assuming that
the snow density is 250 kgm™3) are shown. In contrast to the
other reanalyses, MERRA-2 contains a precipitation correc-
tion based on observations (Reichle et al., 2017). The cor-
rections were implemented in the coupled model but did not
extend to latitudes north of 62.5°N.
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2.4 Reanalyses ensemble

Most available high-quality observations are assimilated by
reanalyses; therefore, stand-alone assessment is challenging.
Indeed, reanalyses are produced via complex systems, and
they generally differ between observation systems, assimila-
tion systems, processing algorithms, and employed physical
laws; identifying one or more reliable datasets is a difficult
matter (Xu and Powell, 2010). For these reasons, the average
ensemble spread is widely used in Earth system research to
infer the reliability of an ensemble prediction system (Fortin
et al., 2014). We used the average ensemble spread (enss)
as an intuitive measure of how different the target variable
could turn out based on an arbitrary choice of one of multi-
ple well-regarded reanalyses. The metric ensg, therefore, in-
dicates where reanalyses, taken together as representing our
ability to quantify atmospheric state, are more and where
they are less accurate. With Vi, =[m1,ma,...,m,] being a
set of target variables from different reanalyses (i), the av-
erage ensemble spread of a variable V' is given as

V= <"+1>s2’ 0
n

where 7 is the ensemble size, and s is the unbiased estimator
for the variance of the ensemble members, given as

1 L
57 = (n_ 1);(Vm—mi>2, )

where Vp, is the ensemble mean of the target variable. The
variable ranges Vi used here are the mean annual air tem-
perature (MAAT;) and the maximum snow water equivalent
(maxSWE;). The relative average ensemble spread, the en-
semble spread divided by the ensemble mean, was used for
the maxSWE because of its strong variability.

2.5 Cryosphere occurrence

The fractional occurrence of glaciers, ice sheets, snow cover,
permafrost, and seasonally frozen ground is used to illustrate
the cryosphere context of our findings. Glaciers are from the
Randolph Glacier Inventory (Randolph Glacier Consortium,
2023), snow cover extent is from Estilow et al. (2015), and
seasonally frozen ground is from Kim et al. (2017). Since
snow and seasonal frozen ground have a spatial and a tempo-
ral extent, their occurrence is derived as the presence proba-
bility for the analysis period of 1991-2020.

The permafrost zonation index (PZI) is used to derive per-
mafrost extent (Gruber, 2012) and is scaled to 0 %—100 %.
The heuristic—empirical model links the extent of permafrost
to the long-term MAAT.

3)

1 MAAT
PZI = zerfc (—M> x 100,

202
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where © =4.8 and o0 =2.54 are model parameters from
Gruber (2012). The MAAT is derived from the ensemble
mean of all five reanalyses from 1991 to 2020. Even though
the parameters have been calibrated for the period 1961-
1990, we use them unchanged in a warmer period (i.e., 1991—
2020), where slightly more permafrost than indicated may
therefore persist in the subsurface.

For MAAT bins of 0.1 °C, the mean covered area is derived
as the covered area by specific cryosphere element divided
by the total terrestrial area including the ice sheets. Note that
grid cells are weighted by area before further analyses.

To distinguish the wvariability between cryospheric
regimes, the spread was individually analyzed for each
cryosphere element. Ice-sheet-dominated areas include the
Greenland and Antarctic ice sheets, areas with more than
30 snow-covered days were considered snow-dominated, ar-
eas with PZI > 0.1 were considered permafrost-dominated,
and areas with frozen soil >30d (excluding permafrost-
dominated areas) were considered seasonally frozen-ground-
dominated.

3 Results
3.1 Lower agreement among reanalyses in cold regions

We consider cold regions to be terrestrial areas, including
the Greenland and Antarctic ice sheets, with a MAAT be-
low 0 °C. The average ensemble spread of MAAT (MAAT;)
is higher in cold regions (Fig. 1). Using all five reanalyses
(MAAT, it is about 1.5°C (0.5-3.0°C; hereafter, values
are reported as the mean and 10th to 90th percentiles) in cold
regions, or about 90 % higher than in other regions (0.8, 0.3—
1.5°C; Table 1). The MAAT trend shows a similar pattern;
the spread of the mean warming trend in cold regions is about
60 % higher than that in other terrestrial areas, i.e., 0.24 °C
per decade (0.10-0.42) vs. 0.15 °C per decade (0.06-0.25),
and is about 56 % of the ensemble mean.

Because maxSWE has strong spatial variability, we re-
port its relative spread (Fig. 2c and d). Its high average
(105, 51 %-206 %) shows that, on average, the variation in
maxSWE between reanalyses is greater than their ensemble
mean. This suggests that reanalyses face challenges in sup-
porting services and research related to snow. We found that
the greatest maxSWE; values occur in high-altitude regions,
for example high-mountain Asia (Fig. 2c and d), where
snowmelt water is an essential supply to millions of peo-
ple downstream for irrigation, hydroelectric power, and con-
sumption (Qin et al., 2020; Kraaijenbrink et al., 2021). Fig-
ure S3 in the Supplement (and Sect. S1 in the Supplement)
shows how ensemble spread increases with terrain rugged-
ness. On the other hand, the spread on the two continental ice
sheets is also high even though the terrain is flat. This is likely
because of inadequate representation of processes involving
ice, snow, and firn. Previous studies reported that the snow
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uncertainties in mountains are related to the performance of
numerical weather prediction models in representing precip-
itation and snow processes (Domine et al., 2019; Cao et al.,
2020; Zhou et al., 2024), especially the well-known bias in
MERRA-2 precipitation (Reichle et al., 2017). The coarse
spatial resolution of reanalysis leads to inadequate represen-
tation of elevation-specific processes like precipitation, kata-
batic winds, or radiation in the numerical weather prediction
models used.

Compared to all five reanalyses, the MAAT spread (1.3,
0.3-2.9°C) and its trend (0.13, 0.04-0.24 °C per decade) for
the 4DVar reanalyses are still significant in cold regions, and
the average ensemble spread is up to 45 % greater than that
of other regions (Table 1, Figs. 1 and 2), indicating the inher-
ent issues regarding the complex ice-related processes. The
relative maxSWEg among 4DVar reanalyses is about 101 %
(56 %—186 %) and is comparable to that derived from all five
reanalyses. Compared to the spread of multiple reanalyses
that also differ in structure, the spread of the ERAS ensem-
ble, within a consistent assimilation system and represent-
ing mostly parametric uncertainty, is notably smaller, as ex-
pected, i.e., 0.1 °C (0.0-0.3) for MAAT; and 1.0 % (0-2.6)
for relative maxSWE.

The temporal analyses revealed that the spread in MAAT
and maxSWE was generally reduced after 1980, with the in-
creased assimilation of satellite datasets (Fig. 2e and f; Hers-
bach et al., 2019). For example, the MAAT; in the 2010s
was reduced by 0.23 °C compared to that in the 1960s for the
4DVar reanalyses. But a persistent spread found since 1980
despite improved observations may indicate process repre-
sentation issues in the numerical weather prediction models.

While the overall spread is remarkable in cold regions,
the ice sheet areas show the most significant spread, which
is about 2.3 times greater for MAAT and 1.7 times greater
for maxSWE compared to that in seasonally frozen-ground-
dominated areas based on all five reanalyses (Table 1, Fig. 1).

3.2 Coincident low density of observations

We explored the density of in situ observations to contextual-
ize variation in reanalysis performance. Reanalyses have the
best agreement, or lowest MAATj, in regions with rich obser-
vations, corresponding to the MAAT band from 0 to 10 °C,
where 848 million people (or about 10 % of the global pop-
ulation) live (Fig. 1). In cold regions, the population is about
26 million (or 0.3 %), with 80 % in its warmest MA AT band
of —5 to 0°C. The density of in situ observations (0.08 sta-
tions per 10* km?) is low compared to other regions, limiting
the ability to constrain the reanalyses.

Interestingly, the MAAT in hot regions (MAAT > 20 °C)
is about 0.4 °C (or 46 %) lower compared to the extremely
cold regions (—20 < MAAT < —10 °C), although the density
of in situ observations is comparably low (0.05 stations per
10* km?). This indicates the prevalence of cryospheric phe-
nomena such as glaciers, ice sheets, snow, and frozen soil
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Figure 1. The 1991-2020 average ensemble spread of (a) mean annual air temperature (MAAT) and (b) relative maximum snow water
equivalent (maxSWE) among different reanalyses. The red (3DVar and 4DVar) and green (4DVar only) lines represent ensembles of differing
numerical weather prediction models and assimilation systems, whereas the yellow line (ERAS) represents uncertainty in observations and
physical parameterizations in a single modeling and assimilation system. The solid lines represent the mean state, and dashed lines indicate
the trend (left vertical axis). Land area and population are shown for context (right vertical axis). Values are summarized in intervals of 5 °C
for the ensemble mean of MAAT. The occurrence of cryosphere elements, estimated as the probability of occurrence during the analysis
period, is scaled per MAAT bin of 0.1 °C (see Methods). Only reanalysis cells with a significant (P < 0.05) trend are used for the analysis
of change. Blue numbers express low population counts in millions. The peak in the trend of maxSWE observed for MAAT classes from
—15 to —20°C is caused by increased uncertainty in ice-free areas of Greenland and Antarctica.

(Fig. 1), and related physical processes pose important addi- 4 TImplications
tional difficulties for the numerical weather prediction mod-
els (e.g., Cao et al., 2020; Domine et al., 2019). This is also
visible in the 10-member ensemble of ERAS, taking into ac-
count random uncertainty in observations and parameteriza-
tions but having only a single prediction model and assimila-
tion system (Fig. 1).

Reanalyses are produced by assimilating a broad range of
historical observations into numerical weather prediction
models. As such, they manifest how well we can estimate the
state of the atmosphere and land surface globally, based on
process knowledge and observations. They are widely con-
sidered a key data source for climate studies (Baatz et al.,
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Table 1. The spread of mean annual air temperature (MAATj; °C) and relative maximum snow water equivalent (maxSWEg; %) for the areas

occupied by specific cryosphere elements.

Cryosphere element MAATA  MAATPV SWE!! SWEZDPV
Overall  Cold regions 1.5 (0.5-3.0) 1.3(0.3-2.9) 105 (51-206) 101 (56-186)

Non-cold regions | 0.8 (0.3-1.5) 0.5 (0.1-0.9) - -
Ice sheets and glacier 2.3(1.1-3.6) 2.0(0.6-3.8) 197 (172-207) 154 (93-190)
Snow cover 0.8(0.3-14) 0.5(0.1-1.2) 80 (53-115) 72 (50-105)
Permafrost 1.0 (0.5-1.7) 0.8 (0.2-1.5) 75 (50-108) 83 (54-123)
Seasonally frozen ground 0.7 (0.2-1.3) 0.4 (0.1-0.8) 72 (49-106) 79 (52-108)

Values are reported as means (10th to 90th percentiles). Superscripts distinguish all five (all) reanalyses and the three 4DVar

modern reanalyses (4DV) only.

(a) MAAT : All five reanalyses

(b) MAAT; : Three 4DVar reanalyses

20

10

All five reanalyses

Changes in MAAT; (°C)

Three 4DVar reanalyses

(T 1950 1970 . 1990

2010

-10

Changes in relative maxSWEg (%)
-20

-30

1950

1970 1990 2010

Figure 2. The 1991-2020 average ensemble spread of mean annual air temperature (MAAT;) and relative spread of maximum snow water
equivalent (maxSWEg). Only areas with a mean maxSWEj greater than 0.0125 m (0.05 m snow height at a snow density of 250 kg m3) are
shown. Snow water equivalent is not available for the two continental ice sheets in MERRA-2 and is therefore not included in these regions.
The overall temporal changes for (¢) MAAT and (f) relative maxSWEg were derived with the reference period of 2011-2020 using all five
reanalyses, and a positive value means the spread is reduced relative to the referenced period. In (e) and (f), the solid lines represent the mean
state, and shaded areas indicate the 10th to 90th percentiles. The difference between all five reanalyses and three 4DVar reanalyses is given

in Fig. S2 in the Supplement.
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2021) and the delivery of services (e.g., Dee et al., 2014;
Gruber et al., 2023). This is especially true in cold regions,
where we show that the quality of reanalyses in key variables
is much lower than elsewhere.

While cold regions are remote and sparsely populated
overall, this reduced quality of reanalyses matters. Environ-
mental changes in cold regions involve feedbacks and tip-
ping elements that affect Earth in its entirety. Obstacles in
resolving the underlying processes likely point to similar
gaps in knowledge and capabilities in the context of numer-
ical weather prediction models. Furthermore, climate-driven
changes in cold regions will be more profound than in many
other terrestrial areas globally. As such, the ability to pro-
vide services and support climate research has an outsized
importance for enabling resilient communities and resource
extraction, as well as for national security and disaster pre-
paredness. We hope our analysis will help raise the aware-
ness of how important cold-region processes may be for nu-
merical weather prediction models and reanalyses and thus
encourage greater focus on studies of individual cryosphere
elements (e.g., Cao et al., 2022; Meloche et al., 2022) to in-
form research leading to future improvements in numerical
weather prediction models.

Data availability. The mean annual air temperature and snow
water equivalent datasets used here are publicly available on Zen-
odo (https://doi.org/10.5281/zenodo.14216654, Cao and Gruber,
2024). The JRA-3Q (https://search.diasjp.net/en/dataset/JRA3Q,
last access: 26 September 2025) and JRA-55 (https:
//search.diasjp.net/en/dataset/JRASS, last access: 26 September
2025) are from the Japan Meteorological Agency. ERAS is from
the Climate Data Store (https://doi.org/10.24381/cds.f17050d7,

Hersbach et al., 2023). MERRA-2 is from Goddard
Earth Sciences Data and Information Services Center
(https://doi.org/10.5067/0JRLVL8YV2Y4, GMAO, 2015).

NCEP2 is from the NOAA Physical Sciences Laboratory
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, last
access: 26 September 2025).
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