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Abstract. We introduce a novel transformation of the Stokes
equations into a form closely resembling the shallow Blatter–
Pattyn equations. The two forms differ by only a few addi-
tional terms, while their variational formulations differ only
by a single term in each horizontal direction. Specifically,
the variational formulation of the Blatter–Pattyn model drops
the vertical velocity in the second invariant of the strain rate
tensor. Here we make use of the new transformation in two
ways. First, we consider incorporating the transformed equa-
tions into a code that can be very easily converted from a
Stokes to a Blatter–Pattyn model, and vice versa, by switch-
ing these terms on or off. This may be generalized so that
the Stokes model is switched on adaptively only where the
Blatter–Pattyn model loses accuracy. Second, the key role
played by the vertical velocity in the Blatter–Pattyn approx-
imation motivates new approximations. Two examples are
presented. These require a mesh that enables the discrete
continuity equation to be invertible for the vertical veloc-
ity in terms of the horizontal velocity components. Exam-
ples of such meshes, such as the first-order P1–E0 mesh and
the second-order P2–E1 mesh, are given in both 2D and 3D.
However, the transformed Stokes model has the same type
of gravity forcing as the Blatter–Pattyn model, determined
by the ice surface slope, thereby forgoing some of the mesh
generality of the traditional formulation of the Stokes model.

1 Introduction

Concern and uncertainty about the magnitude of sea level rise
due to melting of the Greenland and Antarctic ice sheets have
led to increased interest in improved ice sheet and glacier
modeling. The gold standard is a Stokes model (i.e., a model

that solves the nonlinear, non-Newtonian Stokes system of
equations for incompressible ice sheet dynamics) because
it is applicable to all geometries and flow regimes. How-
ever, the Stokes model is computationally demanding. It is a
nonlinear, three-dimensional model involving four variables,
namely, the three velocity components and pressure. The
pressure is a Lagrange multiplier enforcing incompressibil-
ity, and this creates a more difficult indefinite “saddle point”
problem. As a result, full Stokes models exist but are not
commonly used in practice (examples are FELIX-S, Leng et
al., 2012, and Elmer/Ice, Gagliardini et al., 2013).

Because of this there is much interest in simpler and
cheaper approximate models. There is a hierarchy of very
simple models, such as the shallow-ice (SIA) and shallow-
shelf (SSA) models, and there are also more accurate higher-
order approximations. These culminate in the Blatter–Pattyn
(BP) approximation (Blatter, 1995; Pattyn, 2003), which is
currently used in production code packages such as ISSM
(Larour et al., 2012), MALI (Hoffman et al., 2018; Tezaur
et al., 2015), and CISM (Lipscomb et al., 2019). This ap-
proximation is based on the assumption of a small ice sheet
aspect ratio, i.e., ε =H/L� 1, where H and L are the ver-
tical and horizontal length scales, and consequently it elimi-
nates certain stress terms and implicitly assumes small basal
slopes. Both the Stokes and Blatter–Pattyn models are de-
scribed in detail in Dukowicz et al. (2010), hereafter referred
to as DPL10. Although the Blatter–Pattyn model is reason-
ably accurate for large-scale motions, accuracy deteriorates
for small horizontal scales, less than about five ice thick-
nesses in the ISMIP-HOM model intercomparison (Pattyn et
al., 2008; Perego et al., 2012), or below a 1 km resolution as
found in a detailed comparison with full Stokes calculations
(Rückamp et al., 2022). This can become particularly impor-
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tant for calculations involving details near the grounding line
where the full accuracy of the Stokes model is needed (Now-
icki and Wingham, 2008). Attempts to address the problem
while avoiding the use of full Stokes solvers include variable
mesh resolution coupled with a Blatter–Pattyn solver (Hoff-
man et al., 2018) and variable model complexity, where a
Stokes solver is embedded locally in a lower-order model
(Seroussi et al., 2012). Approximations that are more accu-
rate than Blatter–Pattyn but cheaper than Stokes are currently
not available.

The present paper introduces two innovations that may
begin to address some of these issues. The first is a novel
transformation of the Stokes model, described in Sect. 3,
which puts it into a form closely resembling the Blatter–
Pattyn model and differing only by the presence of a few
extra terms. This allows a code to be switched over from
Stokes to Blatter–Pattyn, and vice versa, globally or locally,
by the use of a single parameter that turns off these extra
terms, thus enabling variable model complexity to be very
simply implemented as described in Sect. 6.1. The second in-
novation is the introduction of new finite element discretiza-
tions that decouple the discrete continuity equation and al-
low it to be solved for the vertical velocity in terms of
the horizontal velocity components. Several elements used
to construct such meshes are described in Appendix A in
both 2D and 3D, primarily the first-order P1–E0 and second-
order P2–E1 elements (these two elements are novel and are
so-named because they employ pressures located on verti-
cal mesh edges). Within the framework of the transformed
Stokes model these meshes enable new approximations that
surpass the Blatter–Pattyn approximation. We describe two
such approximations in Sect. 6.2. There is another very sig-
nificant benefit. These new meshes allow Stokes ice sheet
models to be converted into inherently stable unconstrained
minimization problems without invoking the “inf-sup” con-
dition as shown in Sect. 4.3.2.

2 The standard formulation of the Stokes ice sheet
model

2.1 The assumed ice sheet configuration

An ice sheet may be divided into two parts, a part in con-
tact with the bed and a floating ice shelf located beyond the
grounding line. The Stokes ice sheet model is capable of de-
scribing the flow of an arbitrarily shaped ice sheet, including
a floating ice shelf as illustrated in Fig. 1, given appropri-
ate boundary conditions (e.g., Cheng et al., 2020). One lim-
itation of the methods proposed here, in common with the
Blatter–Pattyn model, will be that there should be just one
upper and one basal surface, as is the case in Fig. 1. For sim-
plicity we only consider fully grounded ice sheets with peri-
odic lateral boundary conditions although ice shelves can be
incorporated.

Referring to Fig. 1, the entire surface of the ice sheet
is denoted by S. An upper surface, labeled SS and speci-
fied by ςs (x,y,z)= z− zs (x,y)= 0, is exposed to the at-
mosphere and thus experiences stress-free boundary condi-
tions. The bottom or basal surface, denoted by SB and spec-
ified by ςb (x,y,z)= z− zb (x,y)= 0, is in contact with the
bed. The basal surface may be subdivided into two sections,
SB = SB1∪SB2, where SB1, specified by z= zb1 (x,y), is the
part where ice is frozen to the bed (a no-slip boundary condi-
tion), and SB2, specified by z= zb2 (x,y), is where frictional
sliding occurs. We assume Cartesian coordinates such that
xi = (x,y,z) are position coordinates with z= 0 at the ocean
surface, and the index i ∈ {x,y,z} represents the three Carte-
sian indices. Later we shall have occasion to introduce the re-
stricted index (i) ∈ {x,y} to represent just the two horizontal
indices. This is more compact than the equivalent projection
operator, i.e., u(i) = Pi (u)= (u,v,0). Unit normal vectors
appropriate for the ice sheet configuration of Fig. 1 are given
by

ni =
(
nx,ny,nz

)
=

∂ςs (x,y,z)/∂xi

|∂ςs (x,y,z)/∂xi |

=
(−∂zs/∂x,−∂zs/∂y,1)√

1+ (∂zs/∂x)2+ (∂zs/∂y)2
at surface SS,

ni =
(
nx,ny,nz

)
=−

∂ςb (x,y,z)/∂xi

|∂ςb (x,y,z)/∂xi |

=
(∂zb/∂x,∂zb/∂y,−1)√

1+ (∂zb/∂x)2+ (∂zb/∂y)2
at surface SB . (1)

2.2 The Stokes equations

The Stokes model is a system of nonlinear partial differen-
tial equations and associated boundary conditions (Greve and
Blatter, 2009; DPL10). In Cartesian coordinates the Stokes
equations, the three momentum equations, and the continu-
ity equation for the three velocity components ui = (u,v,w)
and the pressure P are given by

∂τij

∂xj
−
∂P

∂xi
+ ρgi = 0, (2)

∂ui

∂xi
= 0, (3)

where ρ is the density, and gi is the acceleration vector due
to gravity, arbitrarily oriented in general but here taken to
be in the negative z direction, gi = (0,0,−g). Repeated in-
dices imply summation (the Einstein notation). The devia-
toric stress tensor τij is given by

τij = 2µn ε̇ij , (4)

where the strain rate tensor is

ε̇ij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (5)
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Figure 1. A simplified illustration of the admissible ice sheet configuration.

the nonlinear ice viscosity µn is

µn = η0

(
ε̇2
)(1−n)/2n

, (6)

and ε̇2
= ε̇ij ε̇ij/2 ≥ 0 is the second invariant of the strain

rate tensor that may be written out in full as follows:

ε̇2
=

1
2

[(
∂u

∂x

)2
+

(
∂v

∂y

)2
+

(
∂w

∂z

)2
]

+
1
4

[(
∂u

∂y
+
∂v

∂x

)2
+

(
∂u

∂z
+
∂w

∂x

)2
+

(
∂v

∂z
+
∂w

∂y

)2
]
. (7)

As usual, ice is assumed to obey Glen’s flow law, where n
is Glen’s law exponent (n= 1 for a linear Newtonian fluid
but typically n= 3 in ice sheet modeling, describing a non-
linear non-Newtonian fluid). The coefficient η0 is defined by
η0 = A

−1/n/2, where A is an ice flow factor, in general de-
pending on temperature and other variables (see Schoof and
Hewitt, 2013) but here taken to be a constant. The three-
dimensional Stokes system requires a set of boundary con-
ditions at every bounding surface, with each set composed
of three components. Aside from the periodic lateral bound-
ary conditions, the relevant boundary conditions are given as
follows:

1. Stress-free boundary conditions on surfaces SS not in
contact with the bed, such as the upper surface SS :

τijnj −Pnt = 0. (8)

2. No-slip or frozen to the bed conditions on surface seg-
ment SB1:

ui = 0. (9)

3. Frictional tangential sliding conditions on surface seg-
ment SB2.

We assume that the tangential frictional shear force that re-
sists sliding, τSi , is a known vector that satisfies the no-
penetration condition, τSi ni = 0. Note that only two com-
ponents need to be provided since the third may always be
obtained from the tangency condition. In general τSi is a
complicated function of position and velocity (e.g., Schoof,
2010). At a surface where frictional sliding takes place the
flow velocity must be tangential to the surface, satisfying

uini = 0. (10)

Following DPL10, the tangential stress balance at the basal
surface is given by

τijnj − τnni + τ
S
i = 0, (11)

where τn = niτijnj is the normal component of the shear
stress. However, the three components of the stress balance
(11) are not independent since the stress balance vector is
confined to the tangential plane. Thus, choosing the horizon-
tal components of (11) as the two independent components,
the required three boundary conditions are given by the no-
penetration condition (10) and the two horizontal compo-
nents of (11), namely

τ(i)jnj − τnn(i)+ τ
S
(i) = 0. (12)

In this paper we shall assume simple linear frictional sliding,
given by

τSi = β (x) ui, (13)

where β (x) > 0 is a position-dependent drag law coefficient.
We also assume that there is no melting or refreezing at the
bed, causing vertical inflows or outflows. If needed, these can
be easily added to (10) (see DPL10; Heinlein et al., 2022).

2.3 The Stokes variational principle

A variational principle, if available, is the most compact way
of representing a particular problem. It is fortunate that the
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Stokes model possesses a variational principle that is par-
ticularly useful for discretization and for the specification
of boundary conditions – see Colinge and Rappaz (1999),
Glowinski and Rappaz (2003), and Rappaz and Reist (2005)
for early use of the variational principle in glaciology and
Schoof (2006) and DPL10 for a fuller description of the vari-
ational principle as applied in ice sheet modeling. There are
a number of significant advantages. For example, all bound-
ary conditions are conveniently incorporated in the varia-
tional formulation, terms in the variational functional gen-
erally contain lower-order derivatives, and the discretization
automatically generates a symmetric matrix. Stress terms are
evaluated in the interior, thereby avoiding the need to evalu-
ate derivatives using less accurate one-sided approximations
at boundaries. Stress-free boundary conditions, as at the up-
per surface, need not be specified at all since they are auto-
matically incorporated in the functional as natural boundary
conditions. Finally, functional variation in the discrete case
is equivalent to simple differentiation with respect to the dis-
crete variables as demonstrated in Sect. 4. The variational
method presented here is closely related to the Galerkin
method, a subset of the weak formulation method in finite
elements in which the test and trial functions are the same
(see Schoof, 2010, and earlier references contained therein
in connection with the Blatter–Pattyn model).

The variational functional for the standard Stokes model
may be written in two alternative forms:

1. Basal boundary conditions imposed using Lagrange
multipliers.

A[ui,P ,λi,3] =

∫
V

dV

×

[
4n
n+ 1

η0

(
ε̇2
)(1+n)/2n

−P
∂ui

∂xi
+ ρgw

]
+

∫
SB1

dS λiui +

∫
SB2

dS

[
3uini +

1
2
β (x) uiui

]
,

(14)

where λi and 3 are Lagrange multipliers used to en-
force the no-slip condition and frictional tangential slid-
ing, respectively. As in DPL10, arguments enclosed in
square brackets, here ui, P ,λi,3, indicate the func-
tions that are subject to variation.

2. Basal boundary conditions imposed by direct substitu-
tion.

In case of no-slip conditions, condition (9) is used di-
rectly in the functional to zero out all velocity compo-
nents ui along the SB1 section of the basal boundary. In

case of tangential sliding, the functional is given by

A[ui,P ] =

∫
V

dV

×

[
4n
n+ 1

η0

(
ε̇2
)(1+n)/2n

−P
∂ui

∂xi
+ ρgw

]
+

1
2

∫
SB2

dS β (x)
(
u(i)u(i)+

(
u(i)n(i)/nz

)2)
, (15)

where, using the tangential sliding condition (10), the
velocity along the entire basal boundary section SB2 is
specified by

ui =
(
u,v,−u(i)n(i)/nz

)
=
(
u,v,u(i)∂zb/∂x(i)

)
. (16)

This is implicitly done in all terms of the functional,
i.e., the volume integral terms as well as the surface in-
tegral term, in which case the replacement is explicitly
visible in (15). This use of (16) to replace the relevant
surface velocities in the functional is sufficient to im-
plement the tangential sliding boundary condition. This
replacement is particularly easy in the discrete formu-
lation, to be described later, where boundary or surface
velocity variables are easily accessible for replacement.

As described in DPL10, a variational procedure yields the
full set of Euler–Lagrange equations and boundary condi-
tions that specify the standard Stokes model, equivalent to
(2)–(12). Using Lagrange multipliers, (14), the discrete vari-
ational procedure determines the discrete variables that spec-
ify the velocity components and the pressure, ui and P , and
the Lagrange multipliers, λi,3. In the direct substitution
case, (15), the solution determines only the discrete pres-
sures P and velocity variables ui that were not directly pre-
scribed as boundary conditions in (9) or (16). These pre-
scribed (known) values of boundary velocities are then added
a posteriori to obtain the complete set of discrete variables.
The direct substitution method is more compact and simpler
and therefore has been more commonly used in this paper.

3 A transformation of the Stokes model

3.1 Origin of the transformation

The transformation is motivated by the Blatter–Pattyn ap-
proximation. Consider the vertical component of the momen-
tum equation and the corresponding stress-free upper sur-
face boundary condition in the Blatter–Pattyn approximation
(from DPL10, for example), which are given by

∂
∂z

(
2µn ∂w∂z

)
−
∂P
∂z
− ρg = 0,(

2µn ∂w∂z −P
)
nz = 0 at z= zs (x,y) .

(17)
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These equations suggest the use of a new variable P̃ , to be
called the transformed pressure, given by

P̃ = P − 2µn
∂w

∂z
+ ρg (z− zs (x,y)) . (18)

Using this, (17) simplifies as follows:

∂P̃
∂z
= 0,

P̃ nz = 0 at z= zs (x,y) ,
(19)

which is a complete one-dimensional partial differential sys-
tem that yields

P̃ = 0 (20)

when integrated from the top surface down. Thus, the trans-
formed pressure vanishes in the Blatter–Pattyn case. Replac-
ing the pressure P by P̃ by the use of (18) forms the basis of
the present transformation, but we also make use of the con-
tinuity equation to eliminate ∂w/∂z as in the Blatter–Pattyn
approximation (e.g., Pattyn, 2003). Thus, the transformation
consists of eliminating P and ∂w/∂z in the Stokes system (2)
and (4)–(12) (i.e., everywhere except in the continuity equa-
tion itself) by use of

P = P̃ − 2µn

(
∂u

∂x
+
∂v

∂y

)
+ ρg (zs − z), (21)

∂w

∂z
=−

(
∂u

∂x
+
∂v

∂y

)
. (22)

The pressure P in the standard Stokes system is primarily
a Lagrange multiplier enforcing incompressibility but with
a very large hydrostatic component. The transformed pres-
sure P̃ again acts as a Lagrange multiplier enforcing incom-
pressibility. However, the transformation eliminates the hy-
drostatic pressure from P̃ , making it some 3 orders of mag-
nitude smaller than P as illustrated in Fig. 2. Since P̃ = 0 in
the Blatter–Pattyn approximation, the transformed pressure
may be written as P̃ = P −PBP, where

PBP =−2µn

(
∂u

∂x
+
∂v

∂y

)
+ ρg (zs − z)

is the effective Blatter–Pattyn pressure (Tezaur et al., 2015).
Thus, P = PBP+ P̃ and therefore P̃ may be interpreted as
the “Stokes” correction to the Blatter–Pattyn pressure.

3.2 The transformed Stokes equations

Introducing (21) and (22) into the Stokes system of Eqs. (2)–
(12) results in the following transformed Stokes system:

∂τ̃ij

∂xj
− ξ̂

∂P̃

∂xi
− ρg

∂zs

∂x(i)
= 0, (23)

ξ̂
∂ui

∂xi
= 0, (24)

where quantities modified in the transformation are indicated
by a tilde, e.g., P̃ . Corresponding to (4), the modified Stokes

deviatoric stress tensor τ̃ij is given by

τ̃ij = µ̃n


2
(

2 ∂u
∂x
+

∂v
∂y

) (
∂u
∂y
+

∂v
∂x

) (
∂u
∂z
+ ξ ∂w

∂x

)(
∂u
∂y
+

∂v
∂x

)
2
(
∂u
∂x
+ 2 ∂v

∂y

) (
∂v
∂z
+ ξ ∂w

∂y

)
ξ
(
∂u
∂z
+

∂w
∂x

)
ξ
(
∂v
∂z
+

∂w
∂y

)
0

 . (25)

Dummy variables ξ, ξ̂ (here assumed to be ξ, ξ̂ = 1) have
been introduced to indicate terms that are absent in the
Blatter–Blatter approximation, as will be more fully ex-
plained below. The modified viscosity µ̃n, corresponding to
(6), is given by

µ̃n = η0

(
˜̇ε2
)(1−n)/2n

, (26)

where the transformed second invariant ˜̇ε2, corresponding to
(7), is

˜̇ε2
=

(
∂u

∂x

)2

+
∂u

∂x

∂v

∂y
+

(
∂v

∂y

)2

+
1
4

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+ ξ

∂w

∂x

)2

+

(
∂v

∂z
+ ξ

∂w

∂y

)2
]
. (27)

Since (27) differs from (7) only by the incorporation of the
continuity equation (22), the transformation leaves both the
second invariant ˜̇ε2 and viscosity µ̃n unchanged, i.e., ˜̇ε2

= ε̇2

and µ̃n = µn, which also implies that ˜̇ε2
≥ 0.

Boundary conditions for the transformed equations, corre-
sponding to (8)–(12), are given by

BCs on SS : τ̃ijnj − ξ̂ P̃ ni = 0, (28)
BCs on SB1 : ui = 0, (29)
BCs on SB2 : uini = 0, (30)
τ̃(i)jnj − τ̃nn(i)+β (x)u(i) = 0, (31)

where τ̃n = ni τ̃ijnj as before. Equations (30) and (31) con-
stitute the required three frictional sliding boundary condi-
tions.

As mentioned, dummy variables ξ, ξ̂ in (23)–(25), (27),
and (28) are used to identify terms that are neglected in the
two types of the Blatter–Pattyn approximation discussed in
Sect. 3.4. These are (a) the standard Blatter–Pattyn approx-
imation, ξ = 0, ξ̂ = 0, as originally derived (Blatter, 1995;
Pattyn, 2003; DPL10), which solves for just the horizon-
tal velocity components u,v, and (b) the extended Blatter–
Pattyn approximation, ξ = 0, ξ̂ = 1, described more fully in
Sect. 3.4.2, which contains the standard approximation plus
additional equations that determine the vertical velocity w
and the pressure P̃ . Retaining all terms, i.e., ξ = 1, ξ̂ = 1,
specifies the full transformed Stokes model.

The transformed system, (23)–(31), and the standard
Stokes system, (2)–(12), produce exactly the same solution.
However, in common with the Blatter–Pattyn approximation,
the transformed system requires the use a gravity-oriented
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Figure 2. Standard pressure P (MPa) compared to the transformed pressure P̃ (kPa) in Exp. B from the ISMIP-HOM model intercomparison
(Pattyn et al., 2008) at L= 10 km.

coordinate system because of the particular type of gravita-
tional forcing being used, while the standard Stokes model is
not similarly restricted. This is not a major limitation. Some-
what more restrictive is the appearance of zs (x,y), an im-
plicitly single valued function, to describe the vertical posi-
tion of the upper surface of the ice sheet. This means that care
must be taken with reentrant upper surfaces (i.e., S-shaped in
2D) and sloping cliffs at an ice edge – again a restriction that
is not present in the standard Stokes model. As noted earlier,
we assume that there is just one upper and one basal surface;
i.e., as usual in ice sheet modeling this does not permit over-
hangs.

3.3 The transformed Stokes variational principle

It is easy to verify that the transformed Stokes system (23)–
(31) results from the variation with respect to ui, P̃ of the
following functional:

Ã[ui, P̃ ] =

∫
V

dV

×

[
4n
n+ 1

η0

(
˜̇ε2
)(1+n)/2n

− ξ̂ P̃
∂ui

∂xi
+ ρg u(i)

∂zs

∂x(i)

]
+

1
2

∫
SB2

dS β (x)
(
u(i)u(i)+

(
u(i)n(i)/nz

)2)
, (32)

where ˜̇ε2 is the transformed second invariant, (27). As in
functional (15), here basal boundary conditions are imposed
by direct substitution. However, using Lagrange multipliers
as in (14) is also possible.

3.4 Two forms of the Blatter–Pattyn approximation

3.4.1 The standard Blatter–Pattyn approximation

The standard Blatter–Pattyn approximation (originally in-
troduced by Blatter, 1995, and Pattyn, 2003, and later by
DPL10, and Schoof and Hewitt, 2013) is obtained by set-
ting ξ = ξ̂ = 0 in the transformed system. This yields the
Blatter–Pattyn functional,

ABP[u(i)] =

∫
V

dV

×

[
4n
n+ 1

η0

(
ε̇2

BP

)(1+n)/2n
+ ρg u(i)

∂zs

∂x(i)

]
+

1
2

∫
SB2

dS β (x)
(
u(i)u(i)+ ς

(
u(i)n(i)/nz

)2)
, (33)

and the second invariant,

ε̇2
BP =

(
∂u

∂x

)2

+
∂u

∂x

∂v

∂y
+

(
∂v

∂y

)2

+
1
4

[(
∂u

∂y
+
∂v

∂x

)2

+
∂u

∂z

2
+
∂v

∂z

2
]
, (34)

in terms of horizontal velocity components u,v only. The
Euler–Lagrange equations and boundary conditions are
given by

∂τBP
(i)j

∂xj
− ρg

∂zs

∂x(i)
= 0;{

τBP
(i)j

nj +β (x)
(
u(i)+ ζ

(
u(j)n(j)/nz

)
n(i)/nz

)
= 0

on SB2, τBP
(i)j

nj = 0 on SS , u(i) = 0 on SB1,
(35)
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where the Blatter–Pattyn stress tensor τBP
(i)j is

τBP
(i)j = µ̃

BP
n

 2
(

2 ∂u
∂x
+
∂v
∂y

) (
∂u
∂y
+

∂v
∂x

)
∂u
∂z(

∂u
∂y
+

∂v
∂x

)
2
(
∂u
∂x
+ 2 ∂v

∂y

)
∂v
∂z

 , (36)

and µ̃BP
n = η0

(
˜̇ε2
BP

)(1−n)/2n
. A new dummy variable ζ has

been introduced in (33) to identify the basal boundary term
normally dropped in the standard Blatter–Pattyn approxima-
tion (ζ = 0) but restored (ζ = 1) in Dukowicz et al. (2011)
to better represent arbitrary basal topography.

The Blatter–Pattyn model solves for the horizontal veloc-
ity components only. In principle the vertical velocity com-
ponentw may be computed a posteriori by means of the con-
tinuity equation, if desired. It is important to note that the
Blatter–Pattyn system is numerically well behaved because
its variational formulation amounts to a convex optimization
problem whose solution minimizes the functional (33).

3.4.2 The extended Blatter–Pattyn approximation

A second form of the Blatter–Pattyn approximation is ob-
tained from the transformed variational principle (32) by
making the assumption∥∥∥∥∂w∂x

∥∥∥∥� ∥∥∥∥∂u∂z
∥∥∥∥ , ∥∥∥∥∂w∂y

∥∥∥∥� ∥∥∥∥∂v∂z
∥∥∥∥ (37)

and therefore neglecting ∂w/∂x, ∂w/∂y in the transformed
second invariant ˜̇ε2, consistent with the original small aspect
ratio approximation (Blatter, 1995; Pattyn, 2003; DPL10;
Schoof and Hindmarsh, 2010). This corresponds to set-
ting ξ = 0, ξ̂ = 1 in the transformed Stokes model. In other
words, we neglect w-velocity gradients in the second invari-
ant but keep the pressure term in the functional. This will
be called the extended Blatter–Pattyn approximation (EBP)
because, in contrast to the standard Blatter–Pattyn approx-
imation, all the variables, i.e., u,v,w,P̃ , are retained. It is
noteworthy that assumption (37) is equivalent to just setting
w = 0 in the second invariant ˜̇ε2 in the transformed Stokes
model. This will be exploited later to obtain approximations
that improve on the Blatter–Pattyn approximation. Thus, the
extended Blatter–Pattyn functional is given by

AEBP[ui , P̃ ] =

∫
V

dV

×

[
4n
n+ 1

η0

(
ε̇2

BP

)(1+n)/2n
− P̃

∂ui

∂xi
+ ρg u(i)

∂zs

∂x(i)

]
+

1
2

∫
SB2

dS β (x)
(
u(i)u(i)+ ς

(
u(i)n(i)/nz

)2)
, (38)

where the Blatter–Pattyn second invariant ε̇2
BP is given

by (34). Taking the variation yields the system of ex-
tended Blatter–Pattyn and Euler–Lagrange equations and
their boundary conditions as follows:

1. Variation with respect to u(i) yields the horizontal mo-
mentum equation,

∂τBP
(i)j

∂xj
−

∂P̃

∂x(i)
− ρg

∂zs

∂x(i)
= 0; τBP

(i)jnj − P̃ n(i) = 0 on SS , u(i) = 0 on SB1,

τBP(i)j nj +β (x)
(
u(i)+ ζ

(
u(k)n(k)/nz

)
n(i)/nz

)
= 0

on SB2,

(39)

where τBP
(i)j is given by (36).

2. Variation with respect to w yields the vertical momen-
tum equation,

−
∂P̃

∂z
= 0; P̃ nz = 0 on SS . (40)

3. Variation with respect to P̃ yields the continuity equa-
tion,

∂w

∂z
+
∂u(i)

∂x(i)
= 0; w = 0 on SB1,

or w =−u(i)n(i)/nz on SB2. (41)

It is apparent that the vertical momentum equation system
(40) is a decoupled system, yielding P̃ = 0 as already shown
in Sect. 3.1. This eliminates the pressure from the horizontal
momentum equation (39), making it identical to the standard
Blatter–Pattyn system (35), i.e., a decoupled system for the
horizontal velocities u(i). As a result, having solved (39) for
the horizontal velocities, the continuity equation (41) may in
principle be solved for the vertical velocity w (but see the
comments regarding the discrete case that follow Eq. 42).

In summary, the extended Blatter–Pattyn model, (39)–
(41), is equivalent to the standard Blatter–Pattyn model, (35),
for the horizontal velocities, u,v, but it also includes two ad-
ditional equations determining the pressure P̃ and the verti-
cal velocity w that are ignored in the standard Blatter–Pattyn
approximation. Because of this, we distinguish between the
Blatter–Pattyn model that solves for just the two horizon-
tal velocities (i.e., the standard Blatter–Pattyn approxima-
tion, Eq. 35) and the Blatter–Pattyn system that solves for
all the variables (i.e., the extended Blatter–Pattyn approxi-
mation, Eqs. 39–41). Perhaps the main distinction between
the two, which may be important in some applications, is
that in the Blatter–Pattyn system the continuity equation (41)
is solved for the vertical velocity w simultaneously with (39)
for the horizontal velocities u,v on the same mesh, while in
the Blatter–Pattyn model the calculation of vertical velocity
is completely decoupled and may be done on an unrelated
mesh. In the continuous case the solution for the vertical ve-
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locity can be done using Leibniz’s theorem,

w(u,v)= wz=zb −

z∫
zb

∂u(i)

∂x(i)
dz′ = u(i)

∂zb

∂x(i)

−

z∫
zb

∂u(i)

∂x(i)
dz′ =−

∂

∂x(i)

z∫
zb

u(i)dz
′. (42)

Equation (42) may in principle be discretized to obtain the
vertical velocity on arbitrary meshes. However, discretiza-
tions of the continuity Eq. (41) are generally not capable of
being solved for the vertical velocity in terms of the hori-
zontal velocities. In Appendix A we shall introduce special
finite element meshes that do allow for the solvability of the
discrete continuity equation for the vertical velocity.

Up to now we have only dealt with continuum properties
of Stokes-type systems, which are well behaved. However,
this may not be so in the discrete case. The solution of the
discretized Stokes systems will depend on the choices that
are made for the meshes and for the finite elements that are
to be used. These issues will be discussed next.

4 Finite element discretization

4.1 Standard and transformed Stokes discretizations

In practice, both traditional Stokes and Blatter–Pattyn mod-
els are discretized using finite element methods (e.g.,
Gagliardini et al., 2013; Perego et al., 2012). We follow this
practice except that here the discretization starts from the
Stokes variational principle. This differs from standard finite
element practice that begins with the Stokes equations and
converts them into weak (integral) form, which may not be
equivalent to a variational formulation unless the Galerkin
method is used. A variational principle has a number of ad-
vantages (see Sect. 2.3 and DPL10). The following is a brief
outline of the discretization. Additional details are provided
in Appendix A. For simplicity, we confine ourselves to two
dimensions with coordinates (x,z) and velocities (u,w). An
example of a three-dimensional mesh appropriate for our
purpose is discussed in Appendix A. Further, we discuss only
the case of direct substitution for basal boundary conditions
in the variational functional. Remarks will apply to both the
standard and the transformed Stokes models. Thus, the dis-
crete pressure variable p may refer to either the standard
pressure P or the transformed pressure P̃ .

Consider an arbitrary mesh with a total of N = nu+nw+
np unknown discrete variables at nodal locations 1≤ i ≤N ,
with nu horizontal velocity variables, nw vertical velocity
variables, and np pressure variables, so that

v = {v1,v2, . . .,vN }
T
=
{{
u1,u2, . . .,unu

}
,{

w1,w2, . . .,wnw
}
,
{
p1,p2, . . .,pnp

}}T
= {u,w,p}T (43)

is the vector of unknown discrete variables that are the de-
grees of freedom of the model (if using Lagrange multipliers
for basal boundary conditions then discrete variables corre-
sponding to λz,3 must be added). Variables are expanded in
terms of shape functions Nk

i (x) associated with each nodal
variable i in each element k, so that vk (x)=

∑
i

viN
k
i (x) is

the spatial variation of variables in element k, summed over
all variable nodes located in element k. Shape functions as-
sociated with a given node may differ depending on the vari-
able. Substituting into the functional, (15) or (32), integrating
and assembling the contributions of all elements, we obtain a
discretized variational functional in terms of the nodal vari-
able vectors u,w,p, as follows:

A(u,w,p)=
∑
k

Ak (u,w,p) , (44)

where Ak (u,w,p) is the local functional evaluated by inte-
grating over element k. Since the product of pressure and the
divergence of velocity in the functional is linear in pressure
and velocity, and the term responsible for gravity forcing is
linear in velocity, the functional (44) may be written in dis-
crete form as follows:

A(u,w,p)=M(u,w)+pT
(

MT
UPu+MT

WPw
)

+uT f U +wT fW , (45)

where the notation from (43) has been used, i.e., u={
u1,u2, . . .,unu

}T , etc. Parentheses indicate a functional de-
pendence on the indicated variables. Comparison with (15)
and (32) shows that M(u,w)≥ 0 is a highly nonlinear func-
tion of the velocity variables u,w, and MT

UP and MT
WP are

constant np × nu and np × nw matrices, respectively, aris-
ing from the incompressibility constraint. Note that f U and
fW are constant gravity forcing vectors of dimension nu
and nw, respectively, such that f U = 0, fW 6= 0 in the stan-
dard Stokes model and f U 6= 0, fW = 0 in the transformed
Stokes model. The discrete functionalM(u,w) differs in the
two cases but remains positive-definite.

Variation of the discretized functional corresponds to par-
tial differentiation with respect to each of the discrete vari-
ables in the vector v (see Eq. 43). Thus, the discrete Euler–
Lagrange equations that correspond to the u-momentum, w-
momentum, and continuity equations, respectively, are given
by

R (u,w,p)=

[
∂A(u,w,p)/∂u
∂A(u,w,p)/∂w
∂A(u,w,p)/∂p

]
=

[
RU (u,w,p)
RW (u,w,p)
RP (u,w)

]

=

[
MU (u,w)+MUPp+f U
MW (u,w)+MWPp+fW
MT

UPu+MT
WPw

]
= 0, (46)

where functionals MU (u,w)= ∂M (u,w)/∂u and
MW (u,w)= ∂M (u,w)/∂w are nonlinear vectors of
dimension nu and nw, respectively. Altogether, (46) is a
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set of N nonlinear equations for the N unknown discrete
variables vi . As explained previously in the continuum
case, all boundary conditions are included in functional
(45), and therefore they are also incorporated in the discrete
Euler–Lagrange equations (46).

Since the overall system (46) is nonlinear, it is normally
solved using the Newton–Raphson iteration, expressed in
matrix notation as follows:

M
(
uK ,wK

)
1v+R

(
uK ,wK ,pK

)
= 0, (47)

where K is the iteration index, M(u,w)= ∂2A(v)/∂vi∂vj
is a symmetric N ×N Hessian matrix, and 1v is the column
vector given by

1v = {1u,1w,1p}T

=

{
uK+1

−uK ,wK+1
−wK ,pK+1

−pK
}T
.

Given vK from the previous iteration, (47) is a linear ma-
trix equation that is solved for the N new variables vK+1 at
each iteration. In view of (45) and (46), the Hessian matrix
M(u,w) may be decomposed into submatrices as follows:

M(u,w)=

 MUU (u,w) MUW (u,w) MUP
MT

UW (u,w) MWW (u,w) MWP
MT

UP MT
WP 0

 . (48)

Submatrices MUW (u,w)= ∂
2M(u,w)/∂u∂w, etc., depend

nonlinearly on u, w. Thus, MUU (u,w) , MWW (u,w) are
square nu× nu, nw × nw symmetric matrices, respectively,
while MUW (u,w) is a rectangular nu× nw matrix since in
general nu, nw are not equal. As noted earlier, MT

WP is an
np × nw matrix that is not square unless np = nw.

4.2 Blatter–Pattyn discretizations

For completeness, we express the two Blatter–Pattyn approx-
imations from Sect. 3.4 in discretized form from Sect. 4.1 as
follows:

1. The standard Blatter–Pattyn model from Sect. 3.4.1
takes the simple form

RU (u,0,0)=MU (u,0)+f U = 0, (49)

whose Newton–Raphson iteration is given by

MUU

(
uK ,0

)
1u+RU

(
uK ,0,0

)
= 0. (50)

2. The extended Blatter–Pattyn approximation from
Sect. 3.4.2 becomes

R (u,w,p)=

[
MU (u,0)+MUPp+f U
MWPp

MT
UPu+MT

WPw

]
= 0, (51)

with the Newton–Raphson iteration given by

M
(
uK
)
1v+R

(
uK ,wK ,pK

)
= 0, (52)

where the Hessian matrix is

M(u)=

 MUU (u,0) 0 MUP
0 0 MWP
MT

UP MT
WP 0

 . (53)

4.3 Discrete solvability issues

4.3.1 Solvability of the Stokes and Blatter–Pattyn
models

Consider the solution of the three linear matrix problems
(47), (50), and (52) associated with the Newton–Raphson so-
lution of the Stokes and the Blatter–Pattyn approximate mod-
els. While there are no issues in the continuous case, this is
not so in the discrete case as noted earlier. The discrete sys-
tem to be solved has the general form

M
{

u

p

}
=

[
A BT
B 0

]{
u

p

}
=

{
f

g

}
, (54)

where A is a symmetric, positive-definite, invertible matrix,
and the variables u,p refer to the Newton–Raphson variable
increments. The form (54) is characteristic of Stokes-type
problems, or more generally of constrained minimization
problems using Lagrange multipliers. In finite element termi-
nology these are referred to as mixed problems, meaning that
velocity components and the pressure occupy different finite
element spaces, or saddle point problems, meaning that the
solution of (54) is at a saddle point with respect to the veloc-
ity and pressure variables of the quadratic form associated
with (54). The matrix M is symmetric but indefinite, with
nu+nw positive and np negative eigenvalues. Discretizations
of this type may lack stability in the sense that convergence to
the saddle point cannot be achieved (Auricchio et al., 2017).
The common way to resolve this issue is to require the use
of finite elements that satisfy the Ladyzhenskaya–Babuška–
Brezzi (LBB, or inf-sup) condition on matrix BT in (54).
There is a very large literature on the subject, e.g., Boffi et
al. (2008), Elman et al. (2014), and Auricchio et al. (2017).
Testing for stability is not trivial. However, collections of inf-
sup stable elements for the Stokes equations may be found
in many papers and books on mixed methods, e.g., Boffi et
al. (2008). The popular second-order Taylor–Hood P2–P1 el-
ement (Hood and Taylor, 1973) is an example of an inf-sup
stable element. Some results using this element are shown
in Fig. 13 for Test B, one of the test problems described in
Appendix C.

The two Blatter–Pattyn versions do not fall into this gen-
eral category. The standard Blatter–Pattyn model, (49)–(50),
excludes matrices B,BT and solves only the positive-definite
matrix A, making it a well-behaved unconstrained minimiza-
tion problem. The extended Blatter–Pattyn model, (51)–(52),
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experiences a different problem. It is characterized by a de-
coupled equation for the pressure that involves the matrix
MWP, which is usually not square and therefore not invert-
ible. Solution for the discrete pressure is only possible when
this matrix is invertible, which at minimum requires a square
matrix, i.e., np = nw, and this depends on the finite element
mesh chosen for the discretization. For example, the Taylor–
Hood (P2–P1) element mentioned previously cannot be used
because it typically has np� nw, and therefore the linear
system is overdetermined for the pressure and underdeter-
mined for the horizontal velocity w.

In the following section we introduce an alternative
method for obtaining well-posed formulations of all these
models, including the extended Blatter–Pattyn model dis-
cussed above, by the use of meshes that permit inverting the
continuity equation for the vertical velocity in terms of the
horizontal velocity components.

4.3.2 A special case: invertible continuity equation

In the continuous case, the Blatter–Pattyn approximation
(Sect. 3.4) implies that vertical velocity w is obtainable from
the continuity equation after having solved for the horizontal
velocities u,v. This is always possible in the continuum but
may not be so in the discrete case, as noted in the extended
Blatter–Pattyn approximation. Continuing with the 2D case
from Sect. 4.1 for simplicity, the discrete continuity equation
from (46) or (51) is given by

MT
UPu+MT

WPw = 0. (55)

For this to be solvable for w in terms of the horizontal ve-
locity requires that matrix MT

WP be invertible; i.e., it must be
square and full rank. With an invertible matrix, solving (55)
we obtain

w (u)=−M−TWPMT
UPu, (56)

where M−TWP is the inverse of MT
WP. Note that

M−TWP =
(

MT
WP

)−1
=

(
M−1

WP

)T
, (57)

since if matrix MT
WP is invertible then so is its transpose

MWP. In general MT
WP is an np×nw matrix so, at minimum,

for solvability we require that

np = nw. (58)

If Lagrange multipliers are to be used, the number of un-
known pressures np must be augmented by the number
of Lagrange multipliers, and therefore (58) would become
np + nλz + n3 = nw (see Appendix A, Sect. A2, for more
details). Assuming that we are dealing with reasonable dis-
cretizations, we shall presume that MT

WP is full rank. In the
following, we therefore refer to (58) (or, more correctly, to
the invertibility of MT

WP) as the solvability condition. In Ap-
pendix A we present several meshes and elements that satisfy

this condition, including the P1–E0 element used in most of
the 2D test problems in this paper.

Invertibility of the continuity equation has several im-
portant implications. We noticed earlier that the extended
Blatter–Pattyn model does not work with a Taylor–Hood
P2–P1 mesh where the solvability condition is not satisfied.
However, using a variant of the Taylor–Hood mesh that does
satisfy the solvability condition, the P2–E1 mesh illustrated
in Fig. 13a, allows this model to work well. Additionally, we
find that the solvability condition is a prerequisite for the new
Stokes approximations discussed in Sect. 6.2.

The solvability condition can also be used to convert the
Stokes variational principle, (15) or (32), from a constrained
to an unconstrained minimization problem. Consider the dis-
crete form of the functional given by (45). Using a mesh that
satisfies the solvability condition, and assuming that the ver-
tical velocity w (u) from (56) is available, one may substitute
it into functional (45). The term involving pressure drops out
because continuity is satisfied, and one obtains a functional
in terms of horizontal velocity u only,

A(u)=M(u,w (u))+uT f U +w(u)T fW . (59)

This now represents an unconstrained minimization problem
since the functional M(u,w (u)) is positive semi-definite.
Taking the variation with respect to the horizontal velocity
variables u, as in Sect. 4.1, one obtains the discrete Euler–
Lagrange system of equations for finding the minimum,

MU (u,w (u))−MUPM−1
WPMW (u,w (u))

+

(
f U −MUPM−1

WPfW

)
= 0. (60)

This is a set of nu nonlinear equations for the discrete hori-
zontal velocity variables u that is analogous to the standard
Blatter–Pattyn problem of Sect. 3.4.1, except that here it rep-
resents the full Stokes problem. As in the Blatter–Pattyn case,
the solution is expected be well behaved and stable. How-
ever, the Newton–Raphson iterative solution of (60) involves
a dense Hessian matrix that makes the solution very costly
and impractical for large problems.

Perhaps the main reason for the importance of the solvabil-
ity condition is that it can function as an alternative for the
inf-sup condition to ensure solution stability. As explained in
Appendix B, solution stability of the saddle point problem
(54) is compromised if the matrix BT has a non-empty null
space, which in turn is related to the pressure solution con-
taining spurious modes. On the other hand, use of a mesh that
satisfies the solvability condition produces a matrix equation
for the pressure that is invertible. This means that the cor-
responding Stokes saddle point problem is well posed when
solved on a mesh that satisfies the solvability condition, with-
out the need to satisfy the inf-sup condition.
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5 Comparison of the standard and transformed Stokes
models

The standard and transformed Stokes models are expected to
converge to the same solution. To verify this we do a num-
ber of calculations for some 2D test problems based on the
ISMIP-HOM benchmark (Pattyn et al., 2008). These tests,
tests B and D∗ are described in Appendix C. Test B features
no-slip boundary conditions on a sinusoidal bed, and Test D∗

evaluates sliding of the ice sheet along a flat bed in the pres-
ence of sinusoidal friction. The tests are discretized using
P1–E0 elements on a regular mesh composed of n quadri-
laterals in the x direction and m quadrilaterals in the z direc-
tion, illustrated in Figs. A1 and C1, with each quadrilateral
divided into two triangles. Results are presented for two do-
main lengths, L= 5 and 10 km, to test the aspect ratio range
where the Blatter–Pattyn model begins to fail. A relatively
coarse mesh, i.e., m= n= 40, is used, except when we look
at convergence with mesh refinement in Fig. 3.

Figure 3 evaluates the convergence of the two Stokes for-
mulations as a function of mesh resolution r , where r is the
number of quadrilaterals in either direction. The models con-
verge to the same value of the transport, obtained by Richard-
son extrapolation, and convergence is second order as ex-
pected from the use of linear elements. Interestingly, in Test
B the transformed Stokes model is considerably more accu-
rate at all resolutions than the standard model. As a result, the
standard Stokes calculations are not fully converged even at
the 40×40 resolution. Figure 4 shows the vertical profiles of
the horizontal velocity u at outflow, x = L. Results from the
no-slip Test B problem and the two frictional sliding prob-
lems, tests D and D∗, are plotted. The Test D profile from the
ISMIP-HOM benchmark is almost vertically constant, indi-
cating that the value for basal friction that was originally cho-
sen is too small. This motivated the change of Test D to Test
D∗ in Appendix C, with larger basal friction.

Figures 5 and 6 show the u velocity at the ice sheet
upper surface for tests B and D∗. This is the benchmark
used in ISMIP-HOM to compare different ice sheet mod-
els. Four cases are compared: the standard Stokes model
(SS), the transformed Stokes model (TS), the Blatter–Pattyn
(BP) model, and for reference a very high resolution full
Stokes Test B calculation “oga1” (SS-HR) from the ISMIP-
HOM paper and also Gagliardini and Zwinger (2008). The
TS and the SS-HR plots lie on top of one another (they
have been offset slightly for clarity), indicating that the TS
model is already fully converged. As before, the SS model is
not yet converged in Test B, particularly at L= 5 km. As in
the ISMIP-HOM study, the Blatter–Pattyn calculation (BP)
shows large deviations from the Stokes results, especially
so at L= 5 km, where the surface velocity is entirely out
of phase with the Stokes results. Figure 6 shows that re-
sults for the SS and TS models essentially coincide in Test
D∗ (the SS plot has been slightly offset upward for clarity).
As expected, Blatter–Pattyn results show noticeable error at

L= 10 km and very large error at L= 5 km. Pressure results
are not presented since they have no physical significance.
However, it may be noted that pressures on the P1–E0 mesh
are particularly smooth and well behaved.

6 Applications of the transformed Stokes model

6.1 Adaptive switching between Stokes and
Blatter–Pattyn models

A way of reducing the cost of a full Stokes calculation is to
use it adaptively together with a cheaper approximate model.
That is, one may use the cheaper model in those parts of
a problem where it is accurate and the more expensive full
Stokes model where the approximate model loses accuracy.
An example of such an adaptive approach is the tiling method
by Seroussi et al. (2012). However, such methods have draw-
backs such as the need to incorporate two or more presum-
ably quite different models into a single model together with
a transition zone to couple the disparate models.

On the other hand, the use of the transformed Stokes
model is particularly simple in such an adaptive role because
it may be locally switched between the Stokes and Blatter–
Pattyn cases by switching the parameter ξ ∈ {0,1} on and
off. Either the standard or the extended Blatter–Pattyn mod-
els may be used. Use of the standard Blatter–Pattyn approx-
imation (ξ, ξ̂ = 0) would be somewhat cheaper, but it would
require more complicated programming; i.e., it would need
coupling to the Stokes model with p = 0 and w = w (u,v) at
the interface between models. Use of the extended Blatter–
Pattyn approximation (ξ = 0, ξ̂ = 1) would be much sim-
pler since then both the Stokes and Blatter–Pattyn parts of
the code will have the same number of degrees of freedom.
However, as explained in Sect. 4.3, the extended Blatter–
Pattyn model requires a mesh satisfying the solvability con-
dition, such as the P1–E0 mesh. Although a little more ex-
pensive than standard Blatter–Pattyn, the extended Blatter–
Pattyn model is still much cheaper than the full Stokes model.
For example, the extended Blatter–Pattyn calculation of Test
B at a 40×40 resolution, as in Figs. 5 and 6, is some 4.3 times
cheaper than the corresponding transformed Stokes calcula-
tion.

To demonstrate adaptive switching with a transformed
Stokes model, we introduce a new problem, Test O, described
in Appendix C and illustrated in Fig. C1. This consists of an
inclined ice slab whose movement is obstructed by a thin ob-
stacle protruding 20 % of the ice depth up from the bed. No-
slip boundary conditions are applied along the bed and the
obstacle. Because of the localized nature of the obstacle, the
condition for the validity of the Blatter–Pattyn approxima-
tion, namely (37), must fail near the obstacle, and therefore
the full Stokes model is needed for good accuracy, at least
locally.
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Figure 3. Convergence of ice transport in tests B and D∗ with mesh refinement. Transformed Stokes (TS) plots are in blue, and standard
Stokes plots (SS) are in red.

Figure 4. The u-velocity profile at location x = L as a function of height from the bed.

To implement the method, we first use a Blatter–
Pattyn calculation to determine regions where |∂w/∂x| ≤
0.1 |∂u/∂z|, approximately localizing where the Blatter–
Pattyn approximation is valid. This determines a mask func-
tion z= FM (x), illustrated in Fig. 7 by the white curve, spec-
ifying where the two models must be used. Defining the cen-
troid of a triangular element by (xC,zC), the code makes a
selection in each element:

zC ≤ FM (xC) ⇒ Set ξ = 0, i.e., the Blatter–Pattyn region,
zC > FM (xC) ⇒ Set ξ = 1, i.e., the Stokes region.

The Stokes region occupies the upper part of the domain in
Fig. 7 and includes the obstacle, while the Blatter–Pattyn re-
gion occupies much of the bottom part of the domain. A tran-
sition zone, e.g., 0≤ ξ (x,z)≤ 1, could be implemented, but
this was not done in the present case.

Results from the adaptive-hybrid calculation are shown
in Fig. 8, showing curves of the horizontal velocity u at
seven different vertical locations specified as a percentage
of the distance between top and bottom, with σ = 100% at
the top surface. The top-right panel shows the results for the
adaptive-hybrid calculation (AH), and the top-left panel and

bottom panel show results for the Stokes (TS) and Blatter–
Pattyn (BP) calculations, respectively. All calculations use
the 40× 40 mesh resolution. The adaptive-hybrid results are
very similar to the full Stokes results, reproducing most fea-
tures of the velocity profiles, including the velocity bump
at the top surface, indicating that even the top surface feels
the presence of the obstacle. The Blatter–Pattyn results are
much less accurate, completely missing the details of the
flow near the obstacle. The calculated RMS error relative
to the Stokes results in the Blatter–Pattyn case is 0.493 and
0.440 m a−1 in the adaptive-hybrid case. It is larger in the
Blatter–Pattyn case, as expected, but the difference is less
than expected from the visual differences in Fig. 8. Nonethe-
less, the adaptive-hybrid method is successful even if judged
by the Fig. 8 results alone. However, the present calculations
are proof of concept only and not representative of practical
computational methods, so computational cost comparisons
would not be meaningful.
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Figure 5. Upper surface u velocity, u(x,zs) – Test B, no-slip boundary conditions.

Figure 6. Upper surface u velocity, u(x,zs) – Test D∗, modified frictional sliding.

Figure 7. Mask function (white curve, z= FM (x)) to indicate
where the Stokes and BP models are activated in the 20 % obstacle
test problem. The dark brown region delineates the region where
|∂w/∂x| ≤ 0.1 |∂u/∂z| from a Blatter–Pattyn calculation.

6.2 Two new Stokes approximations

As shown in Sect. 3.4, simply setting w = 0 in the second in-
variant ˜̇ε2 in the transformed functional Ã results in the stan-
dard Blatter–Pattyn approximation. This suggests that ap-

proximating rather than neglecting the vertical velocity w in
the functional would create better approximations. We will
look at two such methods, although others may be possi-
ble. The first method, called the Herterich approximation,
may be understood as the Picard iteration of the transformed
functional (32), where the vertical velocity, obtained from
the solution of the continuity equation, is a lagged value
from the previous iteration. Two ways of implementing this
method are described. The second method, to be called the
dual-mesh approximation, approximates the vertical veloc-
ity by discretizing the continuity equation on a coarser mesh.
Since vertical velocity is obtained from inverting the continu-
ity equation, this has the effect of approximating the vertical
velocity and reducing the number of pressure and vertical ve-
locity variables while preserving the structure of the Stokes
model. The degree of approximation is determined by the
amount of coarsening of the continuity mesh.

6.2.1 The Herterich approximation

Noting that P̃ = 0 in the Blatter–Pattyn approximation, we
drop the term involving pressure from the transformed func-
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Figure 8. Horizontal velocity for the transformed Stokes (TS), the adaptive-hybrid (AH), and the Blatter–Pattyn (BP) models in Test O.

tional (32) in the 2D case to obtain a new pressure-free func-
tional,

ÃPS1[u] =

∫
V

dV

[
4n
n+ 1

η0

(
˜̇ε2
)(1+n)/2n

+ ρgu
∂zs

∂x

]

+
1
2

∫
SB2

dS β (x)
(
u2
+ ζ (unx/nz)

2
)
, (61)

where

˜̇ε2
=

(
∂u

∂x

)2

+
1
4

(
∂u

∂z
+
∂w

∂x

)2

(62)

is the 2D version of the transformed second invariant, (27).
Incompressibility is incorporated separately by the use of a
second functional,

ÃPS2[p] =

∫
V

dV p

(
∂u

∂x
+
∂w

∂z

)
. (63)

Both functionals make use of direct substitution for bound-
ary conditions, as in (15) and (32). Note that functional (61)
involves both velocity components u,w, but the variation is
to be taken only with respect to u. Similarly, functional (63)
involves u,w,p, but the variation is taken only with respect
to p. Here we are effectively viewing the pressure p as a “test
function” in the finite element sense. This gives some addi-
tional flexibility to create elements that satisfy the solvability
condition (58). For example, in a triangulation some pres-
sures may be assigned to every two triangles, as in a P1–E0
mesh, while others may be assigned to a single triangle so as

to achieve an equal number of pressure and vertical velocity
variables.

The variation of ÃPS1[u]with respect to u results in a set of
nu discrete Euler–Lagrange equations corresponding to the
u-momentum equation,

R̂U (u,w)=
∂ÃPS1 (u,w)

∂u
=MU (u,w)+f U = 0. (64)

When w is set to zero, this is just the Blatter–Pattyn model,
(49). The discrete variation of ÃPS2[p] with respect to p re-
sults in the np equations of the discrete continuity equation
(55),

R̂P (u,w)=
∂ÃPS2 (u,w,p)

∂p
=MT

UPu+MT
WPw = 0. (65)

These two systems are combined to form the discrete equa-
tions of the Herterich approximation,

R̂ (u,w)=
[
R̂U (u,w) ,R̂P (u,w)

]T
= 0. (66)

This is a system of nu+np equations to determine the nu+nw
discrete variables u,w, implying that (66) is only a viable
system for u,w on meshes satisfying the solvability condi-
tion, np = nw. Just as in the standard Blatter–Pattyn approx-
imation in Sect. 3.4.1, the vertical momentum equation is
missing, but instead of neglecting w here the vertical velocity
is obtained consistently from the continuity equation.
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The continuum form of the discrete Euler–Lagrange sys-
tem (64) and (65) is given by

∂

∂x

(
4µ̃
∂u

∂x

)
+
∂

∂z

(
µ̃

(
∂u

∂z
+
∂w

∂x

))
− ρg

∂zs

∂x
= 0,

∂u

∂x
+
∂w

∂z
= 0, (67)

together with the boundary conditions,

4µ̃
∂u

∂x
nx + µ̃

(
∂u

∂z
+
∂w

∂x

)
nz = 0 on SS ,

u= w = 0 on SB1,

4µ̃
∂u

∂x
nx + µ̃

(
∂u

∂z
+
∂w

∂x

)
nz +β (x)

(
u+ ζ u(nx/nz)

2
)
= 0,

w =−unx/nz, } on SB2, (68)

where the viscosity is µ̃= η0

(
˜̇ε2
)(1−n)/2n

as in (26). Re-
markably, these are the same equations used by Herterich
(1987) in a model to study the transition zone between an
ice sheet and an ice shelf1. As a result, this approximation
is named the Herterich model. The Herterich model predates
the widely used Blatter–Pattyn model by some 8 years, but,
in contrast to Blatter–Pattyn, it has fallen into obscurity.

There are two algorithms for solving the Herterich system
(66), as follows:

1. Newton/Picard iteration version.

If we lag the vertical velocity, i.e., wK+1
= wK

⇒

1w = 0 in the first equation of (70), we obtain a Picard
iteration algorithm, as follows:

Starting from K = 0, choose an initial guess,

u0
6= 0, w

(
u0
)
,

solve MUU

(
uK ,wK

)
1u+ R̂U

(
uK ,wK

)
= 0,

uK+1
= uK +1u, wK+1

= w
(
uK+1

)
=−M−TWPMT

UPuK+1,

K =K + 1, and repeat until convergence. (69)

Each step of the iteration is inexpensive since it is equiv-
alent to a step of the standard Blatter–Pattyn model,
(35). However, Picard iterations typically converge only
linearly.

2. Quasi-variational, Newton iteration version.

To obtain second-order convergence we treat (66) as a
single multidimensional nonlinear system and solve it
using the Newton–Raphson iteration, as follows:

MUU

(
uK ,wK

)
1u+MUW

(
uK ,wK

)
1w+ R̂U

(
uK ,wK

)
= 0,

MT
UPuK+1

+MT
WPwK+1

= 0, (70)

1Reference provided by C. Schoof.

where K is the iteration index, 1u and 1w were de-
fined previously, and MUU (u,w) and MUW (u,w) are
the same matrices as appear in (48). Convergence is
rapid (quadratic) once in the basin of attraction, but each
step is more expensive than in the Picard iteration ver-
sion. Both versions depend on an invertible continu-
ity equation to obtain w = w (u). However, good ap-
proximations of the vertical velocity w (u) may already
be available in existing codes – for instance, in MALI
(Hoffman et al., 2018), a code based on the Blatter–
Pattyn approximation, to obtain the vertical velocity w

for the advection of ice temperature (Mauro Perego, per-
sonal communication, 2023).

Both Herterich algorithms converge to the same result.
It remains to be seen which version is preferable in prac-
tice. Figure 9 compares the Herterich (H) and the Blatter–
Pattyn (BP) approximations to a reference exact transformed
Stokes solution (TS-Ref) for Test B results on the left and
Test D∗ results on the right at three problem aspect ratios
in the range where small aspect ratio approximation begins
to fail, ε =H0/L= 0.1, 0.2, 0.5, whereH0 = 1000 m is the
nominal ice thickness and L is the domain length. The Her-
terich approximation might be expected to be more accurate
than the BP approximation since it retains more terms from
the transformed Stokes model equations, but this is not borne
out in Fig. 9. The Herterich approximation is indeed more
accurate in Test B at L= 5,10 km. This is confirmed by the
RMS u-error results in Fig. 12, where the Herterich model is
2 to 3 times more accurate than BP. However, the opposite
is the case at L= 2km in both tests B and D∗, although the
results in Test B may be deceptive because only the upper
surface velocity is displayed (lower surface velocity is zero),
and this expands the scale accentuating differences between
the three cases. Test D∗ results are closely clustered except
in the L= 2 km case, where, surprisingly, the Herterich ap-
proximation is the least accurate. These results suggest that
the Herterich approximation may need to be evaluated fur-
ther.

6.2.2 A dual-mesh transformed Stokes approximation

In the Herterich approximation we approximated the verti-
cal velocity directly in the second invariant as it appeared in
the variational functional. Here we approximate w indirectly
by instead approximating the continuity equation that is then
used to determine the vertical velocity. That is, the continu-
ity equation is discretized on a mesh coarser than the one
used for the momentum equations. The vertical velocity on
the coarser mesh is then interpolated to appropriate locations
on the finer mesh. This reduces the number of unknown vari-
ables in the problem, making it cheaper to solve but hope-
fully without serious loss of accuracy. As described in Ap-
pendix C, our test problem meshes are logically rectangular,
i.e., divided into n cells horizontally and m cells vertically.
The coarse mesh is constructed by dividing the fine mesh
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Figure 9. Comparing approximations. Test B, upper surface u velocity, and Test D∗, upper and lower surface u velocity. TS-Ref: transformed
Stokes; BP: Blatter–Pattyn; H: Herterich. Resolution: 24× 24.

into s equal segments in each direction. This assumes that
the integers n and m are each divisible by s, so that there are
nm/s2 coarse cells in total with each coarse cell containing
s2 fine cells. The primary mesh (i.e., the fine mesh) is chosen
to have n=m= 24, i.e., a reference 24× 24 fine mesh, so
as to maximize the number of different coarse meshes avail-
able. Coarse meshes are constructed using s = 2,3,4,6, and
this results in fine-mesh and coarse-mesh combinations la-
beled by 24×12, 24×8, 24×6, 24×4, respectively. Sim-
ilar to a P1–E0 fine mesh, coarse-mesh vertical velocities w
are located at vertices and pressures at vertical edges. Fig-
ure 10 illustrates the case of a single coarse cell and four fine
quadrilateral cells for a mesh fragment with n=m= 2 and
s = 1. In Test B problems with direct substitution for basal
boundary conditions there will be nm u variables and nm/s2

w and p variables each, for a total of nm
(
1+ 2/s2) unknown

variables, considerably fewer than the 3nm variables in the
full-resolution mesh. The coarse-mesh terms in the func-

tional that are affected, P̃ (∂u/∂x+ ∂w/∂z) and ∂w/∂x, are
computed by interpolating coarse-mesh variables to the fine
mesh. We consider two versions of the approximation de-
pending on how the coarse-mesh terms are interpolated to
the fine mesh.

1. Approximation A, bilinear interpolation.

Referring to Fig. 10, the four velocities at the vertices
of the coarse-mesh quadrilateral, i.e., u1,u3,u7,u9 and
w1,w2,w3,w4, are used to obtain u,w at the remaining
five vertices of the fine mesh by means of bilinear inter-
polation. Thus, the five velocities u2,u4,u5,u6,u8 are
obtained in terms of vertex velocities u1,u3,u7,u9, and
similarly for thew velocities. The resulting complete set
of fine-mesh variables is used calculate the divergence
D = (∂u/∂x+ ∂w/∂z) and the quantity ∂w/∂x in each
of the eight triangular elements t1, t2, . . ., t8 of the fine
mesh. Coarse-mesh pressures P̃1, P̃2 are associated with
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Figure 10. A sample of a coarse/fine P1–E0 mesh for the dual-
mesh approximation. Resolution: n=m= 2, s = 1. Coarse mesh
is in red; fine mesh is in black.

the coarse-mesh triangles T1,T2. The products P̃1D in
elements t1, t2, t3, t5 and P̃2D in elements t4, t6, t7, t8
are then accumulated over the entire mesh to obtain
the quantity P̃ (∂u/∂x+ ∂w/∂z) for use in the trans-
formed functional Ã. Similarly, the quantity ∂w/∂x is
computed in the fine-mesh elements from coarse-mesh
variables for use in the second invariant ˜̇ε2.

2. Approximation B, linear interpolation.

In this version, the three velocities at the vertices of the
two coarse-mesh triangles T1 and T2, i.e., u1,u3,u7 and
w1,w2,w3 in T1, and u7,u3,u9 and w3,w2,w4 in T2,
approximate the divergenceD = (∂u/∂x+ ∂w/∂z) and
∂w/∂x as constant values in the two coarse triangles.
The constant values P̃1D, P̃2D are then accumulated
over the entire mesh. The constant value ∂w/∂x in each
coarse triangle is then distributed to each of the eight
fine-mesh elements t1, t2, . . ., t8, depending on whether
the centroid of the fine triangular element is in T1 or T2.
As in the previous case, this is then used in the second
invariant ˜̇ε2 in the transformed functional Ã.

While the number and type of unknown variables is the
same in the two versions, they differ considerably in accuracy
as seen in Figs. 11 and 12. Figure 11 compares the upper sur-
face u velocity in approximations A and B, for the five mesh
combinations, to the reference 24×24 fine-mesh transformed
Stokes (TS) calculation. The corresponding Blatter–Pattyn
result is shown in Fig. 9. Figure 12 summarizes and com-
pares the overall accuracy of all approximations by means
of the RMS u-error relative to the TS calculation. As might
be expected, the accuracy of Approximation A is better than
Approximation B, particularly in the case L= 10 km. Both
dual-mesh versions are more accurate than the BP and H ap-
proximations, except for the lowest 24× 4 resolution of Ap-

proximation B. However, it is surprising that the SS calcu-
lation is the least accurate, but this is because SS is not yet
fully converged at this resolution (see Fig. 5).

A comparison of computational time relative to the TS cal-
culation is presented in Fig. 12 for the 24×24 resolution case.
The cost of the BP approximation is substantially lower than
the cost of full Stokes, while the cost of the Herterich ap-
proximation is only slightly higher than BP. This comparison
is only qualitative because the present calculations are not
representative of the computer hardware or the methods used
in practical ice sheet modeling. Present calculations are proof
of concept only, made on a personal computer using the pro-
gram Mathematica, a slow interpreted language. As a result
the cost comparisons are inaccurate and possibly mislead-
ing. No effort was made to optimize the calculations or to
take advantage of parallelization. Thus, for example, the cost
of dual-mesh approximations A and B is greatly affected by
the cost of the associated interpolations, making them more
costly than even the unapproximated calculations, TS and
SS. However, the interpolations are highly parallelizable and
would contribute little to the cost in practical computations.

7 Second-order discretizations

So far we have used first-order elements, primarily P1–E0.
However, in current practice Stokes models are often based
on second-order elements such as the popular Taylor–Hood
P2–P1 element (e.g., Leng et al., 2012; Gagliardini et al.,
2013). In 2D the P2–P1 element, illustrated in Fig. 13a, has
velocities on element vertices and edge midpoints and pres-
sures on element vertices, resulting in quadratic velocity and
linear pressure distributions. This element satisfies the inf-
sup stability condition (e.g., Elman et al., 2014) but does not
satisfy the solvability condition (58) since nw� np. For ex-
ample, in the present Test B calculations we have nw = 4nm
and np = n(m+ 1).

Stokes models work well with a Taylor–Hood mesh as
shown in Fig. 13, where both the P2–P1 and P1–E0 mod-
els converge to a common solution. Recall that the P2–P1
mesh does not work with the extended Blatter–Pattyn ap-
proximation, a model that requires the solvability condi-
tion. However, it is possible to construct a second-order ele-
ment consistent with an invertible continuity equation. This
is the P2–E1 element, as illustrated in Fig. 13a, which is sec-
ond order for velocities and linear for pressure, just like the
P2–P1 element, but the pressure is edge-based rather than
vertex-based. Pressures are located midway between veloc-
ities along vertical lines, as illustrated in Fig. 13a. As ex-
plained in Appendix A, this mesh must be constructed using
vertical columns of quadrilaterals. Since pressures are ver-
tically collinear with velocities, as in the P1–E0 element,
the analysis in Appendix A confirms that this element sat-
isfies the solvability condition (58). A 3D analog exists, as
explained in Appendix A.
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Figure 11. Comparing approximations A and B. Test B. Upper surface u velocity. TS-Ref: reference Stokes (r × r = 24× 24); fine/coarse
resolutions (rxR = 24× 12, 8, 6, 4).

Figure 12. Comparing the Test B computer time and RMS u-error results relative to a TS calculation for approximations BP, H, A, and B
and the SS Stokes model. TS, SS, BP, H: resolution (rxr = 24× 24); approximations A and B: (rxR = 24× 12, 8, 6, 4).

Figure 13b shows the error in ice transport as a function
of mesh refinement for the second-order P2–P1 and P2–E1
meshes in transformed Stokes Test B calculations, together
with similar results for the first-order P1–E0 mesh from
Fig. 3 for comparison. Note that both second-order models
show approximately the same error at resolution r = 16 as

the first-order P1–E0 model at resolution r = 40, and the
same for coarser resolutions such as r = 8 and r = 20, re-
spectively. However, at a comparable resolution or accuracy
the second-order calculations are considerably more expen-
sive than the first-order calculations.
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Figure 13. Comparing second-order discretizations based on the P2–P1 and P2–E1 elements from panel (a) to first-order discretizations
using the P1–E0 element in Test B calculations with L= 10 km. Only transformed Stokes calculations are compared; standard Stokes results
behave similarly. Panel (b) compares the convergence and accuracy of various schemes with increasing resolution, while panels (c) and (d)
compare horizontal velocities at medium and maximum resolutions.

Figures 13c and d compare u velocities from several Test B
calculations using the two second-order models to the first-
order P1–E0 model results from Fig. 3. Each panel shows
upper surface velocities (σ = 100%) in solid lines and ve-
locities from a surface a quarter of the way up from the bot-
tom (σ = 25%) in dashed lines. Figure 13c shows medium-
resolution calculations (r = 8, 20 in the second-order and
first-order calculations, respectively), and Fig. 13d shows
higher-resolution calculations (r = 16,40). At these resolu-
tions the accuracy of the first- and second-order calculations
is very similar, so for clarity the second-order results are dis-
placed horizontally from the first-order results by 0.05 nondi-
mensional units. The P2–E1 results in magenta are displaced
to the left and the P2–P1 results in blue are displaced to the
right. In general, models that satisfy the solvability condi-
tion, the P1–E0 and P2–E1 models, are better behaved than
the P2–P1 model. This may be related to the well-known
“weak” mass conservation of the Taylor–Hood element that
is greatly improved by enriching the pressure space with ex-
tra pressures (Boffi et al., 2012).

8 A summary and discussion

In summary, this paper presents two innovations in ice sheet
modeling. The first involves a transformation of the ice sheet
Stokes equations into a form that differs from the approxi-

mate Blatter–Pattyn system by a small number of terms. In
particular, the variational formulations differ only by the ab-
sence of terms involving the vertical velocity w in the sec-
ond invariant of the strain rate tensor in the Blatter–Pattyn
system.

We focus on two applications of the new transformation,
although others may be possible. The first allows these extra
terms to be “switched” on or off to convert the code from a
full Stokes model to a Blatter–Pattyn model if desired. Ice
sheet flow is generally shallow but often contains limited ar-
eas where Stokes equations must be solved. Thus, the switch
from Blatter–Pattyn to Stokes may be done locally and adap-
tively only where the extra accuracy is required.

The fact that neglecting the vertical velocity in only one lo-
calized place creates the Blatter–Pattyn approximation sug-
gests that an improved approximation will result from ap-
proximating rather than neglecting the vertical velocity. We
present two such approximations, but again others may be
possible. The first approximation solves the pressure-free
horizontal momentum equation with the vertical velocity
obtained from the continuity equation. This approximation
turns out to be the same as a model originally proposed by
Herterich (1987). We therefore refer to it as the Herterich ap-
proximation. The second approximation is obtained by dis-
cretizing the continuity equation on a coarser mesh than that
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used by the rest of the model, which yields an approximate
vertical velocity and thus an approximate Stokes model.

The second innovation involves the use of finite element
discretizations that create a decoupled invertible continuity
equation. This allows for the numerical solution of the verti-
cal velocity in terms of the horizontal velocity components,
i.e., w = w (u,v), which makes these meshes a prerequisite
for many of the applications mentioned above. Examples of
such meshes for use in 2D and 3D are given in Appendix A,
including the P1–E0 mesh that is used in most of the test
problems of the paper. However, perhaps the most impor-
tant consequence is that invertibility of the continuity equa-
tion serves as an alternative condition for well posedness of
Stokes saddle point problems, as explained in Appendix B.

Appendix A: Meshes that satisfy the solvability
condition

A1 The P1–E0 element and the invertibility of the
continuity equation

As discussed in Sect. 4, the invertibility of the discrete con-
tinuity equation requires special elements and meshes that
satisfy the solvability condition (58). One such element il-
lustrated in Fig. A1, the P1–E0 element, has been used on
many of the problems in this paper. To work well for invert-
ing the continuity equation for the vertical velocity, i.e., (56),
it must be used in a mesh composed of vertical columns sub-
divided into triangular elements as illustrated in a represen-
tative mesh shown in Fig. A2. Element P1–E0 has velocities
located at triangle vertices for a linear velocity distribution
within each triangle (P1) and pressure located on the verti-
cal edge of each triangle for a constant pressure distribution
over the two triangles that share the edge (E0). A second-
order version of this element, the P2–E1 element, is shown
in Fig. 13a.

The triangulation and the configuration of pressure basis
functions (shown in gray) in Fig. A2 are quite general, except
that elements need to be arranged in vertical columns, which
still allows for a flexible triangulation of an arbitrary domain.
Generally, there are two triangles associated with a pressure
variable, one on each side of a vertical edge, except where the
ice sheet ends at a vertical face, as in Fig. A2. However, this is
not a problem since the pressure is simply associated with the
single triangle on one side of the vertical face. Meshes com-
posed of P1–E0 elements have another useful property. Since
pressure and vertical velocity variables alternate along verti-
cal mesh lines, the matrix–vector products MWPp, MT

WPw

in (46), corresponding to ∂P̃ /∂z and ∂w/∂z in the verti-
cal momentum and continuity equations, respectively, pro-
duce simple decoupled bi-diagonal one-dimensional differ-
ence equations along each vertical mesh line for determining
the pressure and vertical velocity. This is particularly advan-
tageous for parallelization purposes.

Figure A1. The P1–E0 element and two other secondary 2D ele-
ments that satisfy the solvability condition but possibly only in tests
B and D∗.

Figure A2. An illustration of a 2D edge-based P1–E0 mesh, com-
posed of vertical columns randomly subdivided into triangles.

The other two elements shown in Fig. A1, the P1–Q0 and
Q1–Q0 elements, are not as general. They satisfy the solv-
ability condition when used in tests B and D∗ but possibly
not in other problems. The P1–Q0 element has velocities on
triangle vertices for a linear velocity distribution within each
triangle (P1), but pressure is constant within the quadrilateral
(Q0) formed by the two adjoining triangles. The Q1–Q0 ele-
ment has velocities located at quadrilateral vertices and pres-
sure centered in the quadrilateral, resulting in a bi-quadratic
velocity distribution (Q1) and a constant pressure within the
quadrilateral (Q0). Solutions for all three elements are sta-
ble as expected, and they produce the correct value for ice
transport. The pressure distribution is smooth in the P1–E0
case but contains small fluctuations near the upper surface in
the P1–Q0 and Q1–Q0 cases. These disappear as resolution
is increased. The Q1–Q0 element is unstable in conventional
applications because it contains a checkerboard pressure null
space and is only used in a stabilized form (see Elman et al.,
2014, where the element is called Q1–P0). Here, however, it
behaves well, presumably because it satisfies the solvability
condition. Overall, this confirms our expectation of stability
when the solvability condition is satisfied.

A2 Proving the solvability condition in P1–E0 element
meshes

Consider a single vertical edge from top to bottom as in
Fig. A2. Assuming m vertical edge segments, there will be
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m+ 1 discrete w variables and m discrete p variables since
each p variable is located between a pair of w variables.
However, since the w variable at the bottom is specified as
a boundary condition, either as a no-slip condition or as a
no-penetration condition, there will be only m unknown w
variables. As a result, we have nw = np along each vertical
mesh edge and therefore over the entire mesh, thus satisfy-
ing the solvability condition. In case Lagrange multipliers are
used, there will bem+1 unknown discretew variables (since
now the basal vertical velocity w is an unknown). However,
this is matched by m unknown p variables, supplemented by
one λz or one 3 unknown Lagrange multiplier variable, de-
pending on the type of boundary condition. Thus, the number
of unknown variables again equals the number of equations
along every vertical edge, thereby satisfying the solvability
condition. This means that the P1–E0 element can be used to
satisfy the solvability condition irrespective of the boundary
conditions on arbitrary meshes. These arguments will apply
to other versions of the P1–E0 element as well, such as the
second-order version of the P2–E1 element in Fig. 13a or the
3D version of the P1–E0 element in Fig. A3.

A3 Three-dimensional meshes based on the P1–E0
element

The two-dimensional P1–E0 element has a relatively simple
three-dimensional counterpart, shown in Fig. A3. The mesh
again consists of vertical columns, this time composed of
hexahedra. Each hexahedron is subdivided into six tetrahedra
such that each vertical edge is surrounded by as few as four
to as many as eight tetrahedra. As in the 2D case, velocity
components are collocated at vertices, yielding a piecewise
linear velocity distribution in each tetrahedral element, and
pressures are located in the middle of each vertical edge so
that pressure is constant in the collection of tetrahedra that
surround that edge. Lagrange multipliers, if used, are located
at the vertices on the basal surface, yielding a piecewise lin-
ear distribution on the basal triangular facet. The solvabil-
ity condition (58) is satisfied because the argument used in
the 2D case applies here also since pressures and vertical ve-
locities are again intermingled along a single line of vertical
edges from top to bottom.

Figure A3 shows two of the several possible configura-
tions of a typical hexahedron, including an exploded view of
each configuration for clarity. The two configurations differ
in having the internal face of the two forward-facing tetrahe-
dra rotated, creating two different forward-facing tetrahedra.
The remaining six tetrahedra are undisturbed. Since edges
must align when hexahedra (or tetrahedra) are connected,
this shows that the 3D mesh can be flexibly reconnected and
rearranged, just as in the 2D case of Fig. A2.

A closely related and perhaps simpler three-dimensional
P1–E0 element is based on a P2–P1 prismatic tetrahedral el-
ement discussed in Leng et al. (2012). A mesh of these ele-
ments is composed of vertical columns of prisms (with trian-

Figure A3. Three-dimensional P1–E0 tetrahedral elements that
generalize the 2D P1–E0 element of Fig. A1. Configurations A and
B differ by having an internal triangular face rotated, as indicated
by the blue arrows. Both satisfy the solvability condition.

gular faces at the top and bottom), each subdivided into three
tetrahedra. Pressures are located on the vertical prism edges,
as in Fig. A3, so this again satisfies the solvability condition.

Just as the 2D second-order P2–E1 element in Fig. 13a is
a generalization of the P1–E0 element, a 3D second-order
P2–E1 element may be constructed as a generalization of the
P1–E0 element of Fig. A3. Velocities would be located at
the vertices and at midpoints of the tetrahedral edges, and
pressures would be located halfway between the velocities
on vertical edges, including a set of imaginary vertical edges
through the midpoints of the tetrahedral edges as in the 2D
case in Fig. 13a. The P2–E1 element in both 2D and 3D will
again satisfy the solvability condition since the arguments
of Sect. B2 will also apply as pressures are located midway
between vertical velocities along all vertical edges.

Appendix B: The inf-sup and solvability conditions

Recalling (47), the 2D Newton–Raphson iteration for saddle
point problems is written as


MUU

(
uK ,wK

)
MUW

(
uK ,wK

)
MUP

MT
UW

(
uK ,wK

)
MWW

(
uK ,wK

)
MWP

MT
UP MT

WP 0


{
1u
1w
1p

}

=


−RU

(
uK ,wK ,pK

)
−RW

(
uK ,wK ,pK

)
0

 . (B1)

In 3D the vector 1u will include the two horizontal incre-
ments, i.e., 1u→ {1u,1v}T . For simplicity, if we rename
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quantities, (B1) may be put in the standard form (54) as fol-
lows:[

A BT
B 0

]{
u

p

}
=

{
f

g

}
, (B2)

where

ũ= {1u,1w}T ,A=
[

MUU
(
uK ,wK

)
MUW

(
uK ,wK

)
MT

UW
(
uK ,wK

)
MWW

(
uK ,wK

) ] ,
B=

[
MT

UPMT
WP

]
,

and similarly for other variables.
As noted earlier, matrix A is invertible. Solving for and

eliminating u in (B2), one obtains an equation for the pres-
sure,(

BA−1BT
)
p =

(
BA−1

)
f , (B3)

where S =
(
BA−1BT

)
is the Schur complement with re-

spect to p. This equation may be solved for p pro-
vided an inf-sup condition on matrix BT is satisfied
(Benzi et al., 2005; and more specifically see the lec-
ture notes by Jean-Frédéric Gerbeau for course CME358,
Stanford University, Chap. 3 (in particular Remarks 3.2
and 3.3), available at https://web.stanford.edu/class/cme358/
notes/cme358_lecture_notes_3.pdf, last access: 4 September
2025). Having solved for p, the velocity u is obtained as fol-
lows:

u= A−1
(
f −BT p

)
. (B4)

This is generally not a practical solution method since the
Schur complement matrix S is dense, and therefore it is too
expensive to solve. In particular, Gerbeau shows that the stan-
dard inf-sup condition for BT is equivalent to the much sim-
pler condition,

KerBT = {0} , (B5)

which is called the “algebraic inf-sup condition”. In other
words, the inf-sup condition is equivalent to requiring the
null space of BT to be the zero vector, which means that
the solution for pressure must not contain spurious modes.
This suggests that the existence of a pressure null space is
the culprit in the need to satisfy the inf-sup condition.

Now consider the situation when the Newton–Raphson
system (B1) is solved with a mesh satisfying the solvability
condition. Simplifying notation as before, the linear system
(B1) may be written as follows: MUU MUW MUP

MT
UW MWW MWP

MT
UP MT

WP 0

 u

w

p

=
 f U

fW
0

 . (B6)

As shown in Sect. 4.3.2, if the solvability condition applies,
then matrices MWP,MT

WP are invertible, and the continuity

equation, the third equation in (B6), may be solved for the
vertical velocity w, as in (56). Using (56) in the functional
(59) one obtains (60), an equation for u only. With a bit of al-
gebra, and using (56) in (B6), the corresponding linear equa-
tion for u is given by(

MUU−
(

MUW−MUPM−1
WPMWW

)
M−TWPMT

UP

−MUPM−1
WPMT

UW

)
u=

(
f U −MUPM−1

WPfW

)
. (B7)

As pointed out in Sect. 4.3.2, this is a well-behaved and sta-
ble equation for u. However, just as was the case with (B3),
the associated matrix is dense and too expensive to solve in
practice. Nevertheless, with u obtained from solving (B7),
the second equation of (B6) yields the following matrix equa-
tion to be solved for the pressure p,

MWPp =
(

MWWM−TWPMT
UP−MT

UW

)
u+fW . (B8)

Thus, corresponding to equations (B4) and (B3), one obtains
equations (B7) and (B8), but this time to be solved in re-
verse order, first for velocity u and then for the pressure p.
The essential difference between the equations for pressure,
(B3) and (B8), is that in (B3) the Schur complement matrix
S requires the inf-sup condition to be satisfied, while in (B8)
there is no such requirement for matrix MWP. Thus, pres-
sure solutions will be well behaved with no spurious pres-
sure modes, although there is no guarantee or expectation of
smoothness. This implies that the solvability condition (58),
and more importantly the invertibility of matrix MT

WP, is suf-
ficient for the well posedness of the Stokes saddle point prob-
lem.

Appendix C: Test problems

We shall use three 2D test problems to demonstrate the new
methods. The geometrical configuration of the three problem
meshes is illustrated in Fig. C1. The first problem, named
Test B, is actually Exp. B from the ISMIP-HOM benchmark
suite (Pattyn et al., 2008); it features a no-slip condition on
a sinusoidal basal surface. The second problem, Test D∗, in-
corporates sinusoidal friction along a uniformly sloped plane
basal surface. This is a modification of Exp. D from the
benchmark suite but with increased friction since ice flow
in Exp. D is very nearly vertically constant (see Fig. 4) and
is characteristic of the shallow-shelf regime, which is not of
present interest.

A third problem, Test O (for “obstacle”) is introduced to
illustrate the adaptive switching discussed in Sect. 6.1. As il-
lustrated in Fig. C1, Test O has a unique feature, a thin no-slip
obstacle, located at x = 4 km and extending vertically 200 m
from the bed (20 % of the ice sheet thickness), which forces
ice flow near the obstacle to adjust abruptly. However, there
is a problem if a triangulation like the one in tests B or D∗
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Figure C1. Test problem meshes. For clarity, a coarse 5×5 config-
uration is shown.

were to be used. This is because the no-slip boundary condi-
tions in the triangular element in the lee of the obstacle, with
one vertical edge and one edge along the bed, would result in
all vertex velocities being zero. This would imply zero stress
and therefore a singularity in ice viscosity. To avoid this, ele-
ments at the back of the obstacle are “reversed” compared to
the ones at the front of the obstacle, as shown in Fig. C1.

All tests feature a sloping flat upper surface, given by
zs (x)=−xTan(θ), where θ = 0.5° for tests B and O and
θ = 0.3° for Test D∗ (this is different from the 0.1° slope
in Test D), with stress-free boundary conditions. The bottom
surface elevation in Test B is given by zb (x)= zs (x)−H0+

H1Sin(ωx), where H0 = 1000 m, H1 = 500 m, ω = 2π/L,
and L is the perturbation wavelength or the domain length.
The length L in the ISMIP-HOM suite ranges from 5 to
160 km, but here we consider only three cases at the high end
of the aspect ratio (H0/L) range, namely L= 2, 5, 10 km,
where the inaccuracy of the Blatter–Pattyn approximation
becomes noticeable. The bottom surface elevation in tests
D∗ and O is zb (x)= zs (x)−H0, parallel to the upper sur-

face. The spatially varying friction coefficient for Test D∗

is β (x)= β0+β1Sin(ωx), where β0 = β1 = 104 Pa a m−1

(this is an order of magnitude larger than in Test D). Lat-
eral boundary conditions are periodic. Physical parameters
are the same as in ISMIP-HOM, i.e., ice flow parameter
A= 10−16 Pa−3 a−1, ice density ρ = 910 kg m−3, and gravi-
tational constant g = 9.81 m s−2. In general, units are MKS,
except time is usually per annum, convertible to per second
by the factor 3.1557× 107 s a−1.

Code and data availability. All calculations were made using the
Wolfram Research, Inc. program Mathematica in a develop-
ment environment. A large number of Mathematica notebooks
were used to produce the various results. A representative
notebook (a .nb file) is available in a public repository at
https://doi.org/10.5281/zenodo.13940989 (Dukowicz, 2024) for a
Test D∗ calculation (described in Appendix C) at L= 10 km and
a resolution of 20× 20. This test problem was chosen to demon-
strate the use of direct substitution for the frictional tangential
boundary condition, (16), in the functional. A Mathematica note-
book may be viewed by downloading the free Wolfram Player from
https://www.wolfram.com/player/, last access: 22 September 2025.
However, the full Mathematica code is required for editing or exe-
cution.
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