
The Cryosphere, 19, 4391–4407, 2025
https://doi.org/10.5194/tc-19-4391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

SPASS – new gridded climatological snow datasets
for Switzerland: potential and limitations
Christoph Marty1, Adrien Michel1,2, Tobias Jonas1, Cynthia Steijn1, Regula Muelchi2, and Sven Kotlarski2
1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, Zurich Airport/Geneva, Switzerland

Correspondence: Christoph Marty (marty@slf.ch)

Received: 29 January 2025 – Discussion started: 18 February 2025
Revised: 26 June 2025 – Accepted: 20 July 2025 – Published: 20 October 2025

Abstract. Gridded information on the past, present, and fu-
ture state of the surface snow cover is an indispensable cli-
mate service for any snow-dominated region like the Alps.
Here, we present and evaluate the first long-term gridded
datasets of daily modeled snow water equivalent and snow
depth over Switzerland, available at 1 km spatial resolution
since 1962 (spanning 60+ years). These climate-oriented
datasets are derived from a quantile-mapped temperature in-
dex model (OSHD-CLQM). The validation against a higher-
quality but shorter-duration dataset – derived from the same
model but enhanced with data assimilation via an ensemble
Kalman filter (OSHD-EKF) – shows, on the one hand, good
results regarding bias and correlation and, on the other hand,
acceptable absolute and relative errors except for ephemeral
snow and for shorter time aggregations like weeks. An eval-
uation using in situ station data for yearly, monthly, and
weekly aggregations at different elevation bands shows only
slightly better performance scores for OSHD-EKF, high-
lighting the effectiveness of the quantile-mapping method
used to produce the long-term climatological OSHD-CLQM
dataset. For example, yearly maps of gridded snow depth
compared to in situ data demonstrate an RMSE of 25 cm
(20 %) at 2500 m and of 1.5 cm (80 %) at 500 m. For monthly
averages, these numbers increase to 30 cm (25 %) and 3 cm
(100 %), respectively. A trend analysis of yearly mean snow
depth from these gridded climatological- and station-based
data revealed very good agreement on direction and signif-
icance at all elevations. However, at the lowest elevations
the strength of the decreasing trend in snow depth is clearly
overestimated by the gridded datasets. Moreover, a compar-
ison of the trends between individual stations and the cor-
responding grid points revealed a few cases of larger dis-

agreements in the direction and strength of the trend. To-
gether these results imply that the performance of the new
snow datasets is generally encouraging but can vary at low
elevations, at single grid points, or for short time windows.
Therefore, despite some limitations, the new 60+-year-long
OSHD-CLQM gridded snow products show promise as they
provide high-quality and spatially high-resolution informa-
tion on snow water equivalent and snow depth, which is of
great value for typical climatological products like anomaly
maps or elevation-dependent long-term trend analysis.

1 Introduction

Snow cover is an integral and crucial component of the
Earth’s energy and water balance. It reacts sensitively to cli-
mate change due to its dependence on precipitation and tem-
peratures below freezing. Climate changes lead to changes
in the extent, thickness, density, optical, and thermal proper-
ties of the snow cover and thus of the Earth’s surface and the
boundary layer between the Earth and the atmosphere (Abe,
2022). These changes have far-reaching consequences for
glaciers, extreme events, natural hazards, ecosystems, bio-
diversity, forests, and landscapes, as well as for winter sports
and the tourism industry, both globally and regionally (Mote
et al., 2018; López-Moreno et al., 2020; Bozzoli et al., 2024).
This also includes the impact on water resources for irriga-
tion, drinking water, and hydropower (IPCC, 2019). Snow as
frozen precipitation is of increasing importance globally in
a world facing more frequent droughts on the one hand and
more extreme precipitation events on the other, where snow
can dampen immediate runoff but can also cause avalanches
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or flooding (Barnett et al., 2005). Accurate information about
the past and current evolution of the snow cover is therefore
of high importance (van Ginkel et al., 2020).

In contrast to the hemispheric level (Mortimer et al., 2020)
or other countries (Olefs et al., 2020), Switzerland so far has
provided long-term snow cover information based on in situ
data for daily snow depth (Marty and Blanchet, 2012; Scher-
rer et al., 2013; Schmucki et al., 2017) and biweekly water
equivalent of the snow cover (SWE) from national monitor-
ing networks (Marty et al., 2023), which are only available
at about 10 % of the snow depth measuring stations. Both
types of data, snow depth (HS) and SWE, are regularly pub-
lished in the annual winter reports (Pielmeier et al., 2024)
and in online repositories (Marty, 2020). Such point-based
time series are very valuable because of their lengths and
documented measurement history (Buchmann et al., 2022).
However, even though Switzerland has a high density of
snow measurement stations, their asymmetric distribution
(especially in terms of altitude) and irregular temporal avail-
ability (some had to be abandoned, others recently started
from scratch due to automation) limit their usefulness for cli-
matological applications beyond station-based analyses, i.e.,
the provision of altitude-dependent region- or country-wide
snow information.

Ideally, snow data would be available on a daily scale in
a gridded format for many decades. Using interpolated sta-
tion data for this purpose (Luomaranta et al., 2019) has sev-
eral disadvantages because of the abovementioned asymmet-
ric distribution and irregular temporal availability of station
series. Using remote sensing data (Poussin et al., 2025) is
another option but is hampered by irregular temporal avail-
ability (among others due to cloud coverage) and possible
inhomogeneities (due to different satellite generations) and
limits the start of the time period to the beginning of the
1980s. A third and often used option is the use of model
or reanalysis data, which are often only available at rela-
tively coarse spatial resolution. In a recent study, Scherrer
et al. (2024) evaluated the usefulness of existing long-term
and spatially gridded SWE datasets for Switzerland. Among
others, the authors state that most datasets, including the
high-resolution ones, have problems correctly representing
small SWE values at low elevations, and they conclude that
a kilometer-scale model with assimilated snow measurement
data is highly preferable. The only model in this investiga-
tion which fulfilled these requirements was the temperature
index model OSHD-EKF, which is also used in this study as
a benchmark dataset for the evaluation.

This model is operated by the Operational Snow Hydro-
logical Service (OSHD) at the WSL Institute for Snow and
Avalanche Research (SLF), hereafter referred to as OSHD-
EKF, and provides daily 1 km gridded information on SWE
between 1999 and today (for details see Mott et al., 2023).
The length of this dataset is limited back to 1999 because
there are not enough high-elevation snow stations avail-
able for assimilation before that time. To overcome this

limitation and make use of the full period of available
gridded datasets (1962 to today), we developed within the
project SPAtial Snow climatology for Switzerland (SPASS)
the quantile-mapping procedure SnowQM, which was pre-
sented in Michel et al. (2024). This method allows correct-
ing the non-data-assimilated full climatological SWE time
series starting in the hydrological year 1962 (OSHD-CL)
into a better-quality dataset (OSHD-CLQM), which mim-
ics the higher-quality shorter-duration OSHD-EKF model.
For the development of OSHD-CLQM, the quantile-mapping
method SnowQM was calibrated and validated with SWE
simulations between 1999 and 2021 using the OSHD-EKF
dataset as a target and was then applied to the OSHD-CL
dataset over the period from the hydrological year 1962 to
today (Fig. 1).

Michel et al. (2024) concluded that the developed quantile-
based correction can efficiently reduce the pronounced SWE
bias at high elevations and that the average bias is always
close to zero. Moreover, they stated that the mean absolute er-
ror can remain large even after correction and that SnowQM
is not expected to do more than a climatological bias correc-
tion, meaning that biases at short timescales, like a single day
or month, are not necessarily corrected. Additionally, they
mentioned that such biases can also concern entire winters in
low-elevation regions. However, quantitative information on
elevation-dependent uncertainties is not provided but is im-
portant in mountain regions (Switanek et al., 2024). More-
over, the abovementioned OSHD datasets only contain SWE
as a snow variable. However, SWE is an unusual and elusive
variable for the non-scientific public (e.g., tourism, media),
and many applications explicitly need snow depth (HS).

The novelty of our study is therefore, first, the creation
of the corresponding gridded datasets for snow depth by ap-
plying the SWE2HS algorithm developed by Aschauer et
al. (2023). Second, we compared the OSHD-CLQM datasets
to the higher-quality OSHD-EKF and station-based datasets
to investigate potential time-aggregation- and elevation-
dependent biases. Third, we also analyzed differences in
long-term trends to get a clearer picture of the potential and
limitations of the datasets. These three aspects combined al-
low us to provide an unprecedented long-term gridded snow
depth dataset and assess its utility across a range of potential
use cases. In Sect. 2, we first present the gridded and sta-
tion data used, as well as the evaluation methods applied. In
Sect. 3, we explain and discuss the results before summariz-
ing our findings in Sect. 4.

2 Data and methods

2.1 Spatial SWE and HS datasets

As illustrated in Fig. 1, the base dataset is OSHD-CL, which
provides SWE and is based on a temperature index model
forced by gridded temperature (TabsD: MeteoSwiss, 2021a)
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and precipitation (RhiresD: MeteoSwiss, 2021b) input fields
at 1 km spatial resolution as well as an algorithm for the frac-
tion of snow-covered area (Magnusson et al., 2014). As a
target for the quantile mapping, we use the higher-quality
but shorter (1999–2023) OSHD-EKF dataset as a bench-
mark. This dataset was created using the same model and
data but also assimilating snow data from a time-invariant
set of 350 in situ snow stations using an ensemble Kalman
filter (Magnusson et al., 2014). In a next step, the data were
corrected by the SnowQM algorithm so that OSHD-CLQM
data finally consist of 1 km daily gridded quantile-mapped
SWE data over the domain of Switzerland between 1962 and
2023 (Michel et al., 2024). The analyses are performed for
hydrological years, lasting from September of the previous
year to August of the year of investigation. The hydrologi-
cal year 2023, for instance, consists of the period 1 Septem-
ber 2022 to 31 August 2023. This definition is consistent
with the settings of the OSHD models, which sets SWE to
zero on 1 September of each year to only represent seasonal
snow, thus operating on an annual cycle starting in Septem-
ber. The corresponding spatial snow depth datasets were de-
rived by applying the SWE2HS algorithm (Aschauer et al.,
2023) to the SWE data from both models (OSHD-CLQM
and OSHD-EKF). This algorithm contains a multilayer snow
density model which uses daily SWE as the sole input.

2.2 Reference datasets

To evaluate the performance of the long-term OSHD-CLQM
dataset, we use as two references: (1) the higher-quality
OSHD-EKF dataset, which limits the comparison to the
1999–2023 period, and (2) daily in situ station data, which
limit the comparison to snow depth.

It is important to mention that OSHD-CLQM is not inde-
pendent of the first reference as OSHD-EKF was used in the
above-described quantile-mapping step to produce OSHD-
CLQM (Sect. 2.1). Additionally, some uncertainty is ex-
pected when comparing HS data, as this variable is only
available for both datasets through the conversion of SWE
using the SWE2HS algorithm (Aschauer et al., 2023), which
may introduce additional errors, particularly in challenging
conditions such as rain-on-snow events.

When comparing to in situ data we have to take into ac-
count the common grid-to-point mismatch problem. In this
regard, it is important to know that both datasets (CLQM
and EKF) are based on the OSHD temperature index model
(OSHD-CL), which was run in its default mode, where the
SWE values represent the spatial mean of the respective 1 km
grid cells, considering its predominant land cover types and
terrain characteristics. This is in line with the OSHD’s ob-
jective of conducting a comprehensive assessment of snow
and water resources in Switzerland, but it entails issues when
comparing to in situ data, which represent snow conditions
at flat, non-forested, sheltered field sites according to inter-
national measurement standards (WMO, 2024a). Indeed, the

monitoring sites have been reported to often systematically
overrepresent snow depth (Grünewald and Lehning, 2015),
and hence negative biases of OSHD-EKF relative to sta-
tion data are expected, which must be kept in mind when
interpreting respective results. Moreover, elevations above
3000 m are not analyzed as grid points above this elevation
are sometimes affected by too much snow accumulation in
the model due to the lack of high-elevation station data for
assimilation into the model (Michel et al., 2024).

As daily in situ snow depth time series, we use, on the
one hand, data from 103 stations (Table S1 in the Supple-
ment), which have already been used in the assimilation pro-
cedure of OSHD-EKF (Fig. 1) and are therefore complete
between 1999 and 2023. On the other hand, for an inde-
pendent analysis (Fig. 6), we use data from 79 independent
stations, which have not been used in the data assimilation
step because they cover only part of the time between 1999–
2023. All stations are located between 200 and 2800 m a.s.l.
(Fig. 2); stations below 2000 m consist of manual measure-
ments only and stations above 2000 m mostly consist of au-
tomatic measurements. The data from these stations have
been carefully quality-controlled (physical threshold checks,
as well as temporal and spatial consistency checks) and gap-
filled (Aschauer and Marty, 2021). Each station is compared
with its most representative grid point, which was determined
based on the selection of the grid cell that contains the station
of interest as well as the eight surrounding grid cells. The grid
cell with the smallest elevation difference from the station
was chosen for the comparison as snow depth is generally
strongly dependent on elevation (Marty and Blanchet, 2012).
The median elevation difference between the station and the
selected grid cell over all stations is 10 m with a standard de-
viation of 23 m; the largest elevation difference is 105 m. The
digital elevation model to determine the grid point elevation
was provided by swisstopo (2017).

2.3 Spatial and temporal aggregations

Michel et al. (2024) demonstrated that the SWE bias of
OSHD-CLQM is not remarkably different between north and
south of the Alps, which are the two main climatic regions in
Switzerland. We focus here on elevation-dependent biases, as
the existence of snow in the Alps strongly depends on the el-
evation above sea level (Schöner et al., 2019; Switanek et al.,
2024). For this purpose, we use elevation bands with a width
of±250 m, which are centered at 500, 1000, 1500, 2000, and
2500 m. Therefore, we also pool the abovementioned station
data into these elevations bands with the goal of comparing
all corresponding grid points in an elevation band to all sta-
tions in this elevation band (Tables S1 and S2).

These elevation bands imply that grid points below 250 m
and above 2750 m were not evaluated when comparing with
station data because there are hardly any stations for assim-
ilation or validation available below and above these thresh-
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Figure 1. Conceptual view of the workflow of the different model and station datasets used as well as for which periods they are available.

olds. Additionally, there are hardly any grid points below
250 m in the domain of Switzerland (see Table S2).

To assess time-aggregation-dependent biases, we use ag-
gregations of the daily data to weekly, monthly, and yearly
mean values. The motivation behind the temporal units used
was given by the following: climatological analyses are often
provided by yearly or monthly reports and we wanted to as-
sess the uncertainty of the new snow products with the goal
of including them in future reports. Moreover, knowing about
the need for timely public information on possible current
extraordinary snow conditions, we also assessed the weekly
aggregation level. Daily aggregations were by purpose not
assessed as the quantile-mapping method at this scale can
be associated with substantial uncertainties and an interpre-
tation of the results at this high temporal resolution is not

recommended (Michel et al., 2024). Yearly mean values are
based on the 6-month period between November and April,
which we will refer to as “yearly” from now on because it is
the period where snow cover is predominant in most of the
regions in the country and because it is the period where man-
ual snow depth measurements are available completely. To
compute yearly, monthly, or weekly mean values, we always
first averaged each grid point over time for each elevation
band. This means that box plots show the variability across
space in each elevation band for each temporal aggregation.
In the case of model-to-station intercomparison (Figs. 5, S3),
the box plots were created based on the number of stations
per elevation band (as listed in Table S2).

Moreover, we evaluate time-aggregation- and elevation-
dependent biases of commonly used climatological anoma-
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Figure 2. Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to validate the gridded
datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as triangles and non-assimilated stations as
circles.

lies. For this purpose, the 30-year average between 1991 and
2020 (standard 30-year reference period) is calculated for ev-
ery grid point and the ratio between the weekly, monthly,
or yearly mean values and its reference period is deter-
mined. When investigating performance differences between
OSHD-CLQM and OSHD-EKF the evaluation is necessarily
based on the period 1999–2023, which also has the advantage
of having more in situ data (Table S2) available in the differ-
ent elevation bands (mean per elevation band is 20 stations,
minimum 14 stations, maximum 34 stations).

2.3.1 Merging gridded datasets for trend analysis

It is not surprising and there are clear indications that the
climatologies of OSHD-CLQM and OSHD-EKF are not
that different (Fig. S1 in the Supplement). Hence, we also
constructed a new “combined” time series, OSHD-Comb
(Fig. 1), by concatenating the first part of OSHD-CLQM
(1962–1998) with OSHD-EKF (1999 and 2023). This ap-
proach allows investigating the impact on trends when merg-
ing the best available datasets for each period.

Long-term trends of all the abovementioned time series are
evaluated based on yearly values with the Theil–Sen slope
(Theil, 1950; Sen, 1968) and the Mann–Kendall (MK) trend
test (Mann, 1945). A positive standardized MK value in-
dicates an increasing trend, while a negative value demon-
strates a decreasing one. Confidence levels of 95 % are used
as a threshold to classify a significant trend (p < 0.05). The
Theil–Sen slope estimator provides a measure of the strength

of a trend based on a robust simple nonparametric linear re-
gression. Absolute trends were always calculated as change
per decade and relative trends were calculated for the en-
tire 62-year period as percentage changes between 1962 and
2023 based on the Theil–Sen slope. Please keep in mind that
a direct comparison of percentage changes is only meaning-
ful between indicators of the same unit and similar absolute
values. The thus calculated trends of the model datasets are
also compared to the trends from in situ station data. The
stations available for this comparison cover all elevation lev-
els quite well (Table S2). The same stations are available for
each elevation band as for the 1999–2023 comparison, except
for the highest elevation band (2250–2750 m a.s.l.), where
only one station covers the required full period between 1962
and 2023.

2.4 Evaluation metrics

The analyses are mainly based on the two variables describ-
ing the mass and depth of snow cover: SWE in millimeters
and HS in centimeters. Moreover, we also analyze the num-
ber of snow days. We define three different classes of snow
days: days with snow cover of at least 5, 30, or 50 cm of snow
depth.

We use four statistical evaluation scores to compare the
various datasets to evaluate the gridded snow products: root
mean squared error (RMSE), mean bias (BIAS), correlation
coefficient (R), and mean arctangent absolute percentage er-
ror (MAAPE).
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MAAPE (Kim and Kim, 2016) is an adaptation of the
mean absolute percentage error (MAPE) to mitigate large
percentage errors occurring only due to small reference val-
ues. To get MAAPE, first, like in the case of MAPE, the ab-
solute relative difference between the target value (ŷ) and the
reference value (yi) is calculated.

MAAPE=
1
n

n∑
i=1

arctan
(∣∣∣∣yi − ŷiyi

∣∣∣∣) (1)

But then the arctan of this relative difference is taken, which
maps large values to [0;π/2] and hence limits the maximum
relative error to 157 %. When we write about relative errors
in the “Results and discussion” section, we always refer to
MAAPE values for better readability. The scores provide the
basis for box plots of RMSE, bias,R, and MAAPE in each el-
evation band (500, 1000, 1500, 2000, 2500 m) for each tem-
poral aggregation (see also Sect. 2.3).

3 Results and discussion

3.1 Analysis of performance scores based on gridded
reference dataset

In order to quantify time- and elevation-dependent uncer-
tainties arising from the quantile mapping, we first evaluated
the OSHD-CLQM model simulation against the OSHD-EKF
model simulations used as the target dataset (Fig. 3). As ex-
pected from the quantile-mapping procedure (Cannon et al.,
2015), bias for SWE is close to zero for all temporal aggrega-
tions and all elevation bands. HS, however, reveals a slightly
negative bias (ca. −2 cm) for the highest elevation band be-
cause HS has been derived from SWE by conversion us-
ing SWE2HS and therefore has not been directly mapped to
match the quantile distributions of the observed snow depth
measurements. For both variables SWE and HS, RMSE and
MAAPE demonstrate a moderate worsening of the score per-
formance for all elevations with temporal aggregation over
smaller periods, illustrated, e.g., by RMSE values at 1500 m
increasing from 21 to 31 mm SWE or 7 to 11 cm HS going
from yearly to weekly aggregation. Regarding elevation de-
pendence, RMSE increases up to 2000 m, but MAAPE and
R reveal a clear improvement in score performance when
going from low to high elevations. Indeed, MAAPE scores
demonstrate for SWE and HS at 500 m values of about 37 %
for yearly resolution. At the same time, at 2500 m MAAPE
is about 8 % at yearly resolution. The same general perfor-
mance increase in MAAPE with elevation is also true for
monthly and weekly aggregations, which are about 58 % and
65 % at 500 m and decrease to 11 % and 13 % at 2500 m. All
these comparisons demonstrate that the performance gener-
ally increases with elevation in all evaluation metrics, except
bias, which is close to zero anyway. The main reason for this
better performance with increasing elevation is the fact that
the error indices in this analysis reflect the performance of

the quantile-mapping step, which is not really suitable for
time series with many zero values, i.e., for regions where the
snow cover only survives for a few days at a time (Michel et
al., 2024). Moreover, the signal-to-noise ratio of the quantile
mapping increases with elevation due to the larger absolute
amount of snow.

In a second step, we investigated the distribution of the
performance scores with the help of box plots for the same
temporal aggregations and elevation bands. Figure 4 shows
the corresponding box plots for both snow variables. While
mean values of bias are close to zero for all elevations bands,
whiskers and outliers demonstrate a clear increase in vari-
ability of the yearly values with increasing elevation. Larger
bias can occur above 2750 m (not shown), where no in situ
data for assimilation are available but where such differences
are still small in relative terms. This can also be seen by the
low MAAPE values in the highest elevation band. In con-
trast, at 500 m MAAPE values demonstrate that the relative
error is on average about 40 % but can be as high as 70 % in
rare cases. Similarly, R values show a clear increase in the
spread with decreasing elevation.

The same analysis as in Fig. 4 has been undertaken for
monthly and weekly performance scores (Fig. S2). Monthly
scores reveal the highest RMSE values at 2000 m of about
10 to 70 mm SWE (based on whiskers) or 5 to 20 cm HS,
which according to MAAPE corresponds to a relative error
range of 5 to 25 % for HS and SWE. However, in extremes
cases (outliers) this error can be as high as 40 %. At 500 m
the MAAPE whisker range goes from 40 % to 80 % for both
snow variables but can go up to about 90 % in extreme cases
for both variables. This low performance in these extreme
cases in this elevation band is also illustrated by accordingly
low R scores of about 0.4 for both variables. Weekly scores
demonstrate a similar pattern but slightly lower performance
for RMSE and MAAPE for both variables SWE and HS.
The highest relative errors scores (but with small absolute
errors) can again be seen in the lowest elevation band with a
MAAPE whisker range demonstrating values between 50 %
and 80 %. A clearly lower performance for weekly scores can
also be seen for R, where in extreme cases values of only 0.2
are found. These lowest R scores usually originate from the
few lowest grid points in this elevation band. These lowest
grid points are located in separate regions north and south of
the main Alpine ridge, which are often characterized by op-
posing snow conditions (Scherrer and Appenzeller, 2006);
i.e., one region has snow and the other not. This possible
divergence is smaller for yearly values as there is a higher
chance for compensation than for monthly or weekly values.

3.2 Analysis of performance scores based on in situ
station data as a reference

After investigating differences between the OSHD-CLQM
and OSHD-EKF models, we now compare HS simulations of
the two gridded models with HS observations at the stations.
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Figure 3. Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the period 1999–2023
using the OSHD-EKF dataset as a reference. Darker shades of red indicate worse scores.

Note that point observations do not necessarily represent
spatial means over large grid cells, particularly in complex
and steep terrain, and a comparison to results from a model
that represents the existing sub-grid variability is hence con-
founded.

Figure 5 illustrates that the yearly scores between the sta-
tions and the respective model grid points of OSHD-CLQM
and OSHD-EKF show remarkable similarity overall. How-
ever, R values of OSHD-EKF stand out as being more con-
sistent and are found to be higher in all elevation bands, es-
pecially at lower elevations. As expected for a model that

assimilates snow observations, OSHD-EKF demonstrates
slightly better comparison statistics, but the differences are
minor, which attests to the good performance of the quantile-
mapping procedure. Both models show larger bias values at
higher elevations, peaking in the highest elevation band with
median values of about −20 cm, which indicates that, as ex-
pected, the two models feature less snow at the highest ele-
vations compared to the station values. There are several rea-
sons for these bias values. First, data from flat field observa-
tions at high elevation often show larger values than the sur-
rounding area (Grünewald and Lehning, 2015). Second, the

https://doi.org/10.5194/tc-19-4391-2025 The Cryosphere, 19, 4391–4407, 2025



4398 C. Marty et al.: SPASS

Figure 4. Score comparison between models OSHD-CLQM and
OSHD-EKF (“reference”) at a yearly resolution at respective ele-
vation bands (m) for SWE (left) and HS (right). Box plots were
generated from these performance scores to illustrate the distribu-
tion, outliers, mean (green triangle), and median (purple line). The
box reflects the 50 % of data between the lower quartile and upper
quartile. The whiskers extend from the boxes’ edges and correspond
to 1.5 IQR. Outliers are represented as individual dots.

SWE2HS algorithm sometimes tends to underestimate HS at
these elevations (Aschauer et al., 2023). And third, there is
a lack of stations for assimilation at high elevation (Mott et
al., 2023). In relative terms, this bias, which is reflected in
the MAAPE score, reveals errors between 20 % and 25 % at
the elevation band 1500 m and above. This is in strong con-
trast to the values of about 80 % at the 500 m elevation band
owing to the very low mean snow depths at these elevations.

The same analysis has been undertaken for monthly and
weekly performance scores (Fig. S3) and generally reveals
the same pattern (lower performance for smaller time ag-
gregations) as found when intercomparing the two models,
with the difference that the performance decrease going from
yearly to monthly or weekly time windows is now much
weaker. OSHD-EKF stands out again with higher R values,
especially at lower elevations. MAAPE median values are
again largest at 500 m, with median values reaching 100 %
for monthly and 110 % for weekly aggregations. These val-

Figure 5. Score comparison between station data and OSHD-
CLQM (left) as well as OSHD-EKF (right) in the respective el-
evation bands for yearly snow depth values. The median value is
illustrated as a purple line and the mean value as a green triangle.

ues decrease to 40 % or less for elevations above 1500 m for
monthly and weekly time windows.

Similarly, the beginning and end of the snow-covered sea-
son also have a generally lower performance than midwinter
at higher elevations because the situation is similar as at low
elevations during the entire winter. This implies that the tran-
sition seasons between no snow and snow at higher eleva-
tions also have the same potential problems as at low eleva-
tions during the entire winter. These problems involve among
others high spatial variability and no information on the soil
temperature, which is decisive for the survival of potential
snowfall. But since our focus was between November and
April this seasonality issue only affects the 1000 and 1500 m
elevation band.

The above station-based comparisons are not indepen-
dent as the same station data are used in the assimilation
step of OSHD-EKF, which then also indirectly influences
OSHD-CLQM through the quantile-mapping step. In a sepa-
rate step, we therefore additionally analyzed non-assimilated
stations with respect to the OSHD-CLQM model (Fig. 6).
The result demonstrates that there is hardly any difference
between the bias for the assimilated and non-assimilated sta-
tions. This indicates that the assimilation of stations within
OSHD-EKF transfers well to unobserved locations, while the
quantile mapping is capable of passing this asset to OSHD-
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CLQM. As expected, we see generally higher bias values
above 2000 m, which (as explained above) is due to the fact
flat field observations at high elevation often show larger
values than the surrounding area. As shown in Fig. 5 these
bias values are only about 20 % in relative terms. Moreover,
above 2000 m the errors for the non-assimilated stations are
in general only about 5 cm larger, which corroborates the per-
formance of the quantile-mapping step for this independent
dataset.

When looking at the entire country, i.e., grid points of all
stations across Switzerland (Fig. S4), the analysis reveals a
slightly better performance for OSHD-EKF, which can be
best seen in the clearly smaller number of outliers and the
smaller whisker range for MAAPE and R. Differences due to
temporal aggregations can best be observed in RMSE, where
yearly mean values are about 10 cm. This value increases to
about 15 cm for monthly mean values and almost 20 cm for
weekly mean values. This good performance when averaging
over all grid points gives confidence in typical climatological
analyses like the comparison of the annual snow depth evolu-
tion between different climate periods (e.g., 1962–1990 with
1991–2020). The corresponding plot (Fig. S6) demonstrates
a clear decrease in snow depth in recent decades, which is
mainly driven by less accumulation in spring and an earlier
snow disappearance in summer. This finding is not new as
it has been found based on station data (Klein et al., 2016;
Marty et al., 2023) but can now also be demonstrated in a
quantitative way with gridded data. For station data, the men-
tioned studies explained the snow depth decrease with higher
temperatures.

3.3 Evaluation of trends

3.3.1 Elevation-dependent snow depth trends

Here, we investigate how long-term HS trends of OSHD-
CLQM and OSHD-Comb compare to trends observed at
stations in the different elevation bands. Figure 5 demon-
strates that compared to station data, median performance
scores of OSHD-CLQM and OSHD-EKF are generally (ex-
cept R) very similar, demonstrating the good performance
of the quantile-mapping step. However, focusing on the
whiskers of the box plots, it is obvious that with OSHD-
EKF smaller errors (outliers) are achieved. Therefore, using
OSHD-EKF data instead of OSHD-CLQM data, when pos-
sible, i.e., OSHD-Comb, can be an asset from 1999 onward
because the two datasets only differ after 1999. Any differ-
ences in their long-term trends are due to differences in the
most recent period (after 1999). However, the trends of the
two model chains after 1999 are still fairly similar (Fig. S5).

The combined model OSHD-Comb utilizes the OSHD-
EKF, which helps capture short-term variations more accu-
rately in the period since 1999. Meanwhile, OSHD-CLQM
originates from quantile mapping of the climatological
model OSHD-CL onto OSHD-EKF, aiming to reduce sys-

tematic differences in the simulation of OSHD-CL (Michel
et al., 2024 and Fig. 1). On the other hand, using OSHD-
Comb could introduce temporal inconsistencies at the point
in time when OSHD-CLQM and OSHD-EKF are combined
(1998/1999; see Fig. 1), which we investigated by analyz-
ing the involved trends shown in Fig. 7. Examining the plots
in this figure reveals that the interannual variability in the
modeled long-term snow depth time series (OSHD-CLQM
and OSHD-Comb) agree very well, especially when com-
paring all elevations (Fig. 7f). But both datasets also align
well with the long-term station data, particularly at eleva-
tions of 1000, 1500, 2000, and 2500 m, which demonstrates
the performance of the quantile-mapping step in these eleva-
tion bands. The OSHD-Comb trend magnitude is marginally
weaker than the OSHD-CLQM trend magnitude and thus
closer to the station-based trend magnitude for all investi-
gated elevations with the exception of the 2000 m band. The
largest differences between station-based and model-based
trends appears, again, in the lowest elevation band, which
corroborates the findings of Michel et al. (2024) and Fig. 5
with large relative errors at low elevation. With a closer look
at this low elevation band (Fig. 7a), we see that the largest dif-
ferences occur during snow-rich winters in the first 20 years.
These differences are similar when using OSHD-CL (not
shown), which indicates that not the QM step but the meteo-
rological input data and/or the temperature index model are
the main reason for the large biases in the first two decades
in the lowest elevation band and that the QM step fails to
correct this. Focusing on the significance of the decreasing
trends we see that the level of significance agrees well for all
datasets and elevation bands, which is also in agreement with
other studies analyzing station-based trends.

Notice that there is only one long-term station available in
the 2500 m elevation band, which strongly limits the infor-
mative value of this elevation band. Therefore, an additional
analysis for this elevation band has been undertaken for the
shorter 24-year period of 2000–2023 (Fig. S7), where data
from 14 stations are available. This figure corroborates the
findings of Fig. 7e with the similarity and the nonsignificance
of the trends found in this elevation band. The above results
agree well with other recent studies analyzing station-based
trends with mostly significant decreasing trends below about
2000 m (Matiu et al., 2021; Marty et al., 2023).

An example that demonstrates the possible differences be-
tween the two datasets OSHD-CLQM and OSHD-EKF is
illustrated in Fig. 8, which shows climatological anomaly
maps for the example of winter 2018 (November–April)
for both datasets. The relative snow depth anomaly for this
season with respect to the long-term mean (1991–2020) is
clearly above average in the Alps (see high elevations in
Fig. 2) and in the south for both datasets, but less consis-
tent patterns appear at low elevations in the north. A visual
comparison to the station values (marked in Fig. 8 as well)
demonstrates that OSHD-EKF provides more accurate re-
sults regarding these regional differences, revealing that the
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Figure 6. Bias of yearly mean snow depth [cm] vs. elevation [m] for the comparison of assimilated (red) and non-assimilated (blue) station
values with respect to the OSHD-CLQM model. The curves are polynomials fits of second degree.

Figure 7. Trends of yearly snow depth [cm/decade] calculated using Theil–Sen slopes for the OSHD-CLQM and the combined model data
series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500, (b) 1000, (c) 1500, (d) 2000, and (e) 2500 m,
as well as (f) all of Switzerland (0–3000 m). Significance is indicated with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. The dashed line
indicates the year 1999, before which the yearly values of OSHD-CLQM and OSHD-comb are the same.

Swiss Plateau experienced clearly below-average snow depth
in the 2018 winter season. Moreover, OSHD-EKF in this
case appears to exhibit greater spatial uniformity. This result
is not surprising as Figs. 3 and 4 demonstrate that the per-
formance of the quantile-mapping approach used in OSHD-

CLQM is limited in low-snow environments (i.e., at low ele-
vation for Switzerland).
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Figure 8. Relative snow depth anomaly (%) of winter 2018 (November–April) with respect to the long-term mean (1991–2020) for OSHD-
CLQM (a) and OSHD-EKF (b). Red indicates below-average snow depth, yellow average snow depth, and blue above-average snow depth.
The colored dots and numbers indicate station anomalies.

3.3.2 Snow depth trends at individual stations

We also conducted a trend comparison based on single grid
points, since having a gridded dataset available makes it
tempting to use information from single grid cells in places
where no station measurements are available. We com-
pared the Theil–Sen slopes of the yearly means of stations
with those of the closest grid point from both the OSHD-

CLQM and the OSHD-Comb models. The corresponding
plot (Fig. 9) reveals that in the large majority of the cases
the trends align well between models and stations. More-
over, there seems to be almost no performance difference be-
tween the two model chains. However, we can also observe
that the bias (difference between station and model trend)
is large for a small set of stations at elevations between 1200
and 2000 m. Both OSHD-CLQM and OSHD-Comb show the
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same eight stations that differ by more than±4 cm/decade in
their trends. Out of these eight stations, there are five stations
which show a considerably weaker trend and three stations
which show a stronger trend in the modeled time series com-
pared to those of the respective stations.

Upon closer examination of these stations, we find that
one station (7DI0) is located above the tree line, heavily
wind-influenced, and subject to several relocations during the
investigated period. Moreover, three stations (3UI0, 5KK0,
2ME0) are known as inhomogeneous series due to major
shifts in location (Buchmann et al., 2022). These findings re-
veal that the new gridded datasets have some potential to find
indications of potential inhomogeneities in station time se-
ries. However, there are also larger differences for four other
stations, which compared to trends at neighboring stations
and neighboring grid points are probably caused by station
inhomogeneities (3FB0) or problems with the gridded mete-
orological input data (6BG0, 7MA0, SIA0). Interestingly the
former three stations are all in southern regions with steep
topography and only few precipitation time series available
as input. These examples also indicate that when comparing
station data to model values, we should sometimes use multi-
ple grid points of a larger area for comparison instead of only
one single grid cell (see Sect. 3.4 and Michel et al., 2024).

Such exceptions do not impact the informative value of
the gridded trend results on a larger spatial scale. Indeed,
a map illustrating the OSHD-CLQM trends for each grid
point in Switzerland separately (Fig. 10) reveals significant
trends at almost all low- and mid-elevation regions, which
corroborates the results of Fig. 7. Elevations above 2000 m
along the main Alpine ridge and in adjacent inner-Alpine dry
regions show mostly nonsignificant decreasing trends, ex-
cept a small area near the southwestern border (Saas Valley)
with nonsignificant increasing trends. The only nonsignifi-
cant region in the lowest elevation band is located in the
Rhone Valley southeast of Lake Geneva (southwestern cor-
ner of Switzerland). Moreover, Fig. 10 generally confirms the
known weaker absolute trends at lower elevations (Schöner
et al., 2019) by the easy visual recognizability of the Alpine
valleys. Finally, Fig. 10 also demonstrates good agreement
with a similar analysis, but a different model, for Austria
(Olefs et al., 2020), in which partly nonsignificant trends
for the Austrian region (Tirol), which is adjacent just east of
southeastern Switzerland, were also found. In relative terms
(Fig. S9), the trends become largest at low elevation (mainly
Swiss plateau), where values between−10 % and−20 % per
decade are typical. Above 1000 m, however, typical relative
trends are between −5 % and −10 % per decade.

3.3.3 Elevation-dependent snow day trends

The number of snow cover days during a season is a useful
additional metric as it reflects not only the quantity of snow
in the Alps but also the duration. The duration of snow cover
is important for the energy balance of the Earth’s surface and

holds important implications for various sectors, including
ecology, winter tourism, and energy production (hydropower
and PV power). Comparing the different datasets in Fig. S8
across the five elevation bands reveals that the direction of
the trends (mostly decreasing) is the same in all analyses. No
trend could be detected in elevation bands where the number
of snow days is bounded due to our November to April sea-
son definition (low HS threshold at high elevation) or where
the number of snow days was mostly zero (high HS threshold
at low elevation).

There is generally less agreement in the magnitude of the
trends for the number of snow cover days (Fig. S8) compared
to corresponding analysis of mean snow depth (Fig. 7). Such
disagreement is not uncommon, as threshold analyses in gen-
eral are known for their high sensitivity, and limitations of
the input data also likely contribute (see Sect. 3.4). At 500 m
and with a 5 cm threshold, models predict over double the de-
crease compared to stations. This matches the result observed
in the mean HS trend analysis at 500 m.

Having a closer look, we can see that in most instances
OSHD-Comb generally demonstrates better agreement com-
pared to the year-to-year station fluctuations. Below the el-
evation band of 2000 m, both models demonstrate a signif-
icant decreasing trend. At the 2000 m elevation, the models
only show significance with p > 0.05 at a threshold of 30 cm.
However, significance is observed at all other thresholds
and elevation bands up to 2500 m. The elevation-dependent
pattern agrees well with that seen for snow day trends in
Fig. A1 in Buchmann et al. (2023). The largest decrease in
the number of snow cover days (about 9 d per decade) is
found at 1000 m for the 5 cm threshold. This is likely be-
cause this elevation band coincides with the current mean
snowfall limit (Scherrer et al., 2021). Below 1000 m, snow
cover days are already rare, leaving little room for further de-
cline, while above 1000 m, mean winter temperatures remain
below freezing, resulting in smaller absolute decreases.

3.4 Limitations regarding input data and involved
models

When utilizing the investigated gridded snow dataset for cli-
matological analyses, the involved uncertainties of the un-
derlying input data and methods used to derive SWE and HS
should always be considered. They include the following is-
sues.

The gridded temperature and precipitation datasets used
as input for the snow model (see Sect. 2.1) are not perfectly
consistent over time as the number of stations available for
the spatial analysis on the 1 km grid can vary over time and
elevation (Frei, 2014). It is important to keep this fact in mind
when using the gridded snow datasets for trend analysis.

Furthermore, there are unresolved small-scale effects in
these gridded input datasets. Regarding temperature, among
these are all kinds of land cover effects (e.g., lakes and ur-
ban heat islands) and the influence of local topography. As a
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Figure 9. Scatter plots of station elevation [m] vs. the difference (station minus model) of the snow depth trend [cm/decade] for yearly values
in the period 1962–2023 for OSHD-CLQM (a) and OSHD-Comb (b). Differences larger than 1 and smaller than −1 are depicted with an
orange diamond and red square, respectively. Stations that show a difference greater than ±4 cm/decade are labeled.

Figure 10. Trends of yearly mean snow depth (cm/decade) for the period 1962–2023 based on Theil–Sen slopes for each 1 km grid point
of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m are colored in gray, and non-hatched areas
indicate significant trends at the 95 % confidence level (p < 0.05).

result, it must be expected that spatial variations are under-
estimated (too smooth), particularly at the scale of the grid
point spacing, and small-scale patterns may not be accurately
represented (in both extent and amplitude) at the scale of the
model grid. This is particularly true for valley cold pools –
their reproduction by the analysis critically depends on the
existence of in situ measurements within these pools. Hence
cold air pools may be missing completely in un-instrumented
valleys (see Frei, 2014). Regarding precipitation, possible
undetected station- and time-dependent measurement errors

can always be an issue and the interpolation is limited by
small-scale variability of precipitation. The provider of the
datasets (MeteoSwiss) expects that the effective resolution
of the daily gridded precipitation product is of the order of
10 to 20 km, likely even coarser in the high mountains. Ad-
ditionally, measurements by rain gauges are subject to sys-
tematic errors, like gauge under-catch, which causes an un-
derestimation of precipitation, particularly during days with
snowfall and at wind-exposed locations (Yang et al., 1999).
However, the problem should be, at least partially, mitigated
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by the QM step, which constrains the model by assimilation
of snow depth observations (OSHD-EKF) and thereby indi-
rectly also corrects for under-catch issues in the gridded pre-
cipitation dataset.

When these two gridded datasets (temperature and pre-
cipitation) are used as input for the temperature-index-based
snow model, we must be aware that the temperature data rep-
resent the daily average from midnight to midnight UTC,
whereas the precipitation data represent the daily average
from 06:00 UTC of day D to 06:00 UTC of day D+ 1. This
temporal mismatch is another reason for possible biases in
gridded snow data, especially at shorter timescales. A par-
ticularly relevant contributing factor in this regard is the use
of daily average temperatures to partition precipitation into
snowfall and rain. Uncertainties arise every time a precipita-
tion event happens at times that are colder (nights) or warmer
(days) than the 24 h average temperature, which is a generic
limitation of models that use input data at daily rather than
hourly resolution.

Another factor contributing to the overall uncertainty is
the fact that the OSHD-CLQM modeling chain is based on
a temperature index model with a parameter set (Magnusson
et al., 2014) that is applied over the entire six-decade-long
period. This fact and the abovementioned limitations of the
atmospheric input data are a reason why the assimilation of
snow measurements is an important step and that the corre-
sponding OSHD-EKF datasets are of better quality.

A further potential inhomogeneity arises when using
OSHD-Comb, as two datasets of different quality are com-
bined here. Our analysis demonstrates that the impact is
small when using data for the entire country on the current
time series length. But this does not need to be the case for
smaller regions or shorter time periods.

Finally, it is important to keep in mind that the OSHD
datasets provide SWE values, which are then converted to
HS. This conversion has an RMSE of about 1.5 cm and a
bias of 1 cm (Aschauer et al., 2023). Therefore, HS always
has a slightly higher uncertainty than SWE.

4 Conclusions

We analyzed the potential and limitations of newly developed
spatially gridded datasets of snow water equivalent and snow
depth for climatological applications in Switzerland span-
ning six decades from 1962 to 2023. Our results demonstrate
that the use of long-term gridded snow data has a high poten-
tial for climatological analysis, albeit with some limitations.
Our analysis corroborates the findings of Michel et al. (2024)
that the quantile-mapping approach generally achieves good
results in producing long-term climatological time series of
snow. In addition, we could for the first time demonstrate in a
quantitative manner how the uncertainty of new gridded cli-
matological snow depth datasets increases with shorter anal-
ysis timescales, especially for low elevations.

More specifically, a comparison of the 60+-year-long
datasets to station measurements for yearly mean snow depth
values revealed in general a good performance of the new
gridded datasets. We also evaluated how well station-based
trends were captured in the modeled gridded datasets. In
general, the results demonstrated very good agreement be-
tween station- and model-based trends, i.e., clear decreas-
ing trends for mean snow depth and the snow cover dura-
tion (based on snow days) for the different elevation bands.
Yearly mean snow depth demonstrated excellent agreement
with respect to the decrease per decade and the significance
of this decrease for the different elevation bands, except for
the lowest elevation band, where snow is generally scarce.
There, the modeled trend was much stronger than the station
trend. The same trend overestimation in the lowest elevation
band was also found when analyzing trends of the number
of snow days. However, as often with count data, the agree-
ment between model and station trends was not as good and
also depended on the threshold of the snow day definition.
Generally, as shown by these results, station data are more
reliable at low elevation. At higher elevations (i.e., above
1000 m a.s.l.), SPASS data (OSHD-CLQM or OSHD-EKF)
from larger regions and longer periods are often preferable,
as they are less location-dependent and are also available in
the early and late season (early fall and late spring).

Moreover, a comparison between long-term trends of
mean snow depth calculated using in situ data from individ-
ual stations and gridded data with the closest grid points re-
vealed generally good agreement. However, for about 20 %
of all stations, the disagreement between the trends was
larger than 1 cm/decade and sometimes even had the oppo-
site direction owing to either inhomogeneities in the observa-
tions or modeling/input data issues. Therefore, we generally
recommend using the new SPASS datasets for trend analysis
with at least some level of spatial aggregation and for eleva-
tion above 1000 m, while caution is needed for interpretation
of data at the grid point level and/or in low-snow regions.
Furthermore, we urge caution when using maximum values
because the applied quantile-mapping method does not really
capture extreme values as they are corrected according to the
correction of the 99th quantile (Michel et al., 2024).

On the other hand, the generally good performance of the
new datasets allows for the first time the production of, e.g.,
high-resolution (1 km), high-quality, country-wide SWE and
snow depth maps of climatological mean values or month-
ly/seasonal anomaly graphs for different regions/elevations.
Moreover, except for low elevations, the data provide a reli-
able basis to analyze elevation-dependent trends of SWE and
snow depth. Hence, these datasets are an important basis for
applied research in winter tourism (Troxler et al., 2025) and
hydrology (Chartier-Rescan et al., 2025) in an Alpine coun-
try like Switzerland. For these reasons the two involved in-
stitutions (SLF and MeteoSwiss) use the new datasets to reg-
ularly provide maps and graphs on the current snow status in
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Switzerland as a climate service for the interested public or
businesses (BAFU, 2024; WMO, 2024b; SLF, 2025).

Our results also reveal that it may be worth making use
of the higher-quality but shorter-term OSHD-EKF dataset,
which assimilates in situ snow depth data. This is especially
true at low elevation and for shorter time aggregations like
months or weeks. This fact also demonstrates that long-
term station measurements are still indispensable, as they
are needed to produce long-term, high-quality gridded snow
datasets.

Data availability. Model data on SWE and HS are avail-
able at https://envidat.ch (last access: 25 September 2025)
(https://doi.org/10.16904/envidat.580, Marty et al., 2025). In situ
snow depth data from SLF stations can be freely downloaded
from https://www.slf.ch/en/services-and-products/slf-data-service
(last access: 25 September 2025). In situ snow depth data from
MeteoSwiss are available at https://www.meteoswiss.admin.ch/
services-and-publications/service/open-data.html (last access: 25
September 2025).
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