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Abstract. The thermal regime is a key indicator of per-
mafrost evolution and thaw trajectories in response to cli-
mate change but remains poorly represented in global mod-
els. In this study, we applied the Moving-Grid Permafrost
Model (MGPM), an efficient numerical model, to simu-
late the permafrost thermal regime in West Kunlun (WKL),
a 55669km? region on the remote northwestern Qinghai—
Tibet Plateau characterized by extreme cold arid conditions.
To improve computational efficiency, we used clustering
methods and parallel computing. The model was forced with
remote-sensing-based land surface temperature (LST) data
from 1980 onward (1 km x 1km spatial, monthly temporal
resolution), reconstructed using machine learning techniques
that integrated field observations, satellite imagery, and re-
analysis products. The MGPM demonstrated high stability
throughout the simulation period, achieving high accuracy
(£0.25 °C for ground temperature and £0.25 m for active-
layer thickness), outperforming previously reported results.
From 1980 to 2022, LST increased by an average of 0.40 °C
per decade. The responses of the permafrost regime to cli-
mate warming were closely related to the original thermal
conditions shaped by historical climatic evolution. These re-
sponses exhibited a distinct altitude-dependent spatial vari-
ation and differed according to soil stratigraphic types. De-

spite ongoing thermal shifts, the spatial extent of permafrost
in WKL has remained relatively stable over the last 43 years,
reflecting the delayed response of deep permafrost to sur-
face warming. These results offer valuable insights into per-
mafrost thaw trajectories and support improved projections
of future permafrost degradation in data-scarce, high-altitude
regions.

1 Introduction

Permafrost covers approximately 46 % of the Qinghai—Tibet
Plateau (QTP), making it the largest high-elevation per-
mafrost region in the mid- to high-latitudes, with an aver-
age elevation exceeding 4000 m a.s.l. (Zou et al., 2017; Zhao
et al., 2024). Ground temperature observations show clear
evidence that permafrost warming has already led to thaw
subsidence and widespread near-surface degradation across
the QTP (Zhao et al., 2020, 2024; Biskaborn et al., 2019;
Wang et al., 2023; Smith et al., 2022). These changes may
trigger climate feedbacks at both regional and global scales,
with significant consequences for ecosystems, infrastructure,
and local communities (Schuur et al., 2015; Walvoord and
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Kurylyk, 2016; Lafreniére and Lamoureux, 2019; Cheng et
al., 2019; O’Neill et al., 2020; Jin et al., 2021; Miner et al.,
2021; Hjort et al., 2022). Therefore, accurately assessing and
understanding current permafrost dynamics in response to
climate variability is critical for evaluating, predicting, and
mitigating the impacts of climate change (Smith et al., 2022;
IPCC, 2019, 2021).

Over the past few decades, numerous field investigations
have been carried out, and a monitoring network has been es-
tablished on the QTP to observe changes in permafrost ther-
mal conditions (Zhao et al., 2010a, b, 2017, 2019a, 2021a).
Many of these monitoring sites include borehole sensor ar-
rays that measure ground profile temperatures at depths of
50 m or more (Zhao and Sheng, 2019b; Zhao et al., 2021a).
However, these observations are spatially limited, with most
sites being concentrated in accessible areas such as along
the Qinghai-Tibet Highway (QTH) and the Qinghai-Tibet
Railway (QTR), leaving vast, remote regions of the QTP
largely unmonitored. To address this gap, detailed process-
based models have been widely developed to simulate hy-
drothermal processes of permafrost areas associated with
rapid changes in climate and environment. Despite these ef-
forts, most models still struggle to accurately represent the
thermal state of permafrost, leading to huge errors in pro-
jections of permafrost change (Zhao et al., 2024). These in-
accuracies are largely due to simplified representations of
soil properties and thermal dynamics in deep permafrost,
driven by limited subsurface data, particularly insufficient
long-term in situ ground temperature monitoring (Sun et al.,
2019; Zhao et al., 2020, 2024). Moreover, most models fo-
cus primarily on near-surface hydrothermal processes, typi-
cally constrained to the active layer within the upper 2-3 m.
This limitation is particularly pronounced in large-scale re-
gional modeling at a high spatial resolution, where compu-
tational costs make it challenging to apply numerical models
across broad areas and deeper layers (Smith et al., 2022). As
a result, simulations with only shallow soil layers may in-
adequately capture thermal dynamics in regions with thicker
and colder permafrost, whereas deeper simulations more ef-
fectively represent the long-term thermal response to climate
warming (Sun et al., 2019; Zhao et al., 2020). In addition, un-
certainties in the model forcing datasets further contribute to
biases in simulating hydrothermal processes in frozen ground
(Yietal., 2018; Guo et al., 2017; Hu et al., 2023a). Previous
studies have shown that soil temperature projections based
on outputs from Earth system models (ESMs) participating
in the Coupled Model Intercomparison Project Phase 5 and
6 (CMIP5, CMIP6) tend to overestimate future permafrost
degradation (Koven et al., 2013; Lawrence et al., 2012; Slater
and Lawrence, 2013; Burke et al., 2020). When air tem-
perature and precipitation inputs into land surface models
(LSMs) are improved, the estimated rate of permafrost degra-
dation decreases by approximately 29 % (Lawrence et al.,
2012), underscoring the importance of more accurate and
high-resolution forcing datasets.
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To address deficiencies in existing models, the Moving-
Grid Permafrost Model (MGPM; Sun et al., 2019, 2022) was
developed to enhance the simulation of subsurface thermal
dynamics in permafrost regions. Unlike conventional LSMs
that use shallow or fixed soil layers, MGPM adopts a flexi-
ble vertical discretization scheme that better captures deep-
soil stratification and variability in ground ice content. It im-
proves the simulation of freeze—thaw processes by applying
the apparent heat capacity method, which more realistically
represents gradual phase transitions, in line with field ob-
servations on the QTP. MGPM also explicitly incorporates
geothermal heat flux as the lower boundary condition — an
important factor often neglected in many LSMs, thereby im-
proving the accuracy of long-term ground temperature sim-
ulations. In addition, the model includes a thaw settlement
module, which is rarely represented in other permafrost mod-
els. This module simulates surface subsidence and landscape
change driven by the melting of excess ground ice, processes
that are critical to the evolution of permafrost terrain and
the development of thermokarst features. These landscape
changes have the potential to mobilize large quantities of pre-
viously frozen organic carbon from cold, ice-rich lowlands,
thus intensifying the global permafrost carbon—climate feed-
back (Westermann et al., 2016; Nitzbon et al., 2020). To-
gether, these advancements allow the MGPM to more ef-
fectively simulate both the attenuation and time lag of ther-
mal signals in deep permafrost, making it well-suited for
assessing permafrost thermal regimes under a changing cli-
mate. In our previous work, the MGPM was successfully ap-
plied to simulate heat transfer processes at multiple borehole
sites and regions along the QTH. The model demonstrated
strong performance in reproducing both the seasonal dynam-
ics of active-layer thawing and refreezing, as well as long-
term ground temperature evolution, when compared with
multi-depth soil temperature records and active-layer thick-
ness measurements (Sun et al., 2019, 2022, 2023; Zhao et al.,
2022).

The accuracy of permafrost simulation results is closely
tied to the spatial resolution and quality of input datasets.
Several studies have employed gridded datasets derived from
in situ meteorological observations, climate outputs from
general circulation models (GCMs) or ESMs, as well as re-
analysis and assimilated data, to simulate soil thermal dy-
namics over large spatial scales across the circum-Arctic per-
mafrost region (Jafarov et al., 2012; Westermann et al., 2013;
Zhang et al., 2014; Fiddes et al., 2015). However, substan-
tial uncertainties remain in these climate forcing datasets,
especially over the QTP, due to harsh climatic conditions,
complex terrain, and sparse observational coverage. These
limitations make it difficult to reliably use such datasets to
drive the MGPM for accurate simulation of permafrost ther-
mal regimes on the QTP (Hu et al., 2019; Yang et al., 2020).
In addition, gridded outputs from ESMs are typically avail-
able at coarse spatial resolutions, often half-degree latitude
and/or longitude or coarser, which are insufficient to cap-
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ture the high spatial variability of ground thermal conditions
in the heterogeneous permafrost of the QTP (Zhang et al.,
2013; Hu et al., 2023a). In contrast, satellite remote sens-
ing offers a powerful tool for regional detection and monitor-
ing of land surface characteristics that influence permafrost
thermal dynamics (Langer et al., 2013). High-resolution,
satellite-driven numerical modeling provides a promising ap-
proach to assess permafrost thermal states with improved
spatial and temporal fidelity (Westermann et al., 2015, 2017,
Yi et al., 2018). This remote-sensing-based modeling ap-
proach has been successfully applied in various permafrost
regions, including Alaska (Yi et al., 2018), Siberia (Langer
et al., 2013; Westermann et al., 2017) and Canada (Zhang
et al., 2013), demonstrating its potential for regional-scale,
high-resolution permafrost monitoring. On the QTP, Zou et
al. (2017) and Cao et al. (2023) used MODIS land surface
temperature (LST) products as inputs into an equilibrium
model to map permafrost distribution. Similarly, in our pre-
vious work, Zhao et al. (2022) evaluated and validated the
performance of the MGPM at a 1 km spatial resolution us-
ing time series MODIS LST data for a localized permafrost
region (less than 280 km?2) on the QTP.

In this study, we aim to enhance and extend the MGPM to
enable accurate, large-scale mapping of permafrost thermal
regimes and their spatiotemporal changes under recent cli-
mate warming. We developed an integrated framework com-
bining numerical modeling, field observations, remote sens-
ing, and reanalysis data to simulate permafrost dynamics at
a 1km x 1 km resolution. Soil properties were parameter-
ized using a geomorphological map and field measurements.
To address the computational challenges of large-scale ther-
mal modeling, we employed a clustering approach to group
climate and soil thermal types and used parallel computing
to simulate tens of thousands of grid cells efficiently. The
MGPM scheme was applied over a 43-year period (1980—
2022) across West Kunlun (WKL) in the northwestern QTP,
where ground temperature and active-layer thickness obser-
vations were used for validation. Finally, we analyzed the
spatiotemporal patterns of the thermal regime across diverse
environmental settings.

2 Study area

The West Kunlun (WKL) permafrost survey area (34.5—
36.0°N, 78.8-81.4°E) is located in the northwestern part
of the QTP, with elevations ranging from 4200 to 6200 m
above sea level (a.s.l.) (see Fig. la). It covers an area of
approximately 4.37 x 103 km? (Chen et al., 2015; Zhao and
Sheng, 2019). This region experiences a cold, arid continen-
tal climate, as the Pamir-Tian Shan—Kunlun Mountain sys-
tem acts as an orographic barrier, restricting moisture trans-
port from both the westerlies and monsoons (Cannon et al.,
2016; Baldwin and Vecchi, 2016). Meteorological observa-
tions from the Tianshuihai (TSH) automatic weather station

https://doi.org/10.5194/tc-19-4211-2025

4213

(AWS) (36.0°N, 81.4°E; 5019 ma.s.l.) from 2015 to 2018
show a mean annual temperature of approximately —6 °C
and mean annual precipitation of about 103.5mm (Zhao
et al.,, 2021a). Over 78 % of this precipitation (~ 81 mm)
falls between May and September, and summer tempera-
tures rise above 0 °C, averaging around 5.8 °C (Zhao et al.,
2021a). Glacial and periglacial landforms, such as block
fields, stripes, and stone rings, are well developed through-
out the region (Wu et al., 2018). Vegetation is sparse, dom-
inated by alpine desert, while much of the land surface is
barren due to persistent wind erosion (Li et al., 2012; Wang
et al., 2016; Zhao et al., 2019). The topsoil is generally dry
and loose, composed mainly of Quaternary eolian deposits
(57.68 %; see Table 1), consisting of coarse-grained materi-
als such as gravel and sand (see Fig. 1b). Permafrost is well-
developed in the WKL region, comprising both discontinu-
ous and continuous types, and covers approximately 93 % of
the total area (Li et al., 2012; Zhao et al., 2019). Continuous
ground temperature monitoring at the TSH comprehensive
observatory (ZK015; 59 m in depth; 35.36° N, 79.54°E; see
Fig. 1b) has revealed notable permafrost warming. Between
2010 and 2017, temperatures at a depth of 15 m increased at
a rate of 0.11 °C per decade (Zhao et al., 2021a; Hu et al.,
2023b).

3 Methodology and data
3.1 The Moving-Grid Permafrost Model

The Move-Grid Permafrost Model (MGPM) is a numeri-
cal framework that combines a moving-grid (Lagrangian)
scheme with the heat conduction equation to dynamically
track freeze—thaw fronts and to adjust the vertical grid ac-
cordingly (Sun et al., 2019, 2022). The MGPM integrates key
processes, including unfrozen-water content, variable ther-
mal properties, geothermal heat flux, and excess ice within
an efficient moving-grid framework, enabling improved sim-
ulation of deep-soil heat transfer not typically represented in
most land surface models.

The MGPM includes both a heat conduction module and
a settlement module, which are coupled to simulate time se-
ries of ground temperature with the land surface as the up-
per boundary. Its heat conduction physics is comparable to
that of widely used models such as GIPL2.0 (Nicolsky et
al., 2017) and CryoGrid2.0 (Westermann et al., 2013). The
change in ground temperature and internal energy is gov-
erned by Fourier’s law of heat conduction, accounting for
latent heat release or absorption due to phase change within
an observed freezing range of —0.3 to 0 °C. Water and va-
por movement are not included; thus, soil water content
changes only through freezing and thawing. Soil temperature
dynamics are solved numerically using the one-dimensional
nonlinear heat conduction equation and the finite-difference
method (Schiesser, 1991; Westermann et al., 2013; Sun et al.,
2019).
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Figure 1. (a) Geographical location of the West Kunlun (WKL) permafrost survey area, overlaid on the frozen-ground type distribution
map from Zou et al. (2017). (b) The WKL survey area includes five stratigraphic classes used in ground thermal modeling (see Sect. 3.2.2),
along with borehole sites containing in situ observations (see Sect. 3.3) used for model calibration and validation. The yellow star marks the
location of an automatic weather station (AWS), red dots represent monitoring boreholes in seasonally frozen ground, black dots indicate
boreholes located in permafrost, and green dots denote thaw depth measurements derived from ground-penetrating-radar (GPR) surveys.

Glaciers and lakes are masked in gray.

3.2 Model operation
3.2.1 Model forcing

Similarly to our previous study (Zhao et al., 2022), a time
series of remotely sensed LST was used to drive the MGPM.
Specifically, we used a modified MODIS LST product devel-
oped by Zou et al. (2014, 2017), which partially accounts for
surface influences such as snow cover, vegetation, and cloud
presence through a cloud-gap filling algorithm and calibra-
tion with three AWS observations from representative per-
mafrost regions with distinct surface types — alpine steppe,
alpine meadow, and alpine desert — in the central QTP. Val-
idation showed strong agreement between the modeled and
observed LST, with R? values ranging from 0.91 to 0.93 and
RMSE values around 3 °C. Further evaluation at the TSH
AWS site in the WKL region during the 20162018 obser-
vation period confirmed the product’s reliability, with an R>
greater than 0.90 and an RMSE of 2.09 °C, demonstrating its
effectiveness in capturing spatial variations in LST across the
QTP.

In this study, we further refined the Zou et al. (2017)
product to reconstruct historical LST data prior to 2003, ex-
tending the dataset back to 1980 using machine learning
approaches. Three statistical models were employed: least
squares linear regression (LR; Xing et al., 2023), random for-
est regression (RFR; Breiman, 2001), and multiple linear re-
gression (MLR; Jiao et al., 2023). The LR model assumes
a long-term linear relationship between air temperature (AT)
and LST. For the RFR and MLR models, eight auxiliary vari-
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ables known to influence LST were incorporated: AT, precip-
itation (Pre), skin temperature (ST), soil temperature in the
top 0-10cm (ST_1), fractional cloud cover (CFC), surface
net radiation budget (SRB), leaf area index (LAI), and dig-
ital elevation model (DEM). Detailed descriptions of these
variables, including their spatial resolution and data sources,
are provided in Table 1. The main steps for reconstructing
monthly LST from 1980 to 2022 are as follows.

(1) Pre-processing

All input variables were resampled to a spatial resolution of
1 km x 1km using the nearest-neighbor method to match the
resolution of the LST_Zou dataset. Monthly averages were
then computed from the available data, which varied in terms
of temporal resolution across sources. Missing values were
filled through spatial interpolation using nearby data points.
Notably, the latest downscaled AT and Pre data provided by
Qin et al. (2022) extend only through 2019. To fill the data
gap for 2020-2022, statistical downscaling was applied to AT
and Pre from the CNOS5.1 dataset, following the method de-
scribed by Su etal. (2016). CN05.1 is a gridded dataset devel-
oped by the China Meteorological Administration (CMA),
offering daily meteorological variables at a spatial resolution
of 0.25°. For more details, refer to Wu and Gao (2013). Addi-
tionally, since the earliest available satellite-based LAI data
begin in 1982, values for 1980-1981 were filled by assuming
no change and using the average LAI from the period 1982—
1986.
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(2) Model training and test

Data from 2003 to 2019 were used for model training. In
the LR model, AT was used as the sole input variable, with
LST_Zou as the target output. For the MLR and RFR mod-
els, eight auxiliary variables (see Table 1) were used as in-
puts, with LST_Zou again serving as the output variable. The
dataset was randomly partitioned into 10 subsets: 10 % of the
samples were reserved for validation, and the remaining 90 %
were used for training. This process was repeated 2000 times
to ensure robustness. Model performance was evaluated us-
ing four metrics: RZ, RMSE, MAE, and bias (Zhao et al.,
2022). Details are provided in Fig. 2.

(3) Dataset generation

The monthly values of the eight auxiliary variables from
1980 to 2022 (see Table 1) were used as inputs into the
trained LR, MLR, and RFR models from step (2). This en-
abled the generation of a continuous monthly LST time series
starting from 1980.

3.2.2 Ground thermal properties

In our modeling framework, we incorporated detailed ther-
mophysical characterization of the subsurface based on mea-
surements from 15 boreholes with observations across the
WKL permafrost survey area, with depths ranging from 15
to 59 m. Core samples, field observations, and borehole logs
(Li et al., 2012; Zhao and Sheng, 2019) indicate that ground
ice content in the WKL region varies between 5 % and 50 %,
depending on the type of Quaternary sediment. Higher ice
contents are typically found in fine-grained glaciofluvial and
lacustrine sediments due to enhanced segregation ice for-
mation, while coarse-grained alluvial and colluvial deposits
generally show lower ice content. Vertically, ice-rich layers
are consistently observed near the upper boundary of per-
mafrost, typically between 2 and 3 m depth. Ice content tends
to increase slightly between 3 and 10 m and remains rela-
tively stable below 10 m (Zhao et al., 2010a; Zhao and Sheng,
2019; Zou et al., 2024).

Depth-specific thermophysical parameters (thermal con-
ductivity and heat capacity) for each stratigraphic class were
estimated by calibrating modeled permafrost temperature
and thaw depth against borehole observations. Calibration
was performed using a numerical inverse modeling approach
that minimizes the difference between simulated and ob-
served ground temperatures by adjusting the thermal prop-
erties (Marchenko et al., 2024; Nicolsky et al., 2017). This
method is detailed in Nicolsky et al. (2007, 2017), with ex-
amples of soil thermal property optimization provided in
Zhao et al. (2022) and Marchenko et al. (2024).

Site-level stratigraphic and thermophysical data were spa-
tially upscaled using vector-based geomorphological classi-
fication maps of western China ata 1 : 1 000 000 scale (Zhou
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and Cheng, 2019). Five common stratigraphic classes in the
WKL region — i.e., glarosional, alluvial plain, eolian, collu-
vial valley, and lacustrine deposits — were identified. A sum-
mary of major Quaternary deposits is provided in Table 2,
and their spatial distribution (Fig. 1b) is based on Zhou et
al. (2007), gridded at 1 km x 1 km resolution to match our
simulation scale.

3.2.3 Model computational domain, boundary
condition, and initialization

The model resolution is determined by the input datasets.
The computational domain covers the entire 55669 km?
WKL permafrost survey area, with a spatial resolution of
1km x 1km and a monthly temporal resolution. Following
Zhao et al. (2022), each grid cell extends 100 m vertically, di-
vided into 282 layers, with thicknesses ranging from 0.05 m
at the top 4 m to 0.5 m at greater depths.

For each modeling grid cell, the ground thermal regime
is simulated using site-specific stratigraphy and a time se-
ries of LST as the upper boundary condition. At the lower
boundary (100m depth), a Neumann condition is applied
to represent geothermal heat flux, set at a constant value of
0.0724 W m~2. This value is derived from measurements ob-
tained from a 700 m deep borehole near the WKL permafrost
region (Hu et al., 2000). To estimate a realistic initial soil
temperature profile, a model spin-up is conducted using cli-
mate forcing from the early simulation years. Steady-state
conditions are considered to be achieved when the tempera-
ture difference at all soil layers between consecutive annual
cycles is less than 0.0001 °C. This equilibrium profile is then
adopted as the initial condition for the transient simulation.

3.2.4 Model implementation

After excluding lake and glacier-covered areas, simulations
were conducted for 47 284 grid cells. To improve computa-
tional efficiency, a spatial clustering approach was adopted
following Cable et al. (2016), grouping grid cells based on
similarities in climate forcing and soil thermal properties. In-
stead of simulating each grid cell individually, clusters were
used as representative units.

To characterize the upper boundary LST forcing, a har-
monic function was used to fit the time series (Sun et al.,
2019). The fitted coefficients (initial annual mean tempera-
ture, trend, annual amplitude, and phase angle) were used
to group climate forcing into distinct clusters. These were
then combined with five soil thermal property classes (see
Table 1), resulting in 13 248 unique input combinations for
the WKL region. This approach reduced the number of sim-
ulations to just 28.02 % of the total grid cells, remarkably
lowering computational demand. Similar cluster-based meth-
ods have been successfully applied in Canada (Zhang et al.,
2013, 2014), Alaska (Cable et al., 2016), and the Swiss Alps
(Fiddes et al., 2015) permafrost zones.

The Cryosphere, 19, 4211-4236, 2025
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Table 1. Summary of the data sources used for the linear regression model (LR), random forest regression model (MLR), and multiple linear
regression model (RFR) to generate monthly land surface temperature from 1980 to 2022.

Variable Data span Resolution and Data resource and availability Reference
name horizontal
coverage
LST_Zou 2003-2019 8d (QTP) https://doi.org/10.10.5194/tc-11-2527-2017 Zou et al. (2017)
AT Pre 1961-2019 Daily/1 km x 1km (China)  https://doi.org/10.1594/PANGAEA.941329 Qin et al. (2022)
CNO5.1 1961-2022 0.25° x 0.25° CMA ‘Wu and Gao (2013)
(China) https://ccre.iap.ac.cn/resource/detail 2id=228
(last access: 12 September 2025)
ST 1950—present  Hourly/~9km x 9km ERAS5-Land Reanalysis Mufioz-Sabater et al. (2021)
(global) https://cds.climate.copernicus.eu/datasets/reanalysis-
era5-land?tab=overview/cdsapp#!/dataset/reanalysis-
era5-land?tab=$overview
(last access: 12 September 2025)
ST_1 1979—present  6h/0.312° x 0.312°/ NCEP Climate Forecast System Saha et al. (2010a)
0.204° x 0.204° Reanalysis (CFSR)
(global) https://rda.ucar.edu/datasets/ds093.0/dataaccess/
(last access: 12 September 2025)
CFC SRB  1979-present  Monthly/0.25° x 0.25° EUMETSAT, CM SAF Karlsson et al. (2023)
(global) https://wui.cmsaf.eu/safira/action/viewDoi
Details?acronym=CLARA_AVHRR_V003
(last access: 12 September 2025)
LAI 1982-2022 8d/0.05° from AVHRR, Global Land Surface Satellite (GLASS) and MODIS Liang et al. (2020)
500 m from MODIS http://www.glass.umd.edu/ (last access: 12 September 2025)
(global) https://modis.gsfc.nasa.gov/data/dataprod/mod15.php
(last access: 12 September 2025)
DEM - 90 m (global) https://cgiarcsi.community/data/srtm-90m- Jarvis et al. (2008)
-digital-elevation-database-v4-1
(last access: 12 September 2025)
Glacier - - Second Glacier Inventory Dataset of China Guo et al. (2015)
https://doi.org/10.3189/2015J0G14J209
Lakes - - National Tibetan Plateau Data Center Zhang et al. (2019)

https://data.tpdc.ac.cn/ (last access: 12 September 2025)

Note that LST_Zou is an enhanced LST product for the QTP permafrost zone, derived from in situ observations and MODIS satellite data. AT refers to air temperature, Pre refers to precipitation, ST
refers to skin temperature, ST_1 refers to soil temperature at the top layer (0—10 cm), CFC refers to fractional cloud cover, SRB refers to surface net radiation budget, LAI refers to leaf area index, and
DEM refers to digital elevation model data.
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Figure 2. Scatterplots of estimated monthly LST using the (a) LR (linear regression model), (b) MLR (multiple linear regression model),
and (c¢) RFR (random forest regression model) during the validation stage (10-fold cross-validation; see details in Sect. 3.2.1). The best linear
fits are shown in blue, while the 1 : 1 line is represented in red. Error metrics are provided in the bottom-right corner of each graph.
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Table 2. Major geological classes and their associated borehole measurement sites. The second column indicates the percentage of the study
area covered by each Quaternary sediment type, while the third column lists the corresponding representative boreholes.

Quaternary sediment type  Percent %  Boreholes

Eolian 57.68 ZKO01, ZK02, ZK04, ZK12, ZK13, ZK16, K514+950, K520+4-050,
Glarosion 12.58 ZKO06, ZK07

Alluvial plain 5.96 ZKO08

Lacustrine plain 5.05 ZKl14,7ZK15,7ZK17,ZK18, ZK30, ZK31

Colluvial valley 3.67 ZK09,ZK04

Modern glaciers 12.54  Excluded from the model

Lakes 2.52  Excluded from the model

3.2.5 Simulation result diagnoses

To assess long-term changes in the permafrost thermal
regime over the last 43 years, key diagnostics were extracted
from the modeled vertical soil temperature profiles down
to 50m. These include the mean annual ground tempera-
ture at 15 m depth (MAGT15m), which corresponds to the
depth of zero annual amplitude (ZAA) on the QTP (Jin et al.,
2008; Zhao et al., 2010b), and the temperature at the top of
permafrost (TTOP). Additional depths were also evaluated
against available borehole observations.

The active-layer thickness (ALT) was estimated using lin-
ear interpolation to locate the maximum depth of the 0°C
isotherm during the annual thawing period (Liu et al., 2020).
Following Zhao et al. (2022) and Wu et al. (2018), a grid cell
was classified as permafrost if the maximum annual ground
temperature at any depth within the upper 50 m remained at
or below 0 °C for 2 consecutive years. Cells where the min-
imum annual ground temperature dropped to <0 °C within
50 m depth during the same period were identified as season-
ally frozen ground. Cells not meeting either condition were
classified as unfrozen ground.

3.3 Field investigation and borehole monitoring
datasets

Extensive scientific research and long-term monitoring ef-
forts have been conducted in the WKL region over the last
2 decades. A comprehensive permafrost monitoring system
has been established by the Cryosphere Research Station of
the Chinese Academy of Sciences (CRS-CAS) (Zhao and
Sheng, 2015, 2019; Zhao et al., 2021a). These in situ datasets
greatly enhance our understanding of permafrost dynamics
and provide essential support for model development and
validation (Li et al., 2012; Zhao and Sheng, 2017; Zhao et al.,
2019, 2021a). Below, we summarize the CRS-CAS datasets
used in this study.

https://doi.org/10.5194/tc-19-4211-2025

3.3.1 The Tianshuihai (TSH) comprehensive
observatory

The TSH comprehensive observatory is located in the
central-northern part of the WKL permafrost survey area
(see Fig. 1a). The Quaternary deposits in this region are pri-
marily lacustrine, consisting of fine-grained sediment from
an ancient lake that dried up during the Lower Pleistocene
(Li and Li, 1991). Since October 2015, an AWS at TSH has
continuously recorded key meteorological variables, includ-
ing hourly air temperature at 2, 5, and 10 m heights; relative
humidity; shortwave and longwave radiation (both upward
and downward); wind speed; and precipitation. Additionally,
ground temperatures have been recorded automatically since
2010 from a 59 m deep borehole (ZK015; 35.36° N, 79.54° E;
see Fig. 1b) at depths of 3, 6, 10, and 20m (Zhao et al.,
2021a). LST at TSH is estimated using continuous radia-
tion measurements (since October 2015) and by applying the
Stefan—Boltzmann law (see Hu et al., 2024 for details), pro-
viding a robust reference for validating satellite-derived LST
and ground thermal modeling (see Sect. 4.1.1).

3.3.2 Borehole in situ datasets

Beyond the TSH observatory, 27 boreholes have been drilled
across the WKL region to monitor the ground thermal
regime. These boreholes range in depth from 7.5 to 33 m
and are distributed across various geomorphic units, soil
types, and vegetation zones, covering elevations from 4200
to 5200 m a.s.l. (see Fig. 1b). Detailed descriptions are avail-
able in Zhao and Sheng (2019) and Li et al. (2012). A to-
tal of 15 of these boreholes are instrumented with thermistor
sensors (accuracy £ 0.1 °C) placed at depths of 3, 6, 10, and
20m (Zhao et al., 2021a), and manual ground temperature
measurements have been conducted at 1- to 2-year intervals
since 2010 during annual field investigations using a digi-
tal multimeter. In this study, data from these 15 boreholes
were used for model calibration and validation. The remain-
ing boreholes were used to support the spatial modeling of
permafrost distribution, serving as reference points for iden-
tifying permafrost presence or absence.

The Cryosphere, 19, 4211-4236, 2025
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3.3.3 Thaw depth measurement datasets

During field investigation in September 2010, when sea-
sonal thaw depths reach their annual maximum, a ground-
penetrating radar (GPR) was used to manually measure thaw
depth at 45 sites, most of which were located near boreholes
(see Fig. 1b). The methodology and results are comprehen-
sively described in Zhao and Sheng (2019). After removing
duplicate measurements within the same 1km x 1 km grid
cells, a total of 25 unique thaw depth measurements were re-
tained for model validation.

3.4 Additional validation datasets

In addition to site-based observations (Sect. 3.3), we fur-
ther evaluated model performance in simulating regional per-
mafrost distribution by comparing it with four representa-
tive permafrost maps developed over different decades: (i) a
1980s permafrost map of the QTP at 1 : 3000 000 scale, com-
piled by the Lanzhou Institute of Glaciology and Geocry-
ology, CAS (Li and Cheng, 1996); (ii) a comprehensive
2000s map of glaciers, permafrost, and deserts in China at 1 :
4000 000 scale, produced by the Cold and Arid Regions En-
vironmental and Engineering Research Institute, CAS (Wang
et al., 2006); (iii) a 2010 permafrost distribution map of the
QTP with 1km? resolution (Cao et al., 2023); and (iv) a
2016 permafrost distribution map of the Tibetan Plateau with
1 km? resolution (Zou et al., 2017).

4 Results
4.1 Forcing dataset
4.1.1 Comparison to in situ data

We implemented and compared the three algorithms de-
scribed in Sect. 3.2.1 to identify the optimal model for
reconstructing monthly LST data from 1980 onward. The
validation results are presented in Fig. 2. Most data
points in the scatterplots cluster closely along the 1:1
line, indicating a strong positive correlation (R? > 0.90)
and good agreement between LST_Zou and the estimated
LST values. The LR model produced a mean absolute
error (MAE) of 2.05°C and an RMSE of 2.61°C. The
MLR model showed moderate improvement, with lower er-
rors (MAE =1.16 °C, RMSE = 1.55 °C). However, the RFR
model yielded the best performance, achieving the lowest er-
ror metrics (MAE =0.87 °C, RMSE = 1.26 °C).

Figure 3 compares the mean annual cycle of LST esti-
mates from the three statistical models (LR, MLR, and RFR)
with ERAS Land, LST_Zou, and in situ observations from
the TSH AWS over the period 2016-2018. All datasets ex-
hibit a similar seasonal cycle consistent with the in situ data.
However, both LST_Zou and ERA5-Land LST exhibit a sys-
tematic cold bias, particularly during the summer months

The Cryosphere, 19, 4211-4236, 2025

J. Zhao et al.: Permafrost thermal state on the Qinghai-Tibet Plateau (1980-2022)

20
15

amm—l ||| |®

g—
& —_— s
: B 1 2 ! 'ilﬂ ”4 5 6 7 8 9 EJW'D 11 12
S ‘ ‘ ‘ J Ground_based observations ‘

-10 weraS_land

15 ‘ ‘ 1Zou LST

LR
20 r =MRL
25 —RIR

Figure 3. Monthly average LST from satellite-derived data
(LST_Zou), reanalysis data (ERA5-Land), three algorithm esti-
mates (LR, MLR, and RFR), and in situ measurements from the
TSH AWS (see Sect. 3.3.1) were compared for periods with avail-
able observations between 2016 and 2018.

of July, August, and September. The LST values estimated
by all three statistical models help reduce this bias to vary-
ing extents, with the RFR model performing best. Despite
this improvement, a residual cold bias in LST_Zou remains
apparent during the same period. Overall, the RFR model-
generated LST time series closely matches in situ observa-
tions and demonstrates sufficient accuracy for use in subse-
quent ground thermal modeling. Therefore, the RFR-derived
monthly LST was adopted as the input forcing in the follow-
ing simulation analyses.

4.1.2 Spatiotemporal variability of forcing datasets

Figure 4 shows the regional average of annual LST anoma-
lies relative to the 1980-2022 mean. The results reveal a con-
sistent positive trend of +0.40 °C per decade over the WKL
region during this period. Interdecadal analysis highlights
a remarkable warming trend in the mid-1980s, which then
slowed slightly from the 2000s, during which LST devia-
tions were relatively smaller. In the last decade, only positive
anomalies were recorded, with 2016 exhibiting the largest
positive deviation (4-1.45°C) compared to the 1980-2022
climate average.

To further assess regional LST anomaly patterns in WKL,
Fig. 5 shows decadal deviations from the 1980-2022 mean.
In the 1980s, most of the region (63.25 %) exhibited nega-
tive anomalies between —1.5 and —0.5 °C, with only 0.46 %,
mainly at high elevations, falling below —1.5 °C. The 1990s
shown a sharp warming, with 90.95 % of the area shifting to
near-normal levels (—0.5 to 0°C). By the 2000s, warming
intensified: 83.78 % of WKL showed positive anomalies (0
to 0.5°C), and 4.34 % exceeded 0.5 °C. Between 2011 and
2022, warming became more pronounced, with 63.97 % of
the region being above 0.5 °C and some high-altitude zones
surpassing 1.0 °C.
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Figure 4. Time series of regional average annual LST anomalies
in the WKL permafrost survey area from 1980 to 2022. The 9-year
moving average is depicted with a blue line, while the linear trend,
calculated using standard linear regression (with long-term changes
based on the slope of the regression), is shown with a dashed red
line. The anomalous LST series are obtained by subtracting the
mean LST from 1980 to 2022.

4.2 Modeling the thermal state of permafrost
4.2.1 Model validation

To validate the model’s representation of large-scale ground
thermal conditions, simulation outputs were compared with
available in situ datasets (Fig. 1; Sect. 3.3), including
MAGT10m (MAGT at 10 m) measurements from 15 sites in
2010, ALT data from 11 sites, thaw depth observations from
25 sites, and four historical permafrost distribution maps
spanning different periods.

Ground temperatures

The comparison between observed and modeled MAGT10m
results at 15 permafrost boreholes shows that 93.3 % (14 out
of 15) of the data points cluster closely around the best-fit
line, with deviations within £0.25 °C (Fig. 6a). The anal-
ysis indicates strong overall agreement between measured
and modeled MAGT10m for temperatures above —1 °C, with
errors of 0.10°C or less. However, for MAGT10m below
—2 °C, the model shows a slight cold bias, particularly in ar-
eas with lacustrine sediments in the lowland regions of cen-
tral WKL, where ground temperatures vary drastically due
to complex local conditions (Fig. 6b). Despite this, the de-
viations between observed and simulated temperatures re-
main within 0.3 °C. Overall, the comparison suggests that the
MGPM effectively replicates the measured MAGT10m, cap-
turing the spatial variability in the validation area, with a cor-
relation coefficient of r =0.98 (p < 0.01), and achieving an
MAE and RMSE of 0.12 and 0.15 °C, respectively.

Active-layer thickness (thaw depths)

The scatterplots and spatial maps comparing measured and
modeled ALT at 11 sites and thaw depths at 25 sites are
shown in Fig. 7. The comparisons indicate that the model
generally captures the range of ALT across the WKL region

https://doi.org/10.5194/tc-19-4211-2025

effectively. At 72.7 % of the sites (8 out of 11), the simu-
lated ALT values closely match the observations, with devi-
ations within +0.25 m of the measurements (Fig. 7a). No-
tably, for the eolian sediment class, characterized by rela-
tively shallow ALT around 2 m, the model performs excep-
tionally well, showing minimal bias (< 0.05 m), which sug-
gests that the modeling approach is well suited to these con-
ditions. However, the model underestimates ALT by approx-
imately 0.25 m in lacustrine sediments near lake areas, where
measured ALT exceeds 3 m (Fig. 7c).

A similar pattern is modeled for thaw depths: 91.3 % of
the modeled values (21 out of 23) fall within +0.25 m of
the observations (Fig. 7b). For thaw depths greater than 3 m,
the model tends to underestimate values, with the largest dis-
crepancies of up to 0.5 m occurring in northern marginal per-
mafrost zones (Fig. 7c).

Overall, despite slightly larger biases (> 0.25m) at a few
locations, the model effectively captures the spatial variabil-
ity of ALT and thaw depth across the major geomorpho-
logical units of the WKL region. It yields an r of 0.96 for
ALT and 0.94 for thaw depth, with corresponding MAE and
RMSE values of 0.13m and 0.16 m for ALT and 0.16 m and
0.18 m for thaw depth.

Permafrost distribution

Figure 8 compares four representative frozen-soil type maps
of the WKL region with the corresponding outputs from
MGPM simulation outputs. In this analysis, 28 boreholes
(see details in Fig. 1 and Sect. 3.3) are used as reference
points to evaluate the accuracy of permafrost and seasonally-
frozen-ground distributions. The results show that, while the
maps by Li and Cheng (1996) and Wang et al. (2006) cap-
ture the general presence of permafrost across WKL, they
fail to accurately delineate areas of seasonally frozen ground
(Fig. 8a—c). Notably, these two maps show remarkable dis-
crepancies in northeastern WKL, where they indicate contin-
uous permafrost, while our simulation identifies seasonally
frozen ground (Fig. 8i—j).

In contrast, the maps by Cao et al. (2023) and Zou et
al. (2017), along with our simulation results, display a more
accurate spatial pattern of frozen-ground types, correctly
identifying nearly all permafrost and seasonally-frozen-
ground locations, except for a single site near lakes in the
southern WKL (Fig. 8c—d, g-h). However, small mismatches
remain: compared to our simulations, Cao et al. (2023) and
Zou et al. (2017) overestimate the extent of seasonally frozen
ground by 1.84 % and 1.61 %, respectively, designating cer-
tain areas as seasonally frozen where our model indicates
permafrost (Fig. 8k-1). Additionally, our simulation identi-
fies about 0.61 % (Cao) and 0.58 % (Zou) of the central low-
land region as seasonally frozen ground, whereas both maps
categorize these areas as permafrost (Fig. 8k—1).
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4.2.2 Initial thermal status of permafrost condition

To investigate how the thermal state of permafrost evolves
under ongoing climate change, it is first necessary to un-
derstand its initial conditions. Fig. 9 presents the modeled
baseline distribution of MAGT15m, TTOP, and ALT for the

The Cryosphere, 19, 4211-4236, 2025

year 1980. The results reveal pronounced spatial variability
in the ground thermal regime across the WKL permafrost
survey area. MAGT15m decreases dramatically with ele-
vation, with the warmest average values of around 0.5 °C
being simulated in the central low-elevation zones (below
4800 m a.s.l.) and the coldest, below —10 °C, being found in
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high-elevation areas (around 6000 m a.s.l.). Moderate varia-
tions in MAGT15m are also modeled across different soil
stratigraphic classes. The coldest average MAGT15m, ap-
proximately —3.5 °C, occurs in eolian sediments, while the
warmest, about —1 °C, is found in alluvial plain deposits.

A similar spatial pattern is evident in the modeled TTOP,
although TTOP values are generally slightly lower than those
of MAGT15m across the region (Fig. 9d—f). Likewise, ALT
shows a strong elevation dependency. In lower-elevation ar-
eas (below 5400ma.s.l.), ALT typically ranges from 2.5
to 3.0m, with some localized zones exceeding 3.0m. At
higher elevations, ALT decreases progressively, dropping be-
low 1.0m, and approaches O m in areas above 6000 ma.s.1.,
where perennially frozen conditions prevail. ALT also varies
markedly across stratigraphic classes: the alluvial class ex-
hibits the greatest average ALT, while the glarosion class
shows the shallowest (Fig. 91).

https://doi.org/10.5194/tc-19-4211-2025

4.2.3 Evolution of permafrost thermal conditions

Figure 10 shows the simulated interdecadal changes in
MAGT15m, TTOP, and ALT across the WKL permafrost
region from 1980 to 2022. From the 1980s to 1990s,
MAGT15m remained relatively stable in 62.4 % of the re-
gion (£0.3°C; Fig. 10a). A clear warming trend emerged
from the 1990s to 2000s, with MAGT 15m rising in 67.2 % of
the area and localized increases exceeding 1.8 °C (Fig. 10b).
From the 2000s to 2010-2022, warming became more vari-
able, and 47.1 % of the region experienced cooling, with de-
creases of up to —1.8 °C (Fig. 10c). Overall, from 1980 to
2022, 58.6 % of the region warmed (up to +1.8 °C), while
25.5 %, mainly in central WKL, cooled, with decreases be-
low —1.8 °C (Fig. 10d).

TTOP followed a similar trend. The largest increase oc-
curred between the 1990s and 2000s, when 86.7 % of the
region warmed, and 16.4 % showed increases above 0.8 °C
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Figure 8. Spatial distribution of frozen-ground types in the WKL permafrost survey area, as represented by four historical maps: (a) the
1980s (Li and Cheng, 1996), (b) the 2000s (Wang et al., 2006), (¢) 2010 (Cao et al., 2023), and (d) after 2010 (Zou et al., 2017) (left
column). The corresponding MGPM simulations are shown in the middle column (e-h), and spatial discrepancies between each historical
map and the MGPM outputs are highlighted in the right column (i-1).

(Fig. 10e). From the 2000s to 2010-2022, 70.5 % of the re-
gion continued to warm (up to +1.8 °C; Fig. 10f-g). Over
the full period, 81.7 % of the region experienced a TTOP
increase, with 17.2 % warming by over 1.3 °C. However, a
small central area (~ 7.4 %) showed declines ranging from
—0.3 to —1.3 °C (Fig. 10h).

ALT increased most significantly between the 1980s and
the 1990s, with 74.2 % of the region showing growth of
0.1-1.5m and with some areas exceeding 1.5m (Fig. 10i).
From the 1990s to 2000s, 58 % of the region continued to in-
crease, although 7.6 % modeled a decrease of —0.3to —1.0m
(Fig. 10j). From the 2000s to 2010-2022, 59 % of the area
experienced ALT increases, while 0.97 % showed sharp de-
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clines beyond —0.8 m (Fig. 10k). Overall, ALT increased by
an average of 0.17 m across WKL from 1980 to 2022, with
83.1 % of the region warming and 16.9 %, mainly central,
cooling, in some places by more than —0.8 m (Fig. 101).
Figure 11 illustrates the interdecadal variations of
MAGTI15m, TTOP, and ALT across different elevation
zones and soil stratigraphic classes. Overall, the modeled
MAGT15m showed minor fluctuations and a slight up-
ward trend from the 1980s to 2010-2022. The most no-
ticeable increase occurred at the highest elevations (5600-
6000 ma.s.l.), though changes remained less pronounced
than those in TTOP (Fig. 11a-b). MAGT15m showed no re-
markable differences across soil classes (Fig. 11d). In con-
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1:Glarosion; 2:Alluvial plain; 3:Aeolian; 5:Colluvial valley; 6:Lacustrine

Figure 9. Spatial distribution of simulated MAGT15m (first column, a—c), TTOP (second column, d—f), and ALT (third column, g—i) from
the initial model output for the year 1980. Seasonally frozen ground is shown in red, and glaciers and lakes are in gray (top row). The
middle row displays boxplots of MAGT15m, TTOP, and ALT grouped by elevation bands ranging from 4300 to 6000 m a.s.l. (excluding
specific areas). The bottom row shows boxplots categorized by soil stratigraphic classes: glarosion, alluvial plain, eolian, colluvial valley,
and lacustrine. In each boxplot, the box bounds represent the 25th and 75th percentiles, the whiskers extend to 1.5 times the interquartile

range, and the horizontal line inside the box indicates the median.

trast, TTOP exhibited a clear warming trend across most soil
classes, except in alluvial sediments. ALT increased remark-
ably with elevation from the 1980s to 2000s (Fig. 11c) and
showed substantial variability among soil classes. The largest
ALT increase (> 0.17 m) occurred in alluvial and lacustrine
sediments, while the smallest (0.11 m) was in glarosion sed-
iments (Fig. 111).

4.2.4 Evolution of permafrost extent

Table 3 shows permafrost aggradation and degradation in re-
sponse to climate variability across the WKL permafrost area
from 1980 to 2022. Based on the initial simulation for the
1980s, approximately 82.27 % of the WKL area was under-
lain by permafrost, with 55.58 % occurring in eolian stratig-
raphy and 67.9 % occurring at elevations between 4800 and
5600 ma.s.l.

https://doi.org/10.5194/tc-19-4211-2025

Permafrost extent remained unchanged from the 1980s to
1990s. A slight decline of 0.15 % was simulated between the
1990s and 2000s, followed by a 0.44 % increase from the
2000s to 2010-2022. These changes were primarily concen-
trated in low-elevation areas below 4800 ma.s.l. and in re-
gions with alluvial plain sediments (Table 3). Overall, the
simulations indicate that permafrost extent in WKL has re-
mained relatively stable over the last 43 years.

5 Discussion
5.1 Applicability of the forcing data
Previous studies have shown that coarse-resolution soil

temperature products from atmospheric reanalysis datasets,
such as ERA-Interim (0.125° x 0.125°) and ERA5-Land

The Cryosphere, 19, 4211-4236, 2025
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Figure 10. Spatial distribution of relative changes in modeled MAGT15m (left column: a—d), TTOP (middle column: e-h), and ALT (right
column: i-1) for the 1980s, 1990s and 2000s and 2010-2022. Seasonally frozen ground is shown in purple, and glaciers and lakes are in gray.

(0.1° x 0.1°), as well as assimilated products like the CMA
forcing dataset CLDAS (0.0625° x 0.0625°), exhibit sub-
stantial uncertainties when applied to the QTP, particularly
in permafrost regions (Hu et al., 2019; Yang et al., 2020; Hu
et al., 2024). Moreover, at these spatial scales, the forcing
data often fail to capture the complex heterogeneity in sur-
face cover and soil moisture that drives spatial variability
in ground temperature and ALT across the QTP (Hu et al.,
2023a). These limitations contribute to large uncertainties in
simulating permafrost thaw depth and often result in degra-
dation rates that deviate from observed trends (Lawrence et
al., 2012; Zhao et al., 2024).

In contrast, satellite remote sensing products such as
MODIS LST offer a higher spatial resolution and larger
regional coverage and, potentially, can better capture sur-
face heterogeneity, thereby reducing modeling uncertain-

The Cryosphere, 19, 4211-4236, 2025

ties. However, MODIS LST has several limitations for per-
mafrost modeling applications: it measures the skin temper-
ature rather than the true ground surface temperature, often
reflecting the surface temperature of vegetation canopies or
snow. Additionally, snow cover introduces thermal insulation
effects, cloud cover leads to data gaps, and only clear-sky
conditions are captured.

To address these challenges, we used a modified LST
product developed by Zou et al. (2017), which incorporates
cloud gap filling and calibration with ground-based AWS ob-
servations to better account for surface heterogeneity. Val-
idation at three typical permafrost sites in the central per-
mafrost zone and the WKL region demonstrated strong per-
formance. In our study, this product was further improved
using a machine learning approach to reconstruct pre-2003
LST by integrating multiple data sources. The reconstructed

https://doi.org/10.5194/tc-19-4211-2025
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Figure 11. Boxplot maps of modeled MAGT15m (first column: a, d), TTOP (middle column: b, e), and ALT (right column: ¢, f) for four
periods (1980s, 1990s and 2000s and 2010-2022), shown in differently colored boxes. The first row categorizes the data by elevation (ranging
from 4300 to 6000 ma.s.1.), while the bottom row categorizes it by soil stratigraphy (glarosion, alluvial plain, eolian, colluvial valley, and
lacustrine). The top and bottom lines of the boxplots represent the 75th and 25th percentiles, respectively, with the whiskers extending to the
highest and lowest values within 1.5 times the interquartile range. The middle line of each boxplot indicates the median.

Table 3. Changes in the areal extent of frozen-ground types in the WKL permafrost region from 1980 to 2022, categorized by elevation and

soil stratigraphic class.

Altitude range (102 ma.s.l.) Permafrost areal extent (%) SE. (%)
<48 4850 50-52 52-54 54-56 56-60 >60  Sum

1980s 274 1258 18.79 2432 1222 9.07 256 82.27 2.67
1990s 2.87 1248 18.76 2432 1222 9.07 256 8227 2.67
2000s 2.84 1246 18.67 2431 12.22 9.07 256 82.13 2.81
2010-2022 3.01 12,62 18.78 2432 1222 9.07 256 82.57 2.36
Stratigraphic class 1 2 3 5 6

1980s 12.32 5.92 55.58 3.51 4.95 82.27 2.67
1990s 12.36 575 5571 3.51 4.94 82.27 2.67
2000s 12.36 5.70  55.62 3.51 4.95 82.13 2.81
2010-2022 12.34 5.81 55.94 3.51 4.97 82.57 2.36

Note that SE. indicates seasonally frozen ground. The numbers for soil stratigraphy correspond to the following sediment classes: (1) glarosion;
(2) alluvial plain; (3) eolian, (5) colluvial valley, and (6) lacustrine. The glacier and lake area, accounting for 15.06 %, was excluded from this

statistic. The main changes in permafrost extent are highlighted in bold.

LST outperformed the original product slightly (R? > 0.95,
MAE =1.29-1.50°C, RMSE =1.62-1.91°C) and showed
significant improvement over ERAS5-Land LST.

Direct validation of pre-2003 LST is not possible due to
the lack of satellite or ground observations in the WKL re-
gion. Thus, we employed an indirect validation approach:
the reconstructed LST was used to force the MGPM to sim-
ulate permafrost thermal dynamics from 1980 onward. The
simulation results were evaluated against existing permafrost

https://doi.org/10.5194/tc-19-4211-2025

monitoring data and previously published permafrost distri-
bution maps from various periods, i.e., the 1980s (Li and
Cheng, 1996), the 2000s (Wang et al., 2006), 2010 (Cao et
al., 2023), and post-2010 (Zou et al., 2017). The strong agree-
ment between the MGPM outputs and these independent
sources supports the reliability of the pre-2003 LST recon-
struction. Moreover, our analysis reveals pronounced LST
warming in the WKL survey area since the mid-1980s, with
accelerated warming over the last decade. This trend aligns

The Cryosphere, 19, 4211-4236, 2025
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with recent documented warming across the QTP (Jin et al.,
2011; Yao et al., 2019; You et al., 2021; Li et al., 2024), pro-
viding further indirect validation of the reconstructed LST.
Collectively, this multi-faceted validation approach provides
reasonable confidence in our LST dataset despite the lack
of direct early-period observations. While we acknowledge
this limitation, we believe our methodology offers a robust
solution given the data constraints of this remote and obser-
vationally challenging region.

The above comparisons show that the reconstructed LST
closely aligns with in situ data and is suitable for ground ther-
mal modeling. However, a seasonal cold bias remains, espe-
cially in July—September of Zou_LST (Fig. 3), leading to a
slight underestimation of shallow-soil temperatures, result-
ing in a cold bias in ALT. Such a bias is likely to be due
to the sensitivity of near-surface ground temperature to sea-
sonal forcing. Similarly, Westermann et al. (2015) found that
an LST uncertainty of £2°C can lead to a £3 cm uncer-
tainty in simulated thaw depth. ERAS-Land skin tempera-
ture exhibits a notable winter cold bias over the QTP, likely
due to overestimated snow cover persistence and excessive
snowfall in the ERAS-Land snow reanalysis product. These
factors enhance surface albedo, leading to exaggerated sur-
face cooling — a bias well documented by Cao et al. (2020)
and Orsolini et al. (2019). We conducted a sensitivity analy-
sis (Fig. 12) to evaluate the impact of uncertainties in model
forcing (e.g., LST) on simulation results, and the findings
confirm the model’s robustness in relation to LST biases.
Moreover, since thermal signals attenuate with depth and be-
cause ground temperatures at the ZAA level reflect long-term
trends (Jin et al., 2011; Dobinski and Kasprzak, 2022), the
observed cold bias appears to be seasonal and has a limited
influence on long-term permafrost dynamics.

Nonetheless, in complex mountainous terrain, a
lkm x 1km grid cell is insufficient to capture micro-
topographic features such as slope, aspect, and wind-driven
snow redistribution — factors that strongly influence local
permafrost hydrothermal dynamics. Therefore, our modeling
scheme should be considered to be a first-order approxima-
tion of permafrost thermal distribution rather than a tool for
detailed slope-scale assessments in these areas. In addition,
resampling coarse-resolution input datasets to match the
model resolution introduces uncertainties into the LST
reconstruction process. Despite these limitations, the model
successfully reproduces regional permafrost thermal patterns
in the WKL area, as confirmed by in situ observations and
existing permafrost maps. Although constrained by the
spatial resolution of satellite-derived LST, the approach
performs well in simulating the thermal state and ALT of
permafrost, providing valuable insights for remote, data-
scarce regions of the western QTP. Future improvements
will require the integration of higher-resolution datasets and
enhanced representation of sub-grid variability.
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5.2 Permafrost thermal stability and warming trends

Permafrost thermal degradation is a complex and lagged re-
sponse to climate warming, further modulated by local en-
vironmental factors such as soil type, ground ice content,
geothermal heat flux, and the initial thermal state of the
ground (Zhao et al., 2020, 2024; Hu et al., 2023a). In re-
sponse to climate change, permafrost does not degrade in-
stantaneously but undergoes a gradual adjustment of its ther-
mal regime over various timescales — ranging from years to
centuries or even millennia.

On the QTP, this response is particularly nuanced. Wu et
al. (2010) proposed a classification of permafrost degrada-
tion stages based on ground temperature profiles, including
the warming stage, the zero-geothermal-gradient stage, the
talik development stage, and eventual disappearance. These
thermal states reflect degradation processes that have been
ongoing since the Last Glacial Maximum (LGM), shaped by
both climate history and local ground conditions.

Compared to high-latitude permafrost regions in the Arctic
and sub-Arctic, permafrost on the QTP is generally warmer
and occurs under a relatively higher geothermal gradient.
This distinct thermal setting leads to a slower increase in
ground temperature and prolongs the degradation response
time despite pronounced atmospheric warming (Jin et al.,
2011; Zou et al., 2017; Biskaborn et al., 2019). In contrast,
Arctic permafrost tends to be colder and more sensitive to
warming, resulting in faster thermal responses. These re-
gional differences highlight the importance of accounting for
regionally specific thermal regimes when assessing the vul-
nerability of permafrost to climate change.

Our study investigated the spatiotemporal dynamics of
the permafrost thermal regime in the WKL region of the
northwestern QTP from 1980 to 2022. The most pronounced
warming in MAGT15m and TTOP occurred between the
1990s and 2000s, whereas ALT changes aligned more closely
with LST fluctuations, peaking between the 1980s and 1990s.
Furthermore, TTOP showed a faster and more intense re-
sponse to surface warming than the deeper MAGT15m. Fur-
thermore, our simulation results found that approximately
70.98 % of permafrost in the region is currently in a warming
phase, characterized by initial MAGT values below —2.0 °C
and ALT of less than 1.5m, predominantly occurring at
elevations above 4800ma.s.l. and experiencing the most
pronounced warming. An additional 17.58 % 1is transition-
ing toward the zero-geothermal-gradient stage, while only
11.44 % has reached or is progressing toward talik develop-
ment. These latter zones are typically found at lower eleva-
tions (below 4800 m a.s.l.) and are associated with relatively
high MAGT15m (above —1 °C), indicating active degrada-
tion, where even modest temperature increases.

Permafrost forms when long-term ground surface heat loss
exceeds incoming heat under persistently cold climate con-
ditions (Wu et al., 2010). In a warming climate, sustained
increases in surface temperature disturb the previous ther-
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Figure 12. One-at-a-time sensitivity analysis showing the effects of +10 % variation in individual model parameters, e.g., soil thermal
conductivity, heat capacity, water and/or ice content, initial temperature, and upper boundary temperature, on (a, b, ¢) MAGT15m and
(d, e) ALT across three ground conditions: stable permafrost (a, d), unstable permafrost (b, e), and seasonally frozen ground (c).

mal equilibrium, leading to excess heat accumulation in the
active layer. This causes progressive ground warming from
the surface downward and reduces the vertical thermal gra-
dient within the permafrost. Notably, during the early stages
of warming, permafrost temperatures rise more quickly than
thaw occurs as much of the energy is used to warm the
frozen soil to its thaw point. This explains why the overall
areal extent of permafrost distribution in the WKL remained
relatively stable during the simulation period despite a pro-
nounced warming trend. Interestingly, while regional aver-
age LST showed a steady increase from 1980 to 2022, con-
siderable interannual and spatial variability was simulated.
We hypothesize that intermittent cooling episodes may have
triggered the formation or re-expansion of permafrost in cer-
tain areas through delayed responses, a view supported by
our simulation, which showed a slight increase in permafrost
extent between 2010 and 2022 despite continued warming.

Looking ahead, under continued climate warming, MAGT
is project to increase further. As heat penetrates deeper into
the ground, the thermal gradient at the base of the permafrost
eventually drops below the geothermal gradient, causing heat
to flow upward from the unfrozen substrate. This initiates
basal thaw, leading to a gradual upward retreat of the per-
mafrost base and overall thinning of the permafrost layer.
Due to its relatively high geothermal gradient, the QTP
shows a slower thermal response to atmospheric warming
than Arctic and sub-Arctic regions (Jin et al., 2011), result-
ing in lower rates of ground temperature increase (Zou et al.,
2017).

https://doi.org/10.5194/tc-19-4211-2025

As permafrost temperatures approach 0°C, ground ice
near the permafrost table begins to melt, absorbing large
amounts of latent heat, a process known as the “zero-curtain
effect”. This effect notably slows or temporarily halts fur-
ther warming, dampening seasonal temperature fluctuations
in the shallow permafrost. At the same time, geothermal heat
from below is primarily consumed by bottom-up thawing.
The zero geothermal gradient stage marks a critical transi-
tional phase during which nearly all incoming heat is used for
ice melt. As a result, permafrost warming during this stage
is slower, smaller in magnitude, and less responsive to cli-
mate forcing. Once seasonal freezing no longer reaches the
permafrost table, a talik — an unfrozen zone within the per-
mafrost — forms and begins to expand. Numerical simula-
tions by Sun et al. (2019) demonstrate that talik development
marks a tipping point, triggering accelerated thaw and irre-
versible permafrost degradation until complete loss.

However, the overall process of permafrost degradation
tends to be slow and delayed, particularly in deep permafrost,
as confirmed by previous studies showing that permafrost
loss, particularly in terms of areal extent, does not follow a
linear trajectory and that permafrost thermal responses to cli-
mate warming occur more gradually than suggested by many
earlier assessments (Guo et al., 2012; Ni et al., 2021). Even
under the extreme RCP8.5 scenario, simulations project only
gradual deepening of the permafrost table. For example, by
2050, permafrost is still expected to persist at a depth of 40 m
at Wudaoliang and Tanggula — two borehole sites in the con-
tinuous permafrost zone, where ground temperatures are cold
and permafrost layers are thick. In contrast, at Xidatan, lo-
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cated near the lower boundary of the permafrost zone with
a warmer, thinner (~ 32 m) permafrost layer, the permafrost
base is projected to retreat more significantly. Neverthe-
less, simulations suggest that permafrost will still exist at
this site through 2100 based on trends in deep-ground tem-
perature, ice content, and thermal gradients. Similar results
have been reported for the northern margin of the QTP per-
mafrost zone. MGPM-based modeling (Zhao et al., 2022) in-
dicates that MAGT will continue to rise under gradual warm-
ing. Warming rates are projected to be slightly higher under
CMIP6 Shared Socioeconomic Pathways (e.g., 0.064 °C yr~!
for SSP5-8.5) compared to CMIP5 Representative Concen-
tration Pathways (e.g., 0.060°Cyr~! for RCP8.5), but lit-
tle difference is projected in areal permafrost extent. These
findings suggest that, while permafrost temperatures are in-
creasing, spatial loss remains relatively slow — an important
consideration for modeling permafrost carbon feedback and
related hydrological processes.

It is also important to recognize that the thermal response
of permafrost to warming may vary considerably in ice-rich
zones, particularly those with excess ground ice. In such
areas, thawing of massive ground ice and associated wa-
ter dynamics significantly shape degradation trajectories, of-
ten leading to landscape changes such as surface subsidence
and thermokarst pond formation (Westermann et al., 2016).
These hydrological feedbacks can either slow or acceler-
ate thaw. Efficient drainage of meltwater delays talik de-
velopment and surface collapse (Westermann et al., 2016),
while surface water accumulation promotes heat transfer and
deeper thawing (Nitzbon et al., 2020). These processes in-
crease the potential release of vast stores of frozen organic
carbon — particularly CO, and CH4 — trapped in cold, ice-rich
lowlands. Therefore, thermokarst-driven permafrost degra-
dation under continued warming could greatly amplify the
global permafrost carbon—climate feedback (Schuur et al.,
2015).

5.3 Comparison with previous studies

Global warming has markedly affected permafrost thermal
regimes worldwide, yet the mechanisms, rates, and spatial
patterns of permafrost responses to climate variability remain
poorly understood (Smith et al., 2022; Hu et al., 2023a; Zhao
et al., 2024). This is partly due to the limited representation
of permafrost thermal dynamics in global models, especially
in complex terrains like the QTP, leading to large uncertain-
ties in simulated permafrost change and related climate feed-
backs.

In this study, we employed the MGPM framework to sim-
ulate permafrost thermal regimes in the WKL region from
1980 to 2022. We quantified spatial changes in both per-
mafrost and seasonally frozen ground and compared our re-
sults with four published permafrost distribution maps (see
Fig. 9). Overall, our simulated permafrost extent aligns well
with existing maps, though discrepancies are notable in ar-
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eas classified as seasonally frozen ground. Similar inconsis-
tencies were also reported in Zhao et al. (2022) for the Xi-
datan region of QTP, likely due to differences in model in-
puts, structures, spatial resolution, study periods, and local
environmental factors (Zhao et al., 2022; Zou et al., 2017).

Maps by Li and Cheng (1996) and Wang et al. (2006),
derived from field data, aerial photos, and satellite im-
agery, used coarse-scale topographic maps (1 : 3000000 to
1:4000000) and manual delineation based on air tempera-
ture or MAGT isotherms. These low-resolution methods in-
troduce substantial uncertainties and are inadequate for cap-
turing fine-scale ground thermal variability or for validating
model outputs. In contrast, the maps by Cao et al. (2023) and
Zou et al. (2017) and from our simulations utilize enhanced
remote sensing LST data at 1km x 1km resolution, offer-
ing improved accuracy in identifying both permafrost and
seasonally frozen ground. These remote-sensing-based ap-
proaches also better match borehole observations, highlight-
ing their advantage for regional permafrost mapping on the
QTP, as previously noted by Zhao et al. (2022).

However, the equilibrium assumptions underlying the Cao
et al. (2023) and Zou et al. (2017) maps — based on climate
averages from 2005-2010 and 2003-2012, respectively — do
not reflect the current nonequilibrium thermal state of per-
mafrost. Their models typically extend to depths of less than
3m and fail to capture deeper permafrost dynamics. In ar-
eas with supra-permafrost taliks, the TTOP criterion may
underestimate permafrost extent. Consequently, these maps
likely underestimate permafrost area compared to our tran-
sient simulation results (Zhao et al., 2022).

Unlike equilibrium-based models, our approach captures
transient responses of permafrost to evolving climate condi-
tions. Results show that permafrost extent in the WKL region
remained relatively stable from 1980 to 2022, with less than
0.5 % experiencing degradation or aggradation. This agrees
with borehole data (Jin et al., 2011), which indicate greater
thermal stability in the QTP’s continental interior, particu-
larly in the west and north, where westerlies dominate.

Some studies report more rapid permafrost degradation
(Guo et al., 2012; Guo and Wang, 2016; Ni et al., 2021),
likely due to model configurations that overlook the lag be-
tween atmospheric warming and deep-ground response in re-
gions with thick permafrost. This discrepancy is often due
to sparse observations and incomplete understanding of per-
mafrost processes on the QTP (Sun et al., 2019; Hu et al.,
2023a). Many models focus on shallow soil layers and ne-
glect coupled heat-moisture dynamics, limiting their ability
to simulate long-term changes accurately.

Permafrost on the QTP developed over millennia under
cold paleoclimates, resulting in deeply frozen ground rich
in ice (Jin et al., 2011; Zhao et al., 2020). Present-day
ground temperatures reflect cumulative effects of past cli-
mate variability, especially at depths of tens to hundreds
of meters (Lachenbruch and Marshall, 1986; Allen et al.,
1988; Buteau et al., 2004; Langer et al., 2024). Accurately
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modeling permafrost therefore requires realistic initial con-
ditions that consider this legacy. However, many models ne-
glect deep legacy effects below 1 m ground ice and oversim-
plify geothermal heat flux by applying zero-flux or constant-
temperature boundaries (Wu et al., 2010; Xiao et al., 2013;
Zhao et al., 2022), introducing major uncertainties into both
present and future projections.

To improve long-term permafrost simulations in ESMs,
we recommend the following key developments: (i) enhance
bottom boundary conditions by extending soil profiles to
50-100 m and incorporating realistic geothermal heat fluxes
to better capture deep-ground thermal dynamics; (ii) im-
prove vertical resolution and initialization, including high-
resolution soil layering, longer spin-up periods, and calibra-
tion using in situ data to better capture the thermal memory
of deep permafrost; (iii) advance the representation of ground
ice processes, including sub-grid variability, the formation
and melt of excess and segregated ice, and thaw-induced
surface changes such as thermokarst; (iv) improve the ac-
curacy and resolution of climate forcing data; and (v) lever-
age MGPM outputs to calibrate LSMs, using high-resolution,
observation-constrained simulations and remote sensing data
to optimize parameters and reduce uncertainties.

5.4 Current model shortcoming and future
improvements

5.4.1 Representation of soil stratigraphy

Accurate representation of soil properties is critical for mod-
eling water and heat transport in frozen soils at both global
and regional scales (Dai et al., 2019; Lawrence et al., 2008;
Harp et al., 2016; Hu et al., 2023a). However, most soil
datasets used in models are based on data from seasonally
frozen regions, and there remains a notable lack of coverage
in the permafrost areas of the QTP, particularly for deeper
soil layers (Hengl et al., 2017; Li et al., 2014, 2015; Shang-
guan et al., 2013). Westermann et al. (2017) addressed sim-
ilar limitations in the Siberian permafrost region by using
geomorphological classification maps to parameterize large-
scale patterns of ground thermal properties such as sediment
type, ground ice content, and surface characteristics.

In this study, we adopted a comparable approach by ap-
plying an existing stratigraphic classification map, gridded at
1 km x 1 km resolution, to represent the spatial distribution
of sediment types, ground ice, and surface properties in the
WKL region. These classifications were then used to param-
eterize subsurface properties in our model. However, small-
scale heterogeneity in ground conditions may introduce con-
siderable variability into the ground thermal regime, which
cannot be resolved at the 1 km x 1 km resolution. Moreover,
variability within each sediment class (Table 1) can result in
biased model outputs.

To quantify the aforementioned model parameter uncer-
tainty, we conducted a one-at-a-time sensitivity analysis
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(Fig. 12) using three representative boreholes located in sta-
ble permafrost, unstable permafrost, and seasonally frozen
ground (see Table 4). Key model parameters were per-
turbed by +10 % to evaluate their effects on permafrost ther-
mal regime (MAGT15m and ALT). The results show that,
among all parameters, upper boundary temperature (i.e., sur-
face forcing) exerted the strongest influence on MAGT15m,
though the absolute impact was modest, around £0.15 °C in
seasonally frozen ground and < 40.1°C in permafrost ar-
eas. ALT showed similarly limited sensitivity, varying by
~ 0.1 m in stable permafrost and +0.05m in unstable
zones. Soil thermal conductivity and water and/or ice con-
tent had a more pronounced effect on ALT, particularly in
unstable permafrost, where a 10 % change could lead to a
£0.10—=£0.15 m variation. In contrast, soil heat capacity had
minimal influence on both MAGT15m and ALT.

The above analysis indicates that the model demonstrates
robustness in relation to parameterization uncertainties and
that uncertainties associated with stratigraphy have a limited
effect on overall performance. Although stratigraphic clas-
sification and spatial variability inevitably introduce some
degree of uncertainty, our approach is well supported by
field measurements and observed thermal properties. Despite
these limitations, we are confident that the model accurately
represents the key thermal characteristics of each sediment
class — key factors for simulating permafrost dynamics. Con-
tinued improvements in subsurface datasets, particularly in
permafrost regions, will be essential for improving model
performance in future applications.

5.4.2 Model initialization

The model assumes equilibrium initial conditions based on
the first year’s climate forcing, implying a stable land-
atmosphere heat exchange prior to 1980. While this setup
does not capture transient ground temperature states at that
time, its influence diminishes over time. Sensitivity analysis
also shows that initial conditions have a limited impact (e.g.,
moderate in seasonally frozen ground (~ %0.12 °C) and neg-
ligible in permafrost areas). Moreover, simulated permafrost
temperatures, ALT, and thaw depth align well with obser-
vations and benchmark maps, suggesting that initialization
uncertainties have minimal impact on long-term results.

5.4.3 Model physics

The current MGPM configuration does not include some
processes such as soil water convection or lateral heat and
water fluxes, which can significantly affect ground thermal
regimes, especially near taliks, waterbodies, and permafrost
margins (Boike et al., 2015; Bense et al., 2012; Sjoberg et al.,
2016; Kurylyk et al., 2016). As a result, the model may not
fully capture thermal dynamics in areas with strong lateral
fluxes, such as sharp mountain ridges or zones near lakes.
Nevertheless, the model performs well in simulating ground
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Table 4. Description of three representative borehole sites used for one-at-a-time sensitivity analysis.

Borehole  Description

ZK30

The borehole reaches a depth of 15 m, with ground primarily composed of fine sand and silty sand.

The MAGT is —1.66 °C, and the ALT is 2.4 m, classifying the site as stable permafrost.

ZK12

The borehole reaches a depth of 13.5 m and is located on a vegetation-free surface.

The core consists mainly of fluvial sand and sand. Frozen soil was first encountered at a depth of 4.9 m, with small
ice crystals uniformly distributed within a granular soil structure. Below 5.5 m, the frozen layer disappears,
accompanied by a noticeable increase in ground temperature. The 4.9-5.5 m interval represents a transition zone,

and the site is classified as unstable permafrost.

ZK13

No frozen soil was encountered during the drilling process, and the site is classified as seasonally frozen ground.

Note that this information is compiled from Li et al. (2012) and Zhao et al. (2019).

temperature and ALT in the WKL region, suggesting that
one-dimensional heat conduction captures the dominant ther-
mal processes in this area.

In addition, the subsurface thermal model that is the
MGPM uses satellite-derived LST as the upper boundary
condition, which does not explicitly account for snow and
vegetation canopy effects, potentially introducing uncertain-
ties in densely vegetated areas. However, in the permafrost
regions of the QTP, snow cover is typically thin (~ 3 cm) and
short-lived (lasting less than a day per event), and vegeta-
tion is sparse, with less than 10 % cover in the west (Wu and
Zhang, 2008; Che et al., 2008; Wang et al., 2016; Zou et al.,
2017; Orsolini et al., 2019; Yan et al., 2022). Under these
conditions, the thermal offset between ground surface tem-
perature (GST) and LST is minimal (Hachem et al., 2012).
While thin snow cover may briefly cool the surface due to
high albedo and rapid melt (Zhang, 2005), it contributes little
thermal insulation, and its effect is likely to be negligible over
the decadal timescale of our study. Still, the model’s limi-
tations highlight the need for further validation, especially
regarding hydrogeological influences on permafrost thermal
regimes and improved representation of surface heterogene-
ity in future developments.

6 Conclusions

The thermal state of permafrost is vital for understanding cli-
mate, ecology, hydrology, and infrastructure stability on the
QTP. In this study, we quantitatively assessed the spatiotem-
poral dynamics of permafrost thermal regimes from 1980 to
2020 in the remote WKL region of the northwestern QTP
using the enhanced numerical MGPM. The key conclusions
drawn from this study are summarized below:

— Compared to conventional climate forcing, the recon-
structed model forcing enables higher-resolution and
more accurate simulations of permafrost thermal states.
The MGPM remains stable under model parameter
uncertainties, reproducing 10 m ground temperatures
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within £0.25 °C and ALT within £0.25 m throughout
the simulation period.

— Approximately 80% of permafrost in the WKL
region has initial MAGTI15m between —7.5 and
—1.5°C. Warmer ground temperatures (~ —0.5 °C) and
deeper ALT (2.5-3.0m) occur in low-elevation areas
(< 4800 m), while colder temperatures (< —10 °C) and
shallower ALT (< 1 m) are found at elevations above
5600 ma.s.l. Among soil types, alluvial plains show the
deepest ALT (~2.5m), and glarosion sediments show
the shallowest (~ 1.5 m).

— From 1980 to 2022, the WKL permafrost region ex-
perienced a notable warming trend in LST, averaging
0.40 °C per decade. In response, the most notable in-
creases in MAGT15m occurred between the 1990s and
2000s, while the maximum ALT variations align more
closely with LST peaks during the 1980s—1990s.

— During the same period, about 71 % of permafrost
showed signs of warming, mainly at elevations above
4800 m a.s.l. Another 17.6 % is transitioning toward the
zero-geothermal-gradient stage, while 11.4 % — mostly
in lower areas below 4800 m — has entered or is pro-
gressing toward talik formation, indicating potential
degradation. Despite these changes, the overall per-
mafrost extent in WKL remained relatively stable, with
less than 0.5 % showing signs of recovery or loss over
the study period.

Code and data availability. In situ monitoring data from field ob-
servation sites, provided by the Cryosphere Research Station on
the Qinghai—Xizang Plateau of the Chinese Academy of Sci-
ences (CAS), are available at the National Tibetan Plateau Data
Center: https://doi.org/10.11888/Geocry.tpdc.271107 (Zhao et al.,
2021b) and from Zhao et al. (2021a), as well as in Zhao and
Sheng (2019) (Permafrost and environment changes on the Qinghai-
Tibetan Plateau, Beijing, China: Science Press).

Enhanced MODIS LST data since 2003 were obtained from Zou
et al. (2017).
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Daily air temperature and precipitation data from
1961 to 2019 were provided by Qin et al. (2022):
https://doi.org/10.1594/PANGAEA.941329 (Qin and Zhang,

2022).
The CNOS.1 dataset is available on request from https://ccrc.iap.
ac.cn/resource/detail 7id=228 (last access: 12 December 2024).
Additional datasets used in this study include the following:

— skin temperature - ERAS-Land, European Centre
for Medium-Range  Weather  Forecasts (ECMWEF):
https://doi.org/10.24381/cds.e2161bac ~ (Copernicus  Cli-
mate Change Service, 2019);

— soil temperature — NCEP Climate Forecast System Reanal-
ysis (CFSR): https://doi.org/10.5065/D69K487] (Saha et al.,
2010b);

— fractional cloud cover and surface radiation budget —- EUMET-
SAT CM SAF, CLARA_AvHRR_V003: https://doi.org/10.
5676/EUM_SAF_CM/CLARA_AVHRR/V003 (Karlsson et
al., 2023);

— leaf area index (LAI): Global Land Surface Satellite (GLASS)
and MODIS: https://modis.gsfc.nasa.gov/data/dataprod/
mod15.php (last access: 12 December 2024);

— topography — Shuttle Radar Topography Mission (SRTM),
larcsec (~30m) DEM from CIAT: http://srtm.csi.cgiar.org
(last access: 13 July 2025; Jarvis et al., 2008);

— Tibetan Plateau boundary — Zhang (2019), available from Na-
tional Tibetan Plateau Data Center (TPDC) (http://data.tpdc.
ac.cn/zh-hans/, last access: 12 December 2024);

— geological sediment classification and lakes:
https://doi.org/10.11888/Geogra.tpdc.270104 (Zhou
and Cheng, 2019), available from TPDC: http:

//data.tpdc.ac.cn/zh-hans/ (last access: 12 December 2024);

— glacier inventory — Second Glacier Inventory Dataset of China
(Guo et al., 2015);

— permafrost distribution maps — Li and Cheng (1996), Wang et
al. (2006), Zou et al. (2017), and Cao et al. (2023), all available
via TPDC.

The permafrost model source code developed for this study is
available upon request from the following co-authors: Jianting Zhao
(first author) (jt.zhao@nuist.edu.cn), Lin Zhao (corresponding au-
thor) (Izhao @nuist.edu.cn), and Zhe Sun (sunzhe @lzb.ac.cn).
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