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Abstract. There has been a steady increase in marine activ-
ity throughout the Arctic Ocean during the last few decades,
and maritime end users are requesting skilful high-resolution
sea ice forecasts to ensure operational safety. Different stud-
ies have demonstrated the effectiveness of utilizing compu-
tationally lightweight deep learning models to predict sea ice
properties in the Arctic. In this study, we utilize operational
atmospheric forecasts, ice charts, and sea ice concentration
passive microwave observations as predictors to train a deep
learning model with future ice charts as ground truth. The
developed deep learning forecasting system predicts regional
ice charts covering parts of the East Greenland and Barents
seas at 1 km resolution for 1–3 d lead time. We validate the
deep learning system performance by evaluating the posi-
tion of forecasted sea ice concentration contours at differ-
ent concentration thresholds. It is shown that the deep learn-
ing forecasting system achieves a lower error for several sea
ice concentration contours when compared against baseline
forecasts (persistence forecasts, sea ice free drift, and a linear
trend) and two state-of-the-art dynamical sea ice forecasting
systems (neXtSIM and Barents-2.5) for all considered lead
times and seasons.

1 Introduction

Arctic sea ice thickness and extent have decreased since the
first satellite observations were obtained (Kwok, 2018; Ser-
reze and Meier, 2019) as a response to climate change (Notz
and Marotzke, 2012), which is amplified in the Arctic re-

gion (Serreze and Barry, 2011). Summer months are expe-
riencing the greatest loss of sea ice extent (Comiso et al.,
2017), with models from the Coupled Model Intercompari-
son Project 6 (CMIP6) projecting the first virtually ice-free
(< 1×106 km2) Arctic summer before 2050 (Notz and Com-
munity, 2020). As a consequence of the sea ice retreat dur-
ing the summer months, there has been an increase in mar-
itime activity in the Arctic (Eguíluz et al., 2016; Gunnars-
son, 2021), resulting in a consistent increase in the num-
ber of ships present in the Arctic. The period during which
many vessels operate has also extended beyond the summer
months, increasing mariners’ exposure to hazardous sea ice
conditions (Müller et al., 2023). The influx of operators to the
Arctic region has increased the demand for accurate short-
range sea ice forecasts (Stocker et al., 2020) and for end
users’ needs to be taken into account during the validation
of these forecasts (Melsom et al., 2019; Wagner et al., 2020).

Although dynamical sea ice forecasting systems have been
producing operational forecasts at different resolutions and
lead times (Sakov et al., 2012; Metzger et al., 2014; Williams
et al., 2021; Röhrs et al., 2023), feedback from maritime
operators suggests that current sea ice forecasts lack suffi-
cient and relevant verification (Veland et al., 2021). Con-
sequently, maritime operators tend to rather rely on their
own experience (Blair et al., 2022), despite the improved
situational awareness provided by sea ice forecasts for tac-
tical navigation (Rainville et al., 2020). Moreover, dynami-
cal forecasts are computationally expensive, especially when
targeting high spatial resolutions. In recent years, statistical
forecasting approaches have emerged where deep neural net-
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works have been trained on past sea ice information and the
state of the atmosphere in order to predict the future state
of sea ice concentration (SIC) (e.g. Fritzner et al., 2020; Liu
et al., 2021b; Andersson et al., 2021; Liu et al., 2021a; Ren
et al., 2022; Grigoryev et al., 2022). These machine learn-
ing approaches require little memory and computational re-
sources to produce a forecast, once they are trained.

Previous studies (Liu et al., 2021b; Andersson et al., 2021;
Liu et al., 2021a; Ren et al., 2022) have trained deep learn-
ing models on reanalysis datasets such as ERA5 (0.25° res-
olution) (Hersbach et al., 2020) or have used SIC derived
from coarse-resolution (25 km resolution) satellite climate
data records (such as the products from Cavalieri et al., 1996,
and Lavergne et al., 2019). Andersson et al. (2021) pro-
posed IceNet, a pan-Arctic U-Net classifying SIC into sepa-
rate classes defined by sea ice concentration thresholds. An-
dersson et al. (2021) demonstrated that IceNet consistently
improved upon the seasonal numerical forecasting system
SEAS5 (Johnson et al., 2019) for lead times of 2 months and
longer. Similarly, Liu et al. (2021b) showed that a convo-
lutional long short-term memory network covering the Bar-
ents Sea with a 6-week lead time directly predicting SIC
was more skilful than persistence for all considered weekly
lead times. However, due to the aforementioned models us-
ing climatological-scale data as predictors and ground truth,
their application to maritime users as short-term operational
forecasts is limited (Wagner et al., 2020).

Grigoryev et al. (2022) presented a multi-regional U-Net
forecasting system predicting SIC for lead times of up to
10 d, where the real-time availability of SIC satellite re-
trievals and numerical weather forecasts was considered. The
deep learning forecasts of Grigoryev et al. (2022) consider-
ably outperformed persistence and linear trend baseline fore-
casts in the considered regions of the Barents, Labrador, and
Laptev seas. Fritzner et al. (2020) demonstrated the possi-
bility of utilizing a fully convolutional network to forecast
ice charts for the region around Svalbard and the Barents
Sea; however the forecasts had a coarse spatial resolution
due to limited computational resources. High-resolution sea
ice forecasts are important for this region as it is the focus of
many commercial operators from different maritime sectors,
such as shipping, fishing, and tourism (Stocker et al., 2020;
Müller et al., 2023).

In this paper we present the development of a regional
deep learning forecasting system targeting 1 km spatial res-
olution and 1–3 d lead time, covering the area around Sval-
bard and the Barents Sea. The choice of predictors and target
data is made with operational concerns, and the quality of the
forecasts is assessed against relevant baseline forecasts and
dynamical sea ice forecasting systems in a manner relevant
for end users (Melsom et al., 2019; Wagner et al., 2020). The
impact from the different predictors is also assessed. Sec-
tion 2 describes the datasets used for this study, followed by
Sect. 3, which presents the neural network implementation

Figure 1. The model domain (dashed contour) together with the SIC
retrieved from a ice chart (15 September 2022). The SIC intervals
and colour code follow the WMO Ice Chart Colour Standard and
Sea Ice Nomenclature.

and verification setup. Section 4 presents the results, with
Sect. 5 providing the discussions and conclusions.

2 Data

To develop the deep learning forecasting system, several ob-
servation and physical model forecasting system datasets
have been chosen as predictors, as targets, and for valida-
tion. When selecting appropriate datasets, their spatial reso-
lution and release frequency are considered in order to de-
velop an operational product. Table 1 presents the different
products we used and the role they play in our forecasting
system, which are further described in the following sec-
tions. The region of interest is depicted in Fig. 1 and is con-
structed as an intersection between the regional domains of
the gridded ice chart data produced by the Norwegian Ice
Service (https://cryo.met.no/en/latest-ice-charts, last access:
15 September 2023) and the regional numerical weather pre-
diction system AROME Arctic (Müller et al., 2017). The
deep learning model has been developed using the U-Net
architecture (Ronneberger et al., 2015), which requires the
spatial dimensions of the input fields to be repeatedly divis-
ible by a given factor a number of times. For simplicity, the
model domain was set to be a 1 km spatial resolution square
grid containing 1792× 1792 equidistant grid cells, which is
divisible by 4 a total of 4 times. This domain was achieved
by removing lower latitudes from the original AROME Arc-
tic domain, affecting the southern Norwegian, Barents, and
Kara seas.

2.1 Sea ice concentration observations

The ice charts are manually drawn to deliver a SIC prod-
uct which is distributed every workday at 15:00 UTC by
the Ice Service of the Norwegian Meteorological Insti-
tute (https://www.cryo.met.no/en/latest-ice-charts, last ac-
cess: 15 September 2023). The ice analyst who draws the ice
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Table 1. Products used, their application, and their temporal regime. Observational products and physical forecasting models are separated
by the descriptive italic text. Time regime refers to the time period that the dataset covers with respect to the initialization date of the deep
learning model.

Product Variables Training Validation Time regime

Observations

Ice charts SIC Predictor/target Yes Present/future
OSI SAF SSMIS SIC trend Predictor Yes Past
AMSR2 (ASI) SIC No Yes Future

Models

AROME Arctic T2M, X,Y winds Predictor No Future
neXtSIM SIC No Yes Future
Barents-2.5 SIC No Yes Future

chart assesses and merges available synthetic aperture radar
(SAR) scenes with visible and infrared imager observations.
These data sources are supplemented by coarse-resolution
passive microwave observations to achieve a consistent spa-
tial coverage. Incoming observations are interpreted by the
ice analyst as they become available. For our model domain
(Fig. 1), Sentinel-1 SAR swaths are available between mid-
night and 08:00 UTC starting from Novaya Zemlya. Follow-
ing consideration of input data availability and the ice ana-
lyst’s judgement, we assume the ice charts reflect the sea ice
state at 12:00 UTC.

We use gridded SIC from the ice charts as both a predictor
representing initial sea ice conditions and a target at 1–3 d
lead time since the product captures daily (weekdays from
Monday to Friday) observed SIC at a high (< 1km) spatial
resolution. The ice charts are a categorical product, with SIC
following the World Meteorological Organization (WMO)
total concentration intervals (see colour bar of Fig. 1). For
this study, the ice charts have been gridded from vector poly-
gons onto the model domain with a 1 km spatial resolution
using nearest neighbour interpolation. Moreover, we have fil-
tered out Baltic Sea sea ice, as the task of the deep learning
system in this study is to predict sea ice in the Greenland and
Barents seas.

In addition to the ice charts, SIC observations from the
Ocean and Sea Ice Satellite Application Facility (OSI SAF)
special sensor microwave imager/sounder (SSMIS) (OSI-
401) and AMSR2 observations processed with the ASI al-
gorithm from the University of Bremen (Spreen et al., 2008)
are utilized. OSI SAF SSMIS is supplied on a 10 km spatial
resolution and is used to compute a linear sea ice concen-
tration trend, which serves as both a predictor and a base-
line forecast for validation. Motivated by the lack of tempo-
ral awareness of the U-Net architecture (Ronneberger et al.,
2015), computing a linear trend from past sea ice concen-
tration fields will encode multiple previous time steps into a
single two-dimensional field. Moreover, computing the lin-
ear trend from a product other than the ice charts will supply

the model with correlated but not overlapping information. It
is also noted that the ice charts are not produced every day;
hence it would not be possible to use the product to compute
a local trend.

AMSR2 observations are used for validation of the deep
learning forecasting system only. The AMSR2 data utilized
for this work are the ASI sea ice concentration product from
the University of Bremen (Spreen et al., 2008). The dataset
is provided on a 6.25 km grid. AMSR2 observations can be
considered an independent product from the ice charts, which
are primarily derived from SAR observations and are not
used to train the deep learning model. Hence, the AMSR2
data are used as an external product for validation of forecast
performance, providing an estimation of the deep learning
model’s ability to provide consistent forecasts beyond using
the ice charts as validation.

2.2 Physical forecasting systems

In addition to training the deep learning model on current
and previous sea ice concentration data, we also include at-
mospheric predictors as it has been demonstrated that the in-
clusion of the present and future state of the atmosphere can
improve sea ice predictions from deep learning (Grigoryev
et al., 2022; Palerme et al., 2024). For this study, forecasts
of 2 m temperature and 10 m wind components, adjusted
to align with the x,y dimensions of the model grid (x,y

wind), were taken from the AROME Arctic regional numer-
ical weather prediction system developed for operations at
the Norwegian Meteorological Institute (Müller et al., 2017).
Although it is not a forecast field, the land–sea mask used
in AROME Arctic is also extracted as a predictor. We use
AROME Arctic forecasts as predictors for this study due to
its high spatial resolution and regional coverage of the Euro-
pean Arctic. AROME Arctic runs up to a 66 h lead time, is
supplied on a 2.5 km resolution grid with 66 vertical levels,
and initiates a new forecast every 6 h. Near-surface winds in-
fluence the sea ice drift following a non-linear relationship
between wind speed, sea ice drift speed, sea ice concentra-
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tion, and sea ice thickness (Yu et al., 2020). Moreover, near-
surface temperatures affect the sea ice through melting or
growth. AROME Arctic has been in operation and contin-
uous development since October 2015, routinely receiving
updates, which introduce permanent bias changes for pre-
dicted variables. Due to a major change to the representation
of snow over sea ice in 2018, a warm bias in near-surface
temperatures above sea ice was significantly reduced in the
model (Batrak and Müller, 2019). Thus, we start our training
dataset in 2019 to avoid supplying our deep learning model
with samples containing different temperature biases, espe-
cially close to the marginal ice zone (MIZ), where the great-
est model response to predictors occurs.

Moreover, two short-range sea ice forecasting systems,
neXtSIM-F (Williams et al., 2021) and Barents-2.5 (Röhrs
et al., 2023), are used to validate the deep learning fore-
casts against high-resolution physical forecasting systems.
neXtSIM-F is based on the neXtSIM sea ice model, which
is a dynamical/thermodynamical sea ice model using a brit-
tle rheology (Rampal et al., 2016). The version of neXtSIM
used for this work uses the brittle Bingham–Maxwell rheol-
ogy (Ólason et al., 2022). neXtSIM receives oceanic forcing
from TOPAZ4 (Sakov et al., 2012) and atmospheric forcing
from ECMWF IFS (Owens and Hewson, 2018). The fore-
casts are supplied on a pan-Arctic grid at 3 km resolution.
Barents-2.5 is a regional ocean and sea ice ensemble fore-
casting system developed at the Norwegian Meteorological
Institute (Röhrs et al., 2023) and is produced on a 2.5 km spa-
tial resolution and runs up to a 66 h lead time on the same grid
as AROME Arctic. The sea ice model used in Barents-2.5 is
CICE (Hunke et al., 2015). At prediction time, six members
are initiated, with one member receiving atmospheric forc-
ing from AROME Arctic and the rest from atmospheric fore-
casts from ECMWF; however for this study only the member
forced by AROME Arctic has been considered. Finally, due
to recent developments of the model, only forecasts starting
from June 2022 have been considered from Barents-2.5.

3 Methodology

3.1 Dataset preprocessing and selection

We perform preliminary computations in order to ensure that
the data from different sources are on a common grid. The
data preprocessing is performed in two stages. Firstly, data
not matching the AROME Arctic projection are reprojected.
Secondly, for data available at a coarser resolution, nearest
neighbour interpolation is performed in order to resample the
data onto a 1 km grid. The U-Net architecture requires all
predictors to have valid values in all grid cells; however the
input, target ice charts, and SIC trend do not consistently rep-
resent SIC for land-covered grid cells due to their intended
unavailability. In order to avoid sharp gradients between sea-
ice-covered seas and land-covered areas in the ice charts and

SIC trend, we apply a nearest neighbour interpolation of the
local sea ice conditions to fill in the missing sea ice concen-
tration over land grid points following Wang et al. (2017).

Since all the datasets we use for training come from opera-
tional products, we have to take production time, publishing
time, and forecast length into account when selecting pre-
dictors. A graphical summary of the operational schedule for
predictor selection is shown in Fig. 2. The ice charts are valid
at 12:00 UTC, which is regarded as the initialization time
for the deep learning forecasts. The OSI SAF linear trend
is computed from the 5 previous days, until the day before
deep learning forecast initialization. We want AROME Arc-
tic forecasts to provide the future state of the atmosphere to
the deep learning system, which we set to lead times beyond
the deep learning initialization time. Hence, it follows that
the atmospheric forecast should cover the time between the
input and target ice chart valid time.

We choose to use AROME Arctic forecasts initiated at
18:00 UTC on the same day as ice chart publication. Further-
more, we set the AROME Arctic forecast reference time to
be 12:00 UTC on the prediction day, regardless of the model
lead time of 1, 2, or 3 d. This way, we ensure that atmospheric
forecasts cover the time period in between the ice chart pub-
lication and intended target lead time. Moreover, AROME
Arctic initiated at 18:00 UTC reaches 12:00 UTC for a 3 d
target lead time after 66 h (the longest lead time available
from AROME Arctic forecasts), which motivates the choice
of having 12:00 UTC as the reference time regardless of the
target lead time. In addition, AROME Arctic has a produc-
tion time of about 2.5 h, which ensures that forecasts initi-
ated at 18:00 UTC are available before midnight, allowing
deep learning forecasts to be published on the same day as
the input ice chart.

When selecting atmospheric forecasts initiated at
18:00 UTC, 6 h of future atmospheric development oc-
curring after the ice chart valid time (12:00 UTC) is not
included in the atmospheric predictors. Although AROME
Arctic is also initiated at 12:00 UTC, the forecast initiated at
18:00 UTC is more up to date and, as such, is assumed to
be more reliable, especially at longer lead times. Moreover,
the impact of appending 6 h of AROME Arctic initialized
at 12:00 UTC to the training data has been tested and was
shown to have an insignificant impact on model performance
(see the Supplement). Finally, the ice charts do not represent
the sea ice state at any given lead time; rather, they are a
mean representation of previous observations accumulated
over time, ending at publication time. Hence, regardless of
AROME Arctic initialization time, we assume that there
will be some irreducible timing difference between the sea
ice state from the ice charts and the initial atmospheric state
from AROME Arctic, which also varies spatially.

Instead of loading multiple high-resolution AROME Arc-
tic fields during training, we preprocess atmospheric vari-
ables during dataset creation to reduce the amount of mem-
ory needed to load predictors during training. We reduce
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Figure 2. Overview diagram describing predictor publication scheduling, selection, and preprocessing. Description of when the different
predictors are published in relation to a published ice chart when constructing a single sample for a given date. The ice charts are published at
15:00 UTC, followed by AROME Arctic initialized at 18:00 UTC (available ∼ 20:30 UTC). The different colours refer to the deep learning
forecast lead time.

Table 2. Subset affiliation and number of samples for each year over
the different target lead times.

Year Subset 1 d lead time 2 d lead time 3 d lead time

2022 test 196 147 142
2021 validation 198 147 142
2020 train 198 146 142
2019 train 192 143 144

the atmospheric forecast fields between the start date and
12:00 UTC on the target date along the temporal dimen-
sion into a mean field. In addition to reducing the mem-
ory footprint of each predictor, reducing the time steps into
a mean value field also accumulates the temporal changes
in each atmospheric variable into a single predictor. Aggre-
gating statistics at an increasing temporal range causes at-
mospheric predictors to be dependent on target lead time.
Hence, deep learning models are trained independently for
each target lead time.

The main dataset we use covers the period between 2019–
2022. We further split the data such that 2019–2020 is used
for training, 2021 is used for validation, and 2022 is the
test dataset. Table 2 provides an overview of the number
of available samples for each year given each model target
lead time. Moreover, the predictors are normalized according
to the min–max normalization equation. This normalization
scheme ensures that the different predictors are in the same
numerical range [0,1] and that predictors can be drawn from
non-normal distributions such as the ice charts. Finally, with
this scheme we can combine categorical predictors from the
ice charts with continuous predictors from AROME Arctic.

Due to the routine lack of ice charts during weekends,
there is a limited number of dates that can be used for training

and verification, and the sample size depends on lead time,
as shown in Table 2. Comparing the similarly sized 2 and 3 d
lead time datasets against the number of samples at 1 d lead
time reveals an approximate 25 % reduction in the number
of available dates that is consistent for all considered years.
This has implications when the ice charts are used to evalu-
ate deep learning forecast performance because verification
scores for models targeting different lead times are computed
from different sets of dates.

3.2 Cumulative contours

Norwegian ice charts represent SIC in unevenly sized con-
centration categories; hence we treat the prediction of an ice
chart as a classification task. For automated ice charting, Ku-
cik and Stokholm (2023) have reported that the categorical
cross-entropy loss function achieves the highest rate of true
positive predictions. However, ice charts are heavily imbal-
anced fields mostly populated with ice-free open water (0 %)
and very close drift ice (≥ 90%), and neural networks trained
with categorical cross-entropy tend to prioritize predicting
the most frequently occurring classes, while making fewer
true positive predictions for intermediate SIC categories (Ku-
cik and Stokholm, 2023).

Motivated by the skewed SIC distribution between the cat-
egories, which constitutes the MIZ, we reformulate the target
SIC such that each category is defined cumulatively and pre-
dicted independently using the six SIC thresholds, 0 %, 10 %,
40 %, 70 %, 90 %, and fast ice (as shown in Fig. 1). Cumula-
tive contours are a novel reformulation of the SIC prediction
task, which aims to preserve the ice chart category distribu-
tion. Our proposed target reformulation redefines a categori-
cal ice chart into separate binary fields, each containing SIC
equal to or greater than a given SIC threshold. With cumu-
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lative contours, we provide our deep learning model with bi-
nary targets, which resolve each SIC category with a greater
spatial balance than the multi-class ice chart.

The cumulative contours are defined as follows. We define
N thresholds kn ∈ [0,1], which are ordered from the lowest
to the highest, with N being the number of contours we want
to threshold. Each threshold kn represents a SIC value and is
used to classify an ice chart S into a binary field Cn, which
we denote as a cumulative contour. Each element in Cn is de-
fined with the following equation, where i,j denotes spatial
indexes:

cn
i,j =

{
1 if si,j ≥ kn

0 if si,j < kn.
(1)

The target reformulation into cumulative contours reduces
the classification task into multiple independent binary pre-
dictions. Each cumulative contour includes SIC above a set
threshold, ensuring that categories in the MIZ are not un-
derestimated due to underrepresentation in the target dataset.
We assume each cumulative contour to be ordered such that
Cn+1

⊂ Cn; however the deep learning model predicts each
cumulative contour independently and can deviate from this
assumption. We ensure that the predicted cumulative con-
tours at each grid cell achieve the desired ordering by setting
all cumulative contours following an unpredicted contour to
0, regardless of the probability assigned by the deep learning
model.

Finally, the forecasted SIC field Ŝ is defined as the
element-wise sum over all remaining predicted cumulative
contours:

Ŝi,j =

∑
for all n

ĉn
i,j , (2)

where each element Ŝi,j ∈ [0, . . .,N ] is a categorical repre-
sentation of ice chart SIC in increasing order. For this work,
we have defined six thresholds k following the six WMO ice
concentration intervals used in the ice charts. Thus, Ŝi,j = 0
is ice-free open water, and Ŝi,j = 6 is fast ice.

3.3 Model implementation

The U-Net architecture was initially developed for computer
vision tasks, specifically semantic image segmentation, and
expands the fully convolutional architecture introduced in
Long et al. (2015) by constructing a symmetric encoder–
decoder structure and adding skip connections between the
contracting and expansive paths (Ronneberger et al., 2015).
Our U-Net implementation follows the original encoder–
decoder structure; however the output layer has been modi-
fied in order to reflect the reformulated target SIC cumulative
contours. The encoder is initiated with 64 feature maps, and
at each stage we double the number of feature maps. We es-
tablished through testing that the model performed optimally
with a bottleneck of 256 feature maps, resulting in a three-
stage encoder. The spatial resolution is lowered by a factor

of 4 at each stage due to average pooling with a 4× 4 filter.
Note that the average pooling layer used here deviates from
the max pooling layer used in the original U-Net architec-
ture, as we found through tests that average pooling tended
to increase model performance, similar to the findings from
Palerme et al. (2024). We further note that in the original U-
Net architecture, the spatial resolution of the feature maps is
only lowered by a factor of 2 between each stage; however
our implementation reaches the bottleneck resolution faster,
which further reduces the size of the models.

As a consequence of reformulating the target variable into
six cumulative contours following the ice chart SIC classes,
the model contains six output layers, which are all located at
the end of the same decoder. Each cumulative contour is pre-
dicted independently from a shared signal, and a forecasted
ice chart is constructed from Eq. (2). The pixelwise binary
cross-entropy loss function is computed individually for all
output layer contours, and the resulting loss of the model is
the sum over the individually computed losses. We initiate
the model weights using HE initialization (He et al., 2015)
since the ReLU activation function (Nair and Hinton, 2010)
is used for all layers.

All models have been trained on an NVIDIA A100 80 GB
GPU using mixed-precision training, which restricted the
maximum batch size to four samples to fit in the GPU RAM.
Consequently, we replace all batch-normalization layers in
the encoder and decoder with group-normalization layers to
mitigate the negative effects of using batch normalization
with small batch sizes (Wu and He, 2018). During training,
we use the ADAM optimizer (Kingma and Ba, 2014) with an
initial learning rate of 0.001, which we reduce by a factor of
2 every 10 epochs. After training is completed (25 epochs),
the model which achieves the lowest loss on the entire vali-
dation set is selected. We chose to train for 25 epochs as the
validation loss rarely improved beyond that point. The flow
of data in relation to the developed model is summarized in
Fig. 3. For further details regarding the implementation, we
refer to the GitHub repository (see “Code and data availabil-
ity” section).

3.4 Verification metrics

We chose to focus on skill metrics based on sea ice edges
when validating the performance of the deep learning fore-
casts as such metrics are appropriate when the SIC is dis-
cretized as categorical contours. These metrics are also rele-
vant for end users (Melsom et al., 2019; Fritzner et al., 2020;
Wagner et al., 2020). Specifically, we derive the length of
the sea ice edge following the method introduced in Melsom
et al. (2019) and assess forecast skill using the integrated ice
edge error (IIEE) (Goessling et al., 2016) normalized with
the ice edge (or threshold SIC contour) length derived from
the target SIC field (nIIEE). The nIIEE is chosen since it
is not particularly affected by isolated ice patches (Palerme
et al., 2019). Moreover, the nIIEE, when normalized accord-
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Figure 3. Overview of the input and output to the deep learning forecasting system. The predictors are constructed from individually
preprocessed sources and are provided to the network together with an associated target ice chart.

ing to a SIC contour length, is independent of the sea ice
seasonality (Goessling et al., 2016; Palerme et al., 2019;
Zampieri et al., 2019), which allows for a comparison of fore-
cast skill across seasons. Finally, the nIIEE can be interpreted
as the SIC contour displacement error between two products,
which is easy to interpret and relevant to end users (Melsom
et al., 2019). To the best of the authors’ knowledge, the nI-
IEE has only been assessed using coarse-resolution sea ice
concentration fields. However, we compared the nIIEE com-
puted from ice charts at 1 km spatial resolution and 10 km
resolution between 2019–2022 and found the Pearson corre-
lation to be 0.98, which ensures the validity of also applying
nIIEE to high-resolution SIC. For further details, see the Ap-
pendix.

3.5 Baseline forecasts

We compare the deep learning forecasts against three base-
line forecasts: the persistence of the observations, the linear
trend in sea ice concentration from OSI SAF SSMIS, and a
purely wind-derived sea ice motion estimation based on free
drift. The baseline forecasts serve as a lower threshold which
the deep learning system must outperform in terms of nI-
IEE in order to be considered skilful. A persistence forecast
involves keeping the initial state of the system constant in
time. The baseline forecast based on the linear trend is cre-
ated by computing a pixelwise linear trend from the previous
5 d, which is used to advance the system forward in time.
For clarity, the computed values are bounded to match the
valid value range [0,100]. The use of a linear SIC trend as a
baseline forecast has previously been assessed in Grigoryev
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et al. (2022), where the authors reported that the linear trend
consistently achieved a higher mean absolute error than per-
sistence.

The wind-driven free-drift baseline forecast is imple-
mented following the description in Zhang et al. (2024).
Hence, sea ice motion is estimated to be 2 % of the sur-
face wind speed 20° to the right (clockwise) of the surface
wind direction. New positions are calculated by advecting
each grid cell with its corresponding wind speed using a
first-order forward Euler integration scheme. Since the free-
drift forecast advects sea ice parcels individually based on
limited-area wind forcing, the free-drift forecast is not guar-
anteed to be spatially consistent as some grid cells might not
be covered by sea ice after advection, while they are clearly
in the sea ice pack. Thus, we perform nearest neighbour in-
terpolation after advecting the sea ice to ensure that the free-
drift forecasts are spatially consistent. Additionally, it is de-
scribed in Germann and Isztar (2002) that simple advection
schemes tend to introduce numerical diffusion, resulting in
a loss of smaller-scale features. Finally, in order to be con-
sistent with the deep learning models, input SIC is advected
with the same AROME Arctic mean surface wind fields also
supplied as predictors to the deep learning model.

3.6 Model intercomparison setup

The goal of the model intercomparison is to assess the pre-
dictive skill of the deep learning forecasts against the de-
scribed baseline forecasts and physical forecasting system. In
order to compare the different sea ice forecasts, all products
were projected and interpolated onto the grid of the coarsest-
resolution product, which is neXtSIM (3 km) or AMSR2
(6.25 km), depending on which SIC product is used for eval-
uation. The baseline forecasts have a daily output frequency
that is similar to that of the deep learning system; hence
the comparison involves identifying the forecast with sim-
ilar start and target dates. However, both Barents-2.5 and
neXtSIM forecasts have an hourly frequency. When compar-
ing the deep learning forecasts against both physical models,
we use the physical forecasts initiated at 00:00 UTC the day
following deep learning initialization. Furthermore, physical
models are averaged between 00:00 and 12:00 UTC on the
target date of the deep learning forecast due to the ice chart
production process. This setup is assumed to moderate spa-
tial variability induced by the lack of a temporal mean.

4 Results

4.1 Training performance and data considerations

Training the deep learning system for 25 epochs takes ap-
proximately 3 h 30 min on the A100 GPU, whereas perform-
ing a single prediction takes 6 s on a workstation CPU (AMD
EPYC 7282 16 core) and 30 s on a laptop CPU (Intel®

Core™ i7-8565U 8 core). Comparatively, a single member

of Barents completes a 24 h forecast in ≈ 12 min, resulting
in a 99 % speed-up when running on comparable hardware.
The optimal U-Net width of 256 channels in the bottleneck
was determined by performing a grid search on the validation
dataset across the learning rate (0.0001–0.01) and U-Net bot-
tleneck width (256–1024) (see Fig. S2 in the Supplement). To
achieve consistent architectures between the developed mod-
els, we considered only variations in the 2 d target lead time
model for the grid search and reused the results for models
targeting all lead times. The final model contains 2.4×106

trainable parameters, with 1.15×106 of these being located
in the encoder and 1.25×106 in the decoder. We compared
model implementations without cumulative contours (sin-
gle output, multi-class segmentation with categorical cross-
entropy loss) against deep learning models reformulated with
cumulative contours, and we obtained a better preservation
of intermediate contours with the model predicting cumula-
tive contours, especially at longer lead times (see the Sup-
plement). Figure 4 presents a forecast from a deep learning
model with cumulative contours targeting 2 d lead time and
shows that intermediate SIC categories have been resolved
in the forecast. For the example presented in Fig. 4, the deep
learning forecast achieved an nIIEE of 7.5 km, while persis-
tence achieved an nIIEE of 13.4 km. We observe in Fig. 4 that
the deep learning forecast is able to reproduce the SIC in-
crease in the Barents Sea and the reduction in a polynya area
north-east of Svalbard. An apparent difference between the
deep learning forecast and the ice charts is that the different
contours include less structural details in the deep learning
forecasts, which results in a smoother appearance.

Figure 5 compares the ability of the deep learning system
to resolve sea ice categories against ice charts and AMSR2
observations. In general, the deep learning system accurately
resolves the concentration category distribution in accor-
dance with the ice charts, regardless of lead time, with all
categories being less than 1 % different from the ice chart dis-
tribution when considering the yearly average. When com-
paring against the AMSR2 observations, it is important to
note the differences in the occurrence frequency of the 100 %
SIC category. The ice charts consider fast ice a separate cat-
egory representing land fast ice, which is a distinction not
made by the ASI retrieval algorithm, although, for consis-
tency, 100 % SIC from AMSR2 has been regarded as fast ice
for this study. However, the normalized integrated ice edge
error only considers the lower boundary of any concentration
category, and, as such, this choice does not affect the results
from the nIIEE skill score. This choice is reflected in Fig. 5,
where the resolved fraction of very close drift ice is 20 % in
AMSR2 compared to 31 % in the ice charts. Comparatively,
the fraction of resolved fast ice in AMSR2 is 8 %, whereas
this category constitutes < 1% of the area for the ice charts.

Another difference between AMSR2 observations and the
ice charts presented in Fig. 5 is how ice-free open water and
open water are resolved. On a yearly average, ice-free open
water constitutes about 62 % of the AMSR2 pixels and 55 %
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Figure 4. Ice charts for (a) 23 and (b) 25 March 2022, with a deep learning prediction for 25 March 2022 initialized on 23 March 2022 in
(c). The black line is the sea ice edge for the ice chart in (a), and the blue line is the sea ice edge for the ice chart in (b), both plotted for a
10 % concentration threshold. The < 10% SIC category is not shown.

Figure 5. Seasonal distribution of each SIC category for 2022 as the respective fraction of the total mean SIC area for AMSR2, ice charts,
and the deep learning system at 1–3 d lead time. The AMSR2 data have been projected onto the deep learning model domain.

for the ice charts. Furthermore, open water is represented
more in the ice charts, constituting about 5 % of the pixels,
while for the AMSR2 observations, this category covers only
1 %. This is because the ice charts consider SAR and optical
satellite retrievals with a higher sensitivity to low ice con-
centrations to resolve open water compared to passive mi-
crowave sensors, which have a low sensitivity to SIC below
15 %.

4.2 Forecast performance and model intercomparison

We initially compare the deep learning forecasts against the
baseline and dynamical forecasts in 2022 across all target
lead times, where we consider the yearly mean of the nIIEE
for different sea ice edge contours defined by (10 %, 40 %,

70 %, and 90 %) concentration thresholds in Fig. 6. For all
considered lead times and concentration thresholds, the deep
learning forecasts achieve the lowest nIIEE. Similar to per-
sistence, nIIEE for the deep learning forecasts increases pro-
portionally with lead time, although at a lower rate. Addition-
ally, the neXtSIM, free-drift, and linear trend forecasts are
not able to outperform persistence on average for the 10 %
concentration contour, scoring factors of 1.57, 1.12, and 1.34
higher than persistence, respectively. Furthermore, the mean
nIIEE between forecasts based on ice charts (deep learning,
persistence, and free drift) and neXtSIM and the linear trend,
which are forced by a different sea ice concentration source,
is notably shifted from the 70 % concentration thresholds
and above. However, we also trained deep learning mod-
els on input AMSR2 passive microwave observations with
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ice charts as the target, and the deep learning predictions
retained sufficient skill comparable to ice chart persistence
while achieving somewhat higher nIIEE than deep learning
models trained on input ice charts (see the Supplement).

The deep learning forecasts improve upon persistence by
reducing the nIIEE10 % by a factor of 0.82. In terms of error
growth as a function of lead time, the linear trend forecast is
the only forecast where the slope of the error increases with
increasing lead time, regardless of concentration threshold.
This indicates that the linear trend from past OSI SAF SS-
MIS observations is unable to capture ice chart evolution, es-
pecially for longer lead times. Moreover, although neXtSIM
forecasts have a comparatively high nIIEE initially, the error
growth with lead time is the lowest for all concentrations, in-
dicating that neXtSIM may provide more useful forecasts at
longer lead times, especially for lower concentrations.

Figure 7 shows how the deep learning system resolves the
seasonal variation in the sea ice edge length for different
lead times. The predicted sea ice edge follows a similar sea-
sonal pattern to that of the ice edge length from the target ice
charts. Each monthly mean predicted sea ice edge length has
a negative bias compared to the ice charts, which increases
for longer lead times. Given that the deep learning forecasts
resolve the different categories akin to the ice charts, we at-
tribute the apparent negative bias of the length to the lack of
details along the forecast contour edges. Hence, the SIC con-
tour smoothness is somewhat proportional to forecast lead
time.

In order to assess the consistency of the deep learning fore-
casts trained on ice charts, we evaluate the performance by
replacing the ice charts with AMSR2 observations as the ref-
erence dataset in Fig. 8. When utilizing AMSR2 observations
as a reference, the number of samples used to evaluate the
forecasts is consistently 247 across all lead times. We see in
Fig. 8 that the deep learning forecasts on average achieve the
highest nIIEE when considering a 10 % concentration con-
tour, achieving a mean nIIEE10 % of 16.7 km across the lead
times. The displacement is consistent with the inherent nI-
IEE difference between the AMSR2 observations and the ice
charts (Fig. 5), which we found to be 13.3 km for the 10 %
concentration contour when compared across the test dataset.
Furthermore, AMSR2 persistence forecasts achieve the low-
est nIIEE on average for the same contour. When consid-
ering SIC contours defined by ≥ 40% SIC, the deep learn-
ing forecasts perform closer to AMSR2 persistence, although
they achieve a slightly higher nIIEE on average. neXtSIM
on average outperforms the deep learning forecasts for the
10 % concentration contour; however this is not the case for
the 40 %, 70 %, and 90 % concentration contours, where the
performance is close to the initial error for all lead times,
similar to the behaviour shown in Fig. 6. For the contours
higher than 10 % SIC, Fig. 8 shows that the AMSR2 persis-
tence, AMSR2 free-drift, and deep learning forecasts on av-
erage gradually improve against both neXtSIM and the linear
trend, with the deep learning forecast increasing its improve-

ment against neXtSIM for higher contours. The difference
between AMSR2 free drift and AMSR2 persistence can also
be seen to decrease for increasing concentration contours, yet
AMSR2 free drift achieves a higher nIIEE than the AMSR2
linear trend considering the 10 % and 40 % concentration
contours. Overall, AMSR2 persistence mostly achieves the
lowest nIIEE, although it is surpassed by the deep learn-
ing forecasts when higher concentration contours (≥ 90%)
and≥ 2 d lead time are considered. Moreover, the deep learn-
ing forecasts achieve the lowest nIIEE scores when predict-
ing the 40 % concentration contour from the AMSR2 obser-
vations, in good agreement with the average nIIEE difference
between AMSR2 and the ice charts, which we found to be
9.7 km for the same concentration contour.

The model intercomparison experiment, which compares
the deep learning system against baseline and dynamical sea
ice forecasts for all seasons, is presented in Fig. 9 using the
ice charts as reference. For all considered lead times and tar-
get contours, the deep learning forecasts achieve the low-
est seasonal mean nIIEE. The seasonal axis of Fig. 9 shows
that the ice chart persistence, free-drift, and deep learning
forecasts all achieve higher nIIEE values during winter and
spring, associating the errors with the periods of freeze-up
and sea ice maximum extent. When the nIIEE is computed
from the 70 % or 90 % concentration contours, Fig. 9 shows
that the forecasts not utilizing ice chart information (i.e.
linear trend, neXtSIM, and Barents-2.5) attain considerably
higher values, especially during summer. This pattern might
indicate a discrepancy between the ice charts, the dynamical
forecasts, and the linear trend with regard to how higher SIC
is resolved, further influenced by seasonal conditions.

4.3 Feature importance

To better understand the importance of the different predic-
tors used, as well as the sensitivity of the deep learning sys-
tem to the predictors, we measured how the model responds
to modified predictors. In order to measure the impact of each
predictor, we first conducted an experiment where the nIIEE
was computed from deep learning models fitted to differ-
ent predictor subsets. The effect of including different pre-
dictors on deep learning forecast performance is shown in
Fig. 10. In general, removing predictors tends to decrease
the predictive skill of the deep learning system, except for
2 m temperature for 2 d lead time and the past trend for 3 d
lead time. Removing the current ice chart has the highest im-
pact on performance (mean+7.14 km on average for all lead
times), reducing the skill of the model below that of persis-
tence. However, the impact of removing ice charts is reduced
for increasing lead times. Contrarily, the loss of skill associ-
ated with removing all AROME Arctic predictors increases
with lead time. Although no other combination of withheld
predictors decreases the skill of the deep learning forecasts
below persistence, removing all atmospheric forecasts has a
consistent negative impact on forecast skill (+1.31 km on av-
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Figure 6. Mean annual ice edge displacement error as a function of lead time for different sea ice concentration contours defined by 10 %,
40 %, 70 %, and 90 % SIC. Only products with complete coverage of 2022 have been considered. Ice charts are used as a reference product.

Figure 7. Mean monthly sea ice edge length for 2022, with the sea
ice edge defined by a 10 % concentration threshold. The considered
products are the ice charts and deep learning system for 1–3 d lead
times.

erage) – more than any other removed set – except SIC from
ice charts. Comparing the impact of the different predictors
originating from AROME Arctic shows that removing both
wind components simultaneously has a greater effect on fore-
cast skill (+0.86 km) on average than removing 2 m temper-

ature (+0.08 km). Models trained without the past sea ice
trend perform comparably to default deep learning models
(+0.06 km).

We also conducted a permutation feature importance anal-
ysis to quantify the importance of each predictor for a deep
learning model trained on all predictors. Permutation fea-
ture importance involves randomly shuffling the input se-
quence of a single predictor and analysing how much this
alters the predictive skill of the model. To minimize the po-
tential impact of a seasonal cycle appearing in the reordered
predictors, the experiment was run 10 times for each pre-
dictor. Permutation feature importance is model-specific and
does not provide insight into the predictive capabilities of
the analysed predictors. Figure 11 shows the predictor im-
portance evolution over increasing lead times as the differ-
ence in the ice edge displacement error from the reference
deep learning forecasts. Although the importance of each
predictor varies with lead time, the order of importance is
consistent between all lead times, with the recent ice chart
being the most important predictor, near-surface temperature
ranking second, and – finally – the two wind components
ranking approximately equal as the third-most important pre-
dictors. Only permuted ice charts and near-surface tempera-
ture significantly decrease the deep learning forecast score
below the benchmark skill of persistence. Only ice charts
and 2 m temperature at 3 d lead time attained a noticeable
standard deviation (≥ 0.1 km) from inputting predictors from
different dates. There is an inversely proportional relation-
ship between the importance of the recent ice chart (decreas-
ing) and the importance of the atmospheric forecasts (in-
creasing) when targeting longer lead times, indicating that
the model is more reliant on the future state of the pre-
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Figure 8. Mean annual ice edge displacement error as a function of lead time. The ice edge displacement error for the different products has
been computed considering AMSR2 observations as reference.

Figure 9. Model intercomparison for varying seasons, lead times, and concentration contours. The ice charts are regarded as the reference.
The values reported represent the integrated ice edge error normalized according to the length of the current SIC contour from the reference
ice chart in kilometres. The OSI SAF linear trend is computed from the past 5 d. Barents-2.5 results are only shown for summer and autumn.
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Figure 10. Yearly mean nIIEE when a subset of the predictors
is withheld during training. The dashed black line denotes yearly
mean nIIEE for deep learning forecasts from a model with all pre-
dictors, and the dashed red line denotes the skill of persistence.
AROME refers to the removal of all atmospheric predictors during
training. Winds are similar except for the two wind components.

dicted system (atmospheric forecasts) rather than the initial
state (recent ice chart) for longer lead times. Hence, Fig. 11
suggests the existence of a limit to the predictive capability
gained from providing only current sea ice conditions, sim-
ilar to how persistence and linear trend forecasts inherently
lose skill at longer lead times. The skill difference from past
sea ice information encoded in the OSI SAF linear trend is
indistinguishable (+0.01 km) from the performance of non-
permuted deep learning forecasts; hence the deep learning
forecasts are not dependent on the past state of sea ice, re-
gardless of target lead time.

5 Discussion and conclusions

This study presents the development of a deep learning fore-
casting system targeting high resolution (1 km) and short lead
times (1–3 d), taking into account operational constraints re-
lated to the real-time availability of data. In order to ade-
quately resolve the skewed distribution of SIC classes in the
ice charts (especially in the MIZ, which is crucial for skilful
forecasts, ensuring maritime safety; Wagner et al., 2020), we
present a novel reformulation of the target data and decoder
from the original U-Net architecture of Ronneberger et al.
(2015), which we refer to as cumulative contours (Eq. 1).
The cumulative contours demonstrate how combining ar-
chitectural design from multi-task learning (Zhang et al.,
2014) with task-specific additive properties of SIC inter-
vals positively benefits deep learning forecasting skill, espe-
cially with respect to resolving the intermediate SIC intervals
constituting the MIZ. With this reformulation of U-Net, the

Figure 11. Yearly mean nIIEE where the sequence of a predictor
in the test dataset has been shuffled, repeated 10 times for all pre-
dictors. Each line represents a permuted predictor sequence. Unal-
tered persistence forecasts are included as benchmark references.
The land–sea mask predictor was excluded from the analysis as it is
static regardless of the forecast start date.

deep learning forecasts are able to consistently outperform
the baseline forecasts and operational short-range dynami-
cal sea ice forecasting systems (neXtSIM-F and Barents-2.5)
in terms of achieving the lowest ice edge displacement error
when considering the ice charts as reference.

Despite training deep learning models to predict SIC con-
ditions from the ice charts only, the deep learning forecasts
behave similarly to baseline forecasts when validated against
independent AMSR2 SIC observations (Spreen et al., 2008)
for concentration contours of ≥ 40%. The increase in deep
learning performance seen between the 10 % and 40 % con-
centration contours may be indicative of a shift in SIC distri-
bution for lower concentration values between the two prod-
ucts, as further indicated by the increased similarity in oc-
currence frequency between AMSR2 and the ice charts when
considering open and closed drift ice reported in Fig. 5. It is
noted that the ASI sea ice retrieval algorithm exerts larger
uncertainties for lower concentrations (Spreen et al., 2008),
whereas SIC < 10% is visible in SAR and optical satellite
images used by ice analysts drawing ice charts. However,
ice charts are influenced by human decision-making, espe-
cially in the medium concentrations (40 %–70 %) of the MIZ
(Dinessen et al., 2020), which may be a source of ice edge
location discrepancy between the two products. The over-
all performance – regardless of reference product – suggests
a degree of consistency in the developed forecasts between
the two reference products. However, the analysis also sug-
gests that inherent differences between sea ice products are
reflected by deep learning forecasts, and we can not expect
the forecasts to improve beyond that initial difference as the

https://doi.org/10.5194/tc-19-4149-2025 The Cryosphere, 19, 4149–4166, 2025



4162 A. F. Kvanum et al.: Deep learning sea ice forecasts

models are trained to only minimize the statistical error of
their target sea ice product.

The results from the forecast intercomparison analysis
demonstrate that the deep learning forecasts meet the re-
quirements for forecast accuracy while considerably reduc-
ing computing time. However, the results from the analysis
could be influenced by the uneven sample sizes used for ver-
ification at different lead times. Hence, we recommend eval-
uating the forecasts with longer time series when they be-
come available. With respect to the development of the oper-
ational weather prediction system AROME Arctic, a contin-
ued forecast evaluation can also facilitate the understanding
of model response to continuously updated atmospheric pre-
dictors and the potential of fine-tuning deep learning models.
With regard to operationalization, the input data supplied to
the deep learning forecasting system have been chosen with
consideration of publishing time, with a special constraint
for AROME Arctic being the 66 h forecast length. The cur-
rent setup allows 3 d forecasts to be published every weekday
and to be sent to maritime operators in advance of their valid
date, covering Saturdays and Sundays when Norwegian ice
charts are not produced.

The predictor importance analysis suggests that the deep
learning models benefit from an increased and diversified
dataset by increasing the precision of the predicted sea ice
edge by 1.31 km when atmospheric forecasts from AROME
Arctic (Müller et al., 2017) are included as predictors. The
inclusion of forecast predictors from weather forecasts has
previously been shown to increase predictive skill (Grigoryev
et al., 2022; Palerme et al., 2024), which further motivates the
inclusion of other forecasted physical forcings affecting sea
ice as predictors. We recommend further work to investigate
currently unexplored metocean forcings, such as ice–wave
interactions (Williams et al., 2013), by including fields such
as forecasted wave height and wave direction. However, ex-
panding the dataset towards past temporal regimes by includ-
ing a coarse-resolution linear SIC trend derived from OSI
SAF observations was shown to have a marginal effect on the
forecast skill, indicating that the deep learning models were
unable to infer sea ice growth/decline from past observations
(Fig. 11), in line with the results of Palerme et al. (2024).

When all predictors were provided as inputs to the deep
learning models, the skill of the forecasts was particularly
sensitive to the initialization date of the inputted ice chart
(Fig. 11). This suggests that a large part of the inferred
physics and seasonality originates from the ice charts, which
can also explain why the atmospheric predictors were not es-
sential to outperform persistence. Additionally, the compar-
ison made against free-drift SIC forecasts suggests that the
deep learning model has learned a relationship between the
input predictors and target ice chart that is beyond a sea ice
motion estimation linearly proportional to the near-surface
winds. Although it is unknown how the deep learning model
responds to individual predictors, the comparison suggests
that the model’s ability to learn non-linear relationships in

the input data helps in predicting SIC. Moreover, the com-
parison suggests that inferring thermodynamical properties
that allow the model to grow and melt sea ice aids in predict-
ing short-term SIC beyond that of advection.

When considering the initialization time of the AROME
Arctic predictors, the lessened impact of the atmospheric
predictors could also be associated with AROME Arctic not
covering the beginning of the forecast period, especially for
shorter lead times. Nevertheless, as the model’s sensitivity to
the current ice chart tends to decrease for longer lead times,
understanding how the model utilizes the increasingly im-
portant forecast predictors should be considered, especially
when targeting longer lead times. Other works have inves-
tigated the use of explainable artificial intelligence method-
ologies for interpreting climate-science deep neural network
models and results (e.g. Toms et al., 2020; Ebert-Uphoff and
Hilburn, 2020; Bommer et al., 2023). This should be given
more attention as they present an opportunity to develop new
tools for diagnosing machine learning sea ice forecasting sys-
tems.

Appendix A: Comparing nIIEE for high- and
low-resolution sea ice concentration

In order to evaluate 1 km resolution sea ice forecasts using
the ice edge displacement error as derived by Melsom et al.
(2019), we assess the validity of applying the metric to high-
resolution sea ice forecasts by comparing it against a coarse-
resolution (10 km) reference case. We compute nIIEE from
the ice charts at 2 d lead time persistence, with ice charts at
1 km resolution and downsampled onto a 10 km grid cov-
ering the period 2019–2020. Mean monthly nIIEE for both
forecasts is shown in Fig. A1. The correlation coefficient be-
tween both nIIEE curves in Fig. A1 is 0.98. The strong cor-
relation indicates that the nIIEE is preserved when used in a
1 km resolution environment.
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Figure A1. The nIIEE computed across the entirety of the training
dataset (2019–2022) for 2 d lead time ice chart persistence with the
ice charts as reference. The sea ice edge length used to divide the
computed IIEE was derived from the same resolution as the respec-
tive forecast.

Code and data availability. All code necessary to deploy
the developed deep learning models, as well as pretrained
weights, is available on the following GitHub repository:
https://github.com/AreFrode/Developing_ice_chart_deep_
learning_predictions, https://doi.org/10.5281/zenodo.17121456,
Kvanum (2025). The AROME Arctic (https://thredds.met.
no/thredds/catalog/aromearcticarchive/catalog.html, Norwe-
gian Meteorological Institute, 2024b) and Barents-2.5 (https:
//thredds.met.no/thredds/catalog/barents25km_files/catalog.html,
Röhrs et al., 2023; Norwegian Meteorological Institute, 2024a)
forecasts, as well as OSI SAF SSMIS sea ice concentration
observations (https://thredds.met.no/thredds/catalog/osisaf/met.
no/ice/conc/catalog.html, OSI SAF, 2017; Norwegian Me-
teorological Institute, 2024c), can be downloaded from the
MET Norway thredds Data Server (missing Barents-2.5 data
can be provided upon request). The ASI AMSR2 sea ice
concentration observations are available from the Univer-
sity of Bremen Sea Ice Remote Sensing data archive (https:
//data.seaice.uni-bremen.de/amsr2/asi_daygrid_swath/n6250/,
Spreen et al., 2008). Gridded Norwegian Ice Service ice charts and
neXtSIM data can be provided upon request.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-4149-2025-supplement.
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Fučkar, N. S., Fyfe, J. C., Jahn, A., Holland, M., Hunke,
E., Iovino, D., Khosravi, N., Madec, G., Massonnet, F.,
O’Farrell, S., Petty, A., Rana, A., Roach, L., Rosenblum,
E., Rousset, C., Semmler, T., Stroeve, J., Toyoda, T., Trem-
blay, B., Tsujino, H., Vancoppenolle, M. and SIMIP Com-
munity: Arctic sea ice in CMIP6, Geophys. Res. Lett., 47,
https://doi.org/10.1029/2019gl086749, 2020.

Notz, D. and Marotzke, J.: Observations reveal external
driver for Arctic sea-ice retreat, Geophys. Res. Lett., 39,
https://doi.org/10.1029/2012gl051094, 2012.

Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T.,
Kimmritz, M., Dansereau, V., and Samaké, A.: A new
brittle rheology and numerical framework for large-
scale sea-ice models, J. Adv. Model. Earth Sy., 14,
https://doi.org/10.1029/2021ms002685, 2022.

OSI SAF: Global Sea Ice Concentration (netCDF) – DMSP,
EUMETSAT SAF on Ocean and Sea Ice [data set],
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2004, 2017.

Owens, R. and Hewson, T.: ECMWF Forecast User Guide,
ECMWF, https://doi.org/10.21957/M1CS7H, 2018.

Palerme, C., Müller, M., and Melsom, A.: An intercomparison
of verification scores for evaluating the sea ice edge posi-
tion in seasonal forecasts, Geophys. Res. Lett., 46, 4757–4763,
https://doi.org/10.1029/2019gl082482, 2019.

Palerme, C., Lavergne, T., Rusin, J., Melsom, A., Brajard, J.,
Kvanum, A. F., Macdonald Sørensen, A., Bertino, L., and
Müller, M.: Improving short-term sea ice concentration fore-
casts using deep learning, The Cryosphere, 18, 2161–2176,
https://doi.org/10.5194/tc-18-2161-2024, 2024.

Rainville, L., Wilkinson, J., Durley, M. E. J., Harper, S., DiLeo, J.,
Doble, M. J., Fleming, A., Forcucci, D., Graber, H., Har-
grove, J. T., Haverlack, J., Hughes, N., Hembrough, B., Jef-
fries, M. O., Lee, C. M., Mendenhall, B., McCormmick, D.,
Montalvo, S., Stenseth, A., Shilling, G. B., Simmons, H. L.,
Toomey, J. E., and Woods, J.: Improving situational aware-
ness in the Arctic ocean, Frontiers in Marine Science, 7,
https://doi.org/10.3389/fmars.2020.581139, 2020.

Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM:
a new Lagrangian sea ice model, The Cryosphere, 10, 1055–
1073, https://doi.org/10.5194/tc-10-1055-2016, 2016.

Ren, Y., Li, X., and Zhang, W.: A data-driven deep learning model
for weekly sea ice concentration prediction of the pan-Arctic
during the melting season, IEEE T. Geosci. Remote, 60, 1–19,
https://doi.org/10.1109/tgrs.2022.3177600, 2022.

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: convolu-
tional networks for biomedical image segmentation, in: Lec-
ture Notes in Computer Science, edited by: Nassir, N., Joachim,
H., William, W. M., and Alejandro, F. F., Springer Inter-
national Publishing, https://doi.org/10.1007/978-3-319-24574-
4_28, 234–241, 2015.

Röhrs, J., Gusdal, Y., Rikardsen, E. S. U., Durán Moro, M., Brænd-
shøi, J., Kristensen, N. M., Fritzner, S., Wang, K., Sperre-
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