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Abstract. Seasonal snow in the northern regions plays an im-
portant role, providing water resources for both consumption
and hydropower generation. Moreover, the snow changes
in northern Finland during winter impact local agriculture,
vegetation, tourism, and recreational activities. In this study
we estimated snow depth using an empirical methodology
applied to the dual polarisation of the Sentinel-1 synthetic
aperture radar (SAR) images and compared our results with
in situ measurements collected by automatic weather sta-
tions (AWSs) and snow courses in northern Finland. We ap-
plied an adapted version of the empirical methodology de-
veloped by Lievens et al. (2019) to retrieve snow depth, us-
ing the Sentinel-1 constellation between 2019 and 2022, and
then compared our results to measurements from three auto-
matic weather stations available over the same period. Over-
all, the Sentinel-1 snow depth retrievals were underestimated
in comparison with the in situ measurements from the auto-
matic weather stations. We found slightly different patterns
for the different years, an overall correlation factor of 0.41,
and a higher correlation in the 2020–2021 season (R = 0.52).
The high correlation between estimated and measured snow
depth at the Inari Nellim location (R = 0.81) reinforces the
potential ability to derive snow changes in regions where in
situ measurements of snow are currently lacking. Further in-
vestigation is still necessary to better understand how the
physical properties of the snowpack influence the backscatter
response over shallow-snow regions.

1 Introduction

Snow variations play an important role in the northern re-
gions, providing water resources for both consumption and
hydropower generation. Seasonal snow variations in northern
Finland during winter impact local agriculture, vegetation,
tourism, and recreational activities (Lehtonen et al., 2013;
Luomaranta et al., 2019). Some regions in the Arctic have
been experiencing a shortening in the snow cover duration
during the past decades, and future projections demonstrate
an increase in the surface temperature and a continuous de-
crease in snow cover through time for the northern regions
of Finland (Lehtonen et al., 2013; Luomaranta et al., 2019).
Thus, extensive monitoring of snow depth is crucial for vari-
ous purposes.

Different measurement efforts play an important role in
monitoring snow depth, including automatic weather stations
(AWS; Luomaranta et al., 2019), light detection and ranging
(LiDAR) flights (Painter et al., 2016), and snow course mea-
surements (Leppänen et al., 2016). The collection of these
data provides valuable and accurate measurements. However,
their spatiotemporally limited coverage restricts systematic
monitoring. On the other hand, remote sensing techniques,
such as satellite observations and modelling, are key to im-
prove the monitoring of snow over large areas all year round
(Tsai et al., 2019; Awasthi and Varade, 2021; Tsang et al.,
2022). Satellites equipped with passive microwave radiome-
try sensors, supported by the in situ measurements, have been
extensively used to estimate snow water equivalent (SWE),
the total water content in the snowpack, for decades (Takala
et al., 2011; Pulliainen et al., 2020). However, despite their
daily temporal resolution, their coarse spatial resolution (ap-
proximately 25 km by 25 km) and their dependency on the
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in situ measurements still impose some limitations on the use
of passive microwave radiometry for snow cover monitoring.

Currently, several studies in shallow-snow regions, where
snow thickness is lower than 1 m, make use of synthetic
aperture radar (SAR) measurements in the Ku-band (∼ 12–
18GHz), as well as the Ka-band (∼ 26.5–40GHz), as these
frequencies are more sensitive to snowpack changes. How-
ever, exact knowledge of the penetration depth of the SAR
signal in the snowpack still remains unknown and is de-
pendent on assumptions due to the snowpack characteristics,
hindering accurate assessments (Tsang et al., 2022; Jutila and
Hass, 2023).

The use of the interferometric synthetic aperture radar (In-
SAR) technique using the L-band (∼ 1–2GHz) has shown
promise, as it operates at lower frequencies and is less af-
fected by the presence of vegetation and dry snow (Ruiz et
al., 2022). However, the lack of freely available data makes
its use more difficult. Future missions, such as the Radar Ob-
serving System for Europe in L-band (ROSE-L), as well as
the NASA-ISRO Synthetic Aperture Radar (NISAR), will
provide freely available L-band data worldwide, improving
our understanding of snow changes and improving monitor-
ing capabilities.

C-band backscatter measurements are widely used in sev-
eral applications in the cryosphere. More specifically in the
context of snow research, previous studies have explored the
application of SAR images to provide information on dry-
snow accumulation (Bernier and Fortin, 1998) and evalua-
tion of snowmelt dynamics in the alpine regions (Marin et
al., 2020). The behaviour of the C-band backscatter inside
the snowpack is complex and still an ongoing area of investi-
gation (Hoppinen et al., 2024). Previous studies have shown
that backscatter variations during mid-winter for shallow-
snow regions are dominated by the snow–ground interface
and the dielectric constant of the soil, minimising the effect
of the dry snowpack (Sun et al., 2015). However, minimal
changes in the snow microstructure and in the water liquid
content in the snowpack impact the surface and volume scat-
tering of the snow (Lievens et al., 2019, 2022). Despite some
challenges and limitations, the use of C-band (5–6 GHz) syn-
thetic aperture radar images has demonstrated the ability to
estimate snow depth and provide valuable information about
snow depth variations using the Sentinel-1 (S1) constellation
(Lievens et al., 2019, 2022; Dunmire et al., 2024; Hoppinen
et al., 2024). This approach has demonstrated the sensitiv-
ity of the co- and cross-polarised backscatter observations
from the S1 satellites in estimating snow depth over moun-
tainous regions in the Northern Hemisphere, where the snow
thickness exceeds 1 m. These findings demonstrate the poten-
tial and significance of the use of the Sentinel-1 SAR image
archive to estimate snow depth variation.

Snow depth estimates with high spatiotemporal resolu-
tion can improve our understanding of seasonal snow mass
in complex-access areas. Thus, the objective of this study
is to expand the use of the empirical methodology applied

Figure 1. Average snow depth estimated from S1 between 2019–
2022 (between October and March). Grey triangles indicate the au-
tomatic weather stations’ locations: Inari Nellim (IN), Inari Kaama-
nen (IK), and Inari Angeli Lintupuoliselkä (IA). The red dots rep-
resent the snow pit measurements (sp1–sp4). Yellow circles are the
snow course locations: Inari Angeli Lintupuoliselkä (IA), Inari Kaa-
masmukka (IKa), Inari Laanioja (IL), Inari Mutusjärvi (IM), Inari
Nellim (IN), and Inari Repojoki (IR). The inset shows the study re-
gion in Finland.

to synthetic aperture radar images (Lievens et al., 2019) to
estimate seasonal snow depth variations over shallow-snow
regions in northern Finland. The findings will then be com-
pared with independent in situ measurements collected by
automatic weather stations (AWSs) and snow courses in the
same area.

2 Data and methods

Study area

The study area is located in the northern region of Finland,
between the latitudes of 68.3 and 69.3° N (Fig. 1). The study
area has a relatively flat topography, ranging approximately
between 100 and 500 m in elevation. The snow depth (SD)
fluctuation is influenced by the variation in the local sur-
face air temperature and precipitation (Luomaranta et al.,
2019). In the northern part from 1961–2014, the average
snow depth during winter was 82.7 cm, and maximum snow
depth reached 121.5 cm in 2000 (Luomaranta et al., 2019).
Due to its proximity, the temperature variations in northern
Finland are strongly influenced by the Arctic Ocean (Aalto et
al., 2016). The mean surface temperature in the north during
the winter from 1988–2014 was−11.1°C, and average max-
imum surface temperatures reached approximately −7.2°C
during the winter for the same period (Luomaranta et al.,
2019).

Automatic weather stations

In order to compare and evaluate the snow depth estimates
derived from S1, we used snow depth and surface air tem-
perature measurements from three automatic weather sta-
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tions (AWSs), managed by the Finnish Meteorological In-
stitute. The snow depths are measured by Campbell Scien-
tific SR50AH instruments mounted on the stations, and the
instrument accuracy, according to the manufacturer, is ap-
proximately 1 cm. We extracted information of daily snow
depth and surface air temperature, spanning 2019 to 2022,
from the Finnish station database around the Inari Lake (IL)
region. The available AWSs, followed by their respective lo-
cations (Fig. 1), elevation in metres above sea level (m a.s.l.),
and percentage of forest cover (FC) extracted from the Multi-
source National Forest Inventory Raster Maps of 2021 de-
scribed below), are Inari Nellim (IN – 68.849° N, 28.399° E;
121 m a.s.l.; 33 % of FC), Inari Kaamanen (IK – 69.141° N,
27.266° E; 158 m a.s.l.; 26 % of FC), and Inari Angeli Lin-
tupuoliselkä (IA – 68.903° N, 25.736° E; 240 m a.s.l.; 24 %
of FC).

Snow courses

There are approximately 140 snow courses across Finland.
Snow course measurements are operated and provided by the
Finnish Environment Institute (SYKE). Systematic measure-
ments have been made, for some locations, by SYKE and
the Finnish Meteorological Institute (FMI) since the 1930s
(Leppänen et al., 2016). Typically, each snow course is 2–
4 km long and measured in the middle of each month at
about 80 regularly spaced points, usually every 50 m along
the route (Leppänen et al., 2016). In this paper, we used
averaged snow depth measurements along 6 snow courses
(Fig. 1): Inari Nellim (IN – 68.849° N, 28.399° E), Inari
Angeli Lintupuoliselkä (IA – 68.903° N, 25.736° E), Inari
Mutusjärvi (IM – 68.961° N, 26.739° E), Inari Repojoki
(IR – 68.450° N, 25.977° E), Inari Kaamasmukka (IKa –
69.307° N, 26.656° E), and Inari Laanioja (IL – 68.371° N,
27.453° E).

Canopy cover

We used the canopy cover from the Multi-source National
Forest Inventory Raster Maps of 2021 (MS-NFI), which is
processed and distributed by Luonnonvarakeskus (Natural
Resources Centre) from Finland, to evaluate the correlation
with the snow depth patterns derived from S1. The main
products used to derive the canopy cover, as well as the other
products distributed, are from the Sentinel-2A/Sentinel-2B
satellites of the European Space Agency (ESA) and the
Landsat 8 satellite of the United States Geological Survey
(USGS); the full description of the data is found in Mäkisara
et al. (2022). The dataset comes in the ETRS-TM35FIN co-
ordinate system, and the spatial resolution is posted at 16 m
by 16 m. Areas affected by cloud coverage and regions out-
side forest land and outside Finland are removed and disre-
garded (Mäkisara et al., 2022).

Sentinel-1 data

In this study we estimated snow depth using single-look com-
plex (SLC) synthetic aperture radar images acquired in the
interferometric wide swath (IW) mode from the Sentinel-1A
satellite launched by the European Space Agency (ESA) in
October 2014. Sentinel-1B was launched in April 2016 and
ended its mission in December 2021 due to technical issues.
For this reason, in the present work, we preferred to use only
images acquired from Sentinel-1A and referred to from here
as S1. The Sentinel SAR instruments operate at the C-band
(5.405 GHz), and the IW mode has a 250 km swath and spa-
tial resolution of 5 m in ground range and 20 m in azimuth.
Each satellite from the S1 constellation had a repeat cycle of
12 d and 180° orbital phasing difference. We used the dual-
polarisation (VH and VV) components from 56 SAR S1 im-
ages acquired over the same region in northern Finland. The
data range acquired spans October 2019 to May 2022 (Ta-
ble S1 in the Supplement), and we followed the workflow
described below to derive 56 snow depth maps.

In the pre-processing stage, we used ESA’s Sentinel Ap-
plications Platform (SNAP) software (version 8.0). We per-
formed a standard processing routine for all the S1 SLC IW
images, including the application of the most recent orbit file,
radiometric calibration, debursting and range-Doppler ter-
rain correction using the Copernicus digital elevation model
(DEM) posted at a spatial resolution grid of 30 m. Previous
studies showed that speckle noise makes the data product
more variable, and the upscaling of the S1 data has presented
better snow depth estimates (Lievens et al., 2022; Dunmire et
al., 2024; Hoppinen et al., 2024). In order to reduce speckle
noise in the SAR measurements, we applied a moving mean
filter to the data, using a kernel of 990 m by 990 m. The final
pre-processed product was a time series of stacked S1 images
with σ 0 backscatter intensities in decibels (dB) for both HV
and VV.

We used an adapted version of the empirical methodol-
ogy developed by Lievens et al. (2019) to estimate snow
depth using S1 products (Eqs. 1 and 2). The algorithm utilises
changes in the cross-polarised backscatter measurements of
SAR images repeatedly acquired on the same location and
orbit to avoid geometry distortions. We calculated the ratio
between the two cross-polarised (σ 0

vh and σ 0
vv) backscatter

intensities (in dB) in a pixel scale for the entire image time
series. We considered the entire region as susceptible to snow
accumulation, and the snow index (SI) in the time step, ti ,
was calculated as described in the Eq. (1). Moreover, if SI(ti)
was less than 0, it was considered zero.

SI(ti)= SI(ti−1)+
[(
σ 0

vh/σ
0
vv

)
(ti)−

(
σ 0

vh/σ
0
vv

)
(ti−1)

]
(1)

The translation to snow depth (SD), in metres, is then calcu-
lated using Eq. (2).

SD(ti)=
(

a

1− bFC(i)

)
SI(ti) (2)
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The parameter a = 1.1mdB−1 (Eq. 2) is constant and was
estimated using in situ measurements, minimising the mean
absolute error (MAE) between the times series of the global
average snow depth measurements and S1 estimates in
mountain regions (Lievens et al., 2019). The forest cover
(FC) used here is the canopy cover from the Multi-source Na-
tional Forest Inventory Raster Maps of 2021 (MS-NFI). As
the canopy cover attenuates the backscatter from the snow,
an additional parameter b = 0.6 (dimensionless), estimated
by Lievens et al. (2019), is applied.

Errors in our snow depth estimates arise mainly through
the radiometric accuracy for S1, specified as ∼ 1dB (Tor-
res et al., 2012). Due to the fact that we averaged all the σ 0

images to reduce speckle, an additional 0.5 dB was consid-
ered in the overall radiometric accuracy (Torres et al., 2012).
The resulting radiometric accuracy of 1.5 dB, representing
∼ 10%–15 % of the σ 0 signal, was used to determine the un-
certainty in the snow depth measurements.

3 Results and discussions

We used the S1 dataset (Table S1) between 2019–2022 to
produce up-to-date snow depth at our designated study area
(Fig. 1). To explore changes in snow depth over space and
time, we further extracted time series of snow depth to com-
pare them to independent measurements from the three auto-
matic weather stations (Fig. 2). We show yearly mean snow
depths in Fig. 3. Figure 4 presents the snow depth estimates
separated by canopy density intervals. Furthermore, in order
to evaluate the snow depth estimates from S1, the dataset was
compared to the automatic weather stations in different sce-
narios, presented in Figs. 5 and 6.

Figure 2 displays the seasonal changes in the snow depth
over three consecutive winters at the AWS sites. We observe
that the snow depth estimates from S1 at the Inari Nellim lo-
cation (Fig. 2a) follow the seasonal variations measured by
the automatic weather station measurements, despite the un-
derestimated values. The snow depth products derived from
S1 from the other weather stations, IK and IA (Fig. 2b and
c), also follow the seasonality of the weather station mea-
surements, although they exhibit an evident underestimation
relative to the AWS measurements. Automatic weather sta-
tions are usually located in relatively flat and non-forested
terrain, which may not accurately represent the surrounding
area, and are susceptible to changes in, for example, forest
cover and terrain. Thus, it is important to highlight the chal-
lenges when comparing observations from a point-scale mea-
surement from the AWSs and the grid-scale estimates from
S1 (Lievens et al., 2022). For this purpose, we compared the
snow depth estimates from S1 to average snow depth mea-
sured (Fig. S3 in the Supplement) along the snow courses at
6 locations (Fig. 1) available for the region. Overall, we ob-
served underestimations in the snow depth estimates (Figs. 2
and S3). Theoretically, the underestimation is possibly due to

the water content in the snowpack, reflecting and absorbing
the backscatter signal, as the ground temperature in the accu-
mulation period remains approximately the same, insulated
by the snow (Lievens et al., 2019; Marin et al., 2020). The
mean snow depths from S1 estimates are∼ 20.0,∼ 10.1, and
∼ 13.4cm for the Inari Nellim, Inari Kaamanen, and Inari
Angeli Lintupuoliselkä locations, respectively (Table 1). In
contrast, the mean snow depth measured by the IN, IK,
and IA automatic weather stations are ∼ 37.1, ∼ 46.9, and
∼ 44.9cm, respectively (Table 1). We notice from Fig. S1 in
the Supplement, presenting the bias evolution of the snow
depth as a function of the days of the year, that the snow sea-
son onset is well estimated by the method, despite the rapid
bias increase as the snow season progresses.

The maps in Fig. 3 present the average snow depth along
the years. Overall, we find higher mean snow depth estimates
in 2019–2020 (Fig. 3a), following the AWS measurements
from the time series in Fig. 2 during the same year. Further-
more, we noticed higher mean snow thickness over water-
body regions, reaching values of over 50 cm for all the esti-
mates along the years (Fig. 3). In order to compare the snow
thickness estimates from S1, we plotted the snow depth mea-
sured in snow pits (sp1–sp4 in Fig. 1) during a field campaign
around the Inari Lake region from 3–7 April 2022 against the
estimates of 6 April 2022 from S1 (Fig. S2 in the Supple-
ment), as this is the closest estimate to the field measure-
ments. We observe that, in comparison with the snow pit
measurements on the lake region, all the snow depths de-
rived from S1 are overestimated (Fig. S1). Moreover, visu-
ally comparing the backscatter signal from the co- and cross-
polarisations, VV and VH, respectively, from S1 (Figs. S4
and S5 in the Supplement), we can observe that the VV com-
ponent is demonstrated to be more sensitive when the lake
starts freezing, on around 11 November. The backscatter sig-
nal increases (Figs. S4 and S5), leading to an increase in the
snow depth values.

Forest areas attenuate the radar waves, scattering the emit-
ted and the received signal from the satellite to the snow
cover on the ground, and vice versa, leading to an under-
estimation of the results (Lievens et al., 2019; Tsang et al.,
2022). In order to investigate the influence of the forest cover,
we divided the canopy density map (Fig. 4a), from Multi-
source National Forest Inventory Raster Maps of 2021, into
forest cover density intervals and calculated the mean snow
depth for each interval yearly (Fig. 4b). We observe, for
all the years and overall mean, thicker snow depth values
over dense vegetation (50 %–100 % of canopy coverage) and
waterbody areas (Fig. 4b). The mean snow depth from the
year 2021–2022 (red bars in Fig. 4b) presents a slight snow
depth decrease where the canopy density is above 40. For
the 2019–2020 and 2020–2021 years, we found thicker snow
layers over denser canopy regions (orange and green bars in
Fig. 4b, respectively). Despite the aligned increase in snow
thickness and canopy density, the estimated snow depths over
the forested areas are underestimated if compared to the au-
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Figure 2. Snow depth variation between 2019 and 2022. The blue dots represent the snow depth variation estimated from the S1 images
before the correction done due to the calibration and forest cover (FC) attenuation. Corrected values are represented by the red dots. The
uncertainty ranges are represented by the light blue and red shading. According to the scale on the left y axis, the solid black line represents
snow depth from the automatic weather stations and the blue dots are snow depth estimates derived by S1. According to the scale on the right
y axis, the solid red lines represent surface temperature daily averaged, respectively.

tomatic weather stations (Fig. 2). Figure 4b shows a max-
imum snow depth of ∼ 57cm (canopy density over 20 %)
in 2019–2020 and a maximum snow depth of ∼ 37cm for
the remaining years. Similar results were found using L-
band SAR images, showing that the snow depth variations
over the forested areas are also underestimated compared to
vegetation-free regions (Ruiz et al., 2022). It is important to
comment that we also utilised the same approach described
before (Fig. 4) to correlate our snow depth estimates with
terrain elevation intervals. We divided the digital elevation
model in intervals every 100 m, going up to its maximum
(∼ 500m). However, we have not found any significant cor-
relation to include in this paper.

In order to compare the S1 estimates and the AWS mea-
surements, we calculated the temporal correlation coeffi-
cients in two different scenarios (Figs. 5 and 6). In the first

scenario (Sc1) we considered all the measurements at once,
as well as separated AWS locations (Fig. 5). In the sec-
ond scenario (Sc2), we looked at individual years separately
(Fig. 6). Figure 5 displays the overall correlation, Sc1, us-
ing all the 174 measurements for all the years and from the
three sites. It presents a low correlation of 0.41 and a mean
absolute error of ∼ 26.1cm (Table 2). The estimates at the
Inari Nellim weather station had a high correlation of 0.81
when compared with the other locations, with R = 0.09 and
R = 0.55 for the Inari Kaamanen and Inari Angeli locations,
respectively (Fig. 5). Figure 6 presents all the 174 measure-
ments separated yearly. We observe that the year 2020–2021
had the higher correlation factor, R = 0.52, as well as the
smaller mean absolute error (∼ 15cm; Table 2). The years
2019–2020 and 2021–2022 presented correlation factors of
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Table 1. Mean snow depth values by the automatic weather stations (AWSs), by snow course measurements, and derived from the S1 images
separated by years.

AWS mean (cm) Sentinel-1 mean (cm)

2019–2020 2020–2021 2021–2022 2019–2022 2019–2020 2020–2021 2021–2022 2019–2022

IN 53.7± 1 22.1± 1 35.5± 1 37.1± 1 31± 16 13.7± 8 14.8± 8 20± 11
IK 70.9± 1 28.3± 1 41.6± 1 46.9± 1 8.5± 7 11.6± 6 10.2± 7 10.1± 7
IA 61.7± 1 28.1± 1 44.9± 1 44.9± 1 16.3± 12 8.8± 6 15.4± 9 13.4± 9
Overall 56.6± 1 22.4± 1 38± 1 39± 1 18.6± 12 11.3± 7 13.5± 8 14.5± 9

Snow courses (cm)

IN 57.3± 6 28.1± 3 45.0± 5 43.4± 5 45.8± 34 8.5± 9 5.7± 6 20.0± 16
IR 87.2± 10 52.5± 6 69.2± 8 69.6± 8 48.1± 25 16.8± 17 10.4± 10 25.1± 17
IL 91.8± 10 59.8± 7 68.7± 8 73.4± 8 24.6± 20 11.1± 11 16.0± 16 17.2± 16
IA 74.4± 8 39.6± 4 51.3± 6 55.1± 6 34.3± 56 23.9± 24 16.2± 16 24.8± 32
IM 67.1± 7 41.1± 5 38.0± 4 48.7± 5 47.6± 22 15.5± 15 11.3± 11 24.8± 16
IKa 93.3± 10 38.7± 4 49.4± 5 60.5± 7 9.8± 11 21.6± 22 18.6± 19 16.6± 17
Overall 78.5± 9 43.3± 5 53.6± 6 58.5± 6 35.0± 28.0 16.2± 16.2 13.0± 13.0 21.4± 19.1

Figure 3. Average snow depth estimated from S1 during the years
of 2019–2020 (a), 2020–2021 (b), and 2021–2022 (c).

Figure 4. Canopy density map representing 2021 (a). Mean snow
depth separated in different canopy density intervals (b). The bot-
tom and top of the vertical boxes represent the 25th and 75th in-
terquartiles, respectively. The solid black line inside the boxes rep-
resents the median snow depth estimate for each interval. Values
outside the whiskers’ extent are not shown, and they are statistically
considered outliers.
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Figure 5. In situ measurements of snow depth compared to snow
depth estimates derived from S1. Different colours represent the
different automatic weather stations, and the solid lines represent
linear regressions of the dataset.

Figure 6. In situ measurements of snow depth compared to snow
depth estimates derived from S1. Different colours represent differ-
ent years, and solid lines represent linear regression for each year.

0.29 for both years (Fig. 6) and mean absolute errors of
∼ 38.9 and ∼ 25.5 cm, respectively (Table 2).

The uncertainty in the AWS snow depth observations
(∼ 1cm) is considerably smaller than the uncertainty in the
SAR-based estimates due to radiometric noise in the SAR
imagery. At the Nellim site, a considerable part of the bias
between the SAR-based estimate and ground truth could be
explained by the estimation uncertainty, yet the same does
not hold for either Inari Kaamanen or Inari Angeli. We thus
conclude that the observed underestimation should be con-

Table 2. Mean absolute error (MAE) and root mean square error
(RMSE) separated by years.

MAE (cm) RMSE (cm)

2019–2020 38.9 48.6
2020–2021 14.0 18.7
2021–2022 25.5 32.7
2019–2022 26.1 35.6

sidered significant in relation to the uncertainty in the esti-
mation method.

The backscatter signal from co-polarised images in the C-
band in dry snow conditions is strongly influenced by the
ground underneath and by the water content in the snow-
pack (Sun et al., 2015; Marin et al., 2020; Feng et al., 2021;
Lievens et al., 2022). ERS and Radarsat, both in the C-
band, demonstrated an increase in the co-polarised backscat-
ter signal during the snow accumulation periods (Bernier and
Fortin, 1998) and a decrease over shallow areas (Rott and Na-
gler, 1993). Following the same empirical hypothesis demon-
strated by Lievens et al. (2019, 2022), the cross-polarised
backscatter signals at the C-band are more responsive to dry-
snow accumulation, in comparison to the backscatter influ-
ence from the ground. Lievens et al. (2019) suggest that dry
snow is represented by layers of large clusters of irregular
ice crystals scattering on the snow layer interfaces. There-
fore, for deep snow locations, it is expected that layered snow
enhances and dominates the backscatter signal from cross-
polarised observations (Lievens et al., 2019).

Given the considerable underestimation of snow depth
over land and, conversely, the considerable overestimation
of snow depth over lake ice, our results reinforce the idea
that the electromagnetic (EM) properties of the surface un-
derlying the shallow seasonal snowpack likely play a major
role in the observable SAR backscatter. There is a clear need
for dedicated studies to improve radiative transfer modelling
of volume scattering of snow in order to better explain the
observed behaviour, as pointed out by Lievens et al. (2019).
Finally, it is worth pointing out that the backscatter ratios
are converted into snow depth through empirical coefficients.
While the calibration coefficients are based on a large num-
ber of data (Lievens et al., 2019), they are based on relation-
ships observed for mountainous snowpacks, and thus they
are not necessarily valid for shallow snowpacks elsewhere.
Recalibration of the coefficients is not considered here due
to the limited number of reference snow depth observation
sites in our study area. We also point out that at Inari Kaa-
manen in particular, the temporal evolution of the backscat-
ter ratios would not have tracked the snow depth evolution
even if other linear calibrations were attempted. This further
points to a need for rigorous radiative transfer studies to bet-
ter understand the composition of C-band SAR backscatter
over seasonal shallow snowpacks.
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4 Conclusions

We investigated the use of co- and cross-polarised backscat-
ter from Sentinel-1 SAR C-band images to estimate snow
depth variations over the northern region of Finland from
2019 to 2022. We presented a high-temporal-resolution com-
parison between snow depth estimated from S1 images and
measurements from automatic weather stations and corre-
lated our results with canopy cover provided by Luonnonva-
rakeskus (Natural Resources Institute of Finland). The use of
the C-band SAR to estimate snow depth over shallow-snow
regions presented limitations. In general, we found under-
estimation for all the years and locations. It is important to
highlight the snow depth estimates at the Inari Nellim loca-
tion, which demonstrated the best results (R = 0.81) when
compared to the automatic weather station measurements at
the same location. Looking across the years, the year 2020–
2021 presented better results (R = 0.52) when compared to
the previous years.

We also investigated the correlation between the canopy
coverage and the snow depth estimations, and we observed
thicker snow depth values over dense vegetation and water-
body regions. These findings are possibly due to the high sen-
sitivity of the VV component over freshly frozen water, in-
creasing the backscatter significantly. We recognise that de-
riving shallow snow depths using C-band SAR images is still
a challenge and further investigation is necessary to better
understand the observed underestimation. Thanks to the ef-
forts of international space agencies, we currently have avail-
able, and will have even more so in the near future, global
coverage of SAR imagery at high temporal and spatial reso-
lution. Combined with installed automatic weather stations,
this opens up the possibility of wide spatial monitoring of
snow variations independent of weather or solar illumination
conditions. However, given the present under- and overes-
timations observed in comparison to reference snow depth
data, we emphasise the first-order need for rigorous radiative
transfer model-based studies to comprehensively understand
the drivers of SAR backscatter from snowpacks.
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