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Abstract. We present the first study employing decadal re-
forecasts to simulate global glacier climatic mass balance,
bridging the gap between seasonal forecasts and long-term
projections of glacier contributions to catchment hydrology
and sea-level rise. Using the Open Global Glacier Model
(OGGM) and Coupled Model Intercomparison Project Phase
6 (CMIP6) decadal re-forecasts of temperature and precipi-
tation, we demonstrate the predictive skill of glacier mass
balance re-forecasts over decadal timescales in two compo-
nents: for a set of 279 reference glaciers, making use of their
mass balance record, and all land-terminating glaciers, mak-
ing use of the globally available geodetic mass balance, re-
spectively. Results show that forcing OGGM with decadal
re-forecasts outperforms persistence forecasts and histori-
cal general circulation model (GCM) simulations. Specif-
ically, out of 279 reference glaciers, 174 show improved
skill when forcing OGGM with decadal re-forecasts for
decadal mean mass balance and 186 show improved skill
for cumulative mass balance. On a global scale, forcing
with decadal re-forecasts yields the best agreement with ob-
served regional mean mass balances for the period 2000–
2020. These findings demonstrate moderate improvements
from using decadal re-forecasts, though statistical signifi-
cance is limited. While improvements are modest, the results
suggest decadal re-forecasts may offer potential for improved
near-term glacier predictions relevant to hydrological appli-
cations, particularly in regions where near-term forecasts can

inform water resource management and climate adaptation
strategies.

1 Introduction

As unique indicators of climate change, water storage reser-
voirs and culturally significant sites, glaciers serve a mul-
titude of purposes (Allison, 2015; Bosson et al., 2019;
Farinotti et al., 2020; Jansson et al., 2003). Observing
and simulating their response to climate change on various
timescales, from millennia to a focus on the past century,
comprise an essential and continuously developing field of
study (e.g., Goosse et al., 2018; Hock et al., 2019; Malles
and Marzeion, 2021; Marzeion et al., 2017; Roe et al., 2021;
Vargo et al., 2020). While the storage outside the Greenland
and Antarctic ice sheets only constitutes a small percentage
of total global freshwater storage in ice, it is equivalent to ap-
proximately 0.32 m of sea-level rise (Farinotti et al., 2019).
Since these smaller ice bodies respond fastest to changes
in the climate, glaciers (outside of the ice sheets) were the
largest contributor to sea-level rise for most of the past cen-
tury (Frederikse et al., 2020), overtaken by thermosteric con-
tribution after 1970, and are expected to remain a significant
contributor in the foreseeable future (Frederikse et al., 2020;
Slangen et al., 2017).

Published by Copernicus Publications on behalf of the European Geosciences Union.



3880 L. N. van der Laan et al.: Decadal re-forecasts of glacier climatic mass balance

Water is accumulated and released by glaciers on vari-
ous timescales, ranging from long-term storage in ice and
firn to short-term storage in snow cover. Within their basins,
glaciers act as a buffering system, preventing precipitation
from immediately turning into runoff in downstream rivers
(Jansson et al., 2003). The seasonality of glacier runoff there-
fore modulates downstream flow, providing meltwater in oth-
erwise potentially dry seasons or years of low flow (Huss and
Hock, 2018; Ultee et al., 2022; Förster and van der Laan,
2022). Due to this buffering capacity, they are essential parts
of global water towers, defined as mountain range water stor-
age and supply to downstream communities and ecosystems,
upon which 22 % of the global population is dependent for
their water needs (Immerzeel et al., 2020).

With changes in climate, glacier mass balance – a temporal
integration of both accumulation and melt, largely governed
by temperature and precipitation – is altered, impacting over
time the glacier mass and thus storage capacity. Despite their
critical relevance, decadal timescales are rarely considered in
glacier modeling studies. This omission is significant, given
that such timescales are critical for water resource manage-
ment, anticipating glacier-change-induced impacts on catch-
ment hydrology (Frans et al., 2016; Lane and Nienow, 2019).
The need for annual to decadal predictions is well recog-
nized, despite the early stage of the field (Boer et al., 2016;
Merryfield et al., 2020). When using the term decadal in this
study, it encompasses timescales of 1 to 10 years. The term
“decadal prediction”, as used here, encompasses predictions
on annual, multi-annual and decadal timescales (Boer et al.,
2016).

In 2016, the World Climate Research Programme
(WCRP), co-sponsored by the World Meteorological Organi-
zation (WMO), the Intergovernmental Oceanographic Com-
mission (IOC) of UNESCO, and the International Science
Council (ISC), set up the Grand Challenge on Near Term
Climate Prediction, to make the case for, and understand the
challenges in establishing, routine operational climate pre-
dictions on these timescales (Kushnir et al., 2019). As of now,
there are multiple ensembles of model hindcasts/re-forecasts
available. These terms are used interchangeably in the lit-
erature. In this study, for consistency, we will use the term
re-forecast, defined here as a retrospective prediction (Boer
et al., 2016), realized with the aim to evaluate these retro-
spective predictions against observations and provide insight
into our capacity to provide real decadal forecasts.

With the advent of operational predictions (Hermanson
et al., 2022), there is growing research activity into the
application of decadal forecasts (Dunstone et al., 2022).
Glacier modeling is one such field, where there is a gap be-
tween seasonal modeling of glacier mass balance and runoff
(e.g., Koziol and Arnold, 2018; Réveillet et al., 2018) and
the more established modeling on the century and millen-
nial scale, often using downscaled general circulation model
(GCM) output (e.g., Huston et al., 2021; Rounce et al., 2023).
By quantifying and improving the predictability of glacier

mass balance on the decadal scale, it may be possible to
bridge this gap. If so, the resulting mass balance predictions
could also be translated into glacier runoff, serving as an im-
portant input for water resource decisions, which often oper-
ate on this timescale (Kiem and Verdon-Kidd, 2011).

The aim of this study is to investigate the utility of forc-
ing a mass balance model with decadal-scale re-forecasts, to
complement current mass balance modeling studies and the
timescales they are commonly conducted on – centuries and
millennia. As far as we know, this study is the first of its
kind in large-scale (regional to global) glacier modeling, fol-
lowing the testing of the applicability of decadal re-forecasts
in impact models for other research disciplines, such as ma-
rine biology (Payne et al., 2022) and the agricultural sector
(Solaraju-Murali et al., 2022). A compact review of applica-
tions, including a preliminary version of the current study, is
presented in O’Kane et al. (2023). The current paper presents
a modeling study using the Open Global Glacier Model
(OGGM; Maussion et al., 2019), structured into two main
components, on different spatial scales. The first component
focuses on a set of 279 reference glaciers, while the second
examines all global land-terminating glaciers. The OGGM
simulations are driven by a multi-model, multi-member en-
semble of monthly temperature and precipitation re-forecasts
from the Coupled Model Intercomparison Project Phase 6
(CMIP6) Decadal Climate Prediction Project (DCPP; Boer
et al., 2016). To evaluate the added skill of decadal re-
forecast forcing, we compare these results with simulations
using two alternative experiments: forcing with a simple per-
sistence method and with uninitialized, free-running histori-
cal GCM outputs and projections from the same models. This
latter approach represents the traditional forcing method typ-
ically used for 21st-century glacier simulations.

2 Data and methods

2.1 Model

We use OGGM v.1.5.3 (Maussion et al., 2019, 2022) for the
first component of the study – the simulation of reference
glaciers – and a slightly updated version, in terms of calibra-
tion, which was not an official release, for the global runs (see
Sect. 2.2.2). OGGM is an open-source modeling framework
written in Python. It was developed to provide a catchment-
to global-scale, modular numerical modeling framework for
various study setups of glacier evolution on multiple scales
while accounting for glacier geometry and ice dynamics.
Maussion et al. (2019) and the continuously expanding and
adapting model documentation at http://docs.oggm.org (last
access: 12 March 2025) explain the model in detail and can
be referred to for an in-depth model description. The current
study focuses on the application of OGGM’s mass balance
modeling capabilities rather than the glacier flow.
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2.1.1 Methodology

The model takes a glacier-centric approach, using the out-
line of a glacier as a starting point. By default, the glacier
outlines are automatically taken from the Randolph Glacier
Inventory (RGI) version 6.0 (Pfeffer et al., 2014; RGI Con-
sortium, 2017). Given a glacier outline and topographical
and climate data, OGGM aims to “(i) provide a local map
of the glacier including topography and hypsometry, (ii) es-
timate the glacier’s total ice volume and compute a map
of the bedrock topography, (iii) compute the surface cli-
matic mass balance and (if applicable) its frontal ablation,
(iv) simulate the glacier’s dynamical evolution under vari-
ous climate forcings and (v) provide an estimate of the un-
certainties associated with the modeling chain” (Maussion
et al., 2019; Recinos et al., 2019). In this study, we solely
use the pre-processing and mass balance modeling capabili-
ties of the model, not the dynamical modeling tools. We call
this a “fixed-geometry approach”; i.e., the surface area and
elevation of the glacier are fixed when computing glacier-
wide mass balance. This simplification assumes that geome-
try feedbacks are negligible at annual-to-decadal scales and
is justified by the dominance of other uncertainties, such as
the unknown glacier state in the past (e.g., Eis et al., 2021).
Furthermore, we only evaluate the climatic mass balance
component and do not evaluate calving or other mass loss
processes: from now on, we will use the term “mass balance”
in place of “climatic mass balance” for simplicity.

2.1.2 Mass balance

The mass balance module selected for the model setup is the
OGGM default in v.1.5.3. Mass balance is calculated using a
temperature index model which generates monthly accumu-
lation and ablation along the glacier:

mi(z)= pfP
solid
i −µ∗max(Ti(z)− Tmelt,0)+ ε, (1)

in which mi is monthly mass balance at elevation z and Ti
constitutes the monthly temperature that is adjusted based
on its elevation using a temperature lapse rate of 6.5 K km−1.
The threshold temperature Ti(z)−Tmelt, above which melting
occurs, is set to the default of −1 °C. Here, the precipitation
correction factor pf is set to 2.5 globally (Maussion et al.,
2019). P solid

i is the monthly solid precipitation, computed as
a fraction of total precipitation, based on the monthly mean
temperature. The temperature sensitivity of a glacier is indi-
cated by calibrated parameter µ∗, and ε is an optional resid-
ual, determined during calibration. In this study we make use
of two independent calibration procedures, one making use
of observations of glaciers with a mass balance record of at
least 5 consecutive years (Sect. 2.2.1) and the other based on
a global dataset (Sect. 2.2.2).

2.1.3 Study structure and simulations

The study is divided into two components, each with dif-
ferent spatial scales; see Table 1. For the first component,
we focus on 279 glaciers with direct mass balance observa-
tions from the World Glacier Monitoring Service (WGMS,
N = 279 glaciers; WGMS, 2022). These glaciers, referred
to as reference glaciers, represent land-terminating glaciers
with robust observational records, spanning at least 5 con-
secutive years per glacier. Over the period 2000–2020, 2676
separate annual mass balance measurements are available for
the 279 glaciers. For the second component, the mass bal-
ance of the approximately 214 000 land-terminating glaciers
globally is simulated. In both components, the geometry of
the glacier is based on the state at the RGI inventory date,
usually between the years 2000 and 2010, and remains un-
changed throughout the simulation. Validation with observed
data is done for the period 2000–2020.

The study aim is to analyze forcing with decadal re-
forecasts. However, in order to put the results into context,
we perform a total of three experiments, with different com-
plexity, for each component. The experiments represent fore-
casting from very simple to complex methods.

These experiments are defined as follows:

1. Decadal re-forecast: OGGM is forced with a 21-
member multi-model ensemble of CMIP6 DCPP-A
decadal re-forecasts (see Sect. 2.4 and Table 1). All dif-
ferent realizations (ensemble members) are downscaled
to the glacier scale and run for all available decades.
Final output: a multi-model ensemble mean of results,
from averaging results of the simulations with 21 mem-
bers. This yields a time series with one mass balance
value per year and glacier, 2000–2020.

2. Persistence: OGGM is forced with a simple,
persistence-type forecast, where each period (lead
times 1 to 9 years; see Sect. 2.3) is the same as the one
that precedes it (from here on referred to as “persistence
forecast”). For this, we use the baseline climate of the
Climatic Research Unit (CRU) data. For example, the
mass balance results from CRU forcing 1990–2000
form the persistence forecast for the period 2000–2010.
Persistence forecasts are a typical null hypothesis
against which other forecast skill is measured (Harg-
reaves, 2010). Final output: a time series with one mass
balance value per year and glacier, 2000–2020, based
on the mean simulated mass balance under the baseline
climate for the respective preceding decade.

3. GCM historical: OGGM is forced with a 21-member en-
semble of CMIP6 historical simulations for 2000–2014,
using climate projections for 2014–2020; see Sect. 2.4.
Historical GCM runs and GCM projections are the cur-
rent state of the art in forcing glacier models for the 20th
and 21st century, including on the near-term timescale
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(see Hock et al., 2019; Slangen et al., 2017; and Zekol-
lari et al., 2022, for overview papers). Final output: a
multi-model ensemble mean of results, from averaging
results of the simulations with 21 members. This yields
a time series with one mass balance value per year and
glacier, 2000–2020.

The purpose of this combination of experiments is to as-
sess the added value of the decadal re-forecasts over a naïve
forecast method (persistence) and with the current state of
the art (GCM historical), as well as analyzing forecast skill of
decadal and persistence (re-)forecasts at different lead times.

2.2 Mass balance model calibration

For each component of our study, we carry out a separate
model calibration. It must be noted that for the purpose of
our study, the performance of the mass balance model itself
is secondary, since only the change in performance when us-
ing various forcing products is investigated. The calibrated
parameters are held constant for each forcing product, allow-
ing us to assess the impact of the forcing strategy alone, not
the impact of calibration.

2.2.1 Component 1 – 279 reference glaciers –
calibration with WGMS data

For the first component, the mass balance calibration proce-
dure is carried out with baseline climate CRU – see Sect. 2.4
– over the years with observed data that fall within the CRU
climate time series (1901–2020). We use the default calibra-
tion procedure as of OGGM v.1.5.3, described in Marzeion
et al. (2012) and Maussion et al. (2019). For all years with
observations, the model output is then compared to observa-
tions to identify the best candidate for µ∗ and ε on a glacier-
by-glacier basis. Because all of these 279 glaciers have ob-
servations, the parameters do not need to be transferred to
glaciers without observations and the mass balance model is
calibrated to match observations over the calibration period.

2.2.2 Component 2 – global glaciers – calibration with
geodetic data

For the second component of this study, OGGM is calibrated
separately, also using baseline climate CRU (Sect. 2.4). We
benefit from the dataset by Hugonnet et al. (2021), provid-
ing geodetic mass balance estimates for 94 % of all global
glaciers over the period 2000–2020. This dataset facilitates a
broader calibration for the global runs, incorporating glaciers
beyond the WGMS reference set. The monthly mass bal-
ance is computed as in Eq. (1) but without making use of
the residual ε, since this dataset consists of data for each
glacier, removing the need for parameter transfer to glaciers
without observations. More detailed information on the use
of residual ε can be found in Marzeion et al. (2012). The
calibration prioritizes temperature sensitivity parameter µ∗,

calibrated to match the glacier’s geodetic mass balance of the
period 2000–2020 (Hugonnet et al., 2021). Note that the re-
calibration for the global run is a practical necessity (we are
simulating all glaciers globally) but has no bearing on our re-
sults, since we compare OGGM results with different forcing
strategies; i.e., we are assessing not the model or its param-
eters but the forcing data used for the simulations. It must
be added that in our study, we will always run the model
during the period it has been calibrated for. This means that
when run with the baseline climate CRU, it provides “perfect
results”: exactly matching observations over the calibration
period (bias of zero).

2.3 Lead time and ensembles

Due to the importance of the initial state of the climate sys-
tem (atmosphere and ocean) for decadal prediction, forecast
skill often declines with lead time (Zhu et al., 2019). Lead
time here adheres to the definition by the American Me-
teorological Society: “The length of time between the is-
suance of a forecast and the occurrence of the phenomena
that were predicted”. To assess the lead-time-based skill in
the context of our study, we create lead-time-based ensem-
ble means of results in the decadal re-forecast experiment
to validate against observations. This results in nine time
series of mass balances, 2000–2020, with input from lead
times 1–9, respectively. Due to the clipping to hydrologi-
cal years to match the WGMS measurements, lead time 0
does not exist in component 1. So for a decadal re-forecast
initialized in 1990 (always in November), the first full year
of simulated values is for the year 1992. In component
2, the first full year of simulated values would be 1991.
For the persistence experiment, we also create lead-time-
based time series. Here, lead time refers to the forecast
length, which is the same time period until the start of the
forecasts. An example of lead time 2 persistence forecast
would be the forecast period 2000–2001 being the same as
the year 1998–1999. In the case of our study period 2000–
2020, the lead time 1 persistence forecast uses temperature
and precipitation from the time period 1999–2019, and lead
time 9 therefore uses values from 1991–2011 for the forecast.
In our decadal re-forecast experiment, we create ensemble
means of results as they would be utilized in practice. As Ris-
bey et al. (2021) note, many assessments of re-forecast skill
are likely overestimated, as the re-forecasts are informed by
observations over the period assessed that would not be avail-
able to real forecasts. In order to avoid this as much as pos-
sible, we only assess a period that was not used in the drift
correction (see Sect. 2.5) and use only lead times that would
be available at the beginning of the forecast period. This re-
sults in time series for each glacier and each full decade in the
period 2000–2020. For an example decade, say 2000–2010,
the ensemble mean of results consists of information from
all re-forecasts initialized in 1990–2000. This means the en-
semble size decreases over time, with only lead time 9 in-
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formation being available in 2009. Decreasing ensemble size
at longer lead times typically increases forecast uncertainty,
potentially affecting skill metrics slightly. We use informa-
tion from all lead times available to maximize ensemble size
and, in turn, skill (Kadow et al., 2017). This approach again
reiterates the fact that decadal re-forecasts are multi-annual,
rather than strictly for 10 years. In order to compare persis-
tence as it would be used in practice, for decadal mean and
cumulative mass balance forecasting, persistence forecasts at
lead time 9 are applied.

2.4 Climate data

The mass balance model in OGGM requires monthly climate
in the form of reference height (2 m) air temperature and pre-
cipitation time series. The default baseline climate forcing,
which we use for our persistence experiment, is the gridded
Climatic Research Unit Time Series (CRU TS v4.01; Harris
et al., 2020). This coarse (0.5°) dataset is then interpolated
to a higher-resolution climatology (CRU CL v2.0 at 10′ res-
olution; New et al., 2002) following the anomaly mapping
approach described in Harris et al. (2020) to acquire climate
time series with elevation data, which is not an attribute in the
CRU TS. For each glacier, the monthly time series of temper-
ature and precipitation are taken from the grid point closest
to the glacier. Temperature is converted using an elevation-
based lapse rate of 6.5 K km−1, and precipitation is corrected
using the default correction factor of pf = 2.5 (Maussion
et al., 2019). While the CRU dataset constitutes our OGGM
baseline climate for calibration, OGGM can also be supplied
with GCM output that is bias-corrected to the baseline cli-
mate, as we do in the decadal re-forecast and GCM historical
experiments.

In the decadal re-forecast experiment, OGGM is driven
with a multi-model, multi-member retrospective ensemble
of monthly temperature and precipitation re-forecasts from
the DCPP component A, which provides re-forecasts. We
use decadal realizations from the “Flexible Global Ocean-
Atmosphere-Land System Model” (FGOALS; Zhou et al.,
2018), the “Norwegian Climate Prediction Model” (Nor-
CPM; Counillon et al., 2016; Bethke et al., 2021) and the
“Model for Interdisciplinary Research on Climate version 6”
(MIROC6; Tatebe et al., 2019; Kataoka et al., 2020). We use
the r1i1p1f1-r1i1p1f10 realization of all models where avail-
able. The DCPP-A decadal re-forecasts are initialized each
year in the period 1960–2010, the first forecast year being
1961. The processing of the decadal data is explained below,
in Sect. 2.5.

In the GCM historical experiment, we drive OGGM with
temperature and precipitation from the historical iteration
and projections of the same three GCMs, obtained from
CMIP6 archived model output: FGOALS, NorCPM and
MIROC6 (see Table 1). The end of the historical simulation
is in 2014, and data from 2015–2020 are provided by projec-
tion runs, leading to 11 full decades in the period 2000–2020.

As the number of available data becomes larger because of
the different shared socio-economic pathways (SSPs), the
choice is to select certain SSPs or to introduce a discrepancy
in ensemble size if using all CMIP6 SSPs. We realize that
neither option facilitates perfect comparison with the decadal
re-forecast and persistence experiment. However, the benefit
of comparison with projections outweighs these concerns, as
initialized forecast vs. projections represents the most real-
istic future use case. To preserve ensemble size, SSP2-4.5
was chosen as the projection for comparison, as it repre-
sents a medium pathway of future greenhouse gas emissions.
From FGOALS runs, not enough SSP2-4.5 realizations were
available at the time of the study, so SSP1-2.6, SSP2-4.5 and
SSP5-8.5 time series were used. As these scenarios do not di-
verge significantly during 2015–2020, we still consider these
results comparable.

In the pre-processing for this experiment, the time series
are bias-corrected and downscaled to the glacier scale us-
ing a variation of the delta method (Ramírez Villegas and
Jarvis, 2010). Here, we take GCM anomalies relative to the
1961–1990 GCM mean for temperature and apply these to
the CRU TS 4.01 (Harris et al., 2020) 1961–1990 means.
The correction is applied monthly and ensures that the mean
and standard deviation are preserved during the bias correc-
tion period for temperature. Precipitation is corrected with
a multiplicative factor and preserves only the mean. This is
the standard method of processing GCM data for projection
studies (e.g., Zekollari et al., 2020) and is the reason we use
it as an evaluation procedure for the decadal re-forecasts.

2.5 Re-forecast drift correction and downscaling

In order to drive OGGM with the re-forecasts, each mem-
ber is downscaled to the glacier scale using a statistical
method applied with baseline climate CRU (New et al.,
2002; Harris et al., 2020). Decadal re-forecasts experience
a bias referred to as drift because they start from an ini-
tialized state constrained by observations, which is inconsis-
tent with the model’s dynamics (Kharin et al., 2012; Man-
zanas, 2020). The drift is lead time dependent because, with
time progressing, the model drifts away more from the ini-
tial state towards a state more consistent with the model’s
climatology, which can lead to significant error (Pasternack
et al., 2021). The re-forecasts have to be bias-corrected to
counter this error. Our correction adheres to recommenda-
tions in Boer et al. (2016), who recommend an overarch-
ing bias correction method, regardless of the initialization
type of the forecast. The reasons behind these recommen-
dations are discussed in depth in, for example, Boer et al.
(2016), Kharin et al. (2012) and Hossain et al. (2022).
We assume that the bias contained in each member is model
dependent and lead time dependent. Because of the assump-
tion that the bias is different at and dependent on each lead
time, subtracting a mean drift per member would lead to
over-compensation at some lead times and residual drift at
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Table 1. Graphical interpretation of the model setup, including both components and experiments therein.

Component 1: WGMS glaciers Component 2: global glaciers

Experiment Climate data source Model Ensemble size

Decadal re-forecast CMIP6 DCPP-A FGOALS, NorCPM, MIROC6 21
Persistence – CRU TS4.01 1
GCM historical CMIP6 historical and projection runs FGOALS, NorCPM, MIROC6 21

others. For this reason, we create lead-time-based climatolo-
gies per model, meaning one climatology over 1971–2000
which contains all lead times 1 year from the re-forecasts,
one which contains all lead times 2 years from the re-
forecasts and so on. These are then used to create anomalies
relative to the baseline climate. For each model, each mem-
ber is bias-corrected according to

dt = T
′
t −CRUcl, (2)

T ′m,t,y = Tm,t,y − dt , (3)

in which dt is the average model bias or drift at each lead
time t , calculated relative to the baseline climate input CRU.
CRUcl is the CRU monthly climatology averaged over 1971–
2000 (Harris et al., 2020; New et al., 2002). T ′t is the model
climatology at lead time t calculated by averaging the lead
time t re-forecasts of all ensemble members of one model
falling into the period 1971–2000. Tm,t,y is the raw re-
forecast, of member m at lead time t for year y. T ′m,t,y is
the bias-corrected re-forecast of member m at lead time t for
year y.

Lead-time-dependent bias correction is a fundamental step
used in decadal forecasting, as is mean bias correction in fu-
ture projections for impact modeling. Because the aim of our
study is to compare the standard methodologies commonly
applied in the respective fields, the GCM historical data are
processed as they would typically be in glacier modeling
(e.g., Zekollari et al., 2024; Rounce et al., 2023; and many
more), and the re-forecasts are processed according to the
recommendations mentioned above. It must be added that the
drift correction, following the lead time (the length of time
between the issuance of a forecast and the occurrence of the
phenomena that were predicted), does not apply to the GCM
historical experiment, where we have only one simulation per
realization.

3 Results and discussion

This section evaluates the results of the three experiments
– decadal re-forecast, persistence and GCM historical – by
comparing them to observed glacier mass balance data for
individual years and decadal mean and cumulative mass bal-
ance. The mean and cumulative decadal mass balances are
distinct from each other as the cumulative mass balances

only include the simulated years for which observations ex-
ist. Throughout our analysis, we compare observational time
series which inherently contain inter-annual variability to en-
semble means from multi-member forecasts. It is important
to recognize that ensemble means naturally reduce variability
by averaging across multiple realizations, thereby smooth-
ing internal fluctuations that occur in any single realization
or observed series. This reduction in variability means that
some of the absolute errors (e.g., the mean absolute error)
used in the evaluation arise from the difference in variability
between a single observational realization and the ensemble
mean. Despite this limitation, ensemble means represent the
most commonly used forecast product in practical applica-
tions due to their stability and reliability.

3.1 Component 1: WGMS glaciers

We first focus on individual years, assessing how skill
changes with lead time. To quantify model skill, we calcu-
late the mean absolute error (MAE) and the Pearson cor-
relation coefficient (r) for each lead-time-based ensemble
mean, with the results displayed in Fig. 1. The decadal re-
forecast experiment shows consistent performance, with an
MAE of 0.64 m w.e. at lead time 1 and a slightly lower value
of 0.63 m w.e. at lead time 4, before increasing slightly to
0.65 m w.e. by lead time 9. Pearson correlation coefficients
decrease from 0.14 at lead time 1 to 0.07 at lead time 9, re-
flecting the inherent difficulty of simulating individual an-
nual mass balance values. For the persistence experiment,
MAE increases from 0.69 m w.e. at lead time 1 to 0.72 m w.e.
at lead time 9, with greater variability in correlation com-
pared to the decadal re-forecast forcing. By contrast, results
from the GCM historical experiment, which does not de-
pend on lead time, show constant skill. As there is no ap-
plication of lead time to the GCM historical experiment, its
results (MAE= 0.66 m w.e., r = 0.01) are plotted as a con-
stant to compare the skill score magnitude. Overall, skill is
low when simulating individual years, which is expected and
in line with other studies using OGGM for this set of refer-
ence glaciers. One example is Eis et al. (2021), who yield
an MAE of 0.60 m w.e. with baseline climate CRU over the
time period from 1917 until the RGI outline date per glacier
(often early 2000s). Simulating single-year mass balances is
not the focus of this study; however, the results show that al-
ready on the single-year level, forcing OGGM with decadal
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Figure 1. Forecast skill for annual mean mass balance for WGMS
reference glaciers (N = 279). Forecast skill is given as the Pear-
son correlation coefficient (r) in (a) and mean absolute error
(MAE, m w.e.) between observed and simulated mass balance ob-
servations (N = 2676) in (b). Skill is plotted as a function of lead
time into the future, calculated across the appropriate comparison
periods (2000–2020) for the decadal re-forecasts and persistence
forecasts. The mean skill scores of the GCM historical (2000–2020)
simulations are also shown for reference, as a constant, since there is
no application of lead time. Shaded areas for both persistence and
decadal re-forecast (RF) denote the 90 % confidence interval esti-
mated by bootstrapping: 5 % of the distribution is above and 5 %
below the shaded areas.

re-forecasts outperforms the persistence and the GCM histor-
ical experiments, which both show higher errors and lower
correlations.

Next, we compare mean and cumulative mass balance over
full decades, as illustrated in Fig. 2 and Table 2. To quan-
tify model skill, we look at the mean error (ME), which is
the average difference between observed and simulated val-
ues (sometimes called “mean bias”); the mean absolute er-
ror (MAE); and the Pearson correlation coefficient. In the
time period 2000–2020, we have 11 full decades for which
the mean and cumulative mass balance are calculated per
glacier. The full decades, which have significant overlap, are
still compared separately and depicted in Fig. 2 to show how
the choice of decade can considerably impact skill statis-

tics. For example, in the decadal re-forecast experiment, the
decade 2001–2011 has a mean model error of−0.022 m w.e.,
whereas the decade 2002–2012 has a mean model error of
0.11 m w.e.

Observed mean mass balance for the decade 2000–2010
is −0.79 m w.e. Simulations using reanalysis data (CRU),
which provide a benchmark for comparison, yield a mean
error (ME) of −0.037 m w.e. and an MAE of 0.23 m w.e.
Decadal re-forecasts produce comparable results, with an
ME of 0.091 m w.e. and an MAE of 0.27 m w.e., while per-
sistence forecasts display a larger ME of−0.16 m w.e. and an
MAE of 0.39 m w.e. The GCM historical experiment shows
slightly better performance than persistence, with an ME
of −0.0059 m w.e. and an MAE of 0.29 m w.e. Correlation
coefficients are moderate to high, with decadal re-forecasts
achieving the highest correlation (r = 0.64), followed by
GCM historical (r = 0.61) and persistence (r = 0.58).

In terms of cumulative decadal mass balance, error pat-
terns are similar. Decadal re-forecasts achieve an ME of
−0.39 m w.e. and an MAE of 1.33 m w.e., while persistence
experiments have an ME of −0.96 m w.e. and an MAE of
1.62 m w.e., reflecting the difficulty of using persistence fore-
casts for warming-sensitive variables like glacier mass bal-
ance. GCM historical simulations show comparable results
to decadal re-forecasts, with an ME of −0.27 m w.e. and an
MAE of 1.58 m w.e.

To gauge the statistical significance of the differences be-
tween experiments, we carry out a two-tailed t test (sig-
nificance level 0.05) on the set of individual glaciers. The
samples for these tests are the 279 glacier-specific values
of decadal mean and cumulative mass balance for each
forcing type. For decadal re-forecasts and GCM histori-
cal experiments, these values are ensemble means, whereas
for the persistence forecast, a single-member simulation
is used. For the decadal mean mass balance, the differ-
ence between the decadal re-forecast and persistence ex-
periment is statistically significant, as is the difference
between the persistence and GCM historical experiment.
However, there is no significant difference between the
decadal re-forecast and GCM historical experiments. For
the cumulative mean mass balance, there are no statis-
tically significant differences amongst the experiments.
We also perform a binomial test, assessing improved skill
by specifically evaluating reductions in mean absolute error
for the decadal re-forecast relative to persistence or histori-
cal forcing. This shows that out of the 279 glaciers we ana-
lyze, 174 showed improved skill using decadal re-forecasts
for decadal mean mass balance and 186 showed improved
skill for cumulative mass balance. Using a binomial signifi-
cance, this suggests that the overall improvement from using
decadal re-forecasts is significant at the 5 % level. We note
that the t test and binomial test can yield different interpre-
tations because they test different aspects of statistical sig-
nificance. The t test compares the mean differences between
forecast methods across the entire set of glaciers, assessing
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whether differences in the average performance are statisti-
cally distinguishable given the spread in the dataset. By con-
trast, the binomial test assesses significance based only on the
count of glaciers showing improved performance (in terms
of lower mean absolute error) when comparing one forecast
method directly with another, irrespective of the magnitude
of improvement.

Thus, while in some cases, the t test does not indicate a
statistically significant difference, due to variability across
glaciers and the relatively small magnitude of improvement
on average, the binomial test can indicate statistical sig-
nificance simply because more glaciers improve under one
approach compared to another than would be expected by
chance alone. Both tests provide complementary perspec-
tives: the t test assesses the robustness of the average im-
provement magnitude across glaciers, whereas the binomial
test evaluates consistency in improvement across individual
glaciers.

The persistence experiment shows a notable overestima-
tion of mass balance, particularly at longer lead times. This is
evident in Fig. 2, where persistence forecasts systematically
deviate from the observed values due to a lag in warming
trends. This highlights the limitations of persistence-based
methods for forecasting glacier mass balance on decadal
timescales, where warming trends have significant influence,
as is the case with glacier mass balance.

The skill differences between the experiments are further
quantified in Table 2. Here for the reference glaciers, forc-
ing with decadal re-forecasts outperforms forcing with per-
sistence forecasts or historical GCM data, even though the
absolute improvements in skill are small and statistically not
significant between the decadal re-forecast and GCM his-
torical experiments, for individual glaciers. Pearson correla-
tion coefficients between simulated and observed values are
generally in the same range for all three experiments, with
the highest correlations for the decadal re-forecast experi-
ment. All Pearson correlations are moderate – up to 0.64
for the decadal re-forecast experiment – for mean decadal
mass balance and high – up to 0.85 – for cumulative decadal
mass balance. Comparison these correlations to the low de-
gree of correlation when simulating individual years empha-
sizes how the skill of our experiments lies primarily in simu-
lating multi-annual averaged or cumulative mass balances,
filtering out inter-annual noise. This is in line with simi-
lar approaches, where skill is found through the integration
of fluxes over time, such as in seasonal snow accumulation
(Förster et al., 2018).

We also note here that in the decadal re-forecast ex-
periment, the multi-model ensemble mean of results yields
higher skill than single-model ensembles. Comparing the
multi-model ensemble mean of results to observations of
mean decadal mass balance vs. single-model ensemble
means of results (N = 3) compared to observations yields
a decrease in MAE of 11 % (vs. FGOALS), 8 % (vs. Nor-
CPM) and 6 % (vs. MIROC6), respectively. This aligns with

Figure 2. Simulated and observed mean mass balances over each
full decade (N = 11) over all 279 reference glaciers. Only simulated
values where observed values are available are used to generate the
decadal means.

Table 2. Summary of the comparison between WGMS-observed
and simulated mass balances for all three experiments. The statis-
tics shown are ME (model error), MAE (mean absolute error) and
Pearson correlation, as well as half the interquartile range of the
particular statistic.

Skill measure Decadal RF Persistence GCM historical

Decadal mean mass balance

ME (m w.e.) 0.091± 0.15 −0.16± 0.20 −0.0059± 0.21
MAE (m w.e.) 0.27± 0.16 0.39± 0.23 0.29± 0.22
Pearson r 0.64± 0.09 0.58± 0.08 0.61± 0.18

Decadal cumulative mass balance

ME (m w.e.) −0.39± 0.20 −0.96± 0.23 −0.27± 0.26
MAE (m w.e.) 1.33± 0.66 1.62± 0.77 1.58± 0.62
Pearson r 0.85± 0.12 0.74± 0.09 0.79± 0.09

our expectations from the literature due to an increase in en-
semble size and associated error cancellation and the separate
forecast systems adding signal to the multi-model ensemble
(Kadow et al., 2017; Delgado-Torres et al., 2022). Other stud-
ies applying multi-model ensembles in impact models, such
as Payne et al. (2022), also come to the conclusion that a
multi-model ensemble generally gives the best performance,
which is why we do not explore single-model ensemble per-
formance further.

3.2 Component 2: global glaciers

For all global land-terminating glaciers, we compare results
of mean decadal mass balance in all experiments. To assess
skill, 2000–2010 and 2010–2020 results are validated against
the global geodetic mass balance dataset by Hugonnet et al.
(2021). Because the time period 2000–2020 is covered by
both validation datasets, a separate comparison of the two is
provided in Sect. 3.3.

The Cryosphere, 19, 3879–3896, 2025 https://doi.org/10.5194/tc-19-3879-2025



L. N. van der Laan et al.: Decadal re-forecasts of glacier climatic mass balance 3887

Comparing 2000–2010 decadal re-forecast skill scores
to the persistence and GCM historical experiments, im-
provement in skill is slight (Table 3). Over the decade
2000–2010, decadal re-forecasts yield a 23 % and 18 %
reduction in mean absolute error (MAE) relative to persis-
tence and GCM historical forcing, respectively. Over this
period, the MAE for the decadal re-forecast experiment
was 0.28 m w.e., compared to 0.35 m w.e. for persistence
forecasts and 0.33 m w.e. for the GCM historical experi-
ment. The Pearson correlation coefficients similarly favor
re-forecasts, potentially indicating higher overall skill on
a global scale. Performing a two-tailed t test (significance
level 0.05) on the collection of glaciers shows that while the
difference between the persistence experiment and the two
other experiments is significant, the difference between the
decadal re-forecast and GCM historical experiments is not.

Between the different glaciated regions of the world – RGI
regions (see Fig. 3) – there is considerable variation in skill.
Indicated in the histograms in Fig. 4 are the regional mean
absolute errors for 2000–2010, which vary considerably. The
decadal re-forecast experiment achieves good agreement (re-
gional mean difference≤ 0.1 m w.e.) in 10 of 18 regions, rea-
sonable agreement (difference 0.1–0.3 m w.e.) in 7 regions
and mediocre agreement (difference≥ 0.3 m w.e.) in 1 re-
gion. Variability in MAE is larger for the persistence and
GCM historical experiments, with notable overestimation
of mass balance due to lagging warming trends in persis-
tence forecasts. The persistence experiment generally per-
forms worse for regions sensitive to rapid warming, such as
Greenland and Iceland, highlighting the limitations of static
forecasts in a warming climate. Overall, the differences be-
tween experiments all lie within 1 standard deviation of the
mean, for the simulations as well as within the mean error
of observations (Hugonnet et al., 2021). All 2000–2010 ob-
served values and their uncertainty, as well as all simulated
values per experiment, are included in Table 3.

The 2010–2020 results are slightly different than for the
2000–2010 period in that the persistence experiment out-
performs the decadal re-forecast experiment in terms of the
overall skill score. The mean absolute error for the decadal
re-forecast experiment is 0.28, while persistence mean ab-
solute error is 0.24, with Pearson correlation coefficients
of 0.69 and 0.77, respectively. In terms of the goodness of
fit per region however, the decadal re-forecast experiment
slightly outperforms the persistence experiment, with 11 of
18 regions showing a good fit (defined as a difference be-
tween regional means≤ 0.1 m w.e.). Of the 18 regions, 5
show a reasonable fit (difference between regional means
0.1–0.3 m w.e.) and 2 show a mediocre fit (difference be-
tween regional means≥ 0.3 m w.e.). The persistence experi-
ment shows 8 regions with good fit, 8 regions with reasonable
fit and two regions with mediocre fit. The exact goodness-
of-fit numbers, including the observations and observational
uncertainty, can be found in Table 5.

The fact that the persistence experiment performs
markedly better for this decade than for the previous one,
while skill scores and goodness of fit are similar for the
decadal re-forecast experiment, lies in the calibration. As ex-
plained in Sect. 2.2.2, the calibration and validation periods
are the same. Because of the nature of persistence forecasts,
the forcing data for the 2000–2010 period originated from
1990–2000 and were not used in calibration. For the period
2010–2020, however, both the climate data for the persis-
tence forecast (2000–2010) and the forecasted decade were
part of the calibration, resulting in a bias of 0 for the full
time period of 2000–2020. To assess the effect of this, we run
another persistence simulation, this time with a model only
calibrated for the period 2000–2010, leaving 2010–2020 for
validation. This is also the scenario that would occur when
using persistence to forecast 2020–2030: the model is cali-
brated for the decade prior to the forecasted one. This leads
to a markedly worse score for the persistence forecast, with a
mean absolute error of 0.38± 0.36 m w.e. and a Pearson cor-
relation coefficient of 0.26, indicating low correlation. For
the sake of consistency, keeping calibration the same for all
experiments, the persistence experiment results presented in
Table 5 are from the simulation with the original calibration.

3.3 Observed data differences

Finally, this study clearly benefits from the availability of
two separate datasets of observed mass balance for the same
2000–2020 time period. This allows for more critical as-
sessment not only of model results, but also of uncertainty
within observations. The use of both datasets here war-
rants a comparison between overlapping observations. For
the period 2000–2010, we calculate the mean mass balance
for all glaciers where the WGMS dataset has full observa-
tions throughout the decade (N = 90). For this subset of 90
glaciers, we find a mean bias/difference of −0.049 m w.e.
and an absolute bias/difference of 0.23 m w.e. between the
WGMS and geodetic mass balance data. For the period
2010–2020 we have 100 glaciers with uninterrupted mass
balance coverage from the WGMS dataset. Comparing to the
Hugonnet et al. (2021) mean mass balances yields a mean
bias/difference of −0.15 m w.e. and an absolute bias/differ-
ence of 0.32 m w.e. For the full time period of 2000–2020,
a subset of 67 glaciers has observations throughout the full
time period. The mean bias/difference here is −0.11 m w.e.,
and the absolute bias/difference is 0.23 m w.e. These results
are of the same magnitude of error as that which we observe
when comparing our decadal re-forecast simulation results
to observations, as well as the uncertainties associated with
the Hugonnet et al. (2021) data (see Tables 4 and 5). This
not only reinforces the need for caution when interpreting
observations but also confirms the satisfactory quality of the
simulated results.
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Figure 3. Map of all RGI regions, of which we use 18 in OGGM as we exclude Antarctica (region 19). Numbered light-blue polygons
correspond to the glacier regions (GTN-G, 2023) listed in Tables 4 and 5. Dark-red areas correspond to all glaciers listed in the RGI
inventory (RGI Consortium, 2017). The country outlines are made with Natural Earth country polygons (https://www.naturalearthdata.com,
last access: 2 January 2024).

Table 3. Observed and simulated global mass balance skill scores. Summary of the comparison between global observed and simulated mean
mass balances for all three experiments in the decades 2000–2010 and 2010–2020. The statistics shown are ME (model error), MAE (mean
absolute error) and Pearson correlation, as well as half the interquartile range for the particular statistic.

Skill measure Decadal RF Persistence GCM historical

2000–2010

ME (m w.e.) 0.082± 0.15 0.24± 0.14 0.18± 0.17
MAE (m w.e.) 0.28± 0.12 0.35± 0.26 0.33± 0.11
Pearson r 0.71± 0.09 0.64± 0.08 0.65± 0.09

2010–2020

ME (m w.e.) −0.043± 0.17 −0.098± 0.18 −0.069± 0.14
MAE (m w.e.) 0.28± 0.14 0.24± 0.12 0.31± 0.16
Pearson r 0.69± 0.08 0.77± 0.09 0.66± 0.10

3.4 Skill

On the whole, the skill displayed in the decadal re-forecast
experiment is comparable to or slightly better than in the
other experiments. Regional differences in skill (“goodness
of fit” in the global component) in the re-forecast exper-
iment likely stem from differences in re-forecast quality.
This means the degree of correspondence between observed
and simulated temperature and precipitation. We refer to
Delgado-Torres et al. (2022) for a comprehensive analysis of
the quality of the re-forecasts used here. Their results show
generally high skill for DCPP forecasts of temperature, es-
pecially over land masses. For precipitation, however, skill is
limited in several regions, including central Europe (region

11) and Western Canada/US (region 2), which also show the
least mass balance skill out of all regions (see Tables 4 and 5).
Good precipitation skill is observed for northern Europe and
Central Asia, in line with our yielded “good fit” results for
Svalbard and Jan Mayen (region 7) and Central Asia (region
13) (Tables 4 and 5). Delgado-Torres et al. (2022) find the
quality of decadal re-forecasts of temperature to be higher
than that of historical temperature simulations for multiple
regions, while added value is smaller when simulating tem-
perature. With accurate representation of precipitation being
essential for mass balance modeling, it is likely that precip-
itation forecasts are a limiting factor in seeing significant
improvement when simulating near-term mass balance with
decadal re-forecasts as forcing, over persistence or histori-
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Figure 4. Mean absolute error for runs with decadal re-forecast forcing (a), persistence forcing (b) and GCM historical forcing (c), for all
RGI regions (N = 18). The vertical lines indicate the mean (bold, black), median (dotted, black), and 5th and 95th percentiles (grey) of the
mean absolute error.

Table 4. Overview of mass balances over the period 2000–2010, from the decadal re-forecast, persistence and GCM historical experiments,
as well as observed data from Hugonnet et al. (2021). The Hugonnet et al. (2021) values include their uncertainties. Values are formatted
according to the goodness of fit between experiment and Hugonnet et al. (2021) data: cells in bold indicate a good fit (difference between
regional means≤ 0.1 m w.e.), cells in a normal font indicate a reasonable fit (difference between regional mean 0.1–0.3 m w.e.) and cells in
italics indicate a mediocre fit (difference between regional mean≥ 0.3 m w.e.).

RGI region Mean mass balance 2000–2010 (m w.e.)

Observed (Hugonnet et al., 2021) Decadal re-forecast Persistence GCM historical

1 Alaska −0.29± 0.47 −0.34 −0.28 −0.0055
2 Western Canada/US −0.18± 0.48 −0.42 −0.10 −0.077
3 Arctic Canada North −0.35± 0.28 −0.11 −0.062 −0.0024
4 Arctic Canada South −0.40± 0.37 −0.32 −0.13 −0.16
5 Greenland Periphery −0.34± 0.38 −0.28 0.31 0.10
6 Iceland −0.42± 0.35 −0.57 −0.056 −0.22
7 Svalbard and Jan Mayen −0.26± 0.28 −0.18 −0.0089 −0.10
8 Scandinavia −0.46± 0.45 −0.22 0.044 −0.41
9 Russian Arctic −0.31± 0.26 −0.23 −0.083 −0.13
10 North Asia −0.38± 0.58 −0.42 −0.27 −0.27
11 Central Europe −0.60± 0.62 −0.36 0.040 0.21
12 Caucasus/Middle East −0.35± 0.50 −0.35 −0.070 −0.27
13 Central Asia −0.21± 0.46 −0.16 −0.054 −0.11
14 South Asia West −0.08± 0.48 −0.09 0.048 −0.033
15 South Asia East −0.34± 0.48 −0.13 −0.25 −0.30
16 Low Latitudes −0.33± 0.49 −0.34 −0.41 −0.37
17 Southern Andes −0.17± 0.56 −0.09 −0.17 −0.053
18 New Zealand −0.060± 0.61 −0.15 0.13 −0.18

Total −0.31± 0.45 −0.26 −0.076 −0.13

cal/projection data. Additionally, addressing precipitation in
a more complex calibration and downscaling approach may
decrease uncertainty in this area. This is to be kept in mind
when designing future studies, especially if these include re-
gions where predictive skill for precipitation is low.

The primary source of decadal (re-)forecast skill, beyond
free-running simulations, is initialization. The main benefit
of initialized decadal forecasts is that the initialization al-
lows them to capture both the response to external forcing
and the phase of the internal variability in the climate sys-
tem. For example, initialized re-forecasts better capture At-

lantic multi-decadal variability than GCM historical simula-
tions in a study by García-Serrano et al. (2015). Smith et al.
(2019) note that improvements from initialization generally
take place in regions where the uninitialized simulations al-
ready have some skill. This can also be seen in the simi-
lar skill patterns between the GCM historical and decadal
re-forecast experiments in Tables 4 and 5. Initialized fore-
casts better represent internal climate variability due to ac-
curate initial conditions (Smith et al., 2019). This enhances
their predictive skill for timescales of 1–10 years compared
to uninitialized projections. Initialized decadal forecasts also
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Table 5. Color-coded overview of mass balances over the period 2010–2020, from the decadal re-forecast, persistence and GCM histori-
cal/projection experiments, as well as observed data from Hugonnet et al. (2021). The Hugonnet et al. (2021) values include their uncertain-
ties. The table is color coded according to goodness of fit between experiment and Hugonnet et al. (2021) data: cells in bold indicate a good
fit (difference between regional means≤ 0.1 m w.e.), cells in regular font a reasonable fit (difference between regional mean 0.1–0.3 m w.e.)
and cells in italics indicate mediocre fit (difference between regional mean≥ 0.3 m w.e.).

RGI region Mean mass balance 2010–2020 (m w.e.)

Observed (Hugonnet et al., 2021) Decadal re-forecast Persistence Historical and projection

1 Alaska −0.57± 0.45 −0.51 −0.32 −0.34
2 Western Canada/US −0.50± 0.51 −0.58 −0.23 −0.45
3 Arctic Canada North −0.40± 0.27 −0.21 −0.36 −0.23
4 Arctic Canada South −0.45± 0.35 −0.58 −0.37 −0.51
5 Greenland Periphery −0.22± 0.36 −0.41 −0.38 −0.37
6 Iceland −0.25± 0.33 −0.56 −0.43 −0.51
7 Svalbard and Jan Mayen −0.30± 0.27 −0.32 −0.23 −0.22
8 Scandinavia −0.36± 0.44 −0.46 −0.40 −0.58
9 Russian Arctic −0.29± 0.23 −0.39 −0.29 −0.26
10 North Asia −0.44± 0.59 −0.53 −0.39 −0.50
11 Central Europe −0.59± 0.63 −0.58 −0.39 −0.54
12 Caucasus/Middle East −0.58± 0.54 −0.58 −0.27 −0.76
13 Central Asia −0.27± 0.47 −0.28 −0.16 −0.32
14 South Asia West −0.14± 0.47 −0.046 −0.08 −0.23
15 South Asia East −0.49± 0.49 −0.11 −0.38 −0.52
16 Low Latitudes −0.32± 0.49 −0.69 −0.25 −0.96
17 Southern Andes −0.28± 0.34 −0.28 −0.022 −0.31
18 New Zealand −0.34± 0.65 −0.41 −0.03 −0.45

Total −0.38± 0.44 −0.42 −0.29 −0.45

provide a more constant uncertainty over time than unini-
tialized projects, whose uncertainty increases significantly
with lead time (Strobach and Bel, 2017). Future improve-
ments in initialization, e.g., regarding the initialization of the
North Atlantic Oscillation (Nicolì et al., 2025), may therefore
still offer potential for reducing uncertainties in near-term
glacier modeling, even if the current benefits are limited.
In addition, decadal forecasts outperform uninitialized pro-
jections in representing regional climate variability, espe-
cially in temperature and precipitation, which are crucial for
accurately modeling glacier mass balance. As studies such as
Thornton et al. (2014) describe, climate variability often ex-
acerbates the impact of climate change on vulnerable com-
munities. In a glacier context, this could mean, for exam-
ple, above-average melt events impacting downstream com-
munities, so accurate prediction is essential. Finally, Payne
et al. (2022) note in their assessment of forcing with decadal
re-forecasts vs. uninitialized projections that there is an es-
tablished demand for communicating both the likely values
and the uncertainty in a forecast made with an impact model
(Bruno Soares and Dessai, 2016). When the effort is made to
minimize this uncertainty and make a forecast that is as pre-
cise as possible, forcing with initialized forecasts is likely
preferable on the decadal scale. Despite these advantages,
decadal forecasts are still in development, and the continu-

ation of projects such as the DCPP contribution to CMIP6
(Boer et al., 2016) is essential to ensure their operational use.

This study also reveals arguments for applying decadal
(re-)forecasts over persistence or uninitialized projections in
future near-term glacier modeling studies. Especially warm-
ing and glacier mass loss accelerating (Hugonnet et al., 2021)
support an argument for forcing near-term simulations with
initialized forecasts over persistence forecasts, which lack
the warming trend over the simulation period. The choice
of initialized forecast forcing over uninitialized projections
stems mainly from the probabilistic context: projections, es-
pecially as pathway differences increase over time, are in-
herently more uncertain than a forecast initialized at the be-
ginning of the forecast period. Statistically, we observe no
significant difference between the decadal re-forecast and
GCM historical experiment per individual glacier (Sect. 3.1).
Binomial tests however show a general improvement when
forcing OGGM with decadal re-forecasts. Also, Smith et al.
(2019) note that significance tests, such as those applied here,
often underestimate the improvement from initialization be-
cause there is a significant overlap of skill in both exper-
iments (e.g., simulating the global warming trend). Smith
et al. (2019) state, “This common signal introduces a bias
that is not taken into account in standard significance tests
and diminishes their power (Siegert et al., 2017).” Therefore,
the small improvements in the skill statistics of the decadal

The Cryosphere, 19, 3879–3896, 2025 https://doi.org/10.5194/tc-19-3879-2025



L. N. van der Laan et al.: Decadal re-forecasts of glacier climatic mass balance 3891

re-forecast experiment over the other experiments may indi-
cate a larger benefit of forcing glacier models with decadal
re-forecasts than is evident in Student’s t test. This indicates
that even modest skill increases from initialization may be
reliably attributed to improved forecast initialization rather
than to random chance.

4 Conclusion and outlook

Our results show that there is merit in using decadal-scale
forecasts in glacier modeling, as they show good predictive
skill of averaged multi-annual mass balances. We see that,
indicated by lower errors and higher correlations, the use
of decadal re-forecasts yields results that are comparable to
or better than forcing OGGM with a persistence forecast
or the current state of the art: GCM historical data of
temperature and precipitation. When forcing OGGM with
decadal re-forecasts, a binomial test shows improvement
for the majority of the WGMS glaciers and, globally, we
see good or reasonable agreement between simulated and
observed mean mass balances for almost all RGI regions
and on a glacier-to-glacier basis. Forcing with both GCM
historical/projection simulations and decadal re-forecasts
yields skillful predictions of cumulative mass balance over
single decades for the WGMS set of reference glaciers, pro-
viding an important basis for modeling the amount of mass
moving downstream over a decade. Planning future studies
with these forcings of course operates on the assumption
that real-time decadal forecasts (for decades that lie in the
future) and GCM projections would be of similar quality
to the re-forecasts and historical runs used in the current
study, and this would benefit from future validation. The use
of decadal forecasts would not replace GCM projections
for 21st-century glacier modeling but can provide added
clarity in the near term, especially in terms of uncertainty.

The results shown here are limited by multiple factors, and
we especially highlight the need for continuing this research
with a larger ensemble, which could increase predictive skill
(Smith et al., 2013). We also propose a more detailed look
into ensemble spread, explicitly quantifying and incorporat-
ing ensemble spread as a measure of uncertainty. Probabilis-
tic evaluation methods, such as the continuous ranked prob-
ability score (CRPS; Hersbach, 2000), could better utilize
the full predictive distribution provided by ensemble fore-
casts, thus giving a more comprehensive picture of fore-
cast uncertainty and reliability. Another important step to-
wards applications in hydrology and industry would be the
use of decadal forecasts to force OGGM dynamically, as op-
posed to the static mass balance in the current study. This
would mainly serve to ensure a more accurate initial state of
the glacier, important for areas where glaciers have already
changed significantly since their RGI inventory date, such as
in the European Alps.

Finally, the foremost aim when continuing this research is
to have the highest possible quality of near-term glacier sim-
ulations for the next decade. Accurate knowledge of near-
term trends is essential, as these timescales are most relevant
to applications in hydrology and industry (Frans et al., 2016;
Lane and Nienow, 2019; Arheimer et al., 2024), especially in
regions where populations are directly affected in the form of
water scarcity or flooding. This work would add to a grow-
ing database of field cases utilizing near-term forecasts; see,
for example, O’Kane et al. (2023). Our results support the
case for using decadal forecasts to achieve this, rather than
depending only on the continuation or repetition of recent
decadal climatic conditions (as in persistence forecasts). The
next applications of the methods laid out in this study would
be on basin and global scales, forcing OGGM with a multi-
model ensemble of decadal forecasts, into the 2030s. OGGM
would be applied to acquire decadal estimates of future mean
and cumulative mass balance, volume and area change, and
glacier runoff. Results could provide robust, important in-
formation on the amounts of glacier mass lost and moving
downstream in the form of runoff. With the continuing and
accelerating impacts of climate change on glaciers and water
resources, we emphasize the need for these near-term pre-
dictions in order to best inform and protect the communities
dependent on such resources.

Appendix A: Decadal re-forecasts of glacier climatic
mass balance

The two figures in this appendix have been produced as an
example of results for a single glacier. As can be seen, neither
the GCM historical nor the decadal re-forecast experiments
perform very well when analyzed at the single-glacier level,
in this case for the Hintereisferner and Langfjordjoekulen. In
the Hintereisferner case, also cumulatively, neither the GCM
historical nor the decadal re-forecasts have provided more
skill than the very simple persistence experiment. The en-
semble spread, in this case, is even larger than for the GCM
historical experiment, which does not speak for its benefits
of initialization. In the Langfjordjoekulen case, the decadal
re-forecast experiment performs better than the GCM his-
torical and persistence experiments. It does not follow the
year-to-year variations but captures the mean mass balance
over the decade much better than the other two experiments.
Overall, simulating single glaciers with OGGM is not the
model’s fortitude. The model is calibrated using the baseline
climate and publicly available data, which either are sparse
(WGMS) or only provide a decadal mean (geodetic global
dataset; Hugonnet et al., 2021). Thus, the overall benefits of
using a different climate forcing, such as in this study, should
be determined over a larger set of glaciers.

https://doi.org/10.5194/tc-19-3879-2025 The Cryosphere, 19, 3879–3896, 2025



3892 L. N. van der Laan et al.: Decadal re-forecasts of glacier climatic mass balance

Figure A1. Single-glacier result example for the Hintereisferner, Austria. Mean errors (MEs) for the different experiments, for mean mass
balance over the decade, as in Table 2, are indicated in the legend. These give the difference between the mean observed mass balance and
the mean simulated mass balance for the different experiments. For the GCM historical and decadal RF experiments, “simulated” refers to
the ensemble mean.

Figure A2. Single-glacier result example for the Langfjordjoekulen, Norway. Mean errors (MEs) for the different experiments, for mean
mass balance over the decade, as in Table 2, are indicated in the legend. These give the difference between the mean observed mass balance
and the mean simulated mass balance for the different experiments. For the GCM historical and decadal RF experiments, “simulated” refers
to the ensemble mean.
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Code and data availability. The documentation of the OGGM
is available at https://docs.oggm.org/en/v1.5.3/ (last access: 3
May 2024) and https://doi.org/10.5281/zenodo.6408559 (Maus-
sion et al., 2022). The climate model data used in this study
are openly available from the Earth System Grid Federa-
tion (ESGF) at the following URL: https://aims2.llnl.gov/search/
cmip6/ (last access: 25 May 2024). The OGGM baseline cli-
mate CRU is available in the OGGM pre-processed directo-
ries at https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.
4/exps/CRU_new/elev_bands/qc0/pcp2.5/match_geod_pergla/ (last
access: 1 May 2025) (Maussion et al., 2022).
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