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Abstract. As a consequence of atmospheric warming, high-
altitude periglacial and glacial environments exhibit clear
signs of cryosphere degradation, and the Alps serve as a natu-
ral laboratory for studying the primary effects on permafrost-
related features. Our research in South Tyrol, northeastern
Italy, aimed to develop an updated classification system,
based on remote sensing data and statistical models, for rock
glacier activity, categorizing it as active, transitional, or relict
according to the new Rock Glacier Inventories and Kine-
matic (RGIK) guidelines. While the current regional inven-
tory includes activity attributes based on morphological ob-
servations and differential interferometric synthetic aperture
radar (DInSAR) coherence, it lacks a comprehensive clas-
sification that also considers climatic drivers, displacement
rates, and morphometric parameters. To fill this gap, we
utilized the Alaska Satellite Facility’s interferometric syn-
thetic aperture radar (InSAR) cloud computing, employing
the Small Baseline Subset (SBAS) and Miami InSAR time-
series software in Python (MintPy) algorithms to extract ve-
locity data for each rock glacier investigated in this study.
Additionally, we analysed geomorphological and climatic
maps derived from in situ and remote sensing data to ob-
tain descriptive parameters influencing rock glacier devel-
opment and activity. From a wide range of potential vari-
ables, we selected eight key predictors, representing physi-
cal (e.g. temperature), morphological (e.g. roughness), and
dynamic attributes (e.g. velocity and coherence indicators).
These predictors were integrated in a multiclass generalized

additive model (GAM) classifier to categorize the mapped
landforms. Applying this model to the entire dataset (achiev-
ing an area under the curve (AUC) over 0.9) allowed us to
address gaps in previous classification methods and provided
activity attributes for previously unclassified rock glaciers,
along with associated uncertainty values. Our approach en-
hanced the previous classification, leaving only 3.5 % of fea-
tures unclassified compared to 13 % in morphological clas-
sification and 18.5 % in the DInSAR-based method. The re-
sults revealed a predominance of relict features ( ~ 75 %) and
a smaller number of active ones (~ 10%). The result of the
distribution of active, transitional, and relict classes suggests
that the transition from active to relict states is not direct.
Instead, an intermediate transitional phase is commonly ob-
served. This comprehensive approach refines the categoriza-
tion of mapped features and improves our understanding of
the factors influencing rock glacier activity in the alpine en-
vironment in South Tyrol.

1 Introduction

Rock glaciers are widespread periglacial landforms in moun-
tain regions and are regarded as key geomorphological evi-
dence of permafrost presence in alpine environments (Hae-
berli, 2000; Janke and Bolch, 2022). They consist of a con-
tinuous, thick, seasonally frozen debris layer (known as the
active layer), covering ice-supersaturated debris or pure ice.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3494 C. Crippa et al.: Multisource data integration for rock glacier activity assessment

They are characterized by gravity-driven creep as a conse-
quence of ice/debris mixture deformations under permafrost
conditions (Haeberli et al., 2006), which promote a distinc-
tive surface topography (i.e. ridges and furrow complexes,
convex transverse or longitudinal surface undulations).

The large-scale spatial distribution of rock glaciers is in-
fluenced by the complex interaction of topographic factors
and climate, specifically by mean annual air temperature and
precipitation. However, on a local scale, their distribution is
dictated by local factors such as slope and aspect, structure
and lithology of bedrock, debris input, heat budget of the
ground, shading, and duration and thickness of snow cover
(Cicoira et al., 2019; Kenner and Magnusson, 2017; Bodin et
al., 2009). Rock glacier distribution and evolution and cur-
rent permafrost degradation may affect the slope stability,
runoff patterns, vegetation coverage, and water availability
and quality, promoting landslides, geological disasters, de-
bris flows, destabilization phenomena (Pruessner et al., 2021;
Marcer et al., 2019; Gruber and Haeberli, 2007), and direct
or indirect risk to human activities and/or facilities (e.g. in-
frastructures, buildings) (Hassan et al., 2021; Arenson and
Jakob, 2017). Furthermore, some rock glaciers act as essen-
tial hydrological reserve in high mountain systems, prolong-
ing long-term water (and ice) storage; consequently, their
presence and abundance could affect the amount and prop-
erties of runoff from high mountain watersheds (Bearzot et
al., 2023; Wagner et al., 2021; Brighenti et al., 2019).

The genesis of rock glaciers has been debated for a long
time, with some studies linking them to periglacial condi-
tions and the presence of permafrost (Knight et al., 2019;
Haeberli et al., 2006) or associating them with paraglacial
processes (Frauenfelder and Kéib, 2000). Others suggest a
glacial origin for rock glaciers (Monnier et al., 2013; Krainer
and Mostler, 2000; Whalley and Palmer, 1998), proposing
that they evolve from debris-covered glaciers, with inter-
stitial ice being of glacial origin rather than meteoric (i.e.
permafrost). Depending on their permafrost content and ac-
tivity, rock glaciers have been categorized into three cate-
gories: (i) active rock glaciers, in which the internal defor-
mation of frozen material and ice produces an effective sur-
face displacement; (ii) inactive rock glaciers that still contain
ice but have stopped moving; and (iii) relict rock glaciers
that no longer contain ice and consequently have no move-
ment (RGIK, 2023). The active and inactive rock glaciers are
commonly grouped together into a class called intact rock
glaciers. Although widely used, this classification is strongly
dependent on the operator skills and, unless there is sub-
surface information regarding the presence or lack of per-
mafrost, remains uncertain. In response to the ongoing in-
crease in permafrost temperature, an acceleration trend has
been observed worldwide, although with different phases
based on the geographical regions and the characteristics
of the individual landforms. For these reasons, the existing
rock glacier classification was redefined as follows: (i) ac-
tive rock glaciers (active), which move downslope over most

The Cryosphere, 19, 3493-3515, 2025

of their surface and present steep front and lateral margins
and contain freshly exposed material on top; (ii) transitional
rock glaciers (transitional), which show slow movement to
no downslope movement over most of their surface and can
either evolve towards a relict or an active state, depending on
topographic and climatic context; and (iii) relict rock glaciers
(relict), which show no evidence of recent movement, gener-
ally characterized by smoothed lateral and frontal margins
and by the presence of vegetation and soil cover (RGIK,
2023). Therefore, this updated classification does not con-
sider the ground ice content but rather the efficiency of sed-
iment conveyance, namely the surface movement at the time
of observations.

In the regional territory of South Tyrol (eastern Ital-
ian Alps), two rock glacier activity classifications coexist
over the same inventory: one is the South Tyrol Inventory
produced by the Autonomous Province of Bolzano/Bozen
(PAB), and the other one was created by Bertone et al.
(2019). Although a descriptive attribute of activity from inde-
pendent morphological observations and an SAR coherence-
based estimation is already included in the two datasets, a
comprehensive definition of activity based on the integra-
tion of climatic drivers, displacement rates, and morpholog-
ical parameters is lacking. Such an integrated approach is
increasingly important, particularly as rock glacier velocity
has gained attention as a key metric. Notably, velocity has
recently been recognized as a new essential climate variable
(ECV) (Kellerer-Pirklbauer et al., 2024), underscoring the
need to incorporate velocity-based indicators when assessing
the state of activity.

The primary innovation of this study lies in the analysis
of multiple variables, each one describing a key evidence
or predisposing condition of rock glacier activity, integrated
through multivariate statistical analysis in a predictive gener-
alized additive model (GAM). We derived the input variables
by integrating multiple data sources, including multispectral
satellite imagery (Landsat, MODIS), radar data (Sentinel-
1), interpolated ground measurements from weather stations,
and variables extracted from digital terrain model (DTM)
analysis.

To this aim, we propose a workflow where (i) we firstly
exploit satellite remote sensing products and implement rou-
tines to extract velocity attributes and environmental descrip-
tors at the regional scale; (i) we calibrate and validate a
predictive multiclass generalized additive model (GAM) that
maximizes their explanatory potential; and (iii) we apply the
model to the entire dataset, reclassifying each landform in
a specific activity class. Our approach effectively highlights
which variables (such as climatic, morphological, and dy-
namic parameters) and interactions best control each rock
glacier’s class of activity in the area investigated. Through-
out this paper, the recent classification (active, transitional,
and relict classes) was considered to define the activity of
rock glaciers.
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2 Study area

The study area covers the entire South Tyrol region (north-
eastern Italy, ~7400km2) and extends over altitudes be-
tween approximately 200 ma.s.l. in the valley bottoms to
3900 ma.s.l. at the Ortler peak. The Periadriatic Line (PL;
Fig. 1a) separates the central eastern part, where sedimen-
tary and metasedimentary rocks of the South Alpine domain
outcrop, from the western regions characterized by the meta-
morphic lithologies of the Austroalpine and Pennidic do-
main, outcropping in the northeasternmost sector (Stingl and
Mair, 2005). The climate of South Tyrol exhibits a predom-
inantly continental character, with a mean annual precipita-
tion sum (period 1981-2010; Crespi et al., 2021) generally
around 1000 mm. However, the precipitation varies largely
in South Tyrol from a regional point of view: the western
sector, which includes Val Venosta (Fig. 1b) and its side val-
leys, such as Val Senales, Val di Trafoi, Val Martello, and
Val d’Ultimo, has less precipitation (average annual precipi-
tation < 825.2 mm) than the central and eastern sector, which
includes the vast highland in central and eastern South Ty-
rol (average annual precipitation > 825.2mm) (Hao et al.,
2019). The mean annual temperature extracted over the same
period (1981-2010) is around 12 °C in the valley bottoms
and decreases on the slopes until reaching the 0 °C isotherm
at around 2400-2500 m a.s.1. (Crespi et al., 2021; Carturan et
al., 2023).

Regarding the permafrost map (https://www.provincia.
bz.it/edilizia/progettazione/alto-adige.asp, last access: May
2024), the region is characterized by discontinuous moun-
tain permafrost which develops from a minimum height of
2300-2400 to 2500 m a.s.1. (Fig. 1b), according to sector- and
site-specific climate conditions (Boeckli et al., 2012).

3 Data collection and analysis

Multisource and multi-platform data from remote sensing
products and ground-based measurements were collected
and jointly analysed. Using MODIS and Landsat satel-
lite data allows the extraction of environmental parameters,
such as snow cover duration and land surface temperature.
MODIS, on board the Terra and Aqua satellites, with its mul-
tispectral capabilities and daily repeat time, demonstrated ef-
ficacy in extracting the snow cover area both regionally and
globally (Notarnicola, 2020). Using Landsat 8 Collection 2
Tier 1 data, we extracted land surface temperature (LST),
an ECV recognized by both the Global Climate Observing
System (GCOS) and the European Space Agency’s Climate
Change Initiative (CCI) (Galve et al., 2022; Parastatidis et
al., 2017; Ermida et al., 2020). LST was derived from the
thermal bands (B10 and B11) of the thermal infrared sensor
(TIRS), which has a native spatial resolution of 100 m. Ad-
ditionally, multispectral surface reflectance bands (SR_B1 to
SR_B7) and the QA_PIXEL band from the Operational Land
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Imager (OLI), with a spatial resolution of 30 m, were used
for preprocessing tasks, such as cloud masking and emissiv-
ity correction.

Sentinel-1 SAR images were processed using HyP3 soft-
ware (Sect. 2.3) to retrieve dynamic attributes, i.e. velocity
and coherence values, over the entire area of interest (AOI).

These variables, coupled with a range of data pertaining to
rock glacier morphometry and encompassing factors such as
slope angle, elevation, lithology, and climate conditions, lead
to a redefinition of activity classifications for all the mapped
landforms within the pre-existing dataset. The overall work-
flow is sketched in Fig. 2.

3.1 Rock glacier dataset

This study utilized a comprehensive rock glacier dataset
(year 2010) covering the entire South Tyrol region. This
dataset is freely available on the WebGIS portal of the
provincial administration of South Tyrol (https://test-data.
civis.bz.it/dataset/rock-glacier, last access: May 2023.) and
accounts for 1779 features. The identification and mapping
of periglacial landforms were conducted by using light de-
tection and ranging (lidar) digital terrain models (DTMs)
with a ground sample distance of 2.5 m, supplemented by
orthophotos from 2000 (1 m resolution), 2006 (50 cm resolu-
tion), 2008 (10 cm resolution), and 2014 (20 cm resolution).
The resulting catalogue not only includes boundary polygons
but also incorporates descriptive features and qualitative as-
pects, determined through visual morphological inspection
of each form. Employing this approach, a classification at-
tribute has been assigned, categorizing forms, where feasible,
into active, inactive, and relict states (Table 1).

Among all the features, 13.5 % are classified as active,
70 % are classified as relict, and 3.3 % are classified as inac-
tive. The remaining part could not be classified (not defined —
n.d.) based on a simple geomorphological approach. Starting
from the same catalogue, Bertone et al. (2019) reclassified all
the features by adopting an interferometric coherence-based
approach, which was used as an indicator of displacements.
Considering only a kinematic approach, the features were re-
classified as (i) “moving”, for those rock glaciers with dis-
placement detectable using coherence, and (ii) “not moving”,
for rock glaciers where displacement was not detectable (Ta-
ble 1). Based on this classification, 13 % of the mapped fea-
tures are moving, 68 % are not moving, and the remaining
18 % could not be classified simply with the interferomet-
ric synthetic aperture radar (InSAR) coherence approach be-
cause of vegetation cover, rock glacier dimensions that are
too small, or layover and shadowing conditions.

The two classifications offer distinct kinematic attributes,
with one (Autonomous Province of Bolzano/Bozen Inven-
tory) focusing on the potential presence of inner permafrost
and its morphological expression and the other (Bertone’s In-
ventory) providing an indication of surface movements. To
integrate both perspectives and gather a singular and consis-
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Figure 1. South Tyrol region: (a) lithological and structural map of the main geological units and faults in South Tyrol. Rock glaciers
of the Autonomous Province of Bolzano/Bozen dataset are highlighted in black. (b) Digital elevation model with permafrost and glacier

distribution. Data source: Autonomous Province of Bolzano.
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class.

tent activity indicator aligned with the newly proposed Rock
Glacier Inventories and Kinematics (RGIK) classes (RGIK,
2023), we categorized rock glaciers as “active” only if they
exhibited movement in both classifications. The “relict” class
was assigned to rock glaciers showing no movement in both
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datasets and determined to be either inactive or relict. For
the remaining cases, which did not fall into the aforemen-
tioned categories, we classified them as “transitional”, ex-
cluding features that could not be classified (Table 1).
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Table 1. Activity attributes of the Autonomous Province of Bolzano/Bozen (PAB) classification (row) and those from Bertone coherence-
based classification (column). Active, transitional, relict, and n. d. (not defined) correspond to the new preliminary labels attributed combining

the two initial attributes.

PAB classification (2010): morphological approach

Active Inactive Relict n.d.
Bertone et al. (2019): Moving . Acnve“ Trafzszlwnal Trafzsznonal n.d.
Not moving  Transitional  Relict Relict n. d.

DInSAR coherence
n.d. n.d. n. d. n.d. n.d.

This reclassification serves to diminish uncertainty in cat-
egorizing the active and relict forms, as these groups align
more consistently. However, greater uncertainty is associated
with the transitional class, where the two classifications do
not converge.

3.2 Rock glacier dataset

To comprehensively characterize the rock glacier area, we
extracted terrain attributes linked to local topographic and
climatic site conditions, along with area characteristics that
can influence debris supply, such as the main lithology (Ta-
ble 2).

3.2.1 Geomorphological and environmental variables

The lithology varies significantly across the AOI (Fig. 1)
due to the juxtaposition of rocks from different geo-
dynamic settings. Starting from a geological map of
South Tyrol (scale 1 : 25000 derived from CARG surveys at
1 : 10000 scale; http://www.provincia.bz.it/costruire-abitare/
edilizia-pubblica/geologia-e-prove-materiali.asp, last ac-
cess: May 2023) and based on the origin of the lithologies
(sedimentary, igneous, or metamorphic), we categorized
them into four macro-classes: (i) granitoids and volcanic
rocks, (ii) metasediments and low metamorphic facies,
(iii) facies from middle to high metamorphism, and (iv) sed-
imentary cover. Then, as our main goal is classifying the
activity class of mapped rock glaciers rather than analysing
factors contributing to their initiation, we also incorporated
morphological indexes sensitive to various permafrost
dynamics (Table 2). Active landforms should in fact display
a more swollen appearance due to the presence of inner
permafrost and deformation that often leads to the formation
of furrows and transversal ridges, inducing a consequent
increase in surface roughness. On the other hand, relict rock
glaciers, with limited or absent permafrost core, may have
a more convex and flatter surface with consequently lower
values of vector ruggedness measure (VRM) and positive
profile curvature.

Terrain attributes obtained from a smoothed 10m
DEM resolution (downsampling of the 2006 digital el-
evation model at 2.5m from the Autonomous Province
of Bolzano/Bozen, http://geokatalog.buergernetz.bz.it/
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geokatalog/#!, last access: May 2023) were incorporated
into the analysis, as they are expected to capture the overall
characteristics of the topographic niche of rock glaciers. All
the analyses took place in SAGA GIS 9.03 and ArcGIS 10.8.

3.2.2 Climatic variables
Land surface temperature

Land surface temperature (LST; Fig. S1 in the Supplement)
represents the radiative skin temperature of the land surface,
as measured in the direction of the remote sensor. While ac-
knowledging the disparities between ground surface temper-
ature (GST) and LST, the latter generally displays a pattern
that may closely follow the GST variability, suggesting the
possibility of linking GST to LST products (Serban et al.,
2023; Sun et al., 2015). As consequence, due to the lack
of ground measurements that could be used to retrieve the
GST, we considered Landsat-derived LST to be an indicator
of surface temperature variability, sensitive to factors such as
elevation, slope, aspect, soil structure, snow, and vegetation
cover.

Analyses were carried out on the Google Earth Engine
(GEE) platform by using the code proposed by Ermida et al.
(2020) to process thermal infrared (TIR) band signals pro-
vided by Landsat 8 over the period 2013-2023 (Table 3).

The distribution of the rock glaciers is spread across a
wide range of elevation (1850-3100 ma.s.l.). Since several
of them, especially those classified as relict, occupy low-
altitude sectors and can be covered by bushes and shrubs,
some precautions were imposed on the algorithm to quantify
the LST properly, such as the correction of the Normalized
Difference Vegetation Index (NDVI) to emissivity to adjust it
for the surface vegetation contribution (Malakar et al., 2018;
Parastatidis et al., 2017; Ermida et al., 2020). A cloud filter
was also added to exclude images with a cloud coverage ex-
ceeding 20 % over the scene. For the analyses, we then only
consider images acquired in September to emphasize poten-
tial spatial differences between rock glaciers bearing per-
mafrost and areas with no permafrost. In September, as the
air temperature begins to drop, the differing response rates
of permafrost and rocks to this change can lead to a more
pronounced temperature delta. In addition, after the warmer
summer months, permafrost may still be in the process of
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Table 2. Spatial environmental parameters extracted for each rock glacier.

Type of variable Parameter Unit of measure  Description
Geomorphological Lithology Categorical Classification of surface geology by rock type
and environmental Total insolation kWhm—2 Amount of solar radiation received by a surface over a specific
variables period
Slope ° Angle of terrain inclination derived from elevation data
Aspect ° Angle of the slope direction measured towards north, derived
from elevation data
Elevation ma.s.l. Height above sea level, derived from a digital elevation model
(DEM)
Vector ruggedness / Index quantifying terrain ruggedness based on variation in slope
measure (VRM) and aspect
Convergence / Measure of terrain convergence and divergence, identifying
ridges and valleys
Profile curvature m~! Curvature of the land surface in the direction of the maximum
slope, distinguishes convex and concave forms
Climatic Land surface °C Radiative skin temperature of the land surface, derived from
temperature (LST) thermal satellite data
Precipitation mm Total amount of rain and snowfall, interpolated from ground

Snow cover duration (SCD) d

weather station data
Number of days with snow cover

Table 3. Dataset used to compute LST in GEE.

Satellite Bands Wavelength (um)  Dataset Ground resolution ~ Time period
Landsat 8 Red: B4 0.64-0.67 CO1/T1_SR 30m September from 2013
(OLL TIRS) NIR: B5 0.85-0.88 CO1/T1_SR 30m to 2023

TIR: B10 10.6-11.19 COl/T1_TOA 100 m*

* Resampled to 30 m.

thawing, during which the heat absorption phenomenon oc-
curs, contributing to a slower increase in temperature com-
pared to rocks without permafrost.

Precipitation

Mean seasonal precipitation maps (Figs. S2 and S3 in the
Supplement) were extracted, starting from high-resolution
gridded datasets (cell size of 250 m) of daily precipitation
records for Trentino South Tyrol (Crespi et al., 2021).

We analysed a 20-year time frame spanning 2000 to 2018,
calculating the average precipitation values for both summer
(July to September) and winter (from October to June). This
differentiation is crucial in high-altitude environments due
to the necessity of discerning between periods dominated by
liquid precipitation in summer and those characterized by
solid precipitation in winter. This is particularly important
because the weather station in South Tyrol collects precipita-
tion data without distinguishing between these two contribu-
tions.

The Cryosphere, 19, 3493-3515, 2025

Snow cover duration

Snow cover duration (SCD; Fig. S4 in the Supplement) on
the ground significantly affects the ground thermal regime
modifying the heat insulation, water storage, and runoff con-
tribution, but the interaction of ground temperature and snow
cover is not entirely straightforward, and its effects on per-
mafrost conditions can change according to snow depth,
type, and water content (meaning snow water equivalent,
SWE; Bender et al., 2020). However, analysing the thick-
ness and snow water equivalent (SWE) of the snow cover
falls beyond the scope of this study, as it would require sup-
plementary ground-based measurements that are not readily
available or easily extendable across all mapped features at
the regional scale. Here, we only consider the snow cover du-
ration, retrieved from the MODIS satellite with 250 m spatial
resolution, to be the number of days per year having a mul-
tispectral indication of snow on the ground (Notarnicola et
al., 2013). However, in this context, we do not regard SCD
as a predisposing factor for the formation of rock glaciers
due to its implications for the thermal state of permafrost. In-
stead, we consider the temporal duration of snow cover in re-
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lation to the observed activity of rock glaciers, viewing SCD
primarily as a factor influencing the modulation of activity
states rather than as a prerequisite for their formation.

3.3 InSAR data

We utilized Copernicus Sentinel-1 C-band single-look com-
plex (SLC) radar data acquired in the snow-free period be-
tween July and October spanning the years 2020-2022. The
combination of Sentinel-1’s extensive swath width and rapid
revisit time renders it well suited for monitoring widespread
landscape-scale deformations. The data were collected in in-
terferometric wide (IW) swath mode with a swath width of
250 km, employing vertical co-polarization (VV) along both
ascending orbit 117 (68 SAR images and 165 interferograms)
and descending orbit 168 (57 SAR images and133 interfer-
ograms). The Sentinel-1 SLCs exhibit a spatial resolution of
22 m in the azimuth (along-track direction) and 2.7-3.5 m in
the range (across-track direction).

We set a revisit time range of 6, 12, 24, and 30d and
computed interferometric pairs employing the Small Base-
line Subset (SBAS) processing of Sentinel-1 data through
the Alaska Satellite Facility’s Hybrid Pluggable Processing
Pipeline (ASF HyP3; Fig. 3), a web-based SAR data process-
ing platform that primarily utilizes Amazon services. Multi-
looking was performed, involving 10 looks in range and 2
looks in azimuth, resulting in interferograms with a pixel
spacing of about 40m. ASF HyP3 then utilized the 2021
release of the 30 m Copernicus “GLO-30" digital elevation
model (DEM) product to eliminate the topographic compo-
nent of the phase and geocode the interferograms. The Atmo-
spheric Phase Screen (APS) contribution in interferograms
was filtered through a convolutional neural network (CNN)
approach (Brencher et al., 2023). This method was employed
to eliminate both stratified and turbulent atmospheric noise.

The key strengths of this approach stem from its indepen-
dence of external atmospheric data or synthetic training data;
instead, corrections are derived directly from the observed
ones. After the atmospheric filtering, unwrapped interfero-
grams were re-ingested in the Python-based Miami InSAR
time-series software MintPy (Yunjun et al., 2019) to produce
mean line-of-sight (LOS) displacement rate maps. MintPy
works based on a weighted least-squares inversion formula
(Yunjun et al., 2019). By default, and starting from the in-
terferometric stack, it estimates the average velocity as the
slope of the best-fitting line to the displacement time series
corrected for the APS contribution. All deformations are re-
ferred to a single point within the analysis that is automat-
ically selected among the pixels with high average spatial
coherence (> 0.85; Yunjun et al., 2019).

For each polygon, we selected the most suitable acquisi-
tion geometry, and we provided the corresponding C index
(Notti et al., 2014) to indicate how well each landform is
caught from the satellite according to the combination of
slope, aspect, and satellite orbit parameters (LOS, orbital
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angle, and azimuth angle). In refining the velocity maps,
we employed coherence, velocity, and topographic filters
(Fig. 4) to remove pixels with high uncertainty due to geo-
metric and displacement uncertainties. Areas affected by lay-
over and shadowing were discarded from the displacement
map, as were areas with coherence values under 0.25.

3.4 Data extraction and integration

3.4.1 Extraction of environmental and climatic
statistics

For each rock glacier polygon, mean values for environmen-
tal and climatic variables were assigned based on the values
within the polygon boundary. Furthermore, for differential
interferometric synthetic aperture radar (DInSAR)-related
variables (i.e. velocity and coherence), additional statistical
descriptors were extracted, such as variance and 25th—75th
and 90th percentiles. Finally, each rock glacier was given an
estimation based on how much of its area is covered by the
filtered SAR data (Fig. 4). This information can be consid-
ered a measure of uncertainty associated to the data based on
the spatial coverage within each polygon.

Starting from the distribution map of the rock glaciers and
considering their displacement range, we then made two dis-
tinctions: (i) movements strictly related to periglacial pro-
cesses that are confined within mapped rock glacier bound-
aries and (ii) movements less influenced by permafrost creep
and deformation mechanisms and lacking respective mor-
phological evidence that are placed in the surrounding ar-
eas of polygon boundaries. To accomplish this diversifica-
tion, around each mapped landform, at a distance of 100 m,
a 100 m wide buffer (Fig. S5 in the Supplement) was gener-
ated to address areas with no visible displacement ascribable
to periglacial deformations. The selection of a 100 m buffer
was chosen, since it provides a balance that ensures mean-
ingful data extraction for analysis while avoiding excessive
noise from unrelated features. In the case of adjacent forms
or multiple rock glaciers coalescing into one body, these rims
were cut to avoid overlaps between different features.

The delineation of surrounding areas external to the rock
glaciers serves a dual purpose: it facilitates the compari-
son step between parameters measured inside the periglacial
landform and its immediate surroundings, and it permits
the differentiation of contributions from permafrost move-
ment and potential deformations (such as gravitational move-
ments) which could affect the slope stability. Consequently,
we also computed the delta of values between the interior
and exterior of the rock glaciers. This calculation accentuates
variations (e.g. velocity difference) that may be attributed to
the presence and activity of permafrost or other sources of
deformation.
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filtering and (e) with a CNN APS filter.

3.4.2 Statistical modelling

To discern the key factors influencing the distinction between
active, relict, and transitional rock glacier classes, we per-
formed an initial exploratory data analysis. This exploration
served to inform the selection of explanatory variables by as-
sessing their potential impact on defining the activity class
and examining their relationships with the response vari-
ables. Subsequently, a GAM was employed to investigate the
associations between the chosen predictor variables derived
from both environmental and DInSAR datasets and the re-
sponse variables.

GAM provides a versatile framework for examining non-
linear associations between the response variables (here, the
three activity classes of rock glaciers: active, transitional,
and relict) and continuous variables (e.g. morphometric and
DInSAR indexes) by enabling the incorporation of both para-
metric and non-parametric covariates, facilitating the explo-
ration of individual effects (Brenning and Azdcar, 2010;
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Thiessen et al., 2024). GAMs are often used in environmental
and geomorphological studies (Miska and Jan, 2005; Rudy
et al., 2017) to investigate the non-linear interaction between
variables but also to model the spatial distribution of rock
glaciers in remote regions (as in Brenning et al., 2007).

The initial phase of the model construction involved the
determination of smoothing parameters, which control the
flexibility of the model, for continuous variables. This pro-
cess utilized internal cross-validation, with a constraint of
four effective degrees of freedom for spline parameteriza-
tion. The significance of each term was assessed based on
p values, with the null hypothesis (no effect of the term)
being rejected at a threshold of 0.05. Consequently, only
terms demonstrating a significant effect (p values < 0.05)
were incorporated into the final model (Wood, 2013). In the
model setup, we examined not only the individual predictors
influencing outcomes but also the interaction terms consid-
ered. Interactions can in fact reveal relationships that may
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Figure 4. Third step of the DInSAR processing chain: (a) workflow adopted to filter velocity product applying coherence, velocity, and
topographic masks; (b) visibility map; (c) coherence map; (d) final filtered velocity map.

not be apparent when considering single predictors. For ex-
ample, understanding how morphometric characteristics and
DInSAR indexes interact can help to uncover the mecha-
nisms driving the activity classes of rock glaciers. Addition-
ally, we utilize the accumulated local effects (ALE; Apley
and Zhu, 2020) approach for GAM to interpret the influ-
ence of each predictor variable on the model, providing in-
sights into their respective impacts on the response variable.
The GAM was then fitted to the data, and its performance
was evaluated using receiver operating curve (ROC) analy-
sis for a multinomial response variable with three classes.
Once its performance was verified, the model was finally ap-
plied for the classification of unknown features, and predic-
tive performance estimates were computed through multiple
independent test sets employing 2, 5, and 10 k-fold cross-
validation selections. The calculation of predictive perfor-
mance involved iteratively dividing the original dataset into
training data (utilized for model fitting) and test data (em-
ployed for calculating the area under the receiver operating
characteristic curve (AUROC) metric).

4 Results
4.1 Exploratory data analysis
The exploratory data analysis allowed first insights into em-

pirical associations between the rock glacier classes and po-
tential predictor variables.
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Considering the classification in Table 1, we analysed the
distribution of morphometric and environmental variables
among the active, transitional, and relict classes. In this step,
boxplots and conditional density plots were used to high-
light the distribution of continuous variables over the three
classes, specifically focusing on parameters where the in-
terquartile ranges display higher divergence among classes.
The boxplots in Fig. 5 are constructed so that the lower edge
corresponds to the 25th percentile (Q1), the middle line is
the median (the 50th percentile), and the upper edge is the
75th percentile (Q3). The whiskers extend to the most ex-
treme data points that are not considered outliers. This range
is considered between 1.5 - IQR from Q3 and 1.5 - IQR from
Q1. Beyond these limits, points are considered outliers.

In this analysis, both rock-glacier-related values (com-
puted inside the boundary of the landforms) and delta values
(computed as the difference between the rock glacier and the
corresponding outer area) were considered.

In particular, the variables that yielded the most signifi-
cant results are LST, SCD, VRM, mean and variance val-
ues of coherence, coherence difference (from inside the rock
glacier and the area outside), variance in velocity, and highest
velocity (Fig. 5). Land surface temperature (Fig. 5a) serves
as a discerning factor delineating among distinct categories
of landforms: relict, transitional, and active rock glaciers.
Relict landforms exhibit the highest temperature regime,
characterized by a mean LST value of approximately 17 °C.
Transitional landforms occupy an intermediary position, dis-
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Figure 5. Variables retained for the discrimination of the three activity classes of rock glaciers. Both boxplots and conditional density plots
are reported for each variable. The boxplots show the distribution of values for each variable in each class, and the conditional density plots
describe how the conditional distribution (0-1) of the categorical variables (active, transitional, and relict) and y changes over a numerical
variable. Yellow bars show the distribution (density) of the variable: (a) LST; (b) SCD; (¢) VRM; (d) mean coherence; (e) variance of
coherence representing the variability of coherence values inside rock glacier polygons; (f) coherence A, computed as the difference between
the mean values inside the 100 m rim of each rock glacier and the mean value inside the rock glacier; (g) variance of velocity; and (h) highest

velocity values. Negative values are only considered to retain movements away from the satellite.

playing a mean LST value of around 14 °C. Meanwhile, ac-
tive rock glaciers share a similar mean LST value to transi-
tional ones, albeit with lower maximum temperatures. This
differential temperature range across the rock glacier classes
underscores the utility of LST as a diagnostic parameter for
delineating the thermal conditions favouring or limiting the
activity of these landforms. Similarly, snow cover duration
(SCD) exhibits notable discriminative characteristics among
the various rock glacier classes. Relict rock glaciers demon-
strate a mean SCD of 225 d, whereas transitional and active
classes display longer durations, with respective values of
290 and 310d of snow cover (Fig. 5b). Here, SCD solely re-
flects the presence of snow cover on the ground without pro-
viding details regarding snow depth or water content within
the snowpack. Surface roughness (Fig. 5c), expressed by vec-
tor ruggedness measure (VRM), also provides an indication
of the surface conditions controlled by permafrost deforma-
tion, with transitional and active classes holding a slightly
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higher VRM than relict ones. Therefore, recognizing its sig-
nificance in representing potential surface variations, we re-
tained this parameter and incorporated it into the subsequent
analysis in conjunction with other parameters. Coherence-
related metrics, such as mean coherence value (Fig. 5d), co-
herence variance within each polygon (Fig. 5e), and coher-
ence delta between the rock glacier landform and the sur-
rounding 100 m rim (Fig. 5f), emerge as highly discrimina-
tive indicators among the three activity classes, as evidenced
by boxplots that exhibit minimal overlap. Generally, active
rock glaciers have a low coherence value and a mean value
around 0.5, while relict rock glaciers, which keep a higher
surface stability, reach values of 0.8. Velocity values prove
to be an effective classification tool, especially considering
vLOS variance (Fig. 5g), related to internal surface varia-
tions of velocity, possibly between discrete sectors or lobes,
and the highest velocity value recorded in each rock glacier
(Fig. 5h).
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We opted not to include mean velocity because it may
not adequately represent displacement rates. Averaging posi-
tive and negative velocities could significantly underestimate
the magnitude of movement for various features. Instead, we
chose to focus on the highest negative velocity, as it provides
a more accurate representation of displacement rates without
averaging opposing values.

Less influence is exerted by other morphometric indexes
(Fig. 6), such as aspect, slope, total insolation, curvature,
and convergence, that did not lead to an evident distinc-
tion among the classes. In contrary, elevation shows a high
capacity in separating the relict class from transitional and
active classes. However, we did not consider this variable,
since its contribution also affects the LST measure that has a
strong elevation-related trend. Keeping the elevation param-
eter would have added redundancy in data.

4.2 Multiclass GAM

After the above steps, we regarded the eight selected vari-
ables (Fig. 5) as predictor variables in a multinomial response
variable GAM which included smooth terms for specific
variables and tensor product smooth interactions between
pairs of variables, all using thin-plate regression splines with
a smoothness parameter of 4. The decision to incorporate ten-
sor product interactions, specifically between variables such
as mean coherence and coherence A, along with variance of
coherence and variance of velocity, was driven by consider-
ing that diverse values of coherence might also be reflected in
higher variations in coherence between the inside and outside
of the landform. Similarly, variations in variance of coher-
ence may be associated with variations in variance of vLOS
as a consequence of increased surface deformations and ter-
rain alterations. These interactions aim to capture the poten-
tial interplay and mutual influence between these variables,
acknowledging that their joint effects on the response vari-
able may not be adequately captured by single smooth terms.

In addition, considering the interaction between these
terms also led to an improvement in model performance,
as indicated by lower Akaike information criterion (AIC;
Akaike, 1974) values (AIC = 1264 considering tensor prod-
uct interactions, AIC = 1271 considering single smooth
terms).

For the feature effect method, we adopted an accumulated
local effect (ALE; Apley and Zhu, 2020) representation to
inspect the effect of changes in the value of each predictor
variable on the model’s predictions.

The value of the ALE can be interpreted as the main ef-
fect of the feature at a certain value compared to the average
prediction of the data. In Fig. 7, it is evident that the mean co-
herence and the SCD values (Fig. 7a and d, respectively) are
the major control factors in distinguishing the transitional,
active, and relict classes. For the active class, the ALE plot
exhibited a descending trend as coherence increased. No-
tably, higher coherence values are associated with lower pre-
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dicted responses, suggesting a negative impact or a diminish-
ing effect on outcomes within the active class as coherence
increased. On the contrary, relict and transitional classes ini-
tially displayed negative y values for low coherence, indicat-
ing that lower coherence is associated with lower predicted
responses. However, as coherence increased, the effect tran-
sitioned to positive y values, resulting in an overall ascend-
ing trend. This observed pattern suggests that higher coher-
ence values are associated with higher predicted responses
for the transitional and relict classes. An opposite trend is
found for SCD (Fig. 7d), which shows how, over a certain
number of days, there is a positive effect of snow cover du-
ration on active and transitional rock glaciers, while relict
rock glaciers are influenced negatively. There are slight dif-
ferences in the LST (Fig. 7f) and velocity, which can also
be correlated to a different capability in predicting the activ-
ity classes. LST values around 5 °C are more representative
of conditions proper of active and transitional rock glaciers.
This is probably due to the presence of internal permafrost
and the occupied topographic area (Fig. 6a). Higher tem-
peratures, on the contrary, correspond to an increase in pre-
dictability of relict classes.

4.3 Fitting performance evaluation and model
extension

We used the receiver operating characteristic (ROC) and, in
particular, the area under the curve (AUC) metric to evaluate
the performance of our classification model across different
thresholds. In the case of multiclass classification, a notion of
true positive rate (TPR) and false positive rate (FPR) is ob-
tained after binarizing the output. This can be done according
two different schemes: (i) the one-vs.-rest (OVR) scheme,
which compares each class against all the others (assumed
as one), and (ii) the one-vs.-one (OVO) scheme, which com-
pares every unique pairwise combination of classes.

The evaluation of our multiclass classification model
yielded an AUC of 0.87 in the one-vs.-one (OVO) scenario
and 0.95 in the one-vs.-rest (OVR) scenario (Fig. 8). These
AUC values signify a strong overall performance in distin-
guishing between the three rock glacier classes, further sup-
porting the effectiveness of the GAM in capturing the rela-
tionships within the data. The lower AUC value for transi-
tional class vs. active class and transitional class vs. relict
class might indicate that the model faces challenges in dis-
criminating between these classes, possibly due to the dis-
parity in class frequencies (higher number of relict forms vs.
active and transitional ones) or a higher uncertainty associ-
ated with the identification of transitional landforms. These
AUC values signify the model’s consistent ability to distin-
guish between individual classes when compared to the rest
and the effectiveness of discriminating one class against the
collective set of other classes. The metrics, surpassing the
0.5 baseline, underscore the model’s efficacy in capturing re-
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areas.

lationships within the dataset, suggesting its potential utility
for accurate classification across diverse categories.

Once the predictivity capability of the model was evalu-
ated, we applied it to the entire regional dataset, also consid-
ering the n. d. landforms (Table 1) to predict the most prob-
able class. The model’s performance was evaluated by as-
sessing the match between predicted and true classes and by
measuring the proximity to the nearest class in terms of prob-
ability.

The robustness and discriminative performance of the
classification model were assessed through repeated k-fold
cross-validation (Fig. 9a). The cross-validation approach,
employing 2-fold, 3-fold, 5-fold, and 10-fold splits, was im-
plemented to systematically evaluate the model’s generaliza-
tion across various train-to-test ratios. The performance of
the model was quantified using the AUROC. The resulting
boxplot visually depicts the distribution of AUROCs across
different cross-validation scenarios, offering insights into the
model’s stability and discriminative prowess.

A total of 1716 rock glaciers over 1779 were classified,
and 63 could not be classified due to the lack of data, such
as the invalid velocity pixels, which were excluded for co-
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herence or topographic effects. The spine plot in Fig. 9b il-
lustrates the correspondence between predicted and initial
classes, with each spine representing a predicted class and
the height of its segments indicating the proportion of obser-
vations assigned to each initial class within that prediction.
The conditional density plot (Fig. 9c and d) further delves
into model behaviour by showcasing the distribution of pre-
dicted classes across varying degrees of uncertainty, depicted
along the x axis as the uncertainty index. Figure 9c depicts
the distribution of uncertainty in the complete dataset, while
Fig. 9d only represents the uncertainty distribution in the n. d.
cases. Values close to 1 point out a higher confidence level,
while lower values indicate a higher uncertainty in the clas-
sification. Being the most abundant ones, the relict features
are characterized by a high confidence level, whereas this
level decreases considerably for the transitional class, which
shows the highest uncertainty in the prediction.

Upon reclassification, approximately 67 % of the initially
proposed classifications remained unchanged; i.e. the rock
glacier classification fitted the Bertone and PAB label, as
reported in Table 1. Conversely, approximately 32 % of the
landforms were reclassified into different categories. The
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spatial distribution of newly attributed activity classes and
the agreement/non-agreement among the initial classifica-
tion label is shown in Fig. 10a, whereas, in Fig. 10b, the
regional distribution of the rock glaciers, adopting the new
classification, is shown. With respect to other methods, our
model additionally offers estimations of predicted probabil-
ities for each class (Fig. 10c), with relict forms exhibiting
the highest level of confidence (indicated with different bor-
der colour lines in the figure). With respect to the other two
categories, this increased confidence of the relict (Fig. 10d)
is partly attributed to the great diversity in the number of
rock glaciers in each class. The relict class shows the high-
est level of confidence (> 0.8), probably due to the greater
abundance (1345) with respect to transitional and active. The
active class (formed by 171 rock glaciers) shows an inter-
mediate confidence interval in our dataset, whereas the tran-
sitional (formed by 200 features) exhibits the lowest confi-
dence level (< 0.4), primarily due to the inherent mismatch
between their geomorphological parameters and coherence-
based attributes, as evident in Table 1.
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square. The colours of the borders correspond to the confidence interval (CI) for each feature in the activity classes. Values close to 1 point
out a higher confidence in the prediction, while lower values point out a higher uncertainty in the prediction. (d) Distribution of classification
uncertainty in each class.
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5 Discussion

5.1 Classification approaches

The growing interest in periglacial landforms, particularly
rock glaciers within alpine mountain systems, emphasizes
the importance of understanding their dynamics in the con-
text of climate change and its far-reaching implications.
As climate change effects intensify, with temperature fluc-
tuations and alterations in precipitation patterns, compre-
hensively quantification of the activity and deformation of
these landforms becomes increasingly crucial, since it pro-
vides knowledge of ongoing changes in the high mountain
cryosphere (Kiib et al., 2007).

Various approaches exist for assessing the activity of land-
forms at a broad scale. These include (i) a morphologi-
cal method, which involves visually inspecting orthopho-
tos, satellite images, or conducting field surveys to iden-
tify diagnostic features associated with permafrost deforma-
tion, such as furrows, ridges, steep fronts, and lateral mar-
gins (Scotti et al., 2013); (ii) an interferometric coherence
method, as utilized by Bertone et al. (2019), which relies
solely on kinematic analysis to differentiate between mov-
ing and non-moving landforms based on coherence values;
and (iii) a velocity method, typically derived from DInSAR
data, particularly for regional-scale investigations (Kaib et
al., 2021; Strozzi et al., 2020; Zhang et al.,2021).

While each of these approaches has demonstrated effec-
tiveness in defining the activity state of rock glaciers, they
also possess significant limitations when considered alone.
The accuracy of geomorphic-based classification is heavily
dependent on image quality and operator expertise, leading
to subjective mapping outcomes. Conversely, InSAR-based
methods encounter intrinsic limitations inherent to the tech-
nique itself, particularly evident in complex environments
such as the high alpine terrain (Liu et al., 2013), as further
discussed in the subsection on DInSAR limitations.

Commonly, these techniques are integrated by validat-
ing findings from one method with evidence from another
(Bertone et al., 2024), for instance, visually inspecting the
presence of morphostructures and displacements related to
features with DInSAR surface patterns (Agliardi et al.,
2024).

In our study, we do not simply compare the results gath-
ered from the interferometric approach and morphological
and climatic ones, but we jointly exploit their descriptive po-
tential to develop a comprehensive statistical model for cat-
egorizing mapped landforms into the three activity classes
proposed by RGIK (2023): active, transitional, and relict.

We processed both geomorphological and climatic maps
(Table 2), incorporating data from in situ measurements ob-
tained from weather stations and from remote sensing prod-
ucts such as MODIS and Landsat. Through exploratory data
analysis, we then selected variables that proved to have
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a higher discriminatory power in classifying rock glaciers
across the three activity classes.

In delineating the activity of rock glaciers, we found that
three variables, namely snow cover duration (SCD), vector
roughness measure (VRM), and land surface temperature
(LST), hold greater significance, with higher quartile dis-
tinction between the boxplots of each activity class or with
p values < 0.1 as smooth terms in the GAM, compared to
traditional topographic factors such as slope, aspect, and cur-
vature.

SCD, for instance, plays a crucial role in regulating the
energy balance of the land surface, thereby directly influ-
encing melting and refreezing rates within rock glaciers and
thus also controlling the displacement patterns. This result
is also supported by previous studies which highlighted the
relevance of the snow cover in determining permafrost occur-
rence at a local scale (Apaloo et al., 2012) and at the regional
scale (Marcer et al., 2017), influencing rock glacier activity
distribution by altering the ground thermal regime.

Similarly, the VRM, associated to velocity variations,
offers valuable insights into surface roughness variations,
which directly reflects the flow dynamics within rock
glaciers. These two variations manifest as the formation of
furrows and ridges, resulting from compressive and tensile
stresses associated with different flow velocities and internal
deformation interactions with the topography. Additionally,
LST serves as a key indicator of heat exchange processes, of-
fering valuable information on areas potentially hosting per-
mafrost. Despite not being a direct measure of in situ land
surface temperature, LST from Landsat proves to be reli-
able in studying the spatial variability in surface temperature
in complex topography (Gok et al., 2024). Here, its appli-
cation to the periglacial environment proved to be effective
in discriminating areas with lower temperatures influenced
by a combination of factors, namely altitude, exposition, and
ground conditions, and, as a consequence, was potentially
affected by permafrost conditions. Therefore, using LST as
a descriptive variable is acceptable, even though it does not
directly correspond to the temperature of the deeper ground
surface.

Although not immediately evident, the relatively minor in-
fluence of the other morphometric indexes (i.e. slope, aspect,
curvature) likely stems from their primary role as predispos-
ing factors to the initiation of rock glaciers within the study
area, rather than exerting significant control over their ongo-
ing activity.

For instance, slope should play an important role in con-
trolling surface velocities, which can be described through a
creep law by the joint interaction of slope angle and rock
glacier thickness (Cicoira et al., 2020; Kaab et al., 2023).
However, our findings do not outline such a clear dependency
between velocity and steepness, as also reported in Buchelt
et al. (2023).

In addition, considering the aspect alone, we could not find
a meaningful link with the activity rate. Bertone et al. (2024)
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obtained similar results over a sub-portion of our same area
of study, thus confirming that using the aspect as a topo-
graphic proxy for inferring the permafrost content and the
activity class may be problematic.

Therefore, to establish the true impact of changes in these
variables on activity classes, local-scale detailed analyses
should be conducted. It is crucial to explore their local influ-
ence in site-specific cases, as local conditions, such as lithol-
ogy, permafrost distribution, and local changes in slope, can
significantly influence the activity of rock glaciers. These as-
pects may modulate factors like ice content, ground tempera-
ture, and frictional behaviour, thereby shaping the dynamics
of rock glacier movement and activity patterns (Wood et al.,
2025).

Additional consideration should be given to the precipi-
tation values, which did not display a clear correlation be-
tween mean summer and winter values and activity classes
at the regional scale. Despite precipitation events being likely
contributors to short-term and seasonal variations in the ve-
locity of rock glaciers (Kenner and Magnusson, 2017; Ken-
ner et al., 2020), when analysed at a broader regional scale,
further investigation is required to catch the quantitative re-
lationships between their class of activity and precipitation
levels (Zhang et al., 2023). This is due to local factors that
may exert a more significant influence on controlling rock
glacier activity than broader precipitation patterns alone. Pre-
cipitation cannot be regarded as a singular influencing factor;
rather, it strongly interacts with other local conditions (tem-
perature, exposition, etc.) in regulating the activity and evo-
lution of periglacial features.

To incorporate these variables into our analysis, alongside
DInSAR-derived parameters, we utilized a multiclass GAM
classifier. The model addressed gaps in the morphological
and DInSAR-based techniques, enabling the classification of
a greater number of landforms that were previously unde-
fined in one or both inventories created by PAB and Bertone.
Figure 11a visually depicts these changes, illustrating the
number of features that changed classes (arrows) and those
that remained within the same category (vertices). A ternary
graph (Fig. 11b) represents the associated probability of the
rock glaciers to fall in each class. As evident from the graph,
the direct class shift from active to relict (and vice versa) is a
rarely frequent process (only seven cases), and an intermedi-
ate transition passage into transitional class is more frequent
and evident, as highlighted by the curve trend. The observed
reclassification shows that there is a common trend that trans-
forms active into relict, shifting previously through a tran-
sitional phase, highlighting the dynamic response of rock
glaciers to environmental (fluctuations in air temperature and
changes in precipitation) and geomorphological (slope ori-
entation, ice content, debris cover) factors as described in
Barsch (1993). The transitional phase serves as a critical
buffer, enabling gradual adjustments to these changing envi-
ronmental drivers and facilitating smoother transitions to the
relict state. This dynamic interplay is further highlighted by
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the complex interactions between ice presence, debris ma-
terial (which plays a key role both as surface insulation in
the active layer and in controlling deformation within the
rock glacier body), permafrost content, and external factors
such as temperature and precipitation. These interactions of-
ten lead not to linear responses, but rather to more gradual,
transitional processes (Lillegren and Etzelmiiller, 2011). In
our case, the transition of rock glaciers from active to relict
classes is also supported by velocity changes, with a decreas-
ing trend in detected velocities when processing from active
to relict states (Fig. 11b).

This phenomenon is particularly pronounced when con-
sidering the velocity delta between the rock glaciers and their
surrounding areas not involved in the creeping process. As
rock glaciers evolve towards an active state, the differential
velocity between the rock glacier and its surroundings in-
creases, indicating heightened activity and movement within
the landform. This observation underscores the dynamic na-
ture of rock glaciers and highlights the significance of ve-
locity changes in tracking their evolution and behaviour over
time.

Considering the integration of DInSAR and environmental
features, a specific class may undergo reclassification when
alternative or integrated approaches are utilized. This vari-
ability underscores the importance of considering multiple
factors and methodologies in landform classification, espe-
cially in situations where input variables are incomplete or
uncertain. Moreover, relying solely on a single classification
approach may be misleading, as factors such as inaccurate
morphological mapping or the inability to recognize subtle
features can compromise the accuracy of the classification.

Figure 12 shows some examples regarding the differ-
ent classification among the three approaches (Fig. 12j:
PAB, Bertone, and our new approach). The rock glacier in
Fig. 12a—c, even if it shows the presence of swollen furrows
and lobes, was classified as relict by the PAB. In Bertone and
in our classification, this rock glacier is identified as active
because both the clear velocity InNSAR signal and the pres-
ence of distinct morphological features indicate surface dis-
placement. The opposite situation happens when considering
rock glacier IV (Fig. 12d-f). This rock glacier is active for
the PAB, while Bertone et al. (2019) classify it as F and we
classify it as transitional. Even if this rock glacier has typical
superficial structures dictated by downslope displacements,
the results derived from the coherence approach (created by
Bertone) and the velocity data (from our approach) indicate
that these morphological features are presumably “palaeo”
structures, i.e. nowadays stable and therefore evidence of a
direction flow happened in the past. Relying exclusively on
a single remote sensing approach that is based solely on co-
herence may prove inadequate for detecting the slow move-
ments of rock glaciers. This is especially true when these
movements do not cause noticeable changes in surface char-
acteristics over the specified temporal baseline. Furthermore,
movement may occur primarily due to vertical deformation
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Figure 11. Distribution of rock glaciers according to the activity class: (a) number of rock glaciers retaining their original class after
reclassification (vertices of the triangle) and reclassified into different categories (arrows on the sides); (b) distribution of reclassified data
based on their probability of belonging to each class. The size of each circle is related to the spatial cover of SAE data over each landform.

Higher coverage reflects as larger circles and vice versa.

caused by ice melting over gentle slopes, where shear move-
ment does not occur. In such instances, the absence of dis-
cernible flow structures can offer valuable indications for ac-
curately characterizing the activity state of the rock glacier
(Fig. 12g—i, rock glacier VII). Other factors, such as ther-
mal variations or vegetation cover, may also influence activ-
ity patterns, highlighting the need for a comprehensive and
diverse approach to classification to ensure accurate repre-
sentation of landscape dynamics.

5.2 DInSAR limitations

Our results suggest that DInSAR proxies, especially the co-
herence statistics (Figs. 5 and 7), as also demonstrated by
Bertone et al. (2019), effectively discriminate the active class
from the relict and inactive ones. Low coherence indicates a
diminished similarity between SAR images within the inter-
ferometric pair, typically resulting from variations in surface
scattering properties, wherein displacement emerges as a pri-
mary contributor. Conversely, high coherence values reflect
stability in target properties, signifying minimal disturbances
affecting the surface of the landform. This stability results in
reduced deformation and displacement rates.

Velocity from DInSAR analysis still displays a discrimina-
tive effect, even if less sharp than coherence. This can be at-
tributed to the steps of the processing and filtering techniques
used at a regional level, which introduce more disturbances
and might make the final velocity estimation less accurate
compared to coherence. Following the specifics proposed by
the TPA group (RGIK, 2023), the identification of moving
areas is in fact based on the manual delineation and clas-
sification polygons, manually drawn around InSAR pattern,
usually in wrapped interferograms for a better visualization
of fringe pattern (Bertone et al., 2022; RGIK, 2023).
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Given our objective to classify all mapped landforms with-
out delving into the internal activity of individual lobes or
sectors at this stage, we opted to treat entire rock glacier poly-
gons as moving areas and subsequently analyse their internal
velocity patterns. To speed up these analyses and facilitate
application at the regional scale, we employed interferomet-
ric synthetic aperture radar analysis utilizing Sentinel-1 data
over the entire AOIL. The analysis leveraged the GAMMA
procedure implemented within the HyP3 plugin on Open-
SARIab, a service developed by ASF in conjunction with
the MintPy package (Yunjun et al., 2019). To enhance result
reliability, we iteratively repeated the time series inversion
on smaller subsets of the interferometric stack. This itera-
tive approach facilitated the selection of reference points in
closer proximity to the landforms within the AOI, ensuring
thorough consideration of topographic and atmospheric con-
ditions specific to the selected area. Despite the efficiency
demonstrated by such a large-scale classification and veloc-
ity analysis approach, it is essential to acknowledge the in-
herent limitations associated with InNSAR measurements. A
significant source of uncertainty in extracting LOS velocities
arises from the distance between the reference point used in
the inversion and the actual landforms. Topographic varia-
tions inherently influence error propagation, especially im-
pacting velocity measurements as the distance from the ref-
erence point increases, particularly in regions characterized
by significant elevation relief. In addition, while the mean
annual vLOS provides a valuable first-order approximation,
we also have to be reminded that it does not fully capture the
3D movement across all areas of the landform, particularly
in features where multiple lobes overlap and the direction
of movement diverges from the satellite vLOS. Despite this
limitation, we retain the mean annual vLOS as a reference
measure within this study, recognizing its utility for large-
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)] Rock glacier PAB Bertone et al.2019 New class Confidence
I Relict A A 0.9
] n.d. F R 0.6
m nd. A R 0.6
v Active F T 0.1
v Inactive A T 0.1
Vi Active A A 0.4
Vil Relict A R 0.8

Figure 12. Examples of rock glaciers with different activity labels. Panels (a), (d), and (g) report DInSAR velocity patterns over the selected
features; panels (b), (e), and (h) show the surface morphology through hillshade maps; panels (c), (f), and (i) are images taken from Google
Earth (© Google Earth 2025) showing the surface conditions of the selected landforms. (j) Summary table with the original activity label for
each dataset, the new class, and the confidence level. A = active, R = relict, T = transitional.

scale classification and initial assessments of rock glacier east—west movement components. However, in our approach,
kinematics. Previous studies (e.g. Brencher et al., 2021) have we chose to utilize the vLOS while taking into account the
applied various methods, such as reprojecting LOS measure- reliability index provided by the C factor (Notti et al., 2014)
ments along the maximum slope direction or integrating both associated with each rock glacier. This decision was made

ascending and descending geometries, to extract vertical and to mitigate the introduction of additional biases and assump-
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Figure 13. Distribution of elevation (a), permafrost presence (b), and percentage of lithologies (c) in the three activity classes: A (active),
T (transitional), and R (relict). The lithology names indicated at the bottom of the figure refer only to panel (c).

tions that may arise from geometrical reprojections, while al-
ways considering the C factor to obtain valuable insights into
the satellite’s favourable orientation relative to the landform.

Another potential factor that may adversely affect the mea-
sured vLOS displacement is attributable to the CNN-APS
method (Brencher et al., 2023). Since CNN methods operate
directly on the data, they have the capability to filter out real
portions of displacement signals rather than simply blurring
them, resulting in a reduction in the displacement associated
with each feature. Consequently, while the considered vLOS
provides descriptive information regarding the dynamics of
each feature, this filtering effect may need to be considered
when compared to the actual displacement rate.

Active phenomena in fact show displacement ranges in
the order of cmyr~!, while knowledge of some case stud-
ies from previous works suggests higher displacement rates
exceeding tens of cmyr~!. However, these are detailed stud-
ies at specific sites (Kofler et al., 2021; Bertone et al., 2023),
where more refined DInSAR approaches, with higher resolu-
tion and control on the area investigated, have been applied
to overcome the inevitable biases associated with a regional-
scale problem.

Despite the general underestimation of the measured sig-
nal, related to intrinsic limitations of the SBAS approach
(Pepin and Zebker, 2021) and post-processing steps, the dis-
tinction between active and relict features according to our
model results is effective, as proved by the high AUC and its
application to predicting activity class for undefined features
providing good results (Fig. 8).

5.3 Geomorphological factors and related rock glacier
spatial distribution

After the classification process was completed, a final evalua-
tion of the classification plausibility was conducted, integrat-
ing elevation and permafrost indicators, which were initially
excluded as predictor variables. This supplementary analysis
confirms that the identified patterns align with established
knowledge in periglacial environments. Active and transi-

https://doi.org/10.5194/tc-19-3493-2025

tional rock glaciers are typically situated at higher elevations
(generally above 2600 m a.s.l.), while relict classes are more
commonly found at lower elevations (between approximately
2200-2500 ma.s.l.), which are consistent with widespread
observations in periglacial landscapes (Fig. 13a). Addition-
ally, an assessment of permafrost occurrence probabilities
(Fig. 13b) within the reclassified features unveiled a signifi-
cant correspondence between higher probabilities and activ-
ity classes. In fact, the relict class is characterized by the low-
est elevation and lower permafrost probability with respect
to the transitional and active classes, with the highest ele-
vation and more probability of preserve permafrost presence
nowadays. This underscores the influential role of permafrost
dynamics in shaping rock glacier activity patterns. Further-
more, the impact of lithology on controlling rock glaciers’
activity is often minimal or negligible compared to the pre-
vious two factors (Fig. 13c). Studies have demonstrated that
lithology alone does not exert significant control over rock
glaciers’ activity (Kiib et al., 2005).

Given that rock glaciers primarily consist of unconsoli-
dated debris, their movement is predominantly driven by in-
ternal deformation processes rather than lithological proper-
ties (Haeberli et al., 2006). Additionally, the insulating effect
of debris cover can mitigate thermal variations in the sub-
strate, diminishing the influence of lithological disparities on
permafrost conditions and rock glacier dynamics. Therefore,
while lithology may play a minor role in modulating rock
glacier activity in specific contexts, its impact is generally
overshadowed by other factors, such as topography, climate,
and permafrost distribution. Moreover, the need to aggre-
gate lithologies into macro-classes for regional-scale stud-
ies limits the detailed examination of their effects on rock
glacier activity, highlighting the challenge of incorporating
fine-scale geological variability into broader analyses.
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6 Conclusions

This study introduces an updated classification for the state
of activity of the rock glaciers in South Tyrol (Italy). The
main strength of our comprehensive approach lies in the use
of replicable routines (i.e. HyP3-MintPy tools) and multivari-
ate statistical methods. This workflow can be adjusted and
modified (for example, by selecting known stable reference
points if possible, considering different snow-free months,
and adopting a different atmospheric correction) and suc-
cessively applied to other areas, allowing one to partially
fill the gaps of the traditional techniques, morphological and
dynamic classifications. Through the integration of regional-
scale spaceborne DInSAR processing with both geomorpho-
logical and climatic descriptors, we have unified the two pri-
mary classification methods of activity of periglacial fea-
tures, gathering a higher-classification spatial coverage for
the mapped rock glaciers and a more robust distinction be-
tween active, inactive, and transitional features. The integra-
tion of the kinematic information with environmental vari-
ables was accomplished through a multiclass GAM. This
model effectively leveraged both linear and non-linear rela-
tionships between features, providing a statistical definition
of the key variables influencing the activity classification of
rock glaciers at the regional scale.

The achieved results underscore a predominance of relict
features (1345 landforms mapped in total), in contrast to a
significantly smaller number of active ones (only 171). Look-
ing at the distribution of these three classes (active, transi-
tional, and relict), it was found that a transition state from ac-
tive to relict rock glaciers is not a direct process. Instead, an
intermediate transition phase between active and relict land-
forms seems to represent a common feature. At a regional
scale, this transition is likely controlled by local factors that
not only influence the activity state and the evolution of rock
glaciers but also affect the velocity phase of this transition
process, allowing changes from one more active class to the
relict one. These local settings, characterized by the dynamic
and complex interplay of factors such as slope, lithology, and
climate, shape the dynamics of rock glaciers, leading to vary-
ing rates of progression between different states of activity.
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