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Abstract. Accurate estimates of snow water equivalent
(SWE) are essential for effective water management in re-
gions dependent on seasonal snowmelt. However, signifi-
cant biases and high uncertainty in mountain precipitation
data products pose significant challenges. This study lever-
ages a SWE reanalysis framework and historical dataset to
derive factors that can downscale and bias-correct moun-
tain precipitation in a real-time modelling context. We eval-
uate through hindcast modelling how different versions of
this precipitation bias correction affect errors in 1 April
SWE estimates within a representative snow-dominated wa-
tershed in the Western US. We also evaluate how the addi-
tional assimilation of fractional snow-covered area (fSCA)
or snow depth observations during the accumulation season
affect the 1 April SWE estimates. Results show that spa-
tially distributed historically informed precipitation bias cor-
rection significantly improves SWE estimates, reducing the
multi-year averaged normalized root mean square difference
(NRMSD) from 78 % to 33 % (—58 %), increasing the corre-
lation coefficient (R) from 0.63 to 0.9 (4+43 %), and decreas-
ing mean difference (MD) from —340 to —41 mm (—88 %).
The primary strength of this bias correction method lies in
capturing the spatial distribution of precipitation bias rather
than its interannual variability. Assimilating snow depth ob-
servations further reduces errors both at the watershed scale
(NRMSD less by 46 %) and pixel level in most years, while,
as expected, accumulation season fSCA assimilation is not
generally useful. We demonstrate the value of these meth-
ods for streamflow forecasts: bias-corrected precipitation im-
proves the correlation between daily simulated snowmelt and
observed streamflow by 31 %—39 % and reduces bias in pre-
dicted April-July runoff volumes by 46 %—52 %. This study

highlights how historical SWE reanalysis datasets can be
leveraged and applied in a real-time context by informing
precipitation bias correction.

1 Introduction

Seasonal snowpack is a natural water tower; by storing win-
ter precipitation and releasing it as snowmelt, it provides an
essential resource for downstream ecosystems and an esti-
mated 20 % of the Earth’s population (Dozier, 2011). In or-
der to make critical management decisions for flood control,
hydropower operations, irrigation, and other competing de-
mands in snow-dependent regions of the world, water man-
agers need accurate assessments of the distribution and avail-
ability of water in snowpack (e.g., Hamlet et al., 2002; Koster
et al., 2010; He et al., 2016). Estimating the spatiotempo-
ral distribution and change of snow water equivalent (SWE)
remains a significant and important challenge for the snow
hydrology community (e.g., Cho et al., 2022; Dozier et al.,
2016; Lettenmaier et al., 2015).

Large-scale and temporally continuous SWE measure-
ments are generally absent from the real-time observational
record. In situ data from networks such as the Western US
SNOTEL (snow telemetry) network are not always repre-
sentative of the heterogeneity of SWE distribution in topo-
graphically complex mountain landscapes (e.g., Herbert et
al., 2024), and such networks are sparse globally. For ex-
ample, although seasonal snowpack is crucial to local water
availability in High Mountain Asia, the region has almost no
in situ data (e.g., Liu et al., 2021). Remote sensing can pro-
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vide measurements of snow properties like fractional snow-
covered areas (fSCA, e.g., Selkowitz et al., 2017) and snow
depth (e.g., Painter et al., 2016), or albedo (e.g., Bair et al.,
2019) over large areas, but there is currently no reliable way
of measuring SWE from spaceborne platforms particularly
in mountainous terrain (Lettenmaier et al., 2015).

This implies a continued need for modelling of moun-
tain SWE. Land surface models are commonly used to es-
timate SWE and other hydrologic variables over large spa-
tial extents (Cho et al., 2022; Clark et al., 2011; Kumar et
al., 2013), but these are susceptible to uncertainties driven
by biases in forcing data or model parameterization (Cho et
al., 2022). Uncertainty in precipitation products in mountain-
ous terrain, and its implications for SWE and downstream
hydrology modelling, is a widely acknowledged challenge
(e.g., Schreiner-McGraw and Ajami, 2020; Cho et al., 2022;
Pan, 2003; Raleigh et al., 2015; Liu and Margulis, 2019).
Fang et al. (2023) found that the uncertainty of SWE esti-
mates from commonly used global and regional modelling
products is primarily explained by precipitation uncertainty.
Dynamical and statistical downscaling are two fundamental
techniques that translate coarse-scale gridded meteorology
to a finer-scale resolution for input to a regional hydrologic
model. Statistical downscaling, the less computationally ex-
pensive and more common method of the two, relates coarse
meteorology fields to high-resolution reference variables and
often inherently includes bias correction (e.g., Gutmann et
al., 2014). Recent studies have developed and demonstrated
effective machine learning based or statistical downscaling
approaches for resolving and/or bias-correcting precipitation
fields from satellite-based products (e.g., Sharifi et al., 2019;
Lober et al., 2023; Chen et al., 2022; Wang et al., 2023;
Zhao, 2021; Lu et al., 2020; Ma et al., 2018) and regional
climate simulations (e.g., Li et al., 2021; Velasquez et al.,
2020; Yoshikane and Yoshimura, 2023) in mountainous and
moderate-topography regions.

Data assimilation has gained popularity as a way to con-
strain or correct uncertain model estimates of snow with ob-
servations of variables such as fSCA or snow depth, and has
demonstrated its ability as a method to quantify SWE over
both melt and accumulation seasons (Magnusson et al., 2014;
Margulis et al., 2016; Cortes et al., 2016; Largeron et al.,
2020; Liu et al., 2021; Fang et al., 2022; Alonso-Gonzélez
et al., 2022; Aalstad et al., 2018). This approach is partic-
ularly valuable in regions where in situ data are sparse but
remotely sensed observations like fSCA are available, such
as High Mountain Asia (Liu et al., 2021) or the South Amer-
ican Andes (Cortes et al., 2016). However, such products are
typically only generated retrospectively. Recent studies have
shown promise in combining historical reanalysis snow es-
timates with in situ and/or remotely sensed snow observa-
tions using statistical methods to specifically develop near
real-time SWE estimates (Pflug et al., 2022; Schneider and
Molotch, 2016; Bair et al., 2018; Zheng et al., 2018; Yang et
al., 2022). While these methods still heavily rely on ground
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SWE observations, they do demonstrate the value of and po-
tential for historical reanalysis of SWE datasets to inform
SWE estimation in an operational context.

Real-time spatially distributed SWE estimates have signif-
icant potential for application to water management. Climate
change effects in snow-influenced systems, such as earlier
runoff of snowmelt and drops in snowpack volume, pose im-
portant challenges for water managers (e.g., Berg and Hall,
2017). Accurate and timely seasonal streamflow forecasts
help inform management decisions that allocate resources in
a way that is resilient to climate variability or drought (e.g.,
Tanaka et al., 2006). Ensemble streamflow prediction uses
hydrologic models to forecast future streamflow from current
snow, soil moisture, river, and reservoir conditions (Wood et
al., 2002). The skill of these model-based streamflow fore-
casts is primarily derived from initial SWE and soil mois-
ture conditions (Koster et al., 2010). This suggests that accu-
rate spatially continuous real-time SWE estimates could be
used to reduce uncertainty and error in streamflow forecasts
in snow-dominated regions.

Reanalysis methods that incorporate satellite-based obser-
vations have demonstrated effectiveness in estimating SWE
retrospectively over areas where in situ data is sparse, but
producing accurate precipitation fields remains a challenge;
there is a need for modelling snow in mountainous regions.
In this paper we leverage a SWE reanalysis framework and
historical dataset to address this gap and gain insight into
how to improve modelling. Specifically, we derive moun-
tain precipitation bias correction estimates, and develop and
test spatially continuous SWE estimates on 1 April. The
motivating questions are: (1) To what extent can histori-
cally informed mountain precipitation bias correction im-
prove model-based spatial SWE estimates? (2) How does
the assimilation of accumulation season fSCA and snow
depth measurements into this framework affect those esti-
mates? (3) How are snowmelt-driven streamflow predictions
affected under these scenarios? We validate these methods
over a well-documented study domain, with the potential to
extend to areas that have less access to in situ data.

2 Methods
2.1 Study domain

The study domain comprises the Hetch Hetchy watershed, a
headwater catchment for the Tuolumne River in the Califor-
nia Sierra Nevada (Fig. 1). Its drainage area (~ 1200 km?) is
characterized by complex topography with elevations rang-
ing from 1150 to 3850 m. The watershed is part of Yosemite
National Park, which according to the National Park Ser-
vice receives 95 % of its precipitation between October and
May, and 75 % of that between November and March. During
these winter months, temperatures at high alpine watersheds
like the study domain typically average below freezing, and
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snow covers the ground. Snowmelt occurs in the spring and
generates water supply that is stored in the downstream reser-
voir. It is representative of other snow-dominated catchments
that provide key water supply in the Sierra Nevada. More
broadly, it is a demonstrative basin that represents global
mountain watersheds where the tested methods could pro-
vide utility for water management purposes; that is, basins
with complex terrain at high elevations and seasonal snow-
pack that play a significant role in the water budget.

The Hetch Hetchy reservoir at the watershed’s outlet pro-
vides water supply for approximately 2.7 million residents
of the San Francisco Bay Area, primarily from snowmelt.
This watershed also includes a unique Airborne Snow Ob-
servatory (ASO) snow depth dataset (Painter et al., 2016)
which provides multitemporal lidar-derived snow depth mea-
surements per year. A subwatershed that drains through the
USGS TGC (Tuolumne River at Grand Canyon) gauge lo-
cated at the inlet of the reservoir was delineated for the
streamflow analysis.

2.2 Overview of SWE reanalysis framework

A Bayesian reanalysis framework (Margulis et al., 2015) is
used in this study for both the development of a historical
reference SWE dataset, the derivation of historical precipita-
tion bias correction through retrospective analysis, and test-
ing “real-time” applications using that historical data (along
with other data). Note that we use a hindcasting approach to
model the real-time applications. The overall methodology is
visualized in a flowchart in Fig. 2. Details of the application
of this framework in a historical context are in Sect. 2.3 and
in a real-time context in Sect. 2.4; here, we provide a general
overview of the reanalysis method and its previous applica-
tions.

Typically applied retrospectively, this reanalysis frame-
work generates spatiotemporally continuous SWE estimates
using a particle batch smoother (PBS) data assimilation tech-
nique that constrains a prior ensemble of modelled snow
estimates with independent observations (most commonly,
satellite-based fSCA measurements). The method was devel-
oped by Margulis et al. (2015) and has since demonstrated
ability to reproduce observed SWE across global mountain
regions: Sierra Nevada (Margulis et al., 2016), South Amer-
ican Andes (Cortes et al., 2016), High Mountain Asia (Liu
et al., 2021) and the Western US (Fang et al., 2022). It has
also demonstrated success in assimilating remotely sensed
snow depth measurements for SWE estimation (Margulis et
al., 2019).

First, an ensemble of prior snow estimates is generated us-
ing a forward land surface model (LSM); here, the modelling
core is the SSiB-SAST LSM (Simplified Simple Biosphere —
Snow-Atmosphere-Soil Transfer; Sun and Xue, 2001; Xue
et al., 2003) paired with the Liston Snow Depletion Curve
(Liston, 2004). This LSM is driven by meteorological forc-
ings which each explicitly incorporate some measure of a
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priori bias and uncertainty. Further details on these uncer-
tainty estimates and the modelling approach are in Supple-
ment Sect. S1. Note that implicit in this SWE estimation
is the assumption that precipitation (snowfall) in mountain-
ous regions is the largest source of error in the modelling of
SWE. Precipitation fields from raw products like MERRA2
tend be coarse, smooth, and biased (Liu and Margulis, 2019;
Fig. 3a, b). This is acknowledged by the bias correction and
large uncertainty in the postulated prior precipitation distri-
bution, represented by

Pj_(t):b;'Pnom(t)’ (1)

where Pj* (t)is the prior precipitation value for ensemble j
at time step #, Phom 1S the nominal precipitation estimate (i.e.,
interpolated from MERRA? as in Fig. 3b), and b; is a scal-
ing factor where the “—" superscript indicates that this is a
prior estimate not conditioned on independent observations.
The ensemble of scaling factors b (Margulis et al., 2019)
are effectively seasonal multiplicative bias correction factors
for precipitation. The prior b values are prescribed as a log-
normally distributed multiplicative factor that describes first-
order bias and uncertainty in the nominal precipitation.
Second, a reanalysis step incorporates independent mea-
surements such as fSCA using a Bayesian PBS update. The a
priori (equal) prior weights assigned to each ensemble mem-
ber are updated to posterior weights that reflect the likeli-
hood that the ensemble member fits the assimilated measure-
ments. These posterior weights are applied to prior ensem-
ble estimates of SWE to derive posterior estimates. Note that
fSCA and other potential measurements used for assimila-
tion are connected based on physical processes in the model
to other snow variables such as SWE; thus, the whole suite
of snow variables is updated both before and after the as-
similated measurement time step. So, although this frame-
work has mainly been used to derive posterior SWE esti-
mates, a by-product of this is posterior estimates of all snow
states/fluxes and variables such as b described above.

2.3 Development of historical reference dataset and
precipitation bias correction

To generate the historical reference SWE dataset for this
study, the SWE reanalysis framework was applied to the
study domain in the same way as in Fang et al., 2022, but
with an increased ensemble size (100) and initial conditions
set to default values (for SWE, that value is zero) to focus on
the derivation of posterior b values for testing herein (Fig. 2).
Forcings were sourced from hourly MERRA?2 near-surface
meteorological forcing data, and the uncertainty models used
to perturb input air temperature, precipitation, dew point tem-
perature, and shortwave radiation, as well as model parame-
ters, use the values derived for the Western US domain by
Fang et al. (2022) following the methods outlined in Liu and
Margulis (2019) and Girotto et al. (2014) (Sect. S1). For prior
precipitation, this uncertainty is quantified by a lognormal
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Figure 1. (a) A map outlining the Hetch Hetchy and the Grand Canyon subwatersheds of the Tuolumne River. The locations of the TGC
streamflow gauge and sample model pixel A. (b) Outline of the Hetch Hetchy watershed illustrating its location in the central California
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Figure 2. Flowchart illustrating the overall methodology, including inputs, modelling components, and key outputs used for both the historical

and real-time applications of the reanalysis framework.

distribution of b with nominal mean of 1.8, CV of 0.69, and
range of 0.1 to 5 (Fang et al., 2022). The coarse-resolution
MERRAZ2 forcings (0.5° x 0.625°) are first bilinearly inter-
polated to the model grid resolution (16 arcsec or ~ 500 m),
as is done in the original reanalysis methodology (Fang et
al., 2022) (Fig. 3b). Here, we assume that downscaling the
prior precipitation to the grid resolution is not known or eas-
ily postulated before the reanalysis methodology is applied.
Measurements from Landsat-derived fSCA (raw resolu-
tion of ~ 30 m aggregated to modelling resolution) provide
the data assimilated into the historical reference dataset. We
apply screening methods consistent with Fang et al. (2022)
to exclude Landsat observations with cloud cover fraction
greater than 40 % and individual cloudy pixels with an in-
ternal cloud mask. All remaining fSCA measurements are
assimilated into the reanalysis retrospectively and as a batch
for each water year. A measurement error standard deviation
for retrieved Landsat fSCA is specified as 10 % (Fang et al.,
2022). A uniform spatial resolution of 16 arcsec (~ 500 m) is
chosen, with hourly outputs aggregated to a daily time step
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for water years (WYs) 1985 to 2021. Initial conditions are
set to default values at the start of each water year; for SWE,
that value is zero. This assumes that the seasonal snowpack
melts out yearly; although this may not happen every year
especially at high-elevation shaded areas of the watershed,
we argue this is an assumption worth making to avoid accu-
mulating error and to make fair and consistent comparisons
between simulations.

The performance of a similar application of this reanal-
ysis framework is evaluated against independent snow ob-
servations in Fang et al. (2022); this verification shows high
correlation (0.81 to 0.91) with ASO SWE in the Tuolumne
basin (which encompasses the study domain); and good cor-
respondence with in situ SWE in California (root mean
square difference = 0.3 m, mean difference = —0.15 m, cor-
relation = 0.82).

In addition to generating a high-resolution reference
dataset of SWE estimates for a 37-year historical period to
use for validation, this application of the SWE reanalysis
framework also yields a rich database of historical precip-
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Figure 3. For sample WY 2016: (a) Raw MERRA?2 annual precipitation at its original resolution. (b) Ensemble-mean annual prior precip-
itation, which uses the raw MERRA?2 precipitation interpolated to the model resolution. (¢) Ensemble-mean annual posterior precipitation.
(d) Ensemble-mean of the posterior bias correction b. (€) Watershed-average ensemble-mean prior (red) and posterior (blue) b per the ref-
erence dataset over the period of record. (f) Scatter plot showing negative correlation between watershed-average annual prior precipitation
and watershed-average posterior b. Note that for (¢) and (d), a non-seasonal snow mask screens out model pixels located below 1500 m, with

less than 2 cm of climatological SWE, and/or categorized as glacier.

itation bias correction factors that are conditioned on as-
similated fSCA measurements. These values provide insight
into the historical distribution of precipitation bias and un-
certainty (Fig. 3). Hereafter, and unless otherwise indicated,
b will refer to the ensemble mean of the posterior b distri-
bution; this is used interchangeably with “bias correction”.
This database comprises 37 years- 100 ensemble realiza-
tions = 3700 values of b at each pixel. A historical distribu-
tion of b can then be derived at each pixel and for each wa-
ter year, as demonstrated in Liu and Margulis (2019). This
study leverages the insights stored in b, towards developing
real-time SWE estimates by using them to inform the pre-
cipitation bias correction of real-time applications (Sect. 2.4,
Fig. 2). Note that the assimilation of fSCA constrains SWE,
which mostly depends on snowfall. So while we are multi-
plying the total precipitation by b, we expect that any adjust-
ments are primarily on snowfall. This implicitly assumes that
some of the factors leading to snowfall bias, such as orogra-
phy, affect rain and snow similarly. This assumption is con-
sistent with previous applications of this reanalysis method-
ology (e.g., Fang et al., 2022; Liu and Margulis, 2019).
Figure 3 illustrates how, for sample water year 2016, the b
from the historical reference dataset provides valuable built-
in downscaling and bias correction information. Note that the
posterior precipitation has a much higher resolution than the
raw MERRA? input; for example, ridge and valley features
are noticeable in Fig. 3c whereas the field is very coarse in
Fig. 3a, and smooth and unresolved in the interpolated field
of Fig. 3b. Furthermore, the raw MERRA?2 input fails to cap-
ture the expected orographic effect whereas the posterior pre-
cipitation clearly shows more precipitation at higher eleva-
tions in the north and along the watershed ridgelines. The
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posterior b’s, which are informed by the pixel-wise fSCA ab-
lation time series in the reanalysis (assimilation) step, are the
multiplicative (bias correction) factors that bring out these
features in the posterior precipitation. They contain both a
spatially distributed pattern relating to topography and static
physiographic features (Fig. 3d) as well as an interannual
variation (Fig. 3e, f). The spatially distributed pattern effec-
tively downscales the coarse-resolution input, and the inter-
annual variation describes intensity-dependent yearly biases
of the input (MERRA?2 precipitation). We observe that, for
the study domain, this interannual variation is correlated with
the prior MERRA?2 precipitation level: a higher watershed-
average prior precipitation correlates with a lower watershed-
average bias correction (R = —0.6) (Fig. 3f).

2.4 Design of real-time modelling and data assimilation
experiments

We use the b database from the historical reference dataset to
inform and develop value-added precipitation bias correction
for the real-time experiments (Fig. 2). The list and character-
istics of these experiments are listed in Table 1. Section 2.4.1
describes the bias correction approach for each experiment.
Section 2.4.2 and 2.4.3 provide further details about the
data assimilation experiments (fSCA and snow depth, re-
spectively). Figure 4 provides an illustrative schematic of the
precipitation bias correction, data assimilation, and resulting
SWE estimation for a sample pixel (location A in Fig. 1a)
and water year (WY 2017).

Note here that, we are applying and evaluating these ex-
periments in hindcast mode and are selecting 1 April as the
target representative date. As such, we are testing these meth-
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ods at the end of the accumulation season, when real-time
SWE estimates would provide the most value for water sup-
ply forecasts. We select 1 April because it has traditionally
been used to approximate peak SWE in the Sierra Nevada
and is when the key April-July water supply forecasts are
made (e.g., He et al., 2016). For true real-time application in
an operational context, other factors such as data latency and
computation time should be considered.

Each experiment is evaluated by its ability to reproduce
SWE spatial fields as compared to the historical reference
dataset on 1 April, and ASO-derived SWE on the valida-
tion day closest to 1 April. For both, we compute three
metrics: Pearson correlation coefficient R to quantify how
closely the reference spatial distribution is captured, normal-
ized root mean square difference (normalized by the observa-
tional mean, NRMSD, %) to measure bias and random error,
and mean difference (MD, mm) to measure the average bias.

Note that the uncorrected, uniform, Case A and Case B ex-
periments (Table 1) only use the forward-modelling compo-
nent of the reanalysis framework; because there is no direct
data assimilation in these experiments, there is no reanaly-
sis step and therefore no posterior estimates. Instead, valida-
tion of these experiments is performed on the modelling-only
prior estimates. The Case B +fSCA and Case B + SD ex-
periments include data assimilation and thus yield posterior
estimates.

2.4.1 Definition of precipitation bias correction factors

We generate a baseline, uninformed case where the prior pre-
cipitation is uncorrected (uncorrected in Table 1, Fig. 4a).
The uniform experiment adjusts prior precipitation with a
uniform (in time and space) mean prior b (Table 1) that
matches that used in the historical reference dataset and de-
fined in Fang et al. (2022). This represents the case for a sim-
ple precipitation bias correction. Note that we maintain the
nominal coefficient of variation (CV) and minimum/maxi-
mum values from Fang et al. (2022) for the prior b ensemble
for this and all subsequent experiments; that is, we alter only
the ensemble mean.

The more informed experiments leverage the database of
historical b factors generated as a by-product of the SWE re-
analysis framework. They vary from the less-informed cases
(uncorrected, uniform) in two key ways: the prescribed pre-
cipitation bias corrections are spatially distributed, and his-
torically informed. From the historical reference, we com-
pute a spatially distributed climatological b for each water
year, withholding the b value from a given year in deriving
a long-term climatology for that year (Fig. 5a). These clima-
tological values are used as the mean bias correction for the
Case A experiment (Table 1, Fig. 4a). Because we observe
a relationship between precipitation level and watershed-
average b in the historical reference (Fig. 3f), we also derive
a bias correction that is conditioned on water year type. For
each water year, we determine a type based on the histori-
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cal prior precipitation (cumulative on 1 April), where < 30th
percentile is “dry”, > 70th percentile is “wet”, and in be-
tween is “normal”. We take a spatially distributed average
of the historical b’s of all the other years classified in that
water year type; that average becomes the mean value of bias
correction for that year in the Case B experiment (Table 1,
Fig. 5a). In this way, the bias correction applied in Case B
differs by water year type, whereas in Case A it does not. In
Fig. 5, we illustrate how the historical b factors across the
watershed for wet years tends to be less than the climato-
logical values (with the exception of headwater river valley
bottoms, as shown in red in Fig. 5d); and those for dry years
tend to be greater (Fig. 5b). In Fig. 4a, we see how the prior
precipitation in Case B differs from Case A because of the
difference in precipitation bias correction.

The last two experiments include the assimilation of
either fSCA or snow depth measurements; these experi-
ments are subsequently referred to as Case B + fSCA and
Case B+ SD, respectively. The data assimilation methods
are described further in Sect. 2.4.2 and 2.4.3. We choose to
use the Case B method of correcting prior precipitation for
these experiments because it represents the most informed
and sophisticated bias correction.

2.4.2 Assimilation of fSCA observations

Previous data assimilation experiments that use fSCA to
effectively improve SWE estimates have typically utilized
measurements from both the accumulation and melt seasons
(e.g., Girotto et al., 2014; Margulis et al., 2016; Fang et al.,
2022), which are assimilated retrospectively in a single batch
at the end of the water year. This is done with the understand-
ing that it is the fSCA ablation time series combined with es-
timates of snowmelt that is most directly connected to peak
SWE. The value of fSCA measurements during the accumu-
lation season is expected to be more limited because snow
coverage is often complete or near-complete (i.e., fSCA = 1)
when snow is accumulating in snow-dominated areas. Past
studies have found limited to no improvement from prior
modelled SWE estimates when assimilating fSCA observa-
tions over the accumulation season, independently from one
another, or at sites which experience long periods of near-
complete snow cover (Andreadis and Lettenmaier, 2006; De
Lannoy et al., 2010).

Here, we test whether there is any additional benefit in
SWE estimation with bias-corrected precipitation when as-
similating fSCA up to 1 April, and where in the watershed
that benefit might be the greatest. We use the same methods
described in Sect. 2.3 to derive, screen, and assimilate fSCA
observations, but only include the subset of fSCA observa-
tions that fall between a snow onset date and 1 April (Fig. 4b,
more details about the assimilation window and the snow on-
set date in Sect. S2). Note that not all pixels in the watershed
assimilate the same number of fSCA observations for a given
year because of differences in the snow onset date, cloud
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Table 1. Summary of the methods applied to the six real-time experiments. The listed bias correction represents the mean of the prior b
distribution. The “(x)” notation refers to the bias correction being a spatially distributed field, where x is each pixel in the watershed; bcjim
refers to the climatological values over the entire period of record; byet refers to the average values from only wet years; byormal from only

normal years; and bgry for only dry years.

Experiment name

Mean bias correction

Forward modelling experiments Uncorrected 1
Uniform 1.8
Historically informed Case A b¢jm (X)
Case B bwet(X), bnormal (X), bdry(X)
Data assimilation experiments Case B +fSCA* bwet(X), bnormal (X), bary(X)
Case B + SD* bwet(x), bnormal (%), bdry(x)

* In assimilation experiments, only observations up to 1 April are included.

Precipitation bias correction experiments

Data assimilation experiments
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Figure 4. For a sample wet year (WY 2017) and sample pixel A: (a) Ensemble-mean cumulative prior precipitation for the four for-
ward modelling experiments. (b) Example of how fSCA assimilation is applied. The prior is the Case B experiment, and the posterior
the Case B + fSCA experiment. Note that both the median and interquartile range (IQR) for the prior and posterior ensembles are plotted.
The assimilation window, indicated with a grey rectangle, ranges from the snow onset date to 1 April. Observations that fall within the assim-
ilation window and on a day when the prior ensemble is non-zero are labelled “assimilated”. (¢) Example of how snow depth assimilation is
applied. Like (b), the prior is the Case B experiment, and the posterior is the Case B + SD experiment. The assimilation window ranges from
the start of the water year to 1 April. (d) Ensemble-mean SWE time series for the four forward modelling experiments, two data assimilation
experiments, and the historical reference dataset. The outcome of these experiments is evaluated on 1 April.

cover, and satellite orbital patterns. The average in the study
domain over the period of record is approximately seven us-
able observations per year, but this can vary between zero
and 24.

2.4.3 Assimilation of snow depth observations
The experiment with snow depth assimilation (Case B + SD)

incorporates multitemporal lidar-derived snow depth obser-
vations taken over the Tuolumne watershed by ASO (Painter

https://doi.org/10.5194/tc-19-3309-2025

et al., 2016) on and before 1 April. The observations cover
the entire watershed (Fig. S3). In contrast to fSCA, snow
depth observations are expected to provide more insight into
accumulation season SWE because of the close relationship
between snow depth and SWE. Margulis et al. (2019) demon-
strated how the assimilation of even a single day of ASO
snow depth observations was able to significantly improve
posterior estimates of SWE later in the year. Here, we seek
to quantify how much assimilating snow depth observations

The Cryosphere, 19, 3309-3327, 2025
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Figure 5. Per the historical reference: (a) climatological (WY 1985-2021) bias correction map. (b) The ratio between the dry year and
climatological bias correction. (¢) Same as (b) but for normal years. (d) Same, but for wet years.

Table 2. ASO acquisition DOWY (day of water year) and their cor-
responding dates. The dates of the observations used for assimila-
tion and for validation (i.e., the day closest to 1 April) are indicated
for each WY.

Assimilated Validation
WY 2015 140 (Feb 17), 156 (Mar 5), 185 (Apr 3)
176 (Mar 25)
2016 178 (Mar 26), 184 (Apr 1) 190 (Apr 7)
2017 154 (Mar 3), 183 (Apr 1) 214 (May 2)

could improve upon SWE estimates that already incorpo-
rate a historically informed precipitation bias correction. We
use data for three representative years: WY 2015 (dry), 2016
(near average), and 2017 (wet). The number and dates of the
ASO observations used for assimilation and validation pur-
poses are listed in Table 2. Prior to assimilation, the 50 m
ASO snow depth product was regridded to the modelling res-
olution. Following Margulis et al. (2019), we specify a mea-
surement error standard deviation of 5cm. Figure 4c illus-
trates snow depth assimilation for a sample model pixel: the
observations on 3 March and 1 April of this year fall within
the prior ensemble, and so are assimilated and yield a higher
posterior mean and narrower ensemble.

2.5 Connection to streamflow

We further evaluate the real-time SWE experiments by their
ability to yield snowmelt estimates and streamflow fore-
casts that match observed streamflow at the TGC (Tuolumne
River at the Grand Canyon) USGS gauge. Note that for
this comparison, the focus is on a subwatershed that drains
through the TGC gauge (Fig. 1a). Continuous daily stream-
flow records are generated from observations at the gauge for
WYs 2009-2021 (Text S3).

We measure how well daily watershed-average snowmelt
estimates correlate with daily observed streamflow for the
key forecasting period April-July with Pearson correlation
coefficient R. For each experiment, the SWE reanalysis
framework is run forward in time from 1 April with the
known meteorological forcings of that year, yielding “per-
fect” hindcasts for SWE and snowmelt. Snowmelt is esti-
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mated as the negative daily changes in SWE, assuming sub-
limation is negligible.

We quantify the ability of watershed-average estimated
1 April SWE to predict April-July (AJ) streamflow volume
with a historical linear regression. For a given year, we build
a regression from all other years (i.e., excluding the one be-
ing evaluated) using observed AJ streamflow as the predic-
tand (Fig. S8). Observed AJ streamflow from WY 2019 is
excluded because of incomplete observations (Fig. S2). We
quantify the bias and mean absolute differences between the
predicted volumes from the experiments and the reference.
Because we are treating the historical reference dataset as
the ground truth in this study, the predicted volume from its
SWE estimates is treated as the “best case” prediction and so
is the target in this comparison. The relationship between es-
timated 1 April SWE and observed streamflow is affected by
other factors like rainfall and soil moisture conditions, which
make errors between the predicted and observed streamflow
volume inevitable and are not the focus of the study. Note
that for this analysis, the snow depth experiment is excluded
because it only has 3 years of results.

3 Results and discussion

3.1 Value added from historically informed
precipitation bias correction

Maps of 1 April SWE estimates and their difference relative
to the historical reference (Fig. 6) highlight key differences
across experiments; in particular, these show how using a his-
torically informed precipitation bias correction (Case A and
Case B) yields 1 April SWE that better matches the refer-
ence. Here, the reference is the posterior SWE estimates from
the historical reference dataset which is constrained by the
full set of fSCA observations across the water year. Notably,
we can see how Case A and Case B produce 1 April SWE
distributions that are much better spatially resolved than the
less-informed uncorrected and uniform experiments: individ-
ual ridges and valleys are more prominent and match the his-
torical reference more closely (Fig. 6a). This is also notable
in the maps illustrating bias in SWE: in the uniform experi-
ment, a strong geographical pattern exists in WY 2016 and
2017, where the lower-elevation areas of the watershed (gen-
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erally, the southern half) consistently show a positive bias in
SWE estimation, and the higher elevations show a negative
bias (Fig. 6b). This geographical distinction is lessened in
Case A and Case B in 2015 and 2016, and greatly reduced
in 2017. This illustrates that the historically informed spa-
tially distributed bias correction is able to correct biases in
input precipitation that are related to elevation and topogra-
phy, whereas the uniform bias correction smooths over these
spatial differences. Effectively, the spatially distributed bias
correction downscales coarse-resolution input. We also see
that Case A and Case B yield relatively similar results in
terms of the spatial distributions and magnitudes of error.

All modelling-only experiments (uniform, Case A,
Case B) outperform the uncorrected baseline in at least two
1 April SWE metrics (Fig. 7e-g). The greatest reduction in
error relative to the uncorrected baseline occurs when a spa-
tially distributed bias correction is used: on average across
all years in the record, Case A and Case B reduce NRMSD
by 58 % (to 33 %), improve R by 43 % (to 0.9), and reduce
bias (MD) by 88 % (to —41 mm) and 85 % (to —52 mm), re-
spectively (Fig. 7e—g). The limited difference in performance
between the two cases suggests that the primary value of the
historical database of bias correction distribution lies in its
description of the (more or less static) spatial distribution of
precipitation bias, rather than its temporal patterns or uncer-
tainty. That is, the historically informed bias correction is
very effective at downscaling coarse-resolution input (as is
done in Case A), but less effective at describing interannual
bias (as is additionally done in Case B). A more simple uni-
form bias correction is also effective at reducing error but to
a lesser degree: the uniform case reduces average NRMSD
by 35 % (to 51 %) and MD by 97 % (to —11 mm), and yields
an insignificant average effect on R (Fig. 7e—g). Note that the
MD metric averages values across the watershed and so does
not represent the spatial spread of error in these estimates
(Fig. 6b). For the uniform experiment in particular, a lower
watershed-average MD masks high positive and negative er-
rors across the watershed (Fig. 6b).

The performance of these experiments varies by year. For
example, in WY 2015, which was historically dry in the
Hetch Hetchy watershed, NRMSD is the highest across all
experiments (Fig. 7b). Although the two spatially distributed
precipitation bias corrections yield similar results in most
cases, Case B (where the bias correction is also differenti-
ated by water year type) has an 8 %—30 % lower bias than
Case A in low and normal snow years (Fig. 7g). This indi-
cates that differentiating the bias correction by water year
type further reduces bias in years with lower snow accumu-
lation. In those years, the bias correction is generally higher
than the climatological mean (Fig. 5b), which, when applied
to prior precipitation, effectively increases the snowfall in-
put and reduces the negative SWE bias. On the other hand,
Case B has a more negative SWE bias in high snow years
than Case A (Fig. 7g); in these high snow years, the bias
correction is generally lower than the climatological value
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and so when applied to prior precipitation would reduce in-
put snowfall. The effect of a uniform bias correction factor
also varies slightly by water year type: it improves R from
the uncorrected baseline in low snow years but reduces R in
normal or high snow years, indicating a poorer spatial corre-
lation to the reference in years with higher snow accumula-
tion (Fig. 7f). High snow years in the uniform experiment are
also the only years to show an average positive bias (Fig. 7g),
suggesting the uniform bias correction generates higher input
precipitation than the reference dataset in higher snow years.
This is consistent with the observation in Fig. 3f that, histor-
ically, wetter years correlate with a lower watershed-average
bias correction; in these years, the posterior bias correction
is less than the uniform value.

Figure 8 illustrates the distribution of error in SWE in
these experiments across elevation bands. At low elevations
(below 2600 m), the uncorrected baseline tends to have the
least error (lowest RMSD), but also a significant negative
bias (MD) that persists across all elevations and indicates
an underestimation of SWE (Fig. 8b, d). The other three
experiments, which incorporate varying levels of precipita-
tion bias correction, instead overestimate SWE at low el-
evations: Case A and Case B by small magnitudes (~ 5-
10mm) and the uniform experiment by a greater magni-
tude (~200mm) (Fig. 8d). Spatial distribution of SWE is
best represented by Case A (with Case B a close second) at
low elevations, as indicated by the highest R (Fig. 8c). At
mid elevations (between 2600 and 3000 m), the lowest er-
ror (RMSD) occurs in the uniform experiment, then Case B
and Case A, and then the uncorrected baseline (Fig. 8b). The
bias in Case A and Case B is consistently negative at mid
elevations, with Case A having the slightly lower magni-
tudes (Fig. 8d). The bias in the uniform experiment switches
from positive to negative at approximately 2760 m (Fig. 8d);
this trend demonstrates cancellation effects happening in the
watershed-averaged bias, where the watershed-average value
in Fig. 7 may be low despite both high positive and nega-
tive biases at different elevations. Error across all three per-
formance metrics increases more steadily and more steeply
with increasing elevation in the uncorrected baseline than the
Case A or Case B experiments (Fig. 8b—d). This implies that
the spatially distributed precipitation bias correction applied
to the latter two is effective at reducing error across the wa-
tershed, especially at higher elevations where most SWE is
located. At high elevations (above 3000 m), the lowest error
(RMSD) and bias (MD) occurs in Case A, with Case B as
a close second and the uncorrected baseline as significantly
worse (Fig. 8b, d). The spatial distribution of SWE (R) is best
portrayed by Case B, with Case A close behind (Fig. 8c).
Notably, the elevation band (3100-3246 m) with the lowest
R across all experiments is also the one with the highest cli-
matological 1 April SWE (Fig. 8a, c). This suggests that this
elevation band could benefit from ablation season and post-
ablation fSCA assimilation, which is included in the histor-
ical reference. All experiments underestimate SWE at high
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Figure 6. (a) Maps of 1 April SWE for the historical reference, uncorrected baseline, and three experiments for three representative water
years: 2015 (dry), 2016 (normal), and 2017 (wet). (b) Maps of the difference in 1 April SWE (experiment — reference) for the same years and
experiments. The NRMSD relative to the reference is included. Pixels where both the reference and experiment estimate 0 SWE are greyed

out in addition to the mask in these maps.

elevations (Fig. 8d), indicating that the spatially distributed
precipitation bias corrections are not enough to fully com-
pensate for the negative bias in SWE estimation at high ele-
vations, although it does reduce that bias.

Overall, including a spatially distributed precipitation
bias correction significantly improves spatial SWE estimates
across all elevation bands, as indicated by consistently higher
R values in Case A and Case B than both the uncorrected
baseline and uniform experiment (Fig. 8c). This bias cor-
rection also yields error that is more uniform across eleva-
tion bands; crucially, it reduces error more significantly at
higher elevations where more SWE accumulates (Fig. 8b, d).
Note that to the extent that reanalysis precipitation products
such as the MERRA2 input used in these experiments get
informed by existing in situ precipitation gauges, those data
are generally at lower elevations. This emphasizes the need
to get accurate spatially distributed bias corrections that ad-
just uncertain precipitation inputs at higher elevations where
most SWE accumulates.

The Cryosphere, 19, 3309-3327, 2025

3.2 Additional value through data assimilation
3.2.1 fSCA assimilation

The value of assimilating fSCA to estimate SWE lies pri-
marily in its ability to track the loss of snow cover during the
melt season, so the expectation for additional insight from
assimilating fSCA observations only before 1 April (as was
done in the Case B + fSCA experiment) is low. This is con-
firmed by the results: when looking at the overall effect of
fSCA assimilation on 1 April SWE estimates, the watershed-
scale NRMSD is reduced from the prior in only 2 of 37 years
(Fig. 9). A further 7 years show a posterior NRMSD within
only 10 % of the prior, indicating limited difference. In the
remaining years (the majority), fSCA assimilation brings the
posterior estimates further from the historical reference and
increases the NRMSD (Fig. 9). Note that here, the exper-
iment uses the spatially distributed precipitation bias cor-
rection from Case B. This implies that accumulation season
fSCA observations, which comprise most of the observations
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before 1 April, are more noisy than helpful in data assim-
ilation. In fact, assimilating these observations is detrimen-
tal to overall SWE accuracy in most years (Fig. 9). Overall,
this method is not a useful approach to improving real-time
1 April SWE, especially when the precipitation input is al-
ready bias-corrected as is the case here.

We find that the timing of fSCA observations in the water
year is significant to determining whether their assimilation
reduces error in SWE estimates. For example, in WY 1988,
only 1-2 fSCA observations were assimilated into the fSCA
experiment, but all of these occurred after pixel-wise peak
SWE and before 1 April (Fig. S4a). In that year, 70 % of pix-
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els showed a reduction in posterior error relative to the ref-
erence, and the watershed-scale NRMSD was reduced 5 %
(Fig. 9). In WY 2012, pixel-wise peak SWE was averaged
after 1 April for the watershed, but the NRMSD was still
reduced (by 21 %) with fSCA assimilation because enough
fSCA observations (6—-10) were assimilated at low-elevation
pixels (Fig. S4b). Note that, in cases with fewer fSCA obser-
vations during the accumulation season, there is often degra-
dation in the posterior SWE estimate.

Individual pixels in the watershed can show improve-
ment with fSCA assimilation even when the total error is
increased. The absolute bias relative to the reference is re-
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estimates.

duced at over 50 % of the pixels in the watershed with fSCA
assimilation in 7 years (Fig. 9). The pixels where fSCA as-
similation reduces error tend to have an earlier peak SWE,
lower elevation, and higher number of fSCA observations
assimilated (Fig. S5). In most years, there is a statistically
significant difference in all these variables between the pix-
els with an improvement and those without an improvement.
This is consistent with the finding in Andreadis and Let-
tenmaier (2006) that improvements in SWE estimation from
fSCA assimilation are more evident at lower elevations and
during snowmelt.

3.2.2 Snow depth assimilation

In addition to mostly reducing watershed-scale average error
(as expected), snow depth assimilation brings more spatial
heterogeneity to SWE estimates and reduces pixel-wise bias.
Note that, for this comparison, the reference is SWE from
the ASO observations succeeding the last one that was as-
similated; that is, day of water year (DOWY) 185 in WY
2015, 190 in 2016, and 214 in 2017. In the maps of Fig. 10,
we observe that in WY 2016 and 2017, the posterior es-
timates show a wider range in SWE than the prior, with
higher SWE estimates at higher elevation pixels. Note that
this prior—posterior pair uses the historically informed spa-
tially distributed bias correction from Case B. In WY 2015,
we observe how most of the watershed has already lost its
snow cover by the day of comparison according to the poste-
rior estimates (Fig. 10a), which contributes to the poor per-
formance of snow depth assimilation in this year.

In both WY 2016 and 2017, we observe a decrease in
pixel-wise error with snow depth assimilation. In 2016, most
of the watershed demonstrates an underestimation of ref-
erence (ASO) SWE in the prior; this is lessened in the
posterior, with some valleys showing slight overestimation
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(Fig. 10h, k). In 2017, the prior shows an underestimation of
ASO SWE in the northern high-elevation region of the wa-
tershed and an overestimation in the southeastern headwaters
and low river valley area, some of where ASO observes no
snow by this time. In the posterior, the magnitude of pixel-
wise error is universally decreased, more of the watershed
underestimates ASO SWE, and the lack of snow in the low
river valley areas is more correctly captured (Fig. 10i, 1). In
the prior in 2015, most of the watershed except for higher
elevation ridge areas in the north shows an overestimation
of the reference SWE, including areas where ASO observes
no snow cover (Fig. 10g). The posterior SWE map shows
an almost universal underestimation of observed ASO SWE
in this year, except for the areas where the estimates cor-
rectly predict no snow cover (Fig. 10j). This is consistent
with the higher watershed-scale errors observed in the esti-
mations with snow depth assimilation on the validation day
in 2015 from Fig. 11.

Figure 12b demonstrates how, for a sample model pixel,
the two ASO snow depth observations assimilated in 2016
can bring the prior estimate up to a posterior that better fits
the observations both before and after 1 April. In both WYs
2016 and 2017, the Case B + SD experiment shows the low-
est NRMSD (81 % less than the uncorrected baseline) and the
highest R (Fig. 11a, b). This also holds true for bias (MD) in
WY 2016 (Fig. 11c). In all three years, Case B 4+ SD shows
a negative bias, indicating that posterior SWE estimates are
consistently underestimated (Fig. 11c). Assimilating snow
depth observations reduces the prior NRMSD by 43 %-46 %
and increases the R by 6 %—12% in WYs 2016 and 2017
(Fig. 11a). Note that for the Case B 4 SD experiment, Case B
represents its prior (i.e., before assimilation).

In WY 2015, the outcome of the Case B 4+ SD experiment
is different on its validation day. On the days when ASO data
is assimilated, the posterior SWE estimates successfully (and
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Figure 10. (a—c) Maps of prior SWE for the Case B + SD experi-
ment on the validation day in three water years. (d—f) Maps of poste-
rior SWE for the Case B 4+ SD experiment. (g—i) Maps of the differ-
ence between prior SWE and ASO-derived SWE. (j-1) Maps of the
difference between the posterior SWE and ASO-derived SWE. Val-
ues of NRMSD relative to the ASO-derived SWE are listed. Pixels
where both the experiment and the ASO-derived SWE have 0 SWE
are greyed out in addition to the mask.

as expected) reduce error metrics from the prior (Fig. S6)
but by the validation day on DOWY 185, 42 % of the basin
(mostly higher-elevation higher-snow areas, Fig. S7) has a
greater bias in posterior SWE than in the prior. Although
overall error is still reduced from the uncorrected baseline
on this day, NRMSD and MD are greater, and R is less, in
the posterior than in the prior (Fig. 11). We hypothesize that
anomalies in precipitation input that occur after assimilation
explains the poor performance of snow depth assimilation on
this day (Fig. 12a). Of the pixels in the watershed that ex-
hibit higher error in the posterior than the prior estimates,
96 % experienced an increase in observed snow depth from
DOWY 176 (the last day when observations are assimilated)
to DOWY 185 (the validation day) (for example, Fig. 12a).
Note that, in most cases, this increase in observed snow depth
corresponds to a decrease in observed SWE (Fig. 12b); this
implies a decrease in ASO-derived snow density, which is
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consistent with a fresh snowfall event. The precipitation forc-
ing around those days, however, does not reflect a snowfall
event. This inconsistency between precipitation forcing and
observations, and the fact that it happened after the last as-
similated observation, and that WY 2015 was an exception-
ally dry year, explains the negative bias at those pixels and in
the watershed by the validation day in 2015.

3.3 Value for streamflow forecasting

A key purpose of 1 April SWE estimates is to support stream-
flow forecasts for spring and summer water supply. We ar-
gue that snowmelt is a reasonable proxy for streamflow in
this case because Hetch Hetchy is a snow-dominated water-
shed. We observe that all experiments using bias-corrected
precipitation are effective at yielding post-1 April snowmelt
estimates that correlate better to observed streamflow than
the uncorrected baseline. Figure 13a—c illustrates the daily
time series of simulated snowmelt and observed stream-
flow for April-July in WYs 2015-2017. We observe that
the daily simulated snowmelt reasonably captures peaks in
observed streamflow: for example, the peak at the end of
June 2017 which presumably is driven by a large snowmelt
event (Fig. 13c). Some snowmelt is expected to infiltrate into
the soil column, store in high alpine lakes, or evaporate be-
fore reaching the river during the April-July time period.
We acknowledge this discrepancy between snowmelt and
streamflow magnitudes by quantifying the correspondence of
snowmelt to streamflow with a correlation coefficient (R);
for a more thorough comparison, a hydrologic model is rec-
ommended to explicitly track downstream storage and fluxes
that the snow model alone does not. We test different lag
times between snowmelt and streamflow and find the high-
est correlations with 1 day lag. We find that these corre-
lations are significant and higher than that for the uncor-
rected baseline in every year for every bias-corrected ex-
periment (except for Case B + SD in 2015); on average, by
31 %-39 % (Fig. 13g, h). In WY 2016, the highest correla-
tion occurs in the experiment with snow depth assimilation
(Fig. 13g). Excluding this experiment because it only yields
results for a subset of WYs, the highest average annual cor-
relation coefficient (0.74) is shared amongst Case B and the
uniform experiment. Note that the uniform experiment has
cancellation of errors at the watershed scale; that is, high
and low within-watershed biases in 1 April SWE are aver-
aged out (as demonstrated in Fig. 6b). Here, by aggregat-
ing snowmelt to watershed-average values, we are probably
similarly averaging out within-watershed biases. The exper-
iment with accumulation season fSCA assimilation consis-
tently has lower correlations than those without in all water
year types (Fig. 13h). This is consistent with the result that
the Case B 4 fSCA experiment often yields higher errors in
1 April SWE (Fig. 9). In low snow years, the highest correla-
tion occurs with Case B snowmelt; in high snow and normal
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years, the highest correlation is with the uniform experiment
(Fig. 13h).

Figure 14 summarizes results from a linear regression
model which predicts April-July (AJ) streamflow volume
from watershed-average 1 April estimated SWE. The exper-
iment with snow depth assimilation is excluded because it
only has 3 years of estimates. The multi-year average ad-
justed R? for these regression models, developed and applied
separately for each experiment-year, range between 0.94 and
0.96 (illustrated in Fig. S8); these high values emphasize the
strong relationship between 1 April SWE and AJ stream-
flow. In Fig. 14, we compare the predicted streamflow vol-
ume from the experiments to the predicted streamflow vol-
ume from the historical reference. The predicted AJ stream-
flow from reference 1 April SWE estimates is considered the
“best case” prediction and so is the target in this comparison.

The yearly differences between the experiment and refer-
ence AJ streamflow volume range between —30 % and 70 %
(Fig. 14a). The highest differences occur in 2015; this is
a historically dry year which also exhibited high errors in
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1 April SWE estimates (Fig. 7). Because these yearly dif-
ferences might cancel each other out in a multi-year aver-
age, we also look at the mean absolute differences (MAD)
across water year types to gauge the magnitude of error
(Fig. 14c). Generally, the bias and MAD in low snow years
is the largest and positive, signifying an overestimation of
the reference AJ streamflow volume. The MAD in normal
and high snow years are similar in magnitude, but the bias is
opposite in direction (positive in high snow and negative in
normal) and less in normal years. Overall, the average bias
and MAD is reduced from the uncorrected baseline by the
bias-corrected experiments across all water year types (ex-
cept for Case B + fSCA in high snow years MAD) (Fig. 14a).
The greatest improvement in streamflow prediction from the
uncorrected baseline occurs with the Case B 1 April SWE
estimates, which reduces average bias by 52 % and MAD by
26 %. The uniform experiment is a close second (46 % and
25 % less average bias and MAD). This is consistent with the
error reductions in 1 April SWE observed when using bias-
corrected precipitation (Fig. 7). Note that averaging over the

https://doi.org/10.5194/tc-19-3309-2025



M. von Kaenel and S. A. Margulis: Improved modelling of mountain snowpacks

o
o

3323

N
o

snowmelt, streamflow (ms/s)
N w
o o

— Uncorrected
Uniform
——Case B
——Case B + fSCA
—— Case B + SD

Observed Streamflow

2017

0.8 -

0.6

04

T T ©
081

o]

2
)

4 0.4

1 Il 1 1 Il 1
2009 2010 2011 2012 2013 2014 20

Il Il
15 2016 2017 2018 2019 2020 2021

All Years Low Snow Normal High Snow

Figure 13. (a—c) Daily snowmelt for the uncorrected baseline and four experiments, and observed streamflow for April-July in WYs 2015,
2016, 2017. Note that because Case A and Case B had similar results, only Case B is included here. (d) Correlation R (lag-1) between daily
estimated snowmelt and observed streamflow for WY's 2009-2021. (e) Average correlation for all years, low snow years, normal years, and
high snow years. Note that these averages exclude the Case B 4 SD experiment because it only includes 3 years of estimates.

watershed, as is done to obtain the 1 April SWE predictor for
AlJ streamflow, could mask spatially distributed error (which
is high in the uniform experiment, Fig. 6b). A spatially dis-
tributed land surface model would provide the opportunity to
further evaluate how improvements in the spatial distribution
of SWE, as is observed to happen with spatially distributed
historically informed precipitation bias corrections (Figs. 7,
8), affects runoff modelling and streamflow forecasts.

4 Conclusions

Results demonstrate that spatially distributed historically in-
formed precipitation bias correction significantly enhances
SWE estimates. With respect to 1 April SWE fields, it re-
duces error (NRMSD) by 57 %—58 %, increases spatial cor-
relation (R) by 43 %, and decreases bias (MD) by 85 %—
88 %. A simpler, spatially uniform bias correction (as used
as a first guess prior in the original reanalysis methodology)
also reduces error relative to uncorrected precipitation but to
a lesser degree. We find that the spatially distributed histori-
cally informed bias correction yields SWE error that is not
only lower but more homogeneous across elevation bands
than the uniform bias correction; crucially, this means er-
ror is reduced more significantly at higher elevations where
SWE accumulation is greater. It also significantly improves
SWE spatial estimates as indicated by higher R values across
all elevation bands. As illustrated by the limited differences
in error reduction between the Case A (climatological) and
Case B (climatological by water year type) experiments, the
strength of this approach lies more in its ability to capture the
first-order spatial distribution of bias rather than its second-
order interannual variability. Meaning, the historically in-
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formed and spatially distributed bias corrections developed
herein are an effective tool for downscaling coarse-resolution
precipitation input, but less clearly effective at describing its
interannual bias.

Results demonstrate that the assimilation of accumulation
season snow depth further improves SWE, whereas fSCA as-
similation generally does not. The fSCA assimilation prior
to 1 April more often degrades than improves posterior SWE
estimates, due to the weak relationship between fSCA and
SWE outside of the ablation season. In contrast, snow depth
assimilation before 1 April leads to a 45 % reduction of
NRMSD in SWE and a 6 % increase in R (excluding the
special case of water year 2015). In WY 20135, the precipita-
tion forcing does not capture an observed snowfall event after
the last-assimilated snow depth observation; neither the sea-
sonally applied precipitation bias correction nor the assimila-
tion is able to rectify this error. We suggest that assimilation
of more observations after single-day anomalies like these
could help. This underscores how the assimilation of reliable
remote-sensing observations can mitigate forcing anomalies
in addition to reducing overall bias and uncertainty. Although
remotely sensed snow depth observations such as those taken
by ASO are not readily available everywhere, they are proven
to be a good source for improvement in SWE estimation on
top of bias correction methods.

The improved SWE estimates provide value for snowmelt-
driven streamflow predictions, especially in high snow years.
We find that using bias-corrected precipitation reduces av-
erage bias relative to the uncorrected baseline in predicted
April-July runoff by 46 %-52 % and improves average cor-
relation between daily snowmelt and observed streamflow by
31 %-39 %.
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There is the potential for this type of precipitation bias
correction in mountain environments everywhere that his-
torical SWE reanalysis datasets have or could be devel-
oped, without having to rely on in situ data. It is expected
that this type of bias correction be especially useful in re-
gions where historical SWE reanalysis datasets have accu-
rately improved (or are expected to improve) SWE esti-
mates. The power of such an approach lies in the ability
to simultaneously downscale and bias-correct globally avail-
able (coarse) precipitation products (e.g., MERRA?2 in this
work) for use in estimating mountain SWE. The implica-
tions of this are widespread. This precipitation bias correc-
tion method can lead to improved accuracy of hydrologic
models in both research and operational contexts. Because
precipitation is a primary driver of hydrologic models, the
effect of higher-resolution, higher-accuracy gridded precipi-
tation input is considerable. The value is particularly high in
mountainous regions or at elevations with high precipitation
uncertainty and/or limited in situ data, which makes other
more traditional downscaling methods less applicable.

Future work could also explore alternative sources of prior
precipitation, including products that are already downscaled
to a finer resolution (i.e., PRISM). Other avenues of inves-
tigation could explore more sophisticated methods such as
machine learning for bias correction estimation, the assimi-
lation of other sources of real-time snow observations, and
the effect of real-time SWE spatial estimates on streamflow
forecasts through spatially distributed hydrologic modelling.
Of particular relevance to the operational context, another
pathway for future work is to explore how the derived bias
correction, informed by historical relationships between the
b factor and precipitation, snowfall conditions, or other fac-
tors, could be updated through the season as more real-time
information becomes available.

Data availability. The snow water equivalent (SWE) esti-
mates from the modelling and data assimilation experiments
and for the historical reference dataset as well as the his-
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torical b bias correction factors are publicly available at
https://doi.org/10.5281/zenodo.14014679 (von Kaenel, 2024).
Streamflow observations are available from the California Data
Exchange Center (CDEC) at http://cdec.water.ca.gov (California
Department of Water Resources, 2025).
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