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Abstract. While Earth system models are essential for sea-
sonal Arctic sea ice prediction, they often exhibit significant
errors that are challenging to correct. In this study, we inte-
grate a multilayer perceptron (MLP) machine learning (ML)
model into the Norwegian Climate Prediction Model (Nor-
CPM) to improve seasonal sea ice predictions. We compare
the online and offline error correction approaches. In the on-
line approach, ML corrects errors in the model’s instanta-
neous state during the model simulation, while in the offline
approach, ML post-processes and calibrates predictions after
the model simulation. Our results show that the ML models
effectively learn and correct dynamical model errors in both
approaches, leading to improved predictions of Arctic sea
ice during the test period (i.e., 2003—2021). Both approaches
yield the most significant improvements in the marginal ice
zone, where error reductions in sea ice concentration exceed
20%. These improvements vary seasonally, with the most
substantial enhancements occurring in the Atlantic, Siberian,
and Pacific regions from September to January. The offline
error correction approach consistently outperforms the on-
line error correction approach. This is primarily because the
online approach targets only instantaneous model errors on
the 15th of each month, while errors can grow during the
subsequent 1-month model integration due to interactions
among the model components, damping the error correction
in monthly averages. Notably, in September, the online ap-
proach reduces the error of the pan-Arctic sea ice extent by
50 %, while the offline approach achieves a 75 % error reduc-
tion.

1 Introduction

According to satellite observations, throughout all calendar
months, Arctic sea ice extent (SIE) has rapidly declined in
recent decades (e.g., Serreze et al., 2007; Onarheim et al.,
2018; Wang et al., 2022; Heuzé and Jahn, 2024). The most
significant reductions have occurred in the summer and au-
tumn (e.g., September, Stroeve et al., 2014). The increased
open water leads to growing socioeconomic activities in the
Arctic (e.g., fisheries, shipping, and resource extraction).
These increased human activities highly demand accurate
seasonal predictions of Arctic sea ice conditions (Jung et al.,
2016; Wagner et al., 2020). The Sea Ice Outlook, managed
by the Sea Ice Prediction Network, produces monthly reports
during the Arctic sea ice retreat season. These monthly re-
ports synthesize input from the international research com-
munity devoted to enhancing sea ice predictions. Recently,
Bushuk et al. (2024) evaluated 17 statistical models, 17 dy-
namical models, and one heuristic approach in predicting
September Arctic sea ice. Overall, they found that dynamical
and statistical models are comparable in predicting the pan-
Arctic SIE, and dynamical models generally outperform sta-
tistical models in predicting the regional SIE and sea ice con-
centration (SIC, i.e., local quantities). Bushuk et al. (2024)
also suggested that improving initialization and model reso-
lution is expected to facilitate predictions.

Data assimilation (DA) integrates observations with dy-
namical models to optimally estimate the state of the climate
system (Penny and Hamill, 2017; Carrassi et al., 2018). It has
widespread applications in producing reanalysis (Saha et al.,
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Figure 1. Schema for the online and offline ML-based error cor-
rection approaches. The green line represents the “truth”. The gray
line represents dynamical prediction without error correction. The
purple (blue) line represents prediction with online (offline) ML-
based error correction. The purple dashed arrows indicate pauses
during the prediction production, facilitating correction to the in-
stantaneous model states.

2006; Dee et al., 2011; Laloyaux et al., 2018; Zuo et al.,
2019; Hersbach et al., 2020), offering comprehensive, con-
tinuous, and dynamically consistent reconstructions of past
climate states. Simultaneously, many prediction centers are
transitioning to using DA methods to mitigate uncertainties
in initial conditions (Wang et al., 2013, 2019; Vitart et al.,
2017; Blockley and Peterson, 2018; Kimmritz et al., 2019;
Bushuk et al., 2024). The improved quantity and quality of
observations across different climate system components and
advanced DA methods enable more precise initial conditions
for seasonal predictions of Arctic sea ice. Nevertheless, even
with perfect initial conditions, prediction errors escalate over
time due to the inherent deficiencies of dynamical models in
emulating the true climate system (gray and green lines in
Fig. 1). This underscores the necessity of dealing with pre-
diction errors.

Machine learning (ML) has recently emerged as a data-
driven technique to mitigate dynamical prediction errors.
Two prevalent approaches include constructing an ML—
dynamical hybrid model (e.g., Brajard et al., 2021; Watt-
Meyer et al., 2021) and post-processing/calibrating model
outputs (e.g., Yang et al., 2023; Palerme et al., 2024). The
former is considered to be online error correction, while the
latter refers to offline error correction.

In the context of the online error correction, ML is applied
to correct errors in the instantaneous model state (i.e., ini-
tial conditions for the following model integration) and se-
quentially applied to update the instantaneous model state
during simulation (e.g., Brajard et al., 2021), referring to an
ML-dynamical hybrid model (purple line in Fig. 1). Such
online error correction approaches have been investigated
in both an idealized framework (e.g., Watson, 2019; Bra-
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jard et al., 2021) and real applications (e.g., Watt-Meyer
et al.,, 2021). Watson (2019) examined the tendency er-
ror correction approach in the Lorenz 96 model. Brajard
et al. (2021) explored the resolvent error correction ap-
proach in the two-scale Lorenz model as well as in a low-
order coupled ocean—atmosphere model called the Modu-
lar Arbitrary-Order Ocean—Atmosphere Model (MAOOAM,
De Cruz et al., 2016). Watt-Meyer et al. (2021) demon-
strated that the online error correction can improve the short-
term prediction skill and accuracy of precipitation simula-
tion, while the dynamical model can run indefinitely without
numerical instabilities arising. Gregory et al. (2024) applied
ML to correct sea ice errors in an ocean—ice coupled model
and demonstrated that ML can effectively reduce sea ice bias
in a 5-year simulation. So far, the ML-based online error cor-
rection method has not been tested for seasonal sea ice pre-
diction in an Earth system model.

The offline error correction consists of performing post-
processing (also called calibration) of the dynamical model
predictions (blue line in Fig. 1). ML is trained to predict er-
rors for time-averaged model outputs (e.g., daily or monthly
outputs) and applied to correct errors present in raw predic-
tions. The most common error correction methods employed
in sea ice prediction (Bushuk et al., 2024) are relatively sim-
ple (e.g., correction of the mean error or a linear regression
adjustment, Barthelemy et al., 2017). More recently, Palerme
et al. (2024) applied ML to improve the skill of sea ice fore-
casts on a meteorological timescale. Overall, they illustrated
that ML-based offline calibration reduced the SIC prediction
errors by 41 % and the ice edge distance error by 44 %. Their
application is mainly focused on short-term sea ice predic-
tion within 10d in an ocean—ice coupled model.

In this study, we apply ML to the Norwegian Climate Pre-
diction Model (NorCPM, Wang et al., 2019), a fully coupled
Earth system model, for seasonal prediction of Arctic sea
ice. We test and compare the ML-based online and offline
error correction approaches. In the online approach, we build
a hybrid model combining ML and NorCPM to update the
instantaneous sea ice state during the production of seasonal
predictions. In the offline approach, we use ML to calibrate
raw seasonal predictions of Arctic sea ice. The comparison
between the two approaches within the same framework de-
livers new insights for the sea ice prediction community into
how to effectively use ML for seasonal Arctic sea ice predic-
tions.

The paper is organized as follows: Sect. 2 presents the dy-
namical model, data, ML-based error correction approaches,
experimental design, and metrics for validation. Section 3
shows the results of different experiments. We finish with the
discussion and conclusions in Sect. 4.
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2 Data and methods
2.1 Norwegian Climate Prediction Model

The dynamical model we used is NorCPM (Counillon et al.,
2014, 2016; Wang et al., 2016, 2017; Kimmritz et al.,
2018,2019). It combines the Norwegian Earth System Model
version 1 (NorESM1, Bentsen et al., 2013) and a determinis-
tic formulation of an advanced flow-dependent DA method
called an ensemble Kalman filter (EnKF, Sakov and Oke,
2008).

NorESM1 (Bentsen et al., 2013) is a fully coupled Earth
system model used for climate simulations. Its ocean compo-
nent is the Bergen Layered Ocean Model (BLOM, Bentsen
et al., 2013) — an updated version of the isopycnal coor-
dinate ocean model MICOM (Bleck et al., 1995). The sea
ice component is the Los Alamos sea ice model version
4 (CICE4, Gent et al., 2011; Holland et al., 2012). The at-
mospheric component is a variant of the Community Atmo-
sphere Model version 4 (CAM4-Oslo, Kirkevag et al., 2018).
The land component is the Community Land Model (CLM4,
Thornton, 2010; Lawrence et al., 2011). Furthermore, the
version 7 coupler (CPL7, Craig et al., 2012) is utilized for
inter-component communication and interaction. The exter-
nal forcings follow the protocol of the Coupled Model In-
tercomparison Project Phase 5 (CMIPS5) historical experi-
ment (Taylor et al., 2012).

The atmospheric and land components are situated on the
National Center for Atmospheric Research (NCAR) finite-
volume 2° grid, featuring a regular 1.9° x 2.5° latitude—
longitude resolution with 26 hybrid sigma—pressure levels
extending to 3 hPa. The ocean and sea ice components uti-
lize NCAR’s gx1v6 horizontal grid, which is a nominal 2°
resolution curvilinear grid with the northern pole singularity
shifted over Greenland (Bethke et al., 2021). This grid is en-
hanced both meridionally towards the Equator and zonally
and meridionally towards the poles. The ocean component
comprises 51 isopycnic layers, featuring a bulk mixed layer
representation on top with two layers having time-evolving
thicknesses and densities.

The sea ice component is equipped with five ice thickness
categories to account for the different thermodynamic and
dynamic properties of ice with different thicknesses. The vol-
ume of snow and ice, the energy content, and the SIC, surface
temperature, and volume-weighted mean ice age are deter-
mined for each of the ice thickness categories (Bentsen et al.,
2013; Kimmritz et al., 2018, 2019).

NorESM1 tends to overproduce thick sea ice, especially
in the polar oceans adjacent to the Eurasian continent. This
is partly due to factors such as weaker winds across the polar
basin and overestimated Arctic cloudiness, which leads to lit-
tle summer snowmelt. Consequently, the summer SIE in the
Arctic has large positive biases, contributing to an underesti-
mation of global temperatures (Bentsen et al., 2013; Bethke
et al., 2021).
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NorCPM uses the EnKF to update unobserved ocean and
sea ice variables by leveraging state-dependent covariance
from the simulation ensemble (Kimmritz et al., 2018, 2019).
The EnKF allows the assimilation of observations of various
types while accounting for observational errors, spatial cov-
erage, and the evolving covariance with the climate state. The
EnKF accounts for uncertainties in initial conditions to gen-
erate ensemble predictions, which evolve in time and provide
time- and space-dependent error estimates.

NorCPM employs anomaly field assimilation (Kimmritz
et al,, 2019; Wang et al., 2019; Bethke et al., 2021) in
which the climatology of the observations is replaced by the
model climatology calculated from the ensemble mean of the
model historical simulation (without assimilation). While the
anomaly field assimilation keeps the model close to its attrac-
tor and helps to reduce the model drift during the monthly
model integration (Carrassi et al., 2014; Weber et al., 2015),
it does not significantly change model biases.

2.2 Data

In this study, we use the reanalysis of NorCPM as the “truth”
to assess the improvement achieved by the ML-based error
correction approaches. First, this is because NorCPM per-
forms anomaly field assimilation. The large model biases are
not corrected by DA (Sect. 2.1). Thus, the analysis increment
of the reanalysis used to build the online error correction
model (Sect. 2.3) does not take into account model biases.
Second, the online error correction approach needs to consis-
tently update SIC in each category, sea surface temperature
(SST), and sea surface salinity (SSS) under sea ice, which
are often not observed. The reanalysis of NorCPM is a phys-
ically consistent construction of the Earth system (Counillon
et al., 2016; Kimmiritz et al., 2019) and provides a reason-
able and physically consistent estimation of these variables.
Finally, the reanalysis combining observations with NorESM
represents the upper limit of the sea ice predictability of Nor-
CPM.

The reanalysis is available from 1980 to 2021 with 30
ensemble members. The initial states of the reanalysis on
15 January 1980 are taken from a NorESM ensemble run in-
tegrated from 1850 to 1980 with CMIPS historical forcings.
In this reanalysis, NorCPM assimilates monthly anomalies
of SST, SIC, and subsurface hydrographic profile data in the
middle of each month.

From 1980 to 2002, the climatology used for anomaly field
assimilation is defined over the period 1980-2010. SST and
SIC observations are from HadISST2 (Titchner and Rayner,
2014) and subsurface hydrographic profile data are from
EN4.2.1 (Good et al., 2013). The assimilation process con-
tains two steps addressed in Kimmritz et al. (2019): firstly,
hydrographic DA updates the ocean state (Wang et al., 2017).
Subsequently, SST and SIC DA occur and update the sea ice
and ocean states within the ocean mixed layer. From 2003 to
2021, the climatology utilized for anomaly field assimilation
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is defined from 1982 to 2016. SST and SIC observations are
from OISST (Reynolds et al., 2007) and subsurface hydro-
graphic profile data are from EN4.2.1 (Good et al., 2013).
Strongly coupled DA is performed to simultaneously update
the sea ice and ocean states in a single step.

After each assimilation step, a post-processing step is used
to ensure the physical consistency of state variables. For ex-
ample, the volume of each sea ice category is proportion-
ally adjusted based on the updated SIC (Kimmritz et al.,
2018, 2019). The other model components, such as the at-
mosphere and land, are dynamically adjusted through the
coupler during model integration between two assimilation
steps.

2.3 Online error correction approach

The online error correction approach is built from the analy-
sis increment of the reanalysis introduced in Sect. 2.2 (Bra-
jard et al., 2021; Gregory et al., 2024) and sequentially ap-
plied to update the instantaneous model state in the middle
of each month during prediction simulation (purple line in
Fig. 1), which is similar to the reanalysis system (Sect. 2.2).

The monthly model integration of the reanalysis (Sect. 2.2)
can be described as follows:

X = M(x;), @)

where xz represents the forecasted instantaneous model state
at tx, and M represents the dynamical model integration
from time #;_ to # (Sect. 2.1). During the analysis, DA uses
available observations to generate X; — an updated instanta-
neous model state and initial conditions for the next monthly
model integration from time #; to time # 1.

The online approach is to emulate the difference between
the forecast and the analysis xtk — X, which corresponds to
the opposite of the analysis increment in DA. The error pre-
diction model can be expressed as

e = M, (x). @

where M, represents the data-driven model taking the in-
stantaneous model state x' as input and & represents the pre-
dicted model error.

The hybrid model, incorporating the dynamic model and
the online error correction model, can be expressed as fol-
lows:

X = M(x) = Me(M(x,)), 3)

where x;' represents the error-corrected instantaneous model
state at #; during the prediction.

We aim to correct SIC, SST, and SSS errors in the ice-
covered area, which are directly associated with the sea ice
condition. Considering the seasonality of the error of the sea
ice state, we build one error correction model for each calen-
dar month. Also, we employ a running training strategy and
use the most recent 11 years of data before the prediction
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month (the first 10 years for training and the last year for val-
idation). The input feature contains latitude, SST, SSS, five
categories of SIC, and five categories of sea ice volume in the
middle of the month. The output feature consists of errors in
SST, SSS, and five categories of SIC (Table 1). Please refer
to Sect. 2.5 for the ML configuration.

Before restarting the model after applying online error
correction, it is essential to ensure that the updated vari-
ables remain within physical limits (e.g., SIC between 0%
and 100 %) and maintain consistency with non-updated vari-
ables. If unphysical values or inconsistencies arise, they can
lead to model instability. To prevent these issues, we apply
a post-processing method specifically designed for NorCPM
(Kimmrritz et al., 2018):

— If SIC in any thickness category falls below 0% or ex-
ceeds 100 %, it is set to 0 % or 100 %, respectively.

— If the total SIC across all thickness categories exceeds
100 %, SIC values in each category are proportionally
scaled to ensure the total does not surpass 100 %.

— Sea ice volume in each category is adjusted proportion-
ally to changes in SIC while preserving the ice thick-
ness.

This approach ensures physical constraint and model stabil-
ity after the error correction.

2.4 Offline error correction approach

The offline error correction approach refers to performing
post-processing of the dynamical model predictions (blue
line in Fig. 1). The ML configuration is the same as the on-
line configuration (Sect. 2.5). The input features are monthly
SST, SSS, total SIC, and latitude. The output feature is the
error in the monthly SIC. The predicted error is subtracted
from the monthly SIC. If the updated monthly SIC falls be-
low 0% or exceeds 100 %, it is set to 0% or 100 %, respec-
tively. For more details about the offline error correction ap-
proach, please refer to Table 1.

It is worth noting that the offline error correction approach
directly targets monthly average model outputs, whereas
the online error correction approach addresses instantaneous
model errors (Fig. 1) and indirectly changes the monthly
model outputs during the production of predictions. There-
fore, their input and output features are different (Table 1).

2.5 Machine learning configuration

As mentioned in the previous sections, the ML model config-
urations employed for online and offline error correction ap-
proaches share an identical architecture (i.e., the same num-
ber of layers and the same number of neurons in each layer)
but differ in the input and output variables, resulting in differ-
ent numbers of trainable parameters (for more details, please
refer to Table 1).

https://doi.org/10.5194/tc-19-3279-2025
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Table 1. Information about online and offline ML-based error correction models.

Online ML-based model

Offline ML-based model

Input features

Instantaneous SST, SSS, latitude, five categories SIC, and sea ice volume

Monthly SST, SSS, latitude, SIC, and sea ice volume

Output features  Instantaneous SST, SSS, and five categories SIC errors

Monthly SIC prediction error

Data

The most recent 11 years of data (10 years for training and 1 year for validation)

Remark

Only applied to sea-ice-covered grids in the Arctic with SIC values greater than 1 %

The ML model uses the values from a single grid point
as input to predict the value at the same grid point, meaning
one ML model for all grid points. This simplifies the train-
ing process while still enabling the development of efficient
models.

The ML architecture used in this study is a multilayer per-
ceptron (MLP), a fully connected neural network well-suited
for capturing complex nonlinear relationships in data. MLP
offers several advantages, including flexibility in handling di-
verse input features, efficient training via backpropagation,
and strong generalization when properly regularized. Addi-
tionally, MLP is computationally more efficient than com-
plex deep learning architectures such as convolutional neural
networks (CNNs) and U-Net. It has been successfully ap-
plied to error correction in geophysical modeling (e.g., Yang
et al., 2023), as it is computationally efficient and requires
fewer training data (Jia et al., 2019; Watson, 2019).

The entire MLP architecture consists of seven layers.

— Input layer: a batch normalization layer (Ioffe, 2017),
which helps stabilize and accelerate the training process
by normalizing the input features.

— Second layer: a dense layer with 60 neurons, using the
rectified linear unit (ReLLU) activation function.

— Third layer: a dense layer with 30 neurons, also employ-
ing the ReLU activation function. This layer shares the
same structure as the second layer.

— Fourth layer: an attention mechanism implemented via
a gate layer, which enables the model to focus on im-
portant features, thereby enhancing learning efficiency
and predictive performance.

— Fifth layer: a dense layer with 60 neurons and ReLU ac-
tivation, mirroring the configuration of the second layer.

— Sixth layer: a dense layer with 30 neurons and ReLU
activation, identical to the third layer.

— Output layer: a dense layer activated by the linear func-
tion.

The objective function used in this study is the mean
squared error (MSE). Additionally, details regarding the
number of parameters for each ML model are provided in
Table 2. To reduce the risk of overfitting and improve model
generalization, the following strategies are implemented.
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— Batch normalization: the inputs of each layer are nor-
malized to reduce internal covariate shift, thus promot-
ing training stability and generalization.

— L2 regularization: a penalty is applied to the output
layer weights, effectively discouraging overly complex
models and reducing the likelihood of overfitting.

— Early stopping: the validation loss is monitored during
training and the training is halted once the validation
loss curve does not decline, avoiding overfitting due to
the training data.

To achieve better training results, we further implement
the following settings.

— We adopt a running training strategy, using data from
the 11 years preceding the test set to train the ML mod-
els. For instance, to develop error correction models for
predictions in 2011 (a test set), we train the model us-
ing data from 2000 to 2009 and validate it with data
from 2010. Similarly, for predictions in 2021, we use
data from 2010 to 2019 for training and data from 2020
for validation. This approach ensures that the ML mod-
els leverage the most recent data while maintaining a
clear separation between training, validation, and test
sets. The primary reason for using running training is
the pronounced decline trend in Arctic sea ice observed
over recent decades, with substantial differences be-
tween earlier ice conditions (e.g., the 1980s) and those
of recent years (e.g., the 2010s). We also performed sen-
sitivity studies on the length of the running training set
(e.g., the most recent 5 years or all years since 1980) and
the comparison between the running training and the
fixed-period training (1992-2002), which are not shown
in the paper. We found that the data from the most recent
11 years lead to the best performance for ML training,
and the running training outperforms the fixed-period
training.

— The characteristic of model errors varies with the cal-
endar month. For instance, the model errors mainly ap-
pear in the marginal zone in winter but in the entire sea-
ice-covered region in summer. We train separately for
each calendar month, leading to a distinct ML model
for each calendar month. This results in 236 neural net-
work models (from February 2003 to September 2022

The Cryosphere, 19, 3279-3293, 2025
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Table 2. Number of parameters of the online and offline ML-based error correction models for each ML model.

Online ML-based SIC model

Online ML-based SST/SSS model

Offline ML-based SIC model

BatchNorm 52
Dense layer 1 840
Dense layer 2 1830
Gate layer 31
Dense layer 3 840
Dense layer 4 1830
Output 155

52 20
840 360
1830 1830
31 31
840 360
1830 1830
31 31

based on test months) for the online case. In the offline
case, we also consider the start month, resulting in 8§36
(4 initialized months x 11 lead months x 19 test years)
models. Despite the large number of models, the train-
ing process is highly efficient due to the simple archi-
tecture and low data dimensionality. As a result, train-
ing each model is very quick, taking only 1 min on a
CPU, making this exhaustive approach computationally
affordable.

— We train and apply error correction models to grid
points where the total SIC exceeds 1 %. It avoids adding
sea ice into open-water areas and thus dynamical incon-
sistency. It also means that our correction models can
not create ice on a grid point where the model predicted
ice-free conditions.

2.6 Hindcast experiments

The standard hindcasts (hereafter referred to as Reference)
are initialized from the reanalysis presented in Sect. 2.2 in the
middle of January, April, July, and October each year, span-
ning 1992 to 2021, with a duration of 12 months. From 1992
to 2002, the first 9 ensemble members of the 30-member re-
analysis are used to carry out the hindcast experiments, while
after 2003, the first 10 ensemble members are used to ini-
tialize the hindcast experiments. It is worth noting that these
differences (i.e., the different ensemble sizes) would have a
minimal impact on the results of this study.

A new set of hindcasts (hereafter referred to as OnlineML),
similar to Reference but with the online error correction ap-
proach (Sect. 2.3), are initialized from the reanalysis in the
middle of January, April, July, and October from 2003 to
2021. In the production of each hindcast, NorCPM pauses
in the middle of each lead month and uses the online error
correction model to predict the error correction and then up-
date the instantaneous model state.

The offline error correction approach (Sect. 2.4) is applied
to post-process the hindcasts of Reference (hereafter referred
to as OfflineML).

The Cryosphere, 19, 3279-3293, 2025
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Figure 2. Regional domain definitions for central Arctic, Atlantic,
Siberian, Alaskan, Canadian, and Pacific regions are based on sea
area definitions in Kimmritz et al. (2019) and are similar to those
used in Bushuk et al. (2024). Atlantic region: Greenland, Ice, Nor-
wegian, Barents, and Kara Sea; Siberian region: Laptev and East
Siberian Sea; Alaskan region: Chukchi and Beaufort Sea; Cana-
dian region: Canadian archipelago, Hudson Bay, Baffin Bay, and
Labrador Sea; Pacific region: Bering Sea and the Sea of Okhotsk.

2.7 Metrics for evaluation

SIE is a commonly used metric in seasonal sea ice predic-
tion (e.g., Bushuk et al., 2024). We evaluate the prediction
skill of SIE in the pan-Arctic and six Arctic regions depicted
in Fig. 2. These regional definitions adhere to the area def-
initions provided by Kimmritz et al. (2019), albeit with the
consolidation of the original 14 sea areas into six regions that
are very similar to the ones used in Bushuk et al. (2024). In
this study, the SIE is defined as the total area of all grid points
within the region of interest where SIC > 15 %. SIE is calcu-
lated for each ensemble member, and we evaluate the ensem-
ble mean by averaging SIE across all ensemble members.
To evaluate the performance of the ML-based error pre-
diction models, we employ the mean absolute error (MAE),

https://doi.org/10.5194/tc-19-3279-2025
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defined as
| M
MAE:MZ|EP—Et|, )
i=1

where E, denotes the predicted error and E; denotes the
“true” error. In more detail, E refers to the SIC error at each
grid point over the entire evaluation period. M represents the
total number of data points used in the MAE calculation.

To evaluate the sea ice prediction skill, we employ the root
mean square error (RMSE) as follows:

1 N
RMSE = NZ(XP—Xt)Z, 5)
i=1

where X, represents the prediction and X; represents the
“truth” (i.e., the reanalysis in this study). In this study, X
can refer to either the integrated ice edge error (IIEE) on a
pan-Arctic scale, the SIE on a pan-Arctic/regional scale, or
the SIC at a specific grid point. N represents the number of
hindcasts, spanning 2003 to 2021.

The IIEE is also a crucial metric for sea ice predic-
tions (Goessling et al., 2016). It specifically captures the dis-
crepancies along the ice edge by quantifying the area where
the predicted SIC and “true” SIC differ significantly. This
makes IIEE particularly valuable for evaluating the spatial
accuracy of the ice edge location, offering insight into the
performance of models in reproducing the dynamic bound-
ary between ice-covered and open-ocean regions. Following
the definition of Goessling et al. (2016), the IIEE is computed
as the area where the prediction and the “truth” disagree on
the SIC being above or below 15 %:

IIEE = /max(cp —c¢,0)dA + /max(c[ —¢p,0)dA, (6)
A A

where A is the area of grid cell, ¢ = 1 where SIC is above
15 % and c = 0 elsewhere, and subscripts p and ¢ denote the
prediction and the “truth”. The definition of the IIEE is equiv-
alent to the so-called symmetric difference between the areas
enclosed by the predicted and “true” ice edges.

To evaluate the significance of prediction skill difference,
we use a two-tailed Student’s ¢ test to compare the IIEE or
the RMSE between two predictions.

To estimate the uncertainties in an RMSE value aris-
ing from the small ensemble size, we employ the boot-
strap method. Specifically, we randomly sample 10 ensem-
ble members with replacement from the ensemble, compute
the ensemble mean, and then calculate the RMSE (for ei-
ther SIC or SIE) based on these resampled data. This process
is repeated 10000 times, producing a distribution of 10000
RMSE values. The standard deviation of this distribution is
then used to quantify the uncertainties associated with the
RMSE value.
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3 Results
3.1 Error correction model performance

We first demonstrate the performance of ML-based error cor-
rection models in predicting the model errors.

The “true” errors obtained from analysis increments and
the errors predicted by the online error correction model are
averaged over 2003-2021 and displayed in Fig. 3. The spatial
patterns of the “true” error vary significantly across different
dates. For instance, on 15 August, errors are predominantly
negative across most regions as NorCPM underestimates SIC
in this month, with some localized positive errors occurring
internally. The average MAE across ice-covered grid points
is 0.24%. On 15 October, the errors are mostly positive as
NorCPM overestimates SIC, resulting in an average MAE of
0.22%. On 15 December, the MAE is 0.20 %, primarily ap-
pearing in marginal ice areas, with overall lower magnitudes
compared to August and October. Notably, the average error
remains below 1 % in all cases.

For all those months and regions, the online error correc-
tion models can correctly predict the spatial pattern of the
“true” error (Fig. 3). Also, the magnitude of the “true” error
is well reproduced with a slight underestimation.

To assess the offline error correction model, we show
its performance for hindcasts initialized in July (Fig. 4).
The monthly “true” error patterns vary significantly across
months. The offline error correction models effectively pre-
dict the spatial pattern of the “true” errors (Fig. 4). The pre-
dicted error magnitude is similar to that of the “true” er-
ror, with only a slight underestimation. Notably, the MAE
of the offline error correction approach is higher than that
of the online error correction approach in December (0.30 %
vs. 0.20 %), which can be attributed to the model divergence
since the initialization in July.

In summary, the above results suggest that the ML-based
error correction models in both online and offline scenarios
can skillfully predict the large-scale spatial patterns of the
SIC error but slightly underestimate its magnitude.

3.2 Application to seasonal predictions
3.2.1 SKill seasonality

This section assesses the three sets of hindcasts initialized
in January, April, July, and October from 2003 to 2021. The
ensemble hindcasts are initialized with the first 10 members
of the reanalyses and predict for 11 months (Sect. 2.6).
Figure 5 presents a comparative analysis of the RMSE
for SIE prediction and the IIEE for ice edge prediction in
the pan-Arctic across the three hindcast sets. The Refer-
ence hindcast shows higher RMSE in September and Octo-
ber (Fig. S5a), primarily due to several factors that have been
documented in Bentsen et al. (2013). NorCPM overestimates
the Arctic cloudiness, and its summer-season snowmelt is too
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Figure 3. (a—c) The “true” errors of SIC in the middle of the month based on the analysis increments (i.e., the changes thanks to monthly
DA in the reanalysis). (d—f) The errors predicted by the online error correction model. These errors are averaged over the period 2003-2021.
Values in (d—f) are the MAE between the “true” and predicted errors across space.
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Figure 4. (a—c) The “true” errors of monthly SIC estimated by the Reference hindcast initialized in July minus the reanalysis. (d-f) The
errors predicted by the offline approach. The errors are averaged over the period 2003—2021. Values in (d—f) are the MAE between the “true”

and predicted errors across space.

slow. In addition, NorCPM has winds across the polar basin
that are slightly too weak. These factors lead to sea ice that
is too thick in the polar oceans and excessive Arctic SIE, in
particular in summer (Bentsen et al., 2013).

Both the OnlineML and OfflineML hindcasts exhibit a
small error reduction from January to July and a large er-
ror reduction from August to December (Fig. 5b and c). The
OnlineML hindcast, in which only SIC, SST, and SSS are
corrected without directly adjusting the atmospheric compo-
nent, shows some improvements, particularly in January and
from September to December. In contrast, from February to
August, the Reference hindcast already exhibits good per-
formance, leading to no significant differences. Compared to

The Cryosphere, 19, 3279-3293, 2025

the OnlineML hindcast, the OfflineML hindcast achieves a
greater error reduction, particularly in September, where the
SIE prediction error is reduced by up to 75 % relative to the
Reference hindcast. The primary reason is that the online ap-
proach corrects instantaneous model errors (on the 15th day
of the month). Still, during the 1-month model integration,
the sea ice component dynamically interacts with the other
components, leading to error growth. In terms of monthly av-
eraged model outputs, the correction magnitude is damped.
In contrast, the offline approach aims to directly post-process
monthly outputs without model integration.

The IIEE shows similar results to the RMSE of SIE
(Fig. 5d—f). For the Reference hindcast, the IIEE is higher
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Figure 5. (a) RMSE of SIE for the Reference hindcast, (b) ARMSE between the Reference and OnlineML hindcasts, (c) ARMSE between
the Reference and OfflineML hindcasts. (d) IIEE of the Reference hindcast, (e¢) AIIEE between the Reference and OnlineML hindcasts,
and (f) AIIEE between the Reference and OfflineML hindcasts. In (b, ¢, ) and (f), warm colors (red/yellow) indicate that the OnlineML
or OfflineML hindcasts are better than the Reference hindcasts, while cold colors (blue/green) indicate they are worse than the Reference
hindcast. The black dots represent regions where the ARMSE or AIIEE does not pass the 95 % significance test.

from July to September. The online approach leads to some
improvements over the Reference hindcast from July to De-
cember, but its error reduction is small or not significant in
the other months. In contrast, the offline approach consis-
tently improves performance across nearly all periods and
achieves larger error reductions in IIEE than the online ap-
proach, particularly from June to January, with the maximum
reduction exceeding 0.5 x 10°km? compared to the Refer-
ence hindcast. By directly correcting monthly mean outputs,
the offline approach avoids information loss during the model
integration, leading to larger error reduction.

In summary, the Reference hindcast exhibits relatively
larger prediction errors from August to October, primarily
due to increased model uncertainties associated with atmo-
spheric forcing and sea ice processes. The offline approach
outperforms the online approach in reducing both the RMSE
of SIE and the IIEE along the ice edge, particularly during
high-error months. For example, in September, the RMSE
of SIE is reduced by 75 %, and the IIEE is reduced by over
0.5 x 10°km? compared to the Reference hindcast.
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3.2.2 SKill of seasonal predictions for different regions

The previous section highlighted significant improvements in
predictions, primarily evident from September to January, re-
gardless of the initialized month. In this section, we focus on
analyzing the hindcasts initialized in July, and we show the
performance for different regions and both SIE and SIC; this
is largely because summer sea ice prediction serves as a crit-
ical climate change indicator, affects ecosystems and human
activities, and presents a significant scientific challenge due
to its high variability (Fig. 5a). For validation on the other
initialization months, please refer to Figs. S1-S4 in the Sup-
plement.

We first investigate the seasonal prediction skill for pan-
Arctic and regional SIE defined in Fig. 2. For the pan-Arctic
SIE, previously assessed in Fig. 5, both the OnlineML and
OfflineML hindcasts reduce the SIE RMSEs (Fig. 6a). The
RMSE:s in the OnlineML hindcast have a strong seasonality
like that in the Reference hindcast: higher in August, Septem-
ber, and October and lower in November, December, and Jan-
uary. The OfflineML hindcast has the lowest RMSEzs, in par-
ticular an RMSE reduction of about 75 % compared to the
Reference hindcast in September.

The Cryosphere, 19, 3279-3293, 2025
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Figure 6. RMSE of SIE in the pan-Arctic and five subregions for the Reference hindcast (gray bar), the OfflineML hindcast (blue bar), and
the OnlineML hindcast (purple bar). Error bars represent the uncertainties.

Both error correction approaches reduce the RMSEs for
regional SIE, and the offline approach overall outperforms
the online approach (Fig. 6b—f). In the Atlantic region
(Fig. 6b), significant RMSE reduction is observed for the
first 3 months, until October. The OfflineML hindcast has
the lowest RMSEs until September and similar RMSEs to
the OnlineML hindcast from October. In the Siberian region
(Fig. 6¢), the RMSE reduction due to error correction is sig-
nificant only until October but becomes almost zero from
November due to the region being fully covered by sea ice.
The OfflineML hindcast is significantly better than the On-
lineML hindcast until September and similar afterward. In
the Alaskan region (Fig. 6d), there is no significant RMSE re-
duction in August, but we observe significant RMSE reduc-
tions from September to November. In December and Jan-
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uary, the region is almost fully covered by sea ice, leading
to very tiny RMSE:s for all three hindcast experiments. In the
Canadian region (Fig. 6e), both approaches lead to significant
RMSE reductions from September to December and the of-
fline approach outperforms the online approach. In addition,
the online approach leads to a significantly larger RMSE in
August than that of the Reference hindcast. In the Pacific re-
gion, the RMSEs are close to zero from August to October
due to very limited sea ice coverage. The two error correc-
tion approaches lead to significant RMSE reductions after
November, and the offline approach outperforms the online
approach in December and January.

Notably, in August, the RMSE of the OnlineML hindcast
exceeds that of the Reference hindcast in both the Alaskan
and Canadian regions. This is primarily due to the system-
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atic underestimation of SIE by the OnlineML hindcast rela-
tive to both the Reference hindcast and the “truth” in these
regions (Fig. S5 in the Supplement). The underlying causes
of this systematic underestimation, however, warrant further
investigation.

The offline approach outperforms the online approach
across all regions, primarily because the online correction
targets instantaneous model errors (i.e., those on the 15th
day of each month). These corrected errors may reemerge
through interactions with the other components of the cou-
pled model system, thereby diminishing the overall impact
of the online error correction when evaluated using monthly
averaged outputs. In contrast, the offline approach directly
adjusts the monthly model outputs, which aligns closely with
the evaluation metrics used in this study. Moreover, the of-
fline approach does not need to run the dynamical model and
is computationally cheaper than the online approach. How-
ever, the online approach not only reduces SIC errors but also
propagates corrections through the model integration to the
other variables (e.g., sea ice thickness and sea ice drift), en-
suring physical consistency between the predicted variables.

In summary, while the error correction performance varies
by region and target month, overall, both approaches im-
prove the sea ice prediction. In addition, the offline approach
is more efficient than the online approach in reducing the
SIE RMSE for both pan-Arctic and subregions. These con-
clusions also hold for seasonal predictions initialized in the
other seasons. For details, please refer to Figs. S1-S4.

We take a closer look at the spatial aspects of the of-
fline error correction approach in hindcasts initialized in July
(Fig. 7). We specifically focus on identifying local areas
where the error correction leads to improvements that may
not be evident when examining SIE alone.

The impact of the error correction on SIC is more pro-
nounced near the ice edge (Fig. 7). In August, only a few grid
points in the Siberian and Atlantic regions exhibit improve-
ments (Fig. 7a), with an average improvement of 0.99 %. In
September, notable enhancements appear across the central
Arctic, Atlantic, Siberian, and Canadian regions (Fig. 7b),
with an average improvement of 6.52 %. In October, signifi-
cant improvements are observed in the Atlantic and Canadian
regions, reaching an average of 10.22 %. Additionally, some
blue areas emerge in the central Arctic, indicating substan-
tial differences between the Reference hindcast and the Of-
flineML hindcast, though the magnitude of these differences
remains minimal. In November and December, the positive
impact of the error correction is primarily concentrated in
Hudson Bay and the Sea of Okhotsk. However, noise in-
creases in the central Arctic, and the average improvement
declines to 2.13% in November and 1.71 % in December.
The widespread presence of blue in the central Arctic also
results in an average improvement of —0.08 % in January.

The major improvements in SIC are evident near the ice
edge, which is closely associated with SIE. This spatial dis-
tribution highlights how the ML-based error correction ap-
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proaches can enhance model performance in different re-
gions, particularly during the ice-advance season, where us-
ing SIE as a metric might obscure these localized gains. In
addition, it is noteworthy that the OfflineML and OnlineML
hindcasts exhibit similar error spatial distributions. For spe-
cific details about the OnlineML hindcast, please refer to
Fig. S6 in the Supplement.

4 Discussion and conclusions

In this study, we apply ML within NorCPM, a fully coupled
Earth system model, to improve seasonal sea ice predictions
in the Arctic under both online and offline scenarios. In the
online error correction approach, ML is utilized to rectify er-
rors in instantaneous model states in the middle of the month
that serve as initial conditions for the subsequent model in-
tegration. The offline error correction approach involves the
post-processing of monthly sea ice predictions.

The approaches proposed in this study integrate ML with a
dynamical modeling framework, with the primary objective
of reducing the intrinsic prediction errors of the dynamical
model itself. Unlike purely data-driven models (e.g., Anders-
son et al., 2021; Ren et al., 2024; Kim et al., 2025), which are
typically designed for statistical prediction of specific sea ice
properties, ML here aims to improve the overall performance
of the dynamical prediction system that ensures physical con-
sistency among a large number of predicted variables.

Our results demonstrate that both online and offline ML-
based error correction models can predict the spatial distribu-
tion of errors well, albeit with slight deficiencies in captur-
ing amplitude. By applying the two approaches to seasonal
Arctic sea ice predictions initialized from January, April,
July, and October, we find that both approaches can reduce
SIE and IIEE prediction errors compared to the raw predic-
tions without error correction. The improvements vary with
the lead month, with particularly notable enhancements ob-
served in predictions from August to October.

By comparing the two error correction approaches, we
find that the offline approach yields smaller errors than the
online approach. The online error correction approach cor-
rects instantaneous model errors only on the 15th day of
the month, and the effect of this correction gradually weak-
ens during model integration due to the accumulation of er-
rors in the other model components. Consequently, the im-
pact of the correction becomes less evident when computing
monthly averaged outputs. Nevertheless, the online error cor-
rection can reduce errors in SST and SSS (Figs. S7 and S8 in
the Supplement). Moreover, the online correction approach
maintains better physical consistency among the predicted
variables through dynamical model integration. The offline
error correction approach directly corrects the model outputs
without requiring model integration. As a result, it is com-
putationally more efficient and easier to integrate into opera-
tional sea ice prediction systems than the online approach.
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It is important to note that the proposed approaches still
have room for improvement. In this study, we only use
ocean and sea ice variables as input features. Including atmo-
spheric variables would help to address errors due to both dy-
namic and thermodynamic processes and further improve the
performance. Increasing the frequency of online correction
could help enhance its effectiveness (Gregory et al., 2024),
but this is challenging in practice since analysis increments
in NorCPM are currently available only every month. An al-
ternative strategy is to train hybrid models that combine ML
with dynamical models, which has been shown to be effec-
tive in other systems (Farchi et al., 2021). However, this ap-
proach relies on external constraints to compute the gradient
of the dynamical model, which are not available in NorCPM.

Furthermore, the current ML model (MLP) is trained in-
dependently at each grid point and thus cannot capture spa-
tial correlations. This limits its ability to correct spatially co-
herent errors, particularly in regions where NorCPM already
performs well and only subtle adjustments are needed. As a
result, the hybrid model often struggles to reproduce the re-
analysis, which is treated as the “truth” in this study. While it
is unrealistic to expect the model to perfectly replicate analy-
sis increments, the discrepancy is closely related to the ML-
based model’s learning capacity and the nature of the un-
derlying errors. Possible contributing factors include (1) the
lack of spatial dependencies due to pointwise training and
(2) the tendency of models trained on long-term data to learn
systematic biases rather than instantaneous random errors,
the latter of which tend to be averaged out over time. Fu-
ture studies could explore spatially aware architectures, such
as CNNs and U-Net, and incorporate additional predictors
to capture complex error structures and enhance correction
performance (Palerme et al., 2024).
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